summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp')
-rw-r--r--thirdparty/bullet/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp328
1 files changed, 155 insertions, 173 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp b/thirdparty/bullet/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp
index 61f465cb72..d663b3d6d6 100644
--- a/thirdparty/bullet/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp
+++ b/thirdparty/bullet/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp
@@ -22,11 +22,11 @@ subject to the following restrictions:
///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization.
///Uses an interface to access the triangles to allow for sharing graphics/physics triangles.
btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, bool buildBvh)
-:btTriangleMeshShape(meshInterface),
-m_bvh(0),
-m_triangleInfoMap(0),
-m_useQuantizedAabbCompression(useQuantizedAabbCompression),
-m_ownsBvh(false)
+ : btTriangleMeshShape(meshInterface),
+ m_bvh(0),
+ m_triangleInfoMap(0),
+ m_useQuantizedAabbCompression(useQuantizedAabbCompression),
+ m_ownsBvh(false)
{
m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
//construct bvh from meshInterface
@@ -37,16 +37,15 @@ m_ownsBvh(false)
buildOptimizedBvh();
}
-#endif //DISABLE_BVH
-
+#endif //DISABLE_BVH
}
-btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,bool buildBvh)
-:btTriangleMeshShape(meshInterface),
-m_bvh(0),
-m_triangleInfoMap(0),
-m_useQuantizedAabbCompression(useQuantizedAabbCompression),
-m_ownsBvh(false)
+btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax, bool buildBvh)
+ : btTriangleMeshShape(meshInterface),
+ m_bvh(0),
+ m_triangleInfoMap(0),
+ m_useQuantizedAabbCompression(useQuantizedAabbCompression),
+ m_ownsBvh(false)
{
m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
//construct bvh from meshInterface
@@ -54,30 +53,28 @@ m_ownsBvh(false)
if (buildBvh)
{
- void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
+ void* mem = btAlignedAlloc(sizeof(btOptimizedBvh), 16);
m_bvh = new (mem) btOptimizedBvh();
-
- m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax);
+
+ m_bvh->build(meshInterface, m_useQuantizedAabbCompression, bvhAabbMin, bvhAabbMax);
m_ownsBvh = true;
}
-#endif //DISABLE_BVH
-
+#endif //DISABLE_BVH
}
-void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax)
+void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin, const btVector3& aabbMax)
{
- m_bvh->refitPartial( m_meshInterface,aabbMin,aabbMax );
-
+ m_bvh->refitPartial(m_meshInterface, aabbMin, aabbMax);
+
m_localAabbMin.setMin(aabbMin);
m_localAabbMax.setMax(aabbMax);
}
-
-void btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin,const btVector3& aabbMax)
+void btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin, const btVector3& aabbMax)
{
- m_bvh->refit( m_meshInterface, aabbMin,aabbMax );
-
+ m_bvh->refit(m_meshInterface, aabbMin, aabbMax);
+
recalcLocalAabb();
}
@@ -90,27 +87,27 @@ btBvhTriangleMeshShape::~btBvhTriangleMeshShape()
}
}
-void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget)
+void btBvhTriangleMeshShape::performRaycast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget)
{
- struct MyNodeOverlapCallback : public btNodeOverlapCallback
+ struct MyNodeOverlapCallback : public btNodeOverlapCallback
{
- btStridingMeshInterface* m_meshInterface;
+ btStridingMeshInterface* m_meshInterface;
btTriangleCallback* m_callback;
- MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
- :m_meshInterface(meshInterface),
- m_callback(callback)
+ MyNodeOverlapCallback(btTriangleCallback* callback, btStridingMeshInterface* meshInterface)
+ : m_meshInterface(meshInterface),
+ m_callback(callback)
{
}
-
+
virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
{
btVector3 m_triangle[3];
- const unsigned char *vertexbase;
+ const unsigned char* vertexbase;
int numverts;
PHY_ScalarType type;
int stride;
- const unsigned char *indexbase;
+ const unsigned char* indexbase;
int indexstride;
int numfaces;
PHY_ScalarType indicestype;
@@ -126,60 +123,60 @@ void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const
indicestype,
nodeSubPart);
- unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
- btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
-
+ unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
+ btAssert(indicestype == PHY_INTEGER || indicestype == PHY_SHORT);
+
const btVector3& meshScaling = m_meshInterface->getScaling();
- for (int j=2;j>=0;j--)
+ for (int j = 2; j >= 0; j--)
{
- int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
-
+ int graphicsindex = indicestype == PHY_SHORT ? ((unsigned short*)gfxbase)[j] : gfxbase[j];
+
if (type == PHY_FLOAT)
{
- float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
-
- m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
+ float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
+
+ m_triangle[j] = btVector3(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
}
else
{
- double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
-
- m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());
+ double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
+
+ m_triangle[j] = btVector3(btScalar(graphicsbase[0]) * meshScaling.getX(), btScalar(graphicsbase[1]) * meshScaling.getY(), btScalar(graphicsbase[2]) * meshScaling.getZ());
}
}
/* Perform ray vs. triangle collision here */
- m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
+ m_callback->processTriangle(m_triangle, nodeSubPart, nodeTriangleIndex);
m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
}
};
- MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
+ MyNodeOverlapCallback myNodeCallback(callback, m_meshInterface);
- m_bvh->reportRayOverlappingNodex(&myNodeCallback,raySource,rayTarget);
+ m_bvh->reportRayOverlappingNodex(&myNodeCallback, raySource, rayTarget);
}
-void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax)
+void btBvhTriangleMeshShape::performConvexcast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax)
{
- struct MyNodeOverlapCallback : public btNodeOverlapCallback
+ struct MyNodeOverlapCallback : public btNodeOverlapCallback
{
- btStridingMeshInterface* m_meshInterface;
+ btStridingMeshInterface* m_meshInterface;
btTriangleCallback* m_callback;
- MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
- :m_meshInterface(meshInterface),
- m_callback(callback)
+ MyNodeOverlapCallback(btTriangleCallback* callback, btStridingMeshInterface* meshInterface)
+ : m_meshInterface(meshInterface),
+ m_callback(callback)
{
}
-
+
virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
{
btVector3 m_triangle[3];
- const unsigned char *vertexbase;
+ const unsigned char* vertexbase;
int numverts;
PHY_ScalarType type;
int stride;
- const unsigned char *indexbase;
+ const unsigned char* indexbase;
int indexstride;
int numfaces;
PHY_ScalarType indicestype;
@@ -195,77 +192,74 @@ void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, co
indicestype,
nodeSubPart);
- unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
- btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
-
+ unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
+ btAssert(indicestype == PHY_INTEGER || indicestype == PHY_SHORT);
+
const btVector3& meshScaling = m_meshInterface->getScaling();
- for (int j=2;j>=0;j--)
+ for (int j = 2; j >= 0; j--)
{
- int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
+ int graphicsindex = indicestype == PHY_SHORT ? ((unsigned short*)gfxbase)[j] : gfxbase[j];
if (type == PHY_FLOAT)
{
- float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
+ float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
- m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
+ m_triangle[j] = btVector3(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
}
else
{
- double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
-
- m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());
+ double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
+
+ m_triangle[j] = btVector3(btScalar(graphicsbase[0]) * meshScaling.getX(), btScalar(graphicsbase[1]) * meshScaling.getY(), btScalar(graphicsbase[2]) * meshScaling.getZ());
}
}
/* Perform ray vs. triangle collision here */
- m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
+ m_callback->processTriangle(m_triangle, nodeSubPart, nodeTriangleIndex);
m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
}
};
- MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
+ MyNodeOverlapCallback myNodeCallback(callback, m_meshInterface);
- m_bvh->reportBoxCastOverlappingNodex (&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax);
+ m_bvh->reportBoxCastOverlappingNodex(&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax);
}
//perform bvh tree traversal and report overlapping triangles to 'callback'
-void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
+void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
{
-
#ifdef DISABLE_BVH
//brute force traverse all triangles
- btTriangleMeshShape::processAllTriangles(callback,aabbMin,aabbMax);
+ btTriangleMeshShape::processAllTriangles(callback, aabbMin, aabbMax);
#else
//first get all the nodes
-
- struct MyNodeOverlapCallback : public btNodeOverlapCallback
+ struct MyNodeOverlapCallback : public btNodeOverlapCallback
{
- btStridingMeshInterface* m_meshInterface;
- btTriangleCallback* m_callback;
- btVector3 m_triangle[3];
+ btStridingMeshInterface* m_meshInterface;
+ btTriangleCallback* m_callback;
+ btVector3 m_triangle[3];
int m_numOverlap;
- MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
- :m_meshInterface(meshInterface),
- m_callback(callback),
- m_numOverlap(0)
+ MyNodeOverlapCallback(btTriangleCallback* callback, btStridingMeshInterface* meshInterface)
+ : m_meshInterface(meshInterface),
+ m_callback(callback),
+ m_numOverlap(0)
{
}
-
+
virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
{
m_numOverlap++;
- const unsigned char *vertexbase;
+ const unsigned char* vertexbase;
int numverts;
PHY_ScalarType type;
int stride;
- const unsigned char *indexbase;
+ const unsigned char* indexbase;
int indexstride;
int numfaces;
PHY_ScalarType indicestype;
-
m_meshInterface->getLockedReadOnlyVertexIndexBase(
&vertexbase,
@@ -278,67 +272,62 @@ void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,co
indicestype,
nodeSubPart);
- unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
- btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT||indicestype==PHY_UCHAR);
-
+ unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
+ btAssert(indicestype == PHY_INTEGER || indicestype == PHY_SHORT || indicestype == PHY_UCHAR);
+
const btVector3& meshScaling = m_meshInterface->getScaling();
- for (int j=2;j>=0;j--)
+ for (int j = 2; j >= 0; j--)
{
-
- int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:indicestype==PHY_INTEGER?gfxbase[j]:((unsigned char*)gfxbase)[j];
-
+ int graphicsindex = indicestype == PHY_SHORT ? ((unsigned short*)gfxbase)[j] : indicestype == PHY_INTEGER ? gfxbase[j] : ((unsigned char*)gfxbase)[j];
#ifdef DEBUG_TRIANGLE_MESH
- printf("%d ,",graphicsindex);
-#endif //DEBUG_TRIANGLE_MESH
+ printf("%d ,", graphicsindex);
+#endif //DEBUG_TRIANGLE_MESH
if (type == PHY_FLOAT)
{
- float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
-
+ float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
+
m_triangle[j] = btVector3(
- graphicsbase[0]*meshScaling.getX(),
- graphicsbase[1]*meshScaling.getY(),
- graphicsbase[2]*meshScaling.getZ());
+ graphicsbase[0] * meshScaling.getX(),
+ graphicsbase[1] * meshScaling.getY(),
+ graphicsbase[2] * meshScaling.getZ());
}
else
{
- double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
+ double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
m_triangle[j] = btVector3(
- btScalar(graphicsbase[0])*meshScaling.getX(),
- btScalar(graphicsbase[1])*meshScaling.getY(),
- btScalar(graphicsbase[2])*meshScaling.getZ());
+ btScalar(graphicsbase[0]) * meshScaling.getX(),
+ btScalar(graphicsbase[1]) * meshScaling.getY(),
+ btScalar(graphicsbase[2]) * meshScaling.getZ());
}
#ifdef DEBUG_TRIANGLE_MESH
- printf("triangle vertices:%f,%f,%f\n",triangle[j].x(),triangle[j].y(),triangle[j].z());
-#endif //DEBUG_TRIANGLE_MESH
+ printf("triangle vertices:%f,%f,%f\n", triangle[j].x(), triangle[j].y(), triangle[j].z());
+#endif //DEBUG_TRIANGLE_MESH
}
- m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
+ m_callback->processTriangle(m_triangle, nodeSubPart, nodeTriangleIndex);
m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
}
-
};
- MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
-
- m_bvh->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax);
-
-#endif//DISABLE_BVH
+ MyNodeOverlapCallback myNodeCallback(callback, m_meshInterface);
+ m_bvh->reportAabbOverlappingNodex(&myNodeCallback, aabbMin, aabbMax);
+#endif //DISABLE_BVH
}
-void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
+void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
{
- if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
- {
- btTriangleMeshShape::setLocalScaling(scaling);
- buildOptimizedBvh();
- }
+ if ((getLocalScaling() - scaling).length2() > SIMD_EPSILON)
+ {
+ btTriangleMeshShape::setLocalScaling(scaling);
+ buildOptimizedBvh();
+ }
}
-void btBvhTriangleMeshShape::buildOptimizedBvh()
+void btBvhTriangleMeshShape::buildOptimizedBvh()
{
if (m_ownsBvh)
{
@@ -346,43 +335,39 @@ void btBvhTriangleMeshShape::buildOptimizedBvh()
btAlignedFree(m_bvh);
}
///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work
- void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
- m_bvh = new(mem) btOptimizedBvh();
+ void* mem = btAlignedAlloc(sizeof(btOptimizedBvh), 16);
+ m_bvh = new (mem) btOptimizedBvh();
//rebuild the bvh...
- m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax);
+ m_bvh->build(m_meshInterface, m_useQuantizedAabbCompression, m_localAabbMin, m_localAabbMax);
m_ownsBvh = true;
}
-void btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling)
+void btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling)
{
- btAssert(!m_bvh);
- btAssert(!m_ownsBvh);
-
- m_bvh = bvh;
- m_ownsBvh = false;
- // update the scaling without rebuilding the bvh
- if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
- {
- btTriangleMeshShape::setLocalScaling(scaling);
- }
-}
-
+ btAssert(!m_bvh);
+ btAssert(!m_ownsBvh);
+ m_bvh = bvh;
+ m_ownsBvh = false;
+ // update the scaling without rebuilding the bvh
+ if ((getLocalScaling() - scaling).length2() > SIMD_EPSILON)
+ {
+ btTriangleMeshShape::setLocalScaling(scaling);
+ }
+}
///fills the dataBuffer and returns the struct name (and 0 on failure)
-const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
+const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
{
- btTriangleMeshShapeData* trimeshData = (btTriangleMeshShapeData*) dataBuffer;
+ btTriangleMeshShapeData* trimeshData = (btTriangleMeshShapeData*)dataBuffer;
- btCollisionShape::serialize(&trimeshData->m_collisionShapeData,serializer);
+ btCollisionShape::serialize(&trimeshData->m_collisionShapeData, serializer);
m_meshInterface->serialize(&trimeshData->m_meshInterface, serializer);
trimeshData->m_collisionMargin = float(m_collisionMargin);
-
-
- if (m_bvh && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_BVH))
+ if (m_bvh && !(serializer->getSerializationFlags() & BT_SERIALIZE_NO_BVH))
{
void* chunk = serializer->findPointer(m_bvh);
if (chunk)
@@ -391,48 +376,49 @@ const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* se
trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)chunk;
trimeshData->m_quantizedFloatBvh = 0;
#else
- trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)chunk;
- trimeshData->m_quantizedDoubleBvh= 0;
-#endif //BT_USE_DOUBLE_PRECISION
- } else
+ trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)chunk;
+ trimeshData->m_quantizedDoubleBvh = 0;
+#endif //BT_USE_DOUBLE_PRECISION
+ }
+ else
{
-
#ifdef BT_USE_DOUBLE_PRECISION
trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
trimeshData->m_quantizedFloatBvh = 0;
#else
- trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
- trimeshData->m_quantizedDoubleBvh= 0;
-#endif //BT_USE_DOUBLE_PRECISION
-
+ trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
+ trimeshData->m_quantizedDoubleBvh = 0;
+#endif //BT_USE_DOUBLE_PRECISION
+
int sz = m_bvh->calculateSerializeBufferSizeNew();
- btChunk* chunk = serializer->allocate(sz,1);
+ btChunk* chunk = serializer->allocate(sz, 1);
const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
- serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,m_bvh);
+ serializer->finalizeChunk(chunk, structType, BT_QUANTIZED_BVH_CODE, m_bvh);
}
- } else
+ }
+ else
{
trimeshData->m_quantizedFloatBvh = 0;
trimeshData->m_quantizedDoubleBvh = 0;
}
-
-
- if (m_triangleInfoMap && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_TRIANGLEINFOMAP))
+ if (m_triangleInfoMap && !(serializer->getSerializationFlags() & BT_SERIALIZE_NO_TRIANGLEINFOMAP))
{
void* chunk = serializer->findPointer(m_triangleInfoMap);
if (chunk)
{
trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)chunk;
- } else
+ }
+ else
{
trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)serializer->getUniquePointer(m_triangleInfoMap);
int sz = m_triangleInfoMap->calculateSerializeBufferSize();
- btChunk* chunk = serializer->allocate(sz,1);
+ btChunk* chunk = serializer->allocate(sz, 1);
const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
- serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,m_triangleInfoMap);
+ serializer->finalizeChunk(chunk, structType, BT_TRIANLGE_INFO_MAP, m_triangleInfoMap);
}
- } else
+ }
+ else
{
trimeshData->m_triangleInfoMap = 0;
}
@@ -443,28 +429,24 @@ const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* se
return "btTriangleMeshShapeData";
}
-void btBvhTriangleMeshShape::serializeSingleBvh(btSerializer* serializer) const
+void btBvhTriangleMeshShape::serializeSingleBvh(btSerializer* serializer) const
{
if (m_bvh)
{
- int len = m_bvh->calculateSerializeBufferSizeNew(); //make sure not to use calculateSerializeBufferSize because it is used for in-place
- btChunk* chunk = serializer->allocate(len,1);
+ int len = m_bvh->calculateSerializeBufferSizeNew(); //make sure not to use calculateSerializeBufferSize because it is used for in-place
+ btChunk* chunk = serializer->allocate(len, 1);
const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
- serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,(void*)m_bvh);
+ serializer->finalizeChunk(chunk, structType, BT_QUANTIZED_BVH_CODE, (void*)m_bvh);
}
}
-void btBvhTriangleMeshShape::serializeSingleTriangleInfoMap(btSerializer* serializer) const
+void btBvhTriangleMeshShape::serializeSingleTriangleInfoMap(btSerializer* serializer) const
{
if (m_triangleInfoMap)
{
int len = m_triangleInfoMap->calculateSerializeBufferSize();
- btChunk* chunk = serializer->allocate(len,1);
+ btChunk* chunk = serializer->allocate(len, 1);
const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
- serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,(void*)m_triangleInfoMap);
+ serializer->finalizeChunk(chunk, structType, BT_TRIANLGE_INFO_MAP, (void*)m_triangleInfoMap);
}
}
-
-
-
-