summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btGhostObject.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionDispatch/btGhostObject.cpp')
-rw-r--r--thirdparty/bullet/BulletCollision/CollisionDispatch/btGhostObject.cpp97
1 files changed, 46 insertions, 51 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionDispatch/btGhostObject.cpp b/thirdparty/bullet/BulletCollision/CollisionDispatch/btGhostObject.cpp
index 86141fa689..00f16fd0a8 100644
--- a/thirdparty/bullet/BulletCollision/CollisionDispatch/btGhostObject.cpp
+++ b/thirdparty/bullet/BulletCollision/CollisionDispatch/btGhostObject.cpp
@@ -29,60 +29,58 @@ btGhostObject::~btGhostObject()
btAssert(!m_overlappingObjects.size());
}
-
-void btGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btBroadphaseProxy* thisProxy)
+void btGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy, btBroadphaseProxy* thisProxy)
{
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btAssert(otherObject);
///if this linearSearch becomes too slow (too many overlapping objects) we should add a more appropriate data structure
int index = m_overlappingObjects.findLinearSearch(otherObject);
- if (index==m_overlappingObjects.size())
+ if (index == m_overlappingObjects.size())
{
//not found
m_overlappingObjects.push_back(otherObject);
}
}
-void btGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy)
+void btGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy, btDispatcher* dispatcher, btBroadphaseProxy* thisProxy)
{
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btAssert(otherObject);
int index = m_overlappingObjects.findLinearSearch(otherObject);
- if (index<m_overlappingObjects.size())
+ if (index < m_overlappingObjects.size())
{
- m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size()-1];
+ m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size() - 1];
m_overlappingObjects.pop_back();
}
}
-
btPairCachingGhostObject::btPairCachingGhostObject()
{
- m_hashPairCache = new (btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache();
+ m_hashPairCache = new (btAlignedAlloc(sizeof(btHashedOverlappingPairCache), 16)) btHashedOverlappingPairCache();
}
btPairCachingGhostObject::~btPairCachingGhostObject()
{
m_hashPairCache->~btHashedOverlappingPairCache();
- btAlignedFree( m_hashPairCache );
+ btAlignedFree(m_hashPairCache);
}
-void btPairCachingGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btBroadphaseProxy* thisProxy)
+void btPairCachingGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy, btBroadphaseProxy* thisProxy)
{
- btBroadphaseProxy*actualThisProxy = thisProxy ? thisProxy : getBroadphaseHandle();
+ btBroadphaseProxy* actualThisProxy = thisProxy ? thisProxy : getBroadphaseHandle();
btAssert(actualThisProxy);
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btAssert(otherObject);
int index = m_overlappingObjects.findLinearSearch(otherObject);
- if (index==m_overlappingObjects.size())
+ if (index == m_overlappingObjects.size())
{
m_overlappingObjects.push_back(otherObject);
- m_hashPairCache->addOverlappingPair(actualThisProxy,otherProxy);
+ m_hashPairCache->addOverlappingPair(actualThisProxy, otherProxy);
}
}
-void btPairCachingGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy1)
+void btPairCachingGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy, btDispatcher* dispatcher, btBroadphaseProxy* thisProxy1)
{
btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
btBroadphaseProxy* actualThisProxy = thisProxy1 ? thisProxy1 : getBroadphaseHandle();
@@ -90,82 +88,79 @@ void btPairCachingGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy
btAssert(otherObject);
int index = m_overlappingObjects.findLinearSearch(otherObject);
- if (index<m_overlappingObjects.size())
+ if (index < m_overlappingObjects.size())
{
- m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size()-1];
+ m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size() - 1];
m_overlappingObjects.pop_back();
- m_hashPairCache->removeOverlappingPair(actualThisProxy,otherProxy,dispatcher);
+ m_hashPairCache->removeOverlappingPair(actualThisProxy, otherProxy, dispatcher);
}
}
-
-void btGhostObject::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
+void btGhostObject::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
{
- btTransform convexFromTrans,convexToTrans;
+ btTransform convexFromTrans, convexToTrans;
convexFromTrans = convexFromWorld;
convexToTrans = convexToWorld;
btVector3 castShapeAabbMin, castShapeAabbMax;
/* Compute AABB that encompasses angular movement */
{
btVector3 linVel, angVel;
- btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0, linVel, angVel);
+ btTransformUtil::calculateVelocity(convexFromTrans, convexToTrans, 1.0, linVel, angVel);
btTransform R;
- R.setIdentity ();
- R.setRotation (convexFromTrans.getRotation());
- castShape->calculateTemporalAabb (R, linVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax);
+ R.setIdentity();
+ R.setRotation(convexFromTrans.getRotation());
+ castShape->calculateTemporalAabb(R, linVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax);
}
/// go over all objects, and if the ray intersects their aabb + cast shape aabb,
// do a ray-shape query using convexCaster (CCD)
int i;
- for (i=0;i<m_overlappingObjects.size();i++)
+ for (i = 0; i < m_overlappingObjects.size(); i++)
{
- btCollisionObject* collisionObject= m_overlappingObjects[i];
+ btCollisionObject* collisionObject = m_overlappingObjects[i];
//only perform raycast if filterMask matches
- if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
+ if (resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
+ {
//RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
- btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
- collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
- AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
- btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
+ btVector3 collisionObjectAabbMin, collisionObjectAabbMax;
+ collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(), collisionObjectAabbMin, collisionObjectAabbMax);
+ AabbExpand(collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
+ btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
btVector3 hitNormal;
- if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
+ if (btRayAabb(convexFromWorld.getOrigin(), convexToWorld.getOrigin(), collisionObjectAabbMin, collisionObjectAabbMax, hitLambda, hitNormal))
{
- btCollisionWorld::objectQuerySingle(castShape, convexFromTrans,convexToTrans,
- collisionObject,
- collisionObject->getCollisionShape(),
- collisionObject->getWorldTransform(),
- resultCallback,
- allowedCcdPenetration);
+ btCollisionWorld::objectQuerySingle(castShape, convexFromTrans, convexToTrans,
+ collisionObject,
+ collisionObject->getCollisionShape(),
+ collisionObject->getWorldTransform(),
+ resultCallback,
+ allowedCcdPenetration);
}
}
}
-
}
-void btGhostObject::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
+void btGhostObject::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
{
btTransform rayFromTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFromWorld);
- btTransform rayToTrans;
+ btTransform rayToTrans;
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayToWorld);
-
int i;
- for (i=0;i<m_overlappingObjects.size();i++)
+ for (i = 0; i < m_overlappingObjects.size(); i++)
{
- btCollisionObject* collisionObject= m_overlappingObjects[i];
+ btCollisionObject* collisionObject = m_overlappingObjects[i];
//only perform raycast if filterMask matches
- if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
+ if (resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
{
- btCollisionWorld::rayTestSingle(rayFromTrans,rayToTrans,
- collisionObject,
- collisionObject->getCollisionShape(),
- collisionObject->getWorldTransform(),
- resultCallback);
+ btCollisionWorld::rayTestSingle(rayFromTrans, rayToTrans,
+ collisionObject,
+ collisionObject->getCollisionShape(),
+ collisionObject->getWorldTransform(),
+ resultCallback);
}
}
}
-