summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp')
-rw-r--r--thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp828
1 files changed, 828 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp b/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
new file mode 100644
index 0000000000..b54bd48932
--- /dev/null
+++ b/thirdparty/bullet/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp
@@ -0,0 +1,828 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///Specialized capsule-capsule collision algorithm has been added for Bullet 2.75 release to increase ragdoll performance
+///If you experience problems with capsule-capsule collision, try to define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER and report it in the Bullet forums
+///with reproduction case
+//#define BT_DISABLE_CAPSULE_CAPSULE_COLLIDER 1
+//#define ZERO_MARGIN
+
+#include "btConvexConvexAlgorithm.h"
+
+//#include <stdio.h>
+#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
+#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+#include "BulletCollision/CollisionShapes/btConvexShape.h"
+#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
+#include "BulletCollision/CollisionShapes/btTriangleShape.h"
+
+
+
+#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
+#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
+#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
+#include "BulletCollision/CollisionShapes/btBoxShape.h"
+#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
+
+#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
+#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
+#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
+#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
+
+
+
+#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
+#include "BulletCollision/CollisionShapes/btSphereShape.h"
+
+#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
+
+#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
+#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
+#include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
+
+///////////
+
+
+
+static SIMD_FORCE_INLINE void segmentsClosestPoints(
+ btVector3& ptsVector,
+ btVector3& offsetA,
+ btVector3& offsetB,
+ btScalar& tA, btScalar& tB,
+ const btVector3& translation,
+ const btVector3& dirA, btScalar hlenA,
+ const btVector3& dirB, btScalar hlenB )
+{
+ // compute the parameters of the closest points on each line segment
+
+ btScalar dirA_dot_dirB = btDot(dirA,dirB);
+ btScalar dirA_dot_trans = btDot(dirA,translation);
+ btScalar dirB_dot_trans = btDot(dirB,translation);
+
+ btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
+
+ if ( denom == 0.0f ) {
+ tA = 0.0f;
+ } else {
+ tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
+ if ( tA < -hlenA )
+ tA = -hlenA;
+ else if ( tA > hlenA )
+ tA = hlenA;
+ }
+
+ tB = tA * dirA_dot_dirB - dirB_dot_trans;
+
+ if ( tB < -hlenB ) {
+ tB = -hlenB;
+ tA = tB * dirA_dot_dirB + dirA_dot_trans;
+
+ if ( tA < -hlenA )
+ tA = -hlenA;
+ else if ( tA > hlenA )
+ tA = hlenA;
+ } else if ( tB > hlenB ) {
+ tB = hlenB;
+ tA = tB * dirA_dot_dirB + dirA_dot_trans;
+
+ if ( tA < -hlenA )
+ tA = -hlenA;
+ else if ( tA > hlenA )
+ tA = hlenA;
+ }
+
+ // compute the closest points relative to segment centers.
+
+ offsetA = dirA * tA;
+ offsetB = dirB * tB;
+
+ ptsVector = translation - offsetA + offsetB;
+}
+
+
+static SIMD_FORCE_INLINE btScalar capsuleCapsuleDistance(
+ btVector3& normalOnB,
+ btVector3& pointOnB,
+ btScalar capsuleLengthA,
+ btScalar capsuleRadiusA,
+ btScalar capsuleLengthB,
+ btScalar capsuleRadiusB,
+ int capsuleAxisA,
+ int capsuleAxisB,
+ const btTransform& transformA,
+ const btTransform& transformB,
+ btScalar distanceThreshold )
+{
+ btVector3 directionA = transformA.getBasis().getColumn(capsuleAxisA);
+ btVector3 translationA = transformA.getOrigin();
+ btVector3 directionB = transformB.getBasis().getColumn(capsuleAxisB);
+ btVector3 translationB = transformB.getOrigin();
+
+ // translation between centers
+
+ btVector3 translation = translationB - translationA;
+
+ // compute the closest points of the capsule line segments
+
+ btVector3 ptsVector; // the vector between the closest points
+
+ btVector3 offsetA, offsetB; // offsets from segment centers to their closest points
+ btScalar tA, tB; // parameters on line segment
+
+ segmentsClosestPoints( ptsVector, offsetA, offsetB, tA, tB, translation,
+ directionA, capsuleLengthA, directionB, capsuleLengthB );
+
+ btScalar distance = ptsVector.length() - capsuleRadiusA - capsuleRadiusB;
+
+ if ( distance > distanceThreshold )
+ return distance;
+
+ btScalar lenSqr = ptsVector.length2();
+ if (lenSqr<= (SIMD_EPSILON*SIMD_EPSILON))
+ {
+ //degenerate case where 2 capsules are likely at the same location: take a vector tangential to 'directionA'
+ btVector3 q;
+ btPlaneSpace1(directionA,normalOnB,q);
+ } else
+ {
+ // compute the contact normal
+ normalOnB = ptsVector*-btRecipSqrt(lenSqr);
+ }
+ pointOnB = transformB.getOrigin()+offsetB + normalOnB * capsuleRadiusB;
+
+ return distance;
+}
+
+
+
+
+
+
+
+//////////
+
+
+
+
+
+btConvexConvexAlgorithm::CreateFunc::CreateFunc(btConvexPenetrationDepthSolver* pdSolver)
+{
+ m_numPerturbationIterations = 0;
+ m_minimumPointsPerturbationThreshold = 3;
+ m_pdSolver = pdSolver;
+}
+
+btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
+{
+}
+
+btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
+: btActivatingCollisionAlgorithm(ci,body0Wrap,body1Wrap),
+m_pdSolver(pdSolver),
+m_ownManifold (false),
+m_manifoldPtr(mf),
+m_lowLevelOfDetail(false),
+#ifdef USE_SEPDISTANCE_UTIL2
+m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
+ (static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
+#endif
+m_numPerturbationIterations(numPerturbationIterations),
+m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
+{
+ (void)body0Wrap;
+ (void)body1Wrap;
+}
+
+
+
+
+btConvexConvexAlgorithm::~btConvexConvexAlgorithm()
+{
+ if (m_ownManifold)
+ {
+ if (m_manifoldPtr)
+ m_dispatcher->releaseManifold(m_manifoldPtr);
+ }
+}
+
+void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
+{
+ m_lowLevelOfDetail = useLowLevel;
+}
+
+
+struct btPerturbedContactResult : public btManifoldResult
+{
+ btManifoldResult* m_originalManifoldResult;
+ btTransform m_transformA;
+ btTransform m_transformB;
+ btTransform m_unPerturbedTransform;
+ bool m_perturbA;
+ btIDebugDraw* m_debugDrawer;
+
+
+ btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB,const btTransform& unPerturbedTransform,bool perturbA,btIDebugDraw* debugDrawer)
+ :m_originalManifoldResult(originalResult),
+ m_transformA(transformA),
+ m_transformB(transformB),
+ m_unPerturbedTransform(unPerturbedTransform),
+ m_perturbA(perturbA),
+ m_debugDrawer(debugDrawer)
+ {
+ }
+ virtual ~ btPerturbedContactResult()
+ {
+ }
+
+ virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar orgDepth)
+ {
+ btVector3 endPt,startPt;
+ btScalar newDepth;
+ btVector3 newNormal;
+
+ if (m_perturbA)
+ {
+ btVector3 endPtOrg = pointInWorld + normalOnBInWorld*orgDepth;
+ endPt = (m_unPerturbedTransform*m_transformA.inverse())(endPtOrg);
+ newDepth = (endPt - pointInWorld).dot(normalOnBInWorld);
+ startPt = endPt+normalOnBInWorld*newDepth;
+ } else
+ {
+ endPt = pointInWorld + normalOnBInWorld*orgDepth;
+ startPt = (m_unPerturbedTransform*m_transformB.inverse())(pointInWorld);
+ newDepth = (endPt - startPt).dot(normalOnBInWorld);
+
+ }
+
+//#define DEBUG_CONTACTS 1
+#ifdef DEBUG_CONTACTS
+ m_debugDrawer->drawLine(startPt,endPt,btVector3(1,0,0));
+ m_debugDrawer->drawSphere(startPt,0.05,btVector3(0,1,0));
+ m_debugDrawer->drawSphere(endPt,0.05,btVector3(0,0,1));
+#endif //DEBUG_CONTACTS
+
+
+ m_originalManifoldResult->addContactPoint(normalOnBInWorld,startPt,newDepth);
+ }
+
+};
+
+extern btScalar gContactBreakingThreshold;
+
+
+//
+// Convex-Convex collision algorithm
+//
+void btConvexConvexAlgorithm ::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
+{
+
+ if (!m_manifoldPtr)
+ {
+ //swapped?
+ m_manifoldPtr = m_dispatcher->getNewManifold(body0Wrap->getCollisionObject(),body1Wrap->getCollisionObject());
+ m_ownManifold = true;
+ }
+ resultOut->setPersistentManifold(m_manifoldPtr);
+
+ //comment-out next line to test multi-contact generation
+ //resultOut->getPersistentManifold()->clearManifold();
+
+
+ const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
+ const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
+
+ btVector3 normalOnB;
+ btVector3 pointOnBWorld;
+#ifndef BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
+ if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
+ {
+ //m_manifoldPtr->clearManifold();
+
+ btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
+ btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
+
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+
+ btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
+ capsuleB->getHalfHeight(),capsuleB->getRadius(),capsuleA->getUpAxis(),capsuleB->getUpAxis(),
+ body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
+
+ if (dist<threshold)
+ {
+ btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
+ resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
+ }
+ resultOut->refreshContactPoints();
+ return;
+ }
+
+ if ((min0->getShapeType() == CAPSULE_SHAPE_PROXYTYPE) && (min1->getShapeType() == SPHERE_SHAPE_PROXYTYPE))
+ {
+ //m_manifoldPtr->clearManifold();
+
+ btCapsuleShape* capsuleA = (btCapsuleShape*) min0;
+ btSphereShape* capsuleB = (btSphereShape*) min1;
+
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+
+ btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,capsuleA->getHalfHeight(),capsuleA->getRadius(),
+ 0.,capsuleB->getRadius(),capsuleA->getUpAxis(),1,
+ body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
+
+ if (dist<threshold)
+ {
+ btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
+ resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
+ }
+ resultOut->refreshContactPoints();
+ return;
+ }
+
+ if ((min0->getShapeType() == SPHERE_SHAPE_PROXYTYPE) && (min1->getShapeType() == CAPSULE_SHAPE_PROXYTYPE))
+ {
+ //m_manifoldPtr->clearManifold();
+
+ btSphereShape* capsuleA = (btSphereShape*) min0;
+ btCapsuleShape* capsuleB = (btCapsuleShape*) min1;
+
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+
+ btScalar dist = capsuleCapsuleDistance(normalOnB, pointOnBWorld,0.,capsuleA->getRadius(),
+ capsuleB->getHalfHeight(),capsuleB->getRadius(),1,capsuleB->getUpAxis(),
+ body0Wrap->getWorldTransform(),body1Wrap->getWorldTransform(),threshold);
+
+ if (dist<threshold)
+ {
+ btAssert(normalOnB.length2()>=(SIMD_EPSILON*SIMD_EPSILON));
+ resultOut->addContactPoint(normalOnB,pointOnBWorld,dist);
+ }
+ resultOut->refreshContactPoints();
+ return;
+ }
+#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
+
+
+
+
+#ifdef USE_SEPDISTANCE_UTIL2
+ if (dispatchInfo.m_useConvexConservativeDistanceUtil)
+ {
+ m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform());
+ }
+
+ if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f)
+#endif //USE_SEPDISTANCE_UTIL2
+
+ {
+
+
+ btGjkPairDetector::ClosestPointInput input;
+ btVoronoiSimplexSolver simplexSolver;
+ btGjkPairDetector gjkPairDetector( min0, min1, &simplexSolver, m_pdSolver );
+ //TODO: if (dispatchInfo.m_useContinuous)
+ gjkPairDetector.setMinkowskiA(min0);
+ gjkPairDetector.setMinkowskiB(min1);
+
+#ifdef USE_SEPDISTANCE_UTIL2
+ if (dispatchInfo.m_useConvexConservativeDistanceUtil)
+ {
+ input.m_maximumDistanceSquared = BT_LARGE_FLOAT;
+ } else
+#endif //USE_SEPDISTANCE_UTIL2
+ {
+ //if (dispatchInfo.m_convexMaxDistanceUseCPT)
+ //{
+ // input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
+ //} else
+ //{
+ input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold()+resultOut->m_closestPointDistanceThreshold;
+// }
+
+ input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
+ }
+
+ input.m_transformA = body0Wrap->getWorldTransform();
+ input.m_transformB = body1Wrap->getWorldTransform();
+
+
+
+
+
+#ifdef USE_SEPDISTANCE_UTIL2
+ btScalar sepDist = 0.f;
+ if (dispatchInfo.m_useConvexConservativeDistanceUtil)
+ {
+ sepDist = gjkPairDetector.getCachedSeparatingDistance();
+ if (sepDist>SIMD_EPSILON)
+ {
+ sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
+ //now perturbe directions to get multiple contact points
+
+ }
+ }
+#endif //USE_SEPDISTANCE_UTIL2
+
+ if (min0->isPolyhedral() && min1->isPolyhedral())
+ {
+
+
+ struct btDummyResult : public btDiscreteCollisionDetectorInterface::Result
+ {
+ virtual void setShapeIdentifiersA(int partId0,int index0){}
+ virtual void setShapeIdentifiersB(int partId1,int index1){}
+ virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
+ {
+ }
+ };
+
+
+ struct btWithoutMarginResult : public btDiscreteCollisionDetectorInterface::Result
+ {
+ btDiscreteCollisionDetectorInterface::Result* m_originalResult;
+ btVector3 m_reportedNormalOnWorld;
+ btScalar m_marginOnA;
+ btScalar m_marginOnB;
+ btScalar m_reportedDistance;
+
+ bool m_foundResult;
+ btWithoutMarginResult(btDiscreteCollisionDetectorInterface::Result* result, btScalar marginOnA, btScalar marginOnB)
+ :m_originalResult(result),
+ m_marginOnA(marginOnA),
+ m_marginOnB(marginOnB),
+ m_foundResult(false)
+ {
+ }
+
+ virtual void setShapeIdentifiersA(int partId0,int index0){}
+ virtual void setShapeIdentifiersB(int partId1,int index1){}
+ virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorldOrg,btScalar depthOrg)
+ {
+ m_reportedDistance = depthOrg;
+ m_reportedNormalOnWorld = normalOnBInWorld;
+
+ btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld*m_marginOnB;
+ m_reportedDistance = depthOrg+(m_marginOnA+m_marginOnB);
+ if (m_reportedDistance<0.f)
+ {
+ m_foundResult = true;
+ }
+ m_originalResult->addContactPoint(normalOnBInWorld,adjustedPointB,m_reportedDistance);
+ }
+ };
+
+
+ btDummyResult dummy;
+
+///btBoxShape is an exception: its vertices are created WITH margin so don't subtract it
+
+ btScalar min0Margin = min0->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min0->getMargin();
+ btScalar min1Margin = min1->getShapeType()==BOX_SHAPE_PROXYTYPE? 0.f : min1->getMargin();
+
+ btWithoutMarginResult withoutMargin(resultOut, min0Margin,min1Margin);
+
+ btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*) min0;
+ btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*) min1;
+ if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron())
+ {
+
+
+
+
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+
+ btScalar minDist = -1e30f;
+ btVector3 sepNormalWorldSpace;
+ bool foundSepAxis = true;
+
+ if (dispatchInfo.m_enableSatConvex)
+ {
+ foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
+ *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(),
+ body1Wrap->getWorldTransform(),
+ sepNormalWorldSpace,*resultOut);
+ } else
+ {
+#ifdef ZERO_MARGIN
+ gjkPairDetector.setIgnoreMargin(true);
+ gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
+#else
+
+
+ gjkPairDetector.getClosestPoints(input,withoutMargin,dispatchInfo.m_debugDraw);
+ //gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
+#endif //ZERO_MARGIN
+ //btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
+ //if (l2>SIMD_EPSILON)
+ {
+ sepNormalWorldSpace = withoutMargin.m_reportedNormalOnWorld;//gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
+ //minDist = -1e30f;//gjkPairDetector.getCachedSeparatingDistance();
+ minDist = withoutMargin.m_reportedDistance;//gjkPairDetector.getCachedSeparatingDistance()+min0->getMargin()+min1->getMargin();
+
+#ifdef ZERO_MARGIN
+ foundSepAxis = true;//gjkPairDetector.getCachedSeparatingDistance()<0.f;
+#else
+ foundSepAxis = withoutMargin.m_foundResult && minDist<0;//-(min0->getMargin()+min1->getMargin());
+#endif
+ }
+ }
+ if (foundSepAxis)
+ {
+
+// printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
+
+ worldVertsB1.resize(0);
+ btPolyhedralContactClipping::clipHullAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(),
+ body1Wrap->getWorldTransform(), minDist-threshold, threshold, worldVertsB1,worldVertsB2,
+ *resultOut);
+
+ }
+ if (m_ownManifold)
+ {
+ resultOut->refreshContactPoints();
+ }
+ return;
+
+ } else
+ {
+ //we can also deal with convex versus triangle (without connectivity data)
+ if (polyhedronA->getConvexPolyhedron() && polyhedronB->getShapeType()==TRIANGLE_SHAPE_PROXYTYPE)
+ {
+
+ btVertexArray vertices;
+ btTriangleShape* tri = (btTriangleShape*)polyhedronB;
+ vertices.push_back( body1Wrap->getWorldTransform()*tri->m_vertices1[0]);
+ vertices.push_back( body1Wrap->getWorldTransform()*tri->m_vertices1[1]);
+ vertices.push_back( body1Wrap->getWorldTransform()*tri->m_vertices1[2]);
+
+ //tri->initializePolyhedralFeatures();
+
+ btScalar threshold = m_manifoldPtr->getContactBreakingThreshold();
+
+ btVector3 sepNormalWorldSpace;
+ btScalar minDist =-1e30f;
+ btScalar maxDist = threshold;
+
+ bool foundSepAxis = false;
+ if (0)
+ {
+ polyhedronB->initializePolyhedralFeatures();
+ foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
+ *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(),
+ body1Wrap->getWorldTransform(),
+ sepNormalWorldSpace,*resultOut);
+ // printf("sepNormalWorldSpace=%f,%f,%f\n",sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ());
+
+ } else
+ {
+#ifdef ZERO_MARGIN
+ gjkPairDetector.setIgnoreMargin(true);
+ gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
+#else
+ gjkPairDetector.getClosestPoints(input,dummy,dispatchInfo.m_debugDraw);
+#endif//ZERO_MARGIN
+
+ btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
+ if (l2>SIMD_EPSILON)
+ {
+ sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
+ //minDist = gjkPairDetector.getCachedSeparatingDistance();
+ //maxDist = threshold;
+ minDist = gjkPairDetector.getCachedSeparatingDistance()-min0->getMargin()-min1->getMargin();
+ foundSepAxis = true;
+ }
+ }
+
+
+ if (foundSepAxis)
+ {
+ worldVertsB2.resize(0);
+ btPolyhedralContactClipping::clipFaceAgainstHull(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(),
+ body0Wrap->getWorldTransform(), vertices, worldVertsB2,minDist-threshold, maxDist, *resultOut);
+ }
+
+
+ if (m_ownManifold)
+ {
+ resultOut->refreshContactPoints();
+ }
+
+ return;
+ }
+
+ }
+
+
+ }
+
+ gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
+
+ //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
+
+ //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
+ if (m_numPerturbationIterations && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
+ {
+
+ int i;
+ btVector3 v0,v1;
+ btVector3 sepNormalWorldSpace;
+ btScalar l2 = gjkPairDetector.getCachedSeparatingAxis().length2();
+
+ if (l2>SIMD_EPSILON)
+ {
+ sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis()*(1.f/l2);
+
+ btPlaneSpace1(sepNormalWorldSpace,v0,v1);
+
+
+ bool perturbeA = true;
+ const btScalar angleLimit = 0.125f * SIMD_PI;
+ btScalar perturbeAngle;
+ btScalar radiusA = min0->getAngularMotionDisc();
+ btScalar radiusB = min1->getAngularMotionDisc();
+ if (radiusA < radiusB)
+ {
+ perturbeAngle = gContactBreakingThreshold /radiusA;
+ perturbeA = true;
+ } else
+ {
+ perturbeAngle = gContactBreakingThreshold / radiusB;
+ perturbeA = false;
+ }
+ if ( perturbeAngle > angleLimit )
+ perturbeAngle = angleLimit;
+
+ btTransform unPerturbedTransform;
+ if (perturbeA)
+ {
+ unPerturbedTransform = input.m_transformA;
+ } else
+ {
+ unPerturbedTransform = input.m_transformB;
+ }
+
+ for ( i=0;i<m_numPerturbationIterations;i++)
+ {
+ if (v0.length2()>SIMD_EPSILON)
+ {
+ btQuaternion perturbeRot(v0,perturbeAngle);
+ btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
+ btQuaternion rotq(sepNormalWorldSpace,iterationAngle);
+
+
+ if (perturbeA)
+ {
+ input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0Wrap->getWorldTransform().getBasis());
+ input.m_transformB = body1Wrap->getWorldTransform();
+ #ifdef DEBUG_CONTACTS
+ dispatchInfo.m_debugDraw->drawTransform(input.m_transformA,10.0);
+ #endif //DEBUG_CONTACTS
+ } else
+ {
+ input.m_transformA = body0Wrap->getWorldTransform();
+ input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1Wrap->getWorldTransform().getBasis());
+ #ifdef DEBUG_CONTACTS
+ dispatchInfo.m_debugDraw->drawTransform(input.m_transformB,10.0);
+ #endif
+ }
+
+ btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB,unPerturbedTransform,perturbeA,dispatchInfo.m_debugDraw);
+ gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw);
+ }
+ }
+ }
+ }
+
+
+
+#ifdef USE_SEPDISTANCE_UTIL2
+ if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist>SIMD_EPSILON))
+ {
+ m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
+ }
+#endif //USE_SEPDISTANCE_UTIL2
+
+
+ }
+
+ if (m_ownManifold)
+ {
+ resultOut->refreshContactPoints();
+ }
+
+}
+
+
+
+bool disableCcd = false;
+btScalar btConvexConvexAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
+{
+ (void)resultOut;
+ (void)dispatchInfo;
+ ///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
+
+ ///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
+ ///col0->m_worldTransform,
+ btScalar resultFraction = btScalar(1.);
+
+
+ btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
+ btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
+
+ if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
+ squareMot1 < col1->getCcdSquareMotionThreshold())
+ return resultFraction;
+
+ if (disableCcd)
+ return btScalar(1.);
+
+
+ //An adhoc way of testing the Continuous Collision Detection algorithms
+ //One object is approximated as a sphere, to simplify things
+ //Starting in penetration should report no time of impact
+ //For proper CCD, better accuracy and handling of 'allowed' penetration should be added
+ //also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
+
+
+ /// Convex0 against sphere for Convex1
+ {
+ btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
+
+ btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
+ btConvexCast::CastResult result;
+ btVoronoiSimplexSolver voronoiSimplex;
+ //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
+ ///Simplification, one object is simplified as a sphere
+ btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
+ //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
+ if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
+ col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
+ {
+
+ //store result.m_fraction in both bodies
+
+ if (col0->getHitFraction()> result.m_fraction)
+ col0->setHitFraction( result.m_fraction );
+
+ if (col1->getHitFraction() > result.m_fraction)
+ col1->setHitFraction( result.m_fraction);
+
+ if (resultFraction > result.m_fraction)
+ resultFraction = result.m_fraction;
+
+ }
+
+
+
+
+ }
+
+ /// Sphere (for convex0) against Convex1
+ {
+ btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
+
+ btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
+ btConvexCast::CastResult result;
+ btVoronoiSimplexSolver voronoiSimplex;
+ //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
+ ///Simplification, one object is simplified as a sphere
+ btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
+ //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
+ if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
+ col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
+ {
+
+ //store result.m_fraction in both bodies
+
+ if (col0->getHitFraction() > result.m_fraction)
+ col0->setHitFraction( result.m_fraction);
+
+ if (col1->getHitFraction() > result.m_fraction)
+ col1->setHitFraction( result.m_fraction);
+
+ if (resultFraction > result.m_fraction)
+ resultFraction = result.m_fraction;
+
+ }
+ }
+
+ return resultFraction;
+
+}
+