summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp')
-rw-r--r--thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp979
1 files changed, 451 insertions, 528 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp b/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
index 3e8bc6e426..44dd3c553e 100644
--- a/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
+++ b/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
@@ -30,8 +30,6 @@ subject to the following restrictions:
#include "BulletCollision/CollisionShapes/btTriangleShape.h"
#include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
-
-
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
@@ -43,8 +41,6 @@ subject to the following restrictions:
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
-
-
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
@@ -57,8 +53,6 @@ subject to the following restrictions:
///////////
-
-
static SIMD_FORCE_INLINE void segmentsClosestPoints(
btVector3& ptsVector,
btVector3& offsetA,
@@ -66,43 +60,49 @@ static SIMD_FORCE_INLINE void segmentsClosestPoints(
btScalar& tA, btScalar& tB,
const btVector3& translation,
const btVector3& dirA, btScalar hlenA,
- const btVector3& dirB, btScalar hlenB )
+ const btVector3& dirB, btScalar hlenB)
{
// compute the parameters of the closest points on each line segment
- btScalar dirA_dot_dirB = btDot(dirA,dirB);
- btScalar dirA_dot_trans = btDot(dirA,translation);
- btScalar dirB_dot_trans = btDot(dirB,translation);
+ btScalar dirA_dot_dirB = btDot(dirA, dirB);
+ btScalar dirA_dot_trans = btDot(dirA, translation);
+ btScalar dirB_dot_trans = btDot(dirB, translation);
btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
- if ( denom == 0.0f ) {
+ if (denom == 0.0f)
+ {
tA = 0.0f;
- } else {
- tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
- if ( tA < -hlenA )
+ }
+ else
+ {
+ tA = (dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB) / denom;
+ if (tA < -hlenA)
tA = -hlenA;
- else if ( tA > hlenA )
+ else if (tA > hlenA)
tA = hlenA;
}
tB = tA * dirA_dot_dirB - dirB_dot_trans;
- if ( tB < -hlenB ) {
+ if (tB < -hlenB)
+ {
tB = -hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
- if ( tA < -hlenA )
+ if (tA < -hlenA)
tA = -hlenA;
- else if ( tA > hlenA )
+ else if (tA > hlenA)
tA = hlenA;
- } else if ( tB > hlenB ) {
+ }
+ else if (tB > hlenB)
+ {
tB = hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
- if ( tA < -hlenA )
+ if (tA < -hlenA)
tA = -hlenA;
- else if ( tA > hlenA )
+ else if (tA > hlenA)
tA = hlenA;
}
@@ -114,19 +114,18 @@ static SIMD_FORCE_INLINE void segmentsClosestPoints(
ptsVector = translation - offsetA + offsetB;
}
-
static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
btVector3& normalOnB,
btVector3& pointOnB,
btScalar capsuleLengthA,
- btScalar capsuleRadiusA,
+ btScalar capsuleRadiusA,
btScalar capsuleLengthB,
- btScalar capsuleRadiusB,
+ btScalar capsuleRadiusB,
int capsuleAxisA,
int capsuleAxisB,
const btTransform& transformA,
const btTransform& transformB,
- btScalar distanceThreshold )
+ btScalar distanceThreshold)
{
btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA);
btVector3 translationA = transformA.getOrigin();
@@ -139,47 +138,38 @@ static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
// compute the closest points of the capsule line segments
- btVector3 ptsVector; // the vector between the closest points
-
- btVector3 offsetA, offsetB; // offsets from segment centers to their closest points
- btScalar tA, tB; // parameters on line segment
+ btVector3 ptsVector; // the vector between the closest points
+
+ btVector3 offsetA, offsetB; // offsets from segment centers to their closest points
+ btScalar tA, tB; // parameters on line segment
- segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation,
- directionA, capsuleLengthA, directionB, capsuleLengthB );
+ segmentsClosestPoints(ptsVector, offsetA, offsetB, tA, tB, translation,
+ directionA, capsuleLengthA, directionB, capsuleLengthB);
btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB;
- if ( distance > distanceThreshold )
+ if (distance > distanceThreshold)
return distance;
btScalar lenSqr = ptsVector.length2();
- if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON))
+ if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
{
//degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
btVector3 q;
- btPlaneSpace1(directionA,normalOnB,q);
- } else
+ btPlaneSpace1(directionA, normalOnB, q);
+ }
+ else
{
// compute the contact normal
- normalOnB = ptsVector*-btRecipSqrt(lenSqr);
+ normalOnB = ptsVector * -btRecipSqrt(lenSqr);
}
- pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB;
+ pointOnB = transformB.getOrigin() + offsetB + normalOnB * capsuleRadiusB;
return distance;
}
-
-
-
-
-
-
//////////
-
-
-
-
btConvexConvexAlgorithm::CreateFunc::CreateFunc(btConvexPenetrationDepthSolver* pdSolver)
{
m_numPerturbationIterations = 0;
@@ -187,30 +177,27 @@ btConvexConvexAlgorithm::CreateFunc::CreateFunc(btConvexPenetrationDepthSolver*
m_pdSolver = pdSolver;
}
-btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
-{
+btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
+{
}
-btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
-: btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap),
-m_pdSolver(pdSolver),
-m_ownManifold (false),
-m_manifoldPtr(mf),
-m_lowLevelOfDetail(false),
+btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf, const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold)
+ : btActivatingCollisionAlgorithm(ci, body0Wrap, body1Wrap),
+ m_pdSolver(pdSolver),
+ m_ownManifold(false),
+ m_manifoldPtr(mf),
+ m_lowLevelOfDetail(false),
#ifdef USE_SEPDISTANCE_UTIL2
-m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
- (static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
+ m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
+ (static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
#endif
-m_numPerturbationIterations(numPerturbationIterations),
-m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
+ m_numPerturbationIterations(numPerturbationIterations),
+ m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
{
(void)body0Wrap;
(void)body1Wrap;
}
-
-
-
btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
{
if (m_ownManifold)
@@ -220,112 +207,105 @@ btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
}
}
-void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
+void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
{
m_lowLevelOfDetail = useLowLevel;
}
-
struct btPerturbedContactResult : public btManifoldResult
{
btManifoldResult* m_originalManifoldResult;
btTransform m_transformA;
btTransform m_transformB;
- btTransform m_unPerturbedTransform;
- bool m_perturbA;
- btIDebugDraw* m_debugDrawer;
-
-
- btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer)
- :m_originalManifoldResult(originalResult),
- m_transformA(transformA),
- m_transformB(transformB),
- m_unPerturbedTransform(unPerturbedTransform),
- m_perturbA(perturbA),
- m_debugDrawer(debugDrawer)
+ btTransform m_unPerturbedTransform;
+ bool m_perturbA;
+ btIDebugDraw* m_debugDrawer;
+
+ btPerturbedContactResult(btManifoldResult* originalResult, const btTransform& transformA, const btTransform& transformB, const btTransform& unPerturbedTransform, bool perturbA, btIDebugDraw* debugDrawer)
+ : m_originalManifoldResult(originalResult),
+ m_transformA(transformA),
+ m_transformB(transformB),
+ m_unPerturbedTransform(unPerturbedTransform),
+ m_perturbA(perturbA),
+ m_debugDrawer(debugDrawer)
{
}
- virtual ~ btPerturbedContactResult()
+ virtual ~btPerturbedContactResult()
{
}
- virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth)
+ virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar orgDepth)
{
- btVector3 endPt,startPt;
+ btVector3 endPt, startPt;
btScalar newDepth;
btVector3 newNormal;
if (m_perturbA)
{
- btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth;
- endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg);
- newDepth = (endPt - pointInWorld).dot(normalOnBInWorld);
- startPt = endPt - normalOnBInWorld*newDepth;
- } else
+ btVector3 endPtOrg = pointInWorld + normalOnBInWorld * orgDepth;
+ endPt = (m_unPerturbedTransform * m_transformA.inverse())(endPtOrg);
+ newDepth = (endPt - pointInWorld).dot(normalOnBInWorld);
+ startPt = endPt - normalOnBInWorld * newDepth;
+ }
+ else
{
- endPt = pointInWorld + normalOnBInWorld*orgDepth;
- startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld);
- newDepth = (endPt - startPt).dot(normalOnBInWorld);
-
+ endPt = pointInWorld + normalOnBInWorld * orgDepth;
+ startPt = (m_unPerturbedTransform * m_transformB.inverse())(pointInWorld);
+ newDepth = (endPt - startPt).dot(normalOnBInWorld);
}
//#define DEBUG_CONTACTS 1
#ifdef DEBUG_CONTACTS
- m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0));
- m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0));
- m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1));
-#endif //DEBUG_CONTACTS
+ m_debugDrawer->drawLine(startPt, endPt, btVector3(1, 0, 0));
+ m_debugDrawer->drawSphere(startPt, 0.05, btVector3(0, 1, 0));
+ m_debugDrawer->drawSphere(endPt, 0.05, btVector3(0, 0, 1));
+#endif //DEBUG_CONTACTS
-
- m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth);
+ m_originalManifoldResult->addContactPoint(normalOnBInWorld, startPt, newDepth);
}
-
};
extern btScalar gContactBreakingThreshold;
-
//
// Convex-Convex collision algorithm
//
-void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
+void btConvexConvexAlgorithm ::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
-
if (!m_manifoldPtr)
{
//swapped?
- m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject());
+ m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(), body1Wrap->getCollisionObject());
m_ownManifold = true;
}
resultOut->setPersistentManifold(m_manifoldPtr);
//comment-out next line to test multi-contact generation
//resultOut->getPersistentManifold()->clearManifold();
-
const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
- btVector3 normalOnB;
- btVector3 pointOnBWorld;
+ btVector3 normalOnB;
+ btVector3 pointOnBWorld;
#ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
{
//m_manifoldPtr->clearManifold();
- btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
- btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
-
- btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+ btCapsuleShape* capsuleA = (btCapsuleShape*)min0;
+ btCapsuleShape* capsuleB = (btCapsuleShape*)min1;
- btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
- capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(),
- body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
- if (dist<threshold)
+ btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, capsuleA->getHalfHeight(), capsuleA->getRadius(),
+ capsuleB->getHalfHeight(), capsuleB->getRadius(), capsuleA->getUpAxis(), capsuleB->getUpAxis(),
+ body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);
+
+ if (dist < threshold)
{
- btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
- resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
+ btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
+ resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
}
resultOut->refreshContactPoints();
return;
@@ -335,19 +315,19 @@ void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper*
{
//m_manifoldPtr->clearManifold();
- btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
- btSphereShape* capsuleB = (btSphereShape*) min1;
-
- btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+ btCapsuleShape* capsuleA = (btCapsuleShape*)min0;
+ btSphereShape* capsuleB = (btSphereShape*)min1;
+
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
- btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
- 0.,capsuleB->getRadius(),capsuleA->getUpAxis(),1,
- body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
+ btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, capsuleA->getHalfHeight(), capsuleA->getRadius(),
+ 0., capsuleB->getRadius(), capsuleA->getUpAxis(), 1,
+ body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);
- if (dist<threshold)
+ if (dist < threshold)
{
- btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
- resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
+ btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
+ resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
}
resultOut->refreshContactPoints();
return;
@@ -357,252 +337,227 @@ void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper*
{
//m_manifoldPtr->clearManifold();
- btSphereShape* capsuleA = (btSphereShape*) min0;
- btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
-
- btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+ btSphereShape* capsuleA = (btSphereShape*)min0;
+ btCapsuleShape* capsuleB = (btCapsuleShape*)min1;
+
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
- btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,0.,capsuleA->getRadius(),
- capsuleB->getHalfHeight(),capsuleB->getRadius(),1,capsuleB->getUpAxis(),
- body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
+ btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld, 0., capsuleA->getRadius(),
+ capsuleB->getHalfHeight(), capsuleB->getRadius(), 1, capsuleB->getUpAxis(),
+ body0Wrap->getWorldTransform(), body1Wrap->getWorldTransform(), threshold);
- if (dist<threshold)
+ if (dist < threshold)
{
- btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
- resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
+ btAssert(normalOnB.length2() >= (SIMD_EPSILON * SIMD_EPSILON));
+ resultOut->addContactPoint(normalOnB, pointOnBWorld, dist);
}
resultOut->refreshContactPoints();
return;
}
-#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
-
-
-
+#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
#ifdef USE_SEPDISTANCE_UTIL2
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
- m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform());
+ m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(), body1->getWorldTransform());
}
- if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f)
-#endif //USE_SEPDISTANCE_UTIL2
+ if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance() <= 0.f)
+#endif //USE_SEPDISTANCE_UTIL2
{
-
-
- btGjkPairDetector::ClosestPointInput input;
- btVoronoiSimplexSolver simplexSolver;
- btGjkPairDetector gjkPairDetector( min0, min1, &simplexSolver, m_pdSolver );
- //TODO: if (dispatchInfo.m_useContinuous)
- gjkPairDetector.setMinkowskiA(min0);
- gjkPairDetector.setMinkowskiB(min1);
+ btGjkPairDetector::ClosestPointInput input;
+ btVoronoiSimplexSolver simplexSolver;
+ btGjkPairDetector gjkPairDetector(min0, min1, &simplexSolver, m_pdSolver);
+ //TODO: if (dispatchInfo.m_useContinuous)
+ gjkPairDetector.setMinkowskiA(min0);
+ gjkPairDetector.setMinkowskiB(min1);
#ifdef USE_SEPDISTANCE_UTIL2
- if (dispatchInfo.m_useConvexConservativeDistanceUtil)
- {
- input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
- } else
-#endif //USE_SEPDISTANCE_UTIL2
- {
- //if (dispatchInfo.m_convexMaxDistanceUseCPT)
- //{
- // input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
- //} else
- //{
- input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold()+resultOut->m_closestPointDistanceThreshold;
-// }
-
- input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
- }
-
- input.m_transformA = body0Wrap->getWorldTransform();
- input.m_transformB = body1Wrap->getWorldTransform();
-
-
-
-
-
-#ifdef USE_SEPDISTANCE_UTIL2
- btScalar sepDist = 0.f;
- if (dispatchInfo.m_useConvexConservativeDistanceUtil)
- {
- sepDist = gjkPairDetector.getCachedSeparatingDistance();
- if (sepDist>SIMD_EPSILON)
+ if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
- sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
- //now perturbe directions to get multiple contact points
-
+ input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
+ }
+ else
+#endif //USE_SEPDISTANCE_UTIL2
+ {
+ //if (dispatchInfo.m_convexMaxDistanceUseCPT)
+ //{
+ // input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
+ //} else
+ //{
+ input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold() + resultOut->m_closestPointDistanceThreshold;
+ // }
+
+ input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
}
- }
-#endif //USE_SEPDISTANCE_UTIL2
-
- if (min0->isPolyhedral() && min1->isPolyhedral())
- {
+ input.m_transformA = body0Wrap->getWorldTransform();
+ input.m_transformB = body1Wrap->getWorldTransform();
- struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result
+#ifdef USE_SEPDISTANCE_UTIL2
+ btScalar sepDist = 0.f;
+ if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
- btVector3 m_normalOnBInWorld;
- btVector3 m_pointInWorld;
- btScalar m_depth;
- bool m_hasContact;
-
-
- btDummyResult()
- : m_hasContact(false)
+ sepDist = gjkPairDetector.getCachedSeparatingDistance();
+ if (sepDist > SIMD_EPSILON)
{
+ sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
+ //now perturbe directions to get multiple contact points
}
-
-
- virtual void setShapeIdentifiersA(int partId0,int index0){}
- virtual void setShapeIdentifiersB(int partId1,int index1){}
- virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
- {
- m_hasContact = true;
- m_normalOnBInWorld = normalOnBInWorld;
- m_pointInWorld = pointInWorld;
- m_depth = depth;
- }
- };
+ }
+#endif //USE_SEPDISTANCE_UTIL2
-
- struct btWithoutMarginResult : public btDiscreteCollisionDetectorInterface::Result
+ if (min0->isPolyhedral() && min1->isPolyhedral())
{
- btDiscreteCollisionDetectorInterface::Result* m_originalResult;
- btVector3 m_reportedNormalOnWorld;
- btScalar m_marginOnA;
- btScalar m_marginOnB;
- btScalar m_reportedDistance;
-
- bool m_foundResult;
- btWithoutMarginResult(btDiscreteCollisionDetectorInterface::Result* result, btScalar marginOnA, btScalar marginOnB)
- :m_originalResult(result),
- m_marginOnA(marginOnA),
- m_marginOnB(marginOnB),
- m_foundResult(false)
- {
- }
-
- virtual void setShapeIdentifiersA(int partId0,int index0){}
- virtual void setShapeIdentifiersB(int partId1,int index1){}
- virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorldOrg,btScalar depthOrg)
+ struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result
{
- m_reportedDistance = depthOrg;
- m_reportedNormalOnWorld = normalOnBInWorld;
-
- btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld*m_marginOnB;
- m_reportedDistance = depthOrg+(m_marginOnA+m_marginOnB);
- if (m_reportedDistance<0.f)
+ btVector3 m_normalOnBInWorld;
+ btVector3 m_pointInWorld;
+ btScalar m_depth;
+ bool m_hasContact;
+
+ btDummyResult()
+ : m_hasContact(false)
{
- m_foundResult = true;
}
- m_originalResult->addContactPoint(normalOnBInWorld,adjustedPointB,m_reportedDistance);
- }
- };
-
- btDummyResult dummy;
-
-///btBoxShape is an exception: its vertices are created WITH margin so don't subtract it
+ virtual void setShapeIdentifiersA(int partId0, int index0) {}
+ virtual void setShapeIdentifiersB(int partId1, int index1) {}
+ virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar depth)
+ {
+ m_hasContact = true;
+ m_normalOnBInWorld = normalOnBInWorld;
+ m_pointInWorld = pointInWorld;
+ m_depth = depth;
+ }
+ };
- btScalar min0Margin = min0->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min0->getMargin();
- btScalar min1Margin = min1->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min1->getMargin();
+ struct btWithoutMarginResult : public btDiscreteCollisionDetectorInterface::Result
+ {
+ btDiscreteCollisionDetectorInterface::Result* m_originalResult;
+ btVector3 m_reportedNormalOnWorld;
+ btScalar m_marginOnA;
+ btScalar m_marginOnB;
+ btScalar m_reportedDistance;
+
+ bool m_foundResult;
+ btWithoutMarginResult(btDiscreteCollisionDetectorInterface::Result* result, btScalar marginOnA, btScalar marginOnB)
+ : m_originalResult(result),
+ m_marginOnA(marginOnA),
+ m_marginOnB(marginOnB),
+ m_foundResult(false)
+ {
+ }
- btWithoutMarginResult withoutMargin(resultOut, min0Margin,min1Margin);
+ virtual void setShapeIdentifiersA(int partId0, int index0) {}
+ virtual void setShapeIdentifiersB(int partId1, int index1) {}
+ virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorldOrg, btScalar depthOrg)
+ {
+ m_reportedDistance = depthOrg;
+ m_reportedNormalOnWorld = normalOnBInWorld;
- btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*) min0;
- btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*) min1;
- if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron())
- {
+ btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld * m_marginOnB;
+ m_reportedDistance = depthOrg + (m_marginOnA + m_marginOnB);
+ if (m_reportedDistance < 0.f)
+ {
+ m_foundResult = true;
+ }
+ m_originalResult->addContactPoint(normalOnBInWorld, adjustedPointB, m_reportedDistance);
+ }
+ };
+ btDummyResult dummy;
-
+ ///btBoxShape is an exception: its vertices are created WITH margin so don't subtract it
- btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+ btScalar min0Margin = min0->getShapeType() == BOX_SHAPE_PROXYTYPE ? 0.f : min0->getMargin();
+ btScalar min1Margin = min1->getShapeType() == BOX_SHAPE_PROXYTYPE ? 0.f : min1->getMargin();
- btScalar minDist = -1e30f;
- btVector3 sepNormalWorldSpace;
- bool foundSepAxis = true;
+ btWithoutMarginResult withoutMargin(resultOut, min0Margin, min1Margin);
- if (dispatchInfo.m_enableSatConvex)
- {
- foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
- *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
- body0Wrap->getWorldTransform(),
- body1Wrap->getWorldTransform(),
- sepNormalWorldSpace,*resultOut);
- } else
+ btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*)min0;
+ btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*)min1;
+ if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron())
{
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
+
+ btScalar minDist = -1e30f;
+ btVector3 sepNormalWorldSpace;
+ bool foundSepAxis = true;
+
+ if (dispatchInfo.m_enableSatConvex)
+ {
+ foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
+ *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(),
+ body1Wrap->getWorldTransform(),
+ sepNormalWorldSpace, *resultOut);
+ }
+ else
+ {
#ifdef ZERO_MARGIN
- gjkPairDetector.setIgnoreMargin(true);
- gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
+ gjkPairDetector.setIgnoreMargin(true);
+ gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
#else
+ gjkPairDetector.getClosestPoints(input, withoutMargin, dispatchInfo.m_debugDraw);
+ //gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
+#endif //ZERO_MARGIN \
+ //btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2(); \
+ //if (l2>SIMD_EPSILON)
+ {
+ sepNormalWorldSpace = withoutMargin.m_reportedNormalOnWorld; //gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
+ //minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
+ minDist = withoutMargin.m_reportedDistance; //gjkPairDetector.getCachedSeparatingDistance()+min0->getMargin()+min1->getMargin();
- gjkPairDetector.getClosestPoints(input,withoutMargin,dispatchInfo.m_debugDraw);
- //gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
-#endif //ZERO_MARGIN
- //btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
- //if (l2>SIMD_EPSILON)
- {
- sepNormalWorldSpace = withoutMargin.m_reportedNormalOnWorld;//gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
- //minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
- minDist = withoutMargin.m_reportedDistance;//gjkPairDetector.getCachedSeparatingDistance()+min0->getMargin()+min1->getMargin();
-
#ifdef ZERO_MARGIN
- foundSepAxis = true;//gjkPairDetector.getCachedSeparatingDistance()<0.f;
+ foundSepAxis = true; //gjkPairDetector.getCachedSeparatingDistance()<0.f;
#else
- foundSepAxis = withoutMargin.m_foundResult && minDist<0;//-(min0->getMargin()+min1->getMargin());
+ foundSepAxis = withoutMargin.m_foundResult && minDist < 0; //-(min0->getMargin()+min1->getMargin());
#endif
+ }
}
- }
- if (foundSepAxis)
- {
-
-// printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
-
- worldVertsB1.resize(0);
- btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
- body0Wrap->getWorldTransform(),
- body1Wrap->getWorldTransform(), minDist-threshold, threshold, worldVertsB1,worldVertsB2,
- *resultOut);
-
- }
- if (m_ownManifold)
- {
- resultOut->refreshContactPoints();
- }
- return;
-
- } else
- {
-
+ if (foundSepAxis)
+ {
+ // printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
- //we can also deal with convex versus triangle (without connectivity data)
- if (dispatchInfo.m_enableSatConvex && polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType()==TRIANGLE_SHAPE_PROXYTYPE)
+ worldVertsB1.resize(0);
+ btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(),
+ body1Wrap->getWorldTransform(), minDist - threshold, threshold, worldVertsB1, worldVertsB2,
+ *resultOut);
+ }
+ if (m_ownManifold)
+ {
+ resultOut->refreshContactPoints();
+ }
+ return;
+ }
+ else
{
+ //we can also deal with convex versus triangle (without connectivity data)
+ if (dispatchInfo.m_enableSatConvex && polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE)
+ {
+ btVertexArray worldSpaceVertices;
+ btTriangleShape* tri = (btTriangleShape*)polyhedronB;
+ worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[0]);
+ worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[1]);
+ worldSpaceVertices.push_back(body1Wrap->getWorldTransform() * tri->m_vertices1[2]);
+ //tri->initializePolyhedralFeatures();
- btVertexArray worldSpaceVertices;
- btTriangleShape* tri = (btTriangleShape*)polyhedronB;
- worldSpaceVertices.push_back( body1Wrap->getWorldTransform()*tri->m_vertices1[0]);
- worldSpaceVertices.push_back( body1Wrap->getWorldTransform()*tri->m_vertices1[1]);
- worldSpaceVertices.push_back( body1Wrap->getWorldTransform()*tri->m_vertices1[2]);
-
- //tri->initializePolyhedralFeatures();
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
- btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+ btVector3 sepNormalWorldSpace;
+ btScalar minDist = -1e30f;
+ btScalar maxDist = threshold;
- btVector3 sepNormalWorldSpace;
- btScalar minDist =-1e30f;
- btScalar maxDist = threshold;
-
- bool foundSepAxis = false;
- bool useSatSepNormal = true;
+ bool foundSepAxis = false;
+ bool useSatSepNormal = true;
- if (useSatSepNormal)
- {
+ if (useSatSepNormal)
+ {
#if 0
if (0)
{
@@ -610,113 +565,107 @@ void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper*
polyhedronB->initializePolyhedralFeatures();
} else
#endif
- {
+ {
+ btVector3 uniqueEdges[3] = {tri->m_vertices1[1] - tri->m_vertices1[0],
+ tri->m_vertices1[2] - tri->m_vertices1[1],
+ tri->m_vertices1[0] - tri->m_vertices1[2]};
- btVector3 uniqueEdges[3] = {tri->m_vertices1[1]-tri->m_vertices1[0],
- tri->m_vertices1[2]-tri->m_vertices1[1],
- tri->m_vertices1[0]-tri->m_vertices1[2]};
+ uniqueEdges[0].normalize();
+ uniqueEdges[1].normalize();
+ uniqueEdges[2].normalize();
- uniqueEdges[0].normalize();
- uniqueEdges[1].normalize();
- uniqueEdges[2].normalize();
+ btConvexPolyhedron polyhedron;
+ polyhedron.m_vertices.push_back(tri->m_vertices1[2]);
+ polyhedron.m_vertices.push_back(tri->m_vertices1[0]);
+ polyhedron.m_vertices.push_back(tri->m_vertices1[1]);
- btConvexPolyhedron polyhedron;
- polyhedron.m_vertices.push_back(tri->m_vertices1[2]);
- polyhedron.m_vertices.push_back(tri->m_vertices1[0]);
- polyhedron.m_vertices.push_back(tri->m_vertices1[1]);
-
-
- {
- btFace combinedFaceA;
- combinedFaceA.m_indices.push_back(0);
- combinedFaceA.m_indices.push_back(1);
- combinedFaceA.m_indices.push_back(2);
- btVector3 faceNormal = uniqueEdges[0].cross(uniqueEdges[1]);
- faceNormal.normalize();
- btScalar planeEq=1e30f;
- for (int v=0;v<combinedFaceA.m_indices.size();v++)
{
- btScalar eq = tri->m_vertices1[combinedFaceA.m_indices[v]].dot(faceNormal);
- if (planeEq>eq)
+ btFace combinedFaceA;
+ combinedFaceA.m_indices.push_back(0);
+ combinedFaceA.m_indices.push_back(1);
+ combinedFaceA.m_indices.push_back(2);
+ btVector3 faceNormal = uniqueEdges[0].cross(uniqueEdges[1]);
+ faceNormal.normalize();
+ btScalar planeEq = 1e30f;
+ for (int v = 0; v < combinedFaceA.m_indices.size(); v++)
{
- planeEq=eq;
+ btScalar eq = tri->m_vertices1[combinedFaceA.m_indices[v]].dot(faceNormal);
+ if (planeEq > eq)
+ {
+ planeEq = eq;
+ }
}
+ combinedFaceA.m_plane[0] = faceNormal[0];
+ combinedFaceA.m_plane[1] = faceNormal[1];
+ combinedFaceA.m_plane[2] = faceNormal[2];
+ combinedFaceA.m_plane[3] = -planeEq;
+ polyhedron.m_faces.push_back(combinedFaceA);
}
- combinedFaceA.m_plane[0] = faceNormal[0];
- combinedFaceA.m_plane[1] = faceNormal[1];
- combinedFaceA.m_plane[2] = faceNormal[2];
- combinedFaceA.m_plane[3] = -planeEq;
- polyhedron.m_faces.push_back(combinedFaceA);
- }
- {
- btFace combinedFaceB;
- combinedFaceB.m_indices.push_back(0);
- combinedFaceB.m_indices.push_back(2);
- combinedFaceB.m_indices.push_back(1);
- btVector3 faceNormal = -uniqueEdges[0].cross(uniqueEdges[1]);
- faceNormal.normalize();
- btScalar planeEq=1e30f;
- for (int v=0;v<combinedFaceB.m_indices.size();v++)
{
- btScalar eq = tri->m_vertices1[combinedFaceB.m_indices[v]].dot(faceNormal);
- if (planeEq>eq)
+ btFace combinedFaceB;
+ combinedFaceB.m_indices.push_back(0);
+ combinedFaceB.m_indices.push_back(2);
+ combinedFaceB.m_indices.push_back(1);
+ btVector3 faceNormal = -uniqueEdges[0].cross(uniqueEdges[1]);
+ faceNormal.normalize();
+ btScalar planeEq = 1e30f;
+ for (int v = 0; v < combinedFaceB.m_indices.size(); v++)
{
- planeEq=eq;
+ btScalar eq = tri->m_vertices1[combinedFaceB.m_indices[v]].dot(faceNormal);
+ if (planeEq > eq)
+ {
+ planeEq = eq;
+ }
}
+
+ combinedFaceB.m_plane[0] = faceNormal[0];
+ combinedFaceB.m_plane[1] = faceNormal[1];
+ combinedFaceB.m_plane[2] = faceNormal[2];
+ combinedFaceB.m_plane[3] = -planeEq;
+ polyhedron.m_faces.push_back(combinedFaceB);
}
- combinedFaceB.m_plane[0] = faceNormal[0];
- combinedFaceB.m_plane[1] = faceNormal[1];
- combinedFaceB.m_plane[2] = faceNormal[2];
- combinedFaceB.m_plane[3] = -planeEq;
- polyhedron.m_faces.push_back(combinedFaceB);
- }
+ polyhedron.m_uniqueEdges.push_back(uniqueEdges[0]);
+ polyhedron.m_uniqueEdges.push_back(uniqueEdges[1]);
+ polyhedron.m_uniqueEdges.push_back(uniqueEdges[2]);
+ polyhedron.initialize2();
-
- polyhedron.m_uniqueEdges.push_back(uniqueEdges[0]);
- polyhedron.m_uniqueEdges.push_back(uniqueEdges[1]);
- polyhedron.m_uniqueEdges.push_back(uniqueEdges[2]);
- polyhedron.initialize2();
+ polyhedronB->setPolyhedralFeatures(polyhedron);
+ }
- polyhedronB->setPolyhedralFeatures(polyhedron);
+ foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
+ *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(),
+ body1Wrap->getWorldTransform(),
+ sepNormalWorldSpace, *resultOut);
+ // printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
}
-
-
-
- foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
- *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
- body0Wrap->getWorldTransform(),
- body1Wrap->getWorldTransform(),
- sepNormalWorldSpace,*resultOut);
- // printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
-
- }
- else
- {
+ else
+ {
#ifdef ZERO_MARGIN
- gjkPairDetector.setIgnoreMargin(true);
- gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
+ gjkPairDetector.setIgnoreMargin(true);
+ gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
#else
- gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
-#endif//ZERO_MARGIN
-
- if (dummy.m_hasContact && dummy.m_depth<0)
- {
-
- if (foundSepAxis)
+ gjkPairDetector.getClosestPoints(input, dummy, dispatchInfo.m_debugDraw);
+#endif //ZERO_MARGIN
+
+ if (dummy.m_hasContact && dummy.m_depth < 0)
{
- if (dummy.m_normalOnBInWorld.dot(sepNormalWorldSpace)<0.99)
+ if (foundSepAxis)
{
- printf("?\n");
+ if (dummy.m_normalOnBInWorld.dot(sepNormalWorldSpace) < 0.99)
+ {
+ printf("?\n");
+ }
}
- } else
- {
- printf("!\n");
+ else
+ {
+ printf("!\n");
+ }
+ sepNormalWorldSpace.setValue(0, 0, 1); // = dummy.m_normalOnBInWorld;
+ //minDist = dummy.m_depth;
+ foundSepAxis = true;
}
- sepNormalWorldSpace.setValue(0,0,1);// = dummy.m_normalOnBInWorld;
- //minDist = dummy.m_depth;
- foundSepAxis = true;
- }
#if 0
btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
if (l2>SIMD_EPSILON)
@@ -728,145 +677,131 @@ void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper*
foundSepAxis = true;
}
#endif
- }
+ }
-
- if (foundSepAxis)
- {
- worldVertsB2.resize(0);
- btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(),
- body0Wrap->getWorldTransform(), worldSpaceVertices, worldVertsB2,minDist-threshold, maxDist, *resultOut);
- }
-
-
- if (m_ownManifold)
- {
- resultOut->refreshContactPoints();
+ if (foundSepAxis)
+ {
+ worldVertsB2.resize(0);
+ btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(), worldSpaceVertices, worldVertsB2, minDist - threshold, maxDist, *resultOut);
+ }
+
+ if (m_ownManifold)
+ {
+ resultOut->refreshContactPoints();
+ }
+
+ return;
}
-
- return;
}
-
-
}
+ gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
- }
-
- gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
+ //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
- //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
-
- //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
- if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
- {
-
- int i;
- btVector3 v0,v1;
- btVector3 sepNormalWorldSpace;
- btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
-
- if (l2>SIMD_EPSILON)
+ //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
+ if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
{
- sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
-
- btPlaneSpace1(sepNormalWorldSpace,v0,v1);
-
+ int i;
+ btVector3 v0, v1;
+ btVector3 sepNormalWorldSpace;
+ btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
- bool perturbeA = true;
- const btScalar angleLimit = 0.125f * SIMD_PI;
- btScalar perturbeAngle;
- btScalar radiusA = min0->getAngularMotionDisc();
- btScalar radiusB = min1->getAngularMotionDisc();
- if (radiusA < radiusB)
- {
- perturbeAngle = gContactBreakingThreshold /radiusA;
- perturbeA = true;
- } else
+ if (l2 > SIMD_EPSILON)
{
- perturbeAngle = gContactBreakingThreshold / radiusB;
- perturbeA = false;
- }
- if ( perturbeAngle > angleLimit )
- perturbeAngle = angleLimit;
+ sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis() * (1.f / l2);
- btTransform unPerturbedTransform;
- if (perturbeA)
- {
- unPerturbedTransform = input.m_transformA;
- } else
- {
- unPerturbedTransform = input.m_transformB;
- }
-
- for ( i=0;i<m_numPerturbationIterations;i++)
- {
- if (v0.length2()>SIMD_EPSILON)
+ btPlaneSpace1(sepNormalWorldSpace, v0, v1);
+
+ bool perturbeA = true;
+ const btScalar angleLimit = 0.125f * SIMD_PI;
+ btScalar perturbeAngle;
+ btScalar radiusA = min0->getAngularMotionDisc();
+ btScalar radiusB = min1->getAngularMotionDisc();
+ if (radiusA < radiusB)
{
- btQuaternion perturbeRot(v0,perturbeAngle);
- btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
- btQuaternion rotq(sepNormalWorldSpace,iterationAngle);
-
-
+ perturbeAngle = gContactBreakingThreshold / radiusA;
+ perturbeA = true;
+ }
+ else
+ {
+ perturbeAngle = gContactBreakingThreshold / radiusB;
+ perturbeA = false;
+ }
+ if (perturbeAngle > angleLimit)
+ perturbeAngle = angleLimit;
+
+ btTransform unPerturbedTransform;
if (perturbeA)
{
- input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0Wrap->getWorldTransform().getBasis());
- input.m_transformB = body1Wrap->getWorldTransform();
- #ifdef DEBUG_CONTACTS
- dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0);
- #endif //DEBUG_CONTACTS
- } else
+ unPerturbedTransform = input.m_transformA;
+ }
+ else
{
- input.m_transformA = body0Wrap->getWorldTransform();
- input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1Wrap->getWorldTransform().getBasis());
- #ifdef DEBUG_CONTACTS
- dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0);
- #endif
+ unPerturbedTransform = input.m_transformB;
}
-
- btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw);
- gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw);
+
+ for (i = 0; i < m_numPerturbationIterations; i++)
+ {
+ if (v0.length2() > SIMD_EPSILON)
+ {
+ btQuaternion perturbeRot(v0, perturbeAngle);
+ btScalar iterationAngle = i * (SIMD_2_PI / btScalar(m_numPerturbationIterations));
+ btQuaternion rotq(sepNormalWorldSpace, iterationAngle);
+
+ if (perturbeA)
+ {
+ input.m_transformA.setBasis(btMatrix3x3(rotq.inverse() * perturbeRot * rotq) * body0Wrap->getWorldTransform().getBasis());
+ input.m_transformB = body1Wrap->getWorldTransform();
+#ifdef DEBUG_CONTACTS
+ dispatchInfo.m_debugDraw->drawTransform(input.m_transformA, 10.0);
+#endif //DEBUG_CONTACTS
+ }
+ else
+ {
+ input.m_transformA = body0Wrap->getWorldTransform();
+ input.m_transformB.setBasis(btMatrix3x3(rotq.inverse() * perturbeRot * rotq) * body1Wrap->getWorldTransform().getBasis());
+#ifdef DEBUG_CONTACTS
+ dispatchInfo.m_debugDraw->drawTransform(input.m_transformB, 10.0);
+#endif
+ }
+
+ btPerturbedContactResult perturbedResultOut(resultOut, input.m_transformA, input.m_transformB, unPerturbedTransform, perturbeA, dispatchInfo.m_debugDraw);
+ gjkPairDetector.getClosestPoints(input, perturbedResultOut, dispatchInfo.m_debugDraw);
+ }
}
}
}
- }
-
-
#ifdef USE_SEPDISTANCE_UTIL2
- if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON))
- {
- m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
- }
-#endif //USE_SEPDISTANCE_UTIL2
-
-
+ if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist > SIMD_EPSILON))
+ {
+ m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(), sepDist, body0->getWorldTransform(), body1->getWorldTransform());
+ }
+#endif //USE_SEPDISTANCE_UTIL2
}
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
-
}
-
-
bool disableCcd = false;
-btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
+btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0, btCollisionObject* col1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
-
+
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
///col0->m_worldTransform,
btScalar resultFraction = btScalar(1.);
-
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
-
+
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
squareMot1 < col1->getCcdSquareMotionThreshold())
return resultFraction;
@@ -874,77 +809,65 @@ btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,
if (disableCcd)
return btScalar(1.);
-
//An adhoc way of testing the Continuous Collision Detection algorithms
//One object is approximated as a sphere, to simplify things
//Starting in penetration should report no time of impact
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
-
/// Convex0 against sphere for Convex1
{
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
- btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
+ btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
- btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
+ btGjkConvexCast ccd1(convex0, &sphere1, &voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
- if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
- col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
+ if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
+ col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
{
-
//store result.m_fraction in both bodies
-
- if (col0->getHitFraction()> result.m_fraction)
- col0->setHitFraction( result.m_fraction );
+
+ if (col0->getHitFraction() > result.m_fraction)
+ col0->setHitFraction(result.m_fraction);
if (col1->getHitFraction() > result.m_fraction)
- col1->setHitFraction( result.m_fraction);
+ col1->setHitFraction(result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
-
}
-
-
-
-
}
/// Sphere (for convex0) against Convex1
{
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
- btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
+ btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
- btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
+ btGjkConvexCast ccd1(&sphere0, convex1, &voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
- if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
- col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
+ if (ccd1.calcTimeOfImpact(col0->getWorldTransform(), col0->getInterpolationWorldTransform(),
+ col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
{
-
//store result.m_fraction in both bodies
-
- if (col0->getHitFraction() > result.m_fraction)
- col0->setHitFraction( result.m_fraction);
+
+ if (col0->getHitFraction() > result.m_fraction)
+ col0->setHitFraction(result.m_fraction);
if (col1->getHitFraction() > result.m_fraction)
- col1->setHitFraction( result.m_fraction);
+ col1->setHitFraction(result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
-
}
}
-
- return resultFraction;
+ return resultFraction;
}
-