diff options
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionDispatch/btCollisionWorld.cpp')
-rw-r--r-- | thirdparty/bullet/BulletCollision/CollisionDispatch/btCollisionWorld.cpp | 1666 |
1 files changed, 1666 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionDispatch/btCollisionWorld.cpp b/thirdparty/bullet/BulletCollision/CollisionDispatch/btCollisionWorld.cpp new file mode 100644 index 0000000000..c3e912fdca --- /dev/null +++ b/thirdparty/bullet/BulletCollision/CollisionDispatch/btCollisionWorld.cpp @@ -0,0 +1,1666 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#include "btCollisionWorld.h" +#include "btCollisionDispatcher.h" +#include "BulletCollision/CollisionDispatch/btCollisionObject.h" +#include "BulletCollision/CollisionShapes/btCollisionShape.h" +#include "BulletCollision/CollisionShapes/btConvexShape.h" +#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h" +#include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting +#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting +#include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h" //for raycasting +#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h" +#include "BulletCollision/CollisionShapes/btCompoundShape.h" +#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h" +#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h" +#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h" +#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" +#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h" +#include "BulletCollision/BroadphaseCollision/btDbvt.h" +#include "LinearMath/btAabbUtil2.h" +#include "LinearMath/btQuickprof.h" +#include "LinearMath/btSerializer.h" +#include "BulletCollision/CollisionShapes/btConvexPolyhedron.h" +#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h" + +//#define DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION + + +//#define USE_BRUTEFORCE_RAYBROADPHASE 1 +//RECALCULATE_AABB is slower, but benefit is that you don't need to call 'stepSimulation' or 'updateAabbs' before using a rayTest +//#define RECALCULATE_AABB_RAYCAST 1 + +//When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor) +#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" +#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" +#include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h" + + +///for debug drawing + +//for debug rendering +#include "BulletCollision/CollisionShapes/btBoxShape.h" +#include "BulletCollision/CollisionShapes/btCapsuleShape.h" +#include "BulletCollision/CollisionShapes/btCompoundShape.h" +#include "BulletCollision/CollisionShapes/btConeShape.h" +#include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h" +#include "BulletCollision/CollisionShapes/btCylinderShape.h" +#include "BulletCollision/CollisionShapes/btMultiSphereShape.h" +#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h" +#include "BulletCollision/CollisionShapes/btSphereShape.h" +#include "BulletCollision/CollisionShapes/btTriangleCallback.h" +#include "BulletCollision/CollisionShapes/btTriangleMeshShape.h" +#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h" + + + +btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration) +:m_dispatcher1(dispatcher), +m_broadphasePairCache(pairCache), +m_debugDrawer(0), +m_forceUpdateAllAabbs(true) +{ +} + + +btCollisionWorld::~btCollisionWorld() +{ + + //clean up remaining objects + int i; + for (i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* collisionObject= m_collisionObjects[i]; + + btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle(); + if (bp) + { + // + // only clear the cached algorithms + // + getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1); + getBroadphase()->destroyProxy(bp,m_dispatcher1); + collisionObject->setBroadphaseHandle(0); + } + } + + +} + + + + + + + + + + +void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask) +{ + + btAssert(collisionObject); + + //check that the object isn't already added + btAssert( m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size()); + btAssert(collisionObject->getWorldArrayIndex() == -1); // do not add the same object to more than one collision world + + collisionObject->setWorldArrayIndex(m_collisionObjects.size()); + m_collisionObjects.push_back(collisionObject); + + //calculate new AABB + btTransform trans = collisionObject->getWorldTransform(); + + btVector3 minAabb; + btVector3 maxAabb; + collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb); + + int type = collisionObject->getCollisionShape()->getShapeType(); + collisionObject->setBroadphaseHandle( getBroadphase()->createProxy( + minAabb, + maxAabb, + type, + collisionObject, + collisionFilterGroup, + collisionFilterMask, + m_dispatcher1)) ; + + + + + +} + + + +void btCollisionWorld::updateSingleAabb(btCollisionObject* colObj) +{ + btVector3 minAabb,maxAabb; + colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb); + //need to increase the aabb for contact thresholds + btVector3 contactThreshold(gContactBreakingThreshold,gContactBreakingThreshold,gContactBreakingThreshold); + minAabb -= contactThreshold; + maxAabb += contactThreshold; + + if(getDispatchInfo().m_useContinuous && colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject()) + { + btVector3 minAabb2,maxAabb2; + colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(),minAabb2,maxAabb2); + minAabb2 -= contactThreshold; + maxAabb2 += contactThreshold; + minAabb.setMin(minAabb2); + maxAabb.setMax(maxAabb2); + } + + btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache; + + //moving objects should be moderately sized, probably something wrong if not + if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12))) + { + bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1); + } else + { + //something went wrong, investigate + //this assert is unwanted in 3D modelers (danger of loosing work) + colObj->setActivationState(DISABLE_SIMULATION); + + static bool reportMe = true; + if (reportMe && m_debugDrawer) + { + reportMe = false; + m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation"); + m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n"); + m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n"); + m_debugDrawer->reportErrorWarning("Thanks.\n"); + } + } +} + +void btCollisionWorld::updateAabbs() +{ + BT_PROFILE("updateAabbs"); + + btTransform predictedTrans; + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btAssert(colObj->getWorldArrayIndex() == i); + + //only update aabb of active objects + if (m_forceUpdateAllAabbs || colObj->isActive()) + { + updateSingleAabb(colObj); + } + } +} + + +void btCollisionWorld::computeOverlappingPairs() +{ + BT_PROFILE("calculateOverlappingPairs"); + m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1); +} + +void btCollisionWorld::performDiscreteCollisionDetection() +{ + BT_PROFILE("performDiscreteCollisionDetection"); + + btDispatcherInfo& dispatchInfo = getDispatchInfo(); + + updateAabbs(); + + computeOverlappingPairs(); + + btDispatcher* dispatcher = getDispatcher(); + { + BT_PROFILE("dispatchAllCollisionPairs"); + if (dispatcher) + dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1); + } + +} + + + +void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject) +{ + + + //bool removeFromBroadphase = false; + + { + + btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle(); + if (bp) + { + // + // only clear the cached algorithms + // + getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1); + getBroadphase()->destroyProxy(bp,m_dispatcher1); + collisionObject->setBroadphaseHandle(0); + } + } + + + int iObj = collisionObject->getWorldArrayIndex(); +// btAssert(iObj >= 0 && iObj < m_collisionObjects.size()); // trying to remove an object that was never added or already removed previously? + if (iObj >= 0 && iObj < m_collisionObjects.size()) + { + btAssert(collisionObject == m_collisionObjects[iObj]); + m_collisionObjects.swap(iObj, m_collisionObjects.size()-1); + m_collisionObjects.pop_back(); + if (iObj < m_collisionObjects.size()) + { + m_collisionObjects[iObj]->setWorldArrayIndex(iObj); + } + } + else + { + // slow linear search + //swapremove + m_collisionObjects.remove(collisionObject); + } + collisionObject->setWorldArrayIndex(-1); +} + + +void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans, + btCollisionObject* collisionObject, + const btCollisionShape* collisionShape, + const btTransform& colObjWorldTransform, + RayResultCallback& resultCallback) +{ + btCollisionObjectWrapper colObWrap(0,collisionShape,collisionObject,colObjWorldTransform,-1,-1); + btCollisionWorld::rayTestSingleInternal(rayFromTrans,rayToTrans,&colObWrap,resultCallback); +} + +void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans,const btTransform& rayToTrans, + const btCollisionObjectWrapper* collisionObjectWrap, + RayResultCallback& resultCallback) +{ + btSphereShape pointShape(btScalar(0.0)); + pointShape.setMargin(0.f); + const btConvexShape* castShape = &pointShape; + const btCollisionShape* collisionShape = collisionObjectWrap->getCollisionShape(); + const btTransform& colObjWorldTransform = collisionObjectWrap->getWorldTransform(); + + if (collisionShape->isConvex()) + { + // BT_PROFILE("rayTestConvex"); + btConvexCast::CastResult castResult; + castResult.m_fraction = resultCallback.m_closestHitFraction; + + btConvexShape* convexShape = (btConvexShape*) collisionShape; + btVoronoiSimplexSolver simplexSolver; + btSubsimplexConvexCast subSimplexConvexCaster(castShape,convexShape,&simplexSolver); + + btGjkConvexCast gjkConvexCaster(castShape,convexShape,&simplexSolver); + + //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0); + + btConvexCast* convexCasterPtr = 0; + //use kF_UseSubSimplexConvexCastRaytest by default + if (resultCallback.m_flags & btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest) + convexCasterPtr = &gjkConvexCaster; + else + convexCasterPtr = &subSimplexConvexCaster; + + btConvexCast& convexCaster = *convexCasterPtr; + + if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult)) + { + //add hit + if (castResult.m_normal.length2() > btScalar(0.0001)) + { + if (castResult.m_fraction < resultCallback.m_closestHitFraction) + { + //todo: figure out what this is about. When is rayFromTest.getBasis() not identity? +#ifdef USE_SUBSIMPLEX_CONVEX_CAST + //rotate normal into worldspace + castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal; +#endif //USE_SUBSIMPLEX_CONVEX_CAST + + castResult.m_normal.normalize(); + btCollisionWorld::LocalRayResult localRayResult + ( + collisionObjectWrap->getCollisionObject(), + 0, + castResult.m_normal, + castResult.m_fraction + ); + + bool normalInWorldSpace = true; + resultCallback.addSingleResult(localRayResult, normalInWorldSpace); + + } + } + } + } else { + if (collisionShape->isConcave()) + { + + //ConvexCast::CastResult + struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback + { + btCollisionWorld::RayResultCallback* m_resultCallback; + const btCollisionObject* m_collisionObject; + const btConcaveShape* m_triangleMesh; + + btTransform m_colObjWorldTransform; + + BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to, + btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject,const btConcaveShape* triangleMesh,const btTransform& colObjWorldTransform): + //@BP Mod + btTriangleRaycastCallback(from,to, resultCallback->m_flags), + m_resultCallback(resultCallback), + m_collisionObject(collisionObject), + m_triangleMesh(triangleMesh), + m_colObjWorldTransform(colObjWorldTransform) + { + } + + + virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex ) + { + btCollisionWorld::LocalShapeInfo shapeInfo; + shapeInfo.m_shapePart = partId; + shapeInfo.m_triangleIndex = triangleIndex; + + btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal; + + btCollisionWorld::LocalRayResult rayResult + (m_collisionObject, + &shapeInfo, + hitNormalWorld, + hitFraction); + + bool normalInWorldSpace = true; + return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace); + } + + }; + + btTransform worldTocollisionObject = colObjWorldTransform.inverse(); + btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin(); + btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin(); + + // BT_PROFILE("rayTestConcave"); + if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE) + { + ///optimized version for btBvhTriangleMeshShape + btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape; + + BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),triangleMesh,colObjWorldTransform); + rcb.m_hitFraction = resultCallback.m_closestHitFraction; + triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal); + } + else if (collisionShape->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE) + { + ///optimized version for btScaledBvhTriangleMeshShape + btScaledBvhTriangleMeshShape* scaledTriangleMesh = (btScaledBvhTriangleMeshShape*)collisionShape; + btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)scaledTriangleMesh->getChildShape(); + + //scale the ray positions + btVector3 scale = scaledTriangleMesh->getLocalScaling(); + btVector3 rayFromLocalScaled = rayFromLocal / scale; + btVector3 rayToLocalScaled = rayToLocal / scale; + + //perform raycast in the underlying btBvhTriangleMeshShape + BridgeTriangleRaycastCallback rcb(rayFromLocalScaled, rayToLocalScaled, &resultCallback, collisionObjectWrap->getCollisionObject(), triangleMesh, colObjWorldTransform); + rcb.m_hitFraction = resultCallback.m_closestHitFraction; + triangleMesh->performRaycast(&rcb, rayFromLocalScaled, rayToLocalScaled); + } + else + { + //generic (slower) case + btConcaveShape* concaveShape = (btConcaveShape*)collisionShape; + + btTransform worldTocollisionObject = colObjWorldTransform.inverse(); + + btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin(); + btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin(); + + //ConvexCast::CastResult + + struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback + { + btCollisionWorld::RayResultCallback* m_resultCallback; + const btCollisionObject* m_collisionObject; + btConcaveShape* m_triangleMesh; + + btTransform m_colObjWorldTransform; + + BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to, + btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject,btConcaveShape* triangleMesh, const btTransform& colObjWorldTransform): + //@BP Mod + btTriangleRaycastCallback(from,to, resultCallback->m_flags), + m_resultCallback(resultCallback), + m_collisionObject(collisionObject), + m_triangleMesh(triangleMesh), + m_colObjWorldTransform(colObjWorldTransform) + { + } + + + virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex ) + { + btCollisionWorld::LocalShapeInfo shapeInfo; + shapeInfo.m_shapePart = partId; + shapeInfo.m_triangleIndex = triangleIndex; + + btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal; + + btCollisionWorld::LocalRayResult rayResult + (m_collisionObject, + &shapeInfo, + hitNormalWorld, + hitFraction); + + bool normalInWorldSpace = true; + return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace); + } + + }; + + + BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),concaveShape, colObjWorldTransform); + rcb.m_hitFraction = resultCallback.m_closestHitFraction; + + btVector3 rayAabbMinLocal = rayFromLocal; + rayAabbMinLocal.setMin(rayToLocal); + btVector3 rayAabbMaxLocal = rayFromLocal; + rayAabbMaxLocal.setMax(rayToLocal); + + concaveShape->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal); + } + } else { + // BT_PROFILE("rayTestCompound"); + if (collisionShape->isCompound()) + { + struct LocalInfoAdder2 : public RayResultCallback + { + RayResultCallback* m_userCallback; + int m_i; + + LocalInfoAdder2 (int i, RayResultCallback *user) + : m_userCallback(user), m_i(i) + { + m_closestHitFraction = m_userCallback->m_closestHitFraction; + m_flags = m_userCallback->m_flags; + } + virtual bool needsCollision(btBroadphaseProxy* p) const + { + return m_userCallback->needsCollision(p); + } + + virtual btScalar addSingleResult (btCollisionWorld::LocalRayResult &r, bool b) + { + btCollisionWorld::LocalShapeInfo shapeInfo; + shapeInfo.m_shapePart = -1; + shapeInfo.m_triangleIndex = m_i; + if (r.m_localShapeInfo == NULL) + r.m_localShapeInfo = &shapeInfo; + + const btScalar result = m_userCallback->addSingleResult(r, b); + m_closestHitFraction = m_userCallback->m_closestHitFraction; + return result; + } + }; + + struct RayTester : btDbvt::ICollide + { + const btCollisionObject* m_collisionObject; + const btCompoundShape* m_compoundShape; + const btTransform& m_colObjWorldTransform; + const btTransform& m_rayFromTrans; + const btTransform& m_rayToTrans; + RayResultCallback& m_resultCallback; + + RayTester(const btCollisionObject* collisionObject, + const btCompoundShape* compoundShape, + const btTransform& colObjWorldTransform, + const btTransform& rayFromTrans, + const btTransform& rayToTrans, + RayResultCallback& resultCallback): + m_collisionObject(collisionObject), + m_compoundShape(compoundShape), + m_colObjWorldTransform(colObjWorldTransform), + m_rayFromTrans(rayFromTrans), + m_rayToTrans(rayToTrans), + m_resultCallback(resultCallback) + { + + } + + void ProcessLeaf(int i) + { + const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(i); + const btTransform& childTrans = m_compoundShape->getChildTransform(i); + btTransform childWorldTrans = m_colObjWorldTransform * childTrans; + + btCollisionObjectWrapper tmpOb(0,childCollisionShape,m_collisionObject,childWorldTrans,-1,i); + // replace collision shape so that callback can determine the triangle + + + + LocalInfoAdder2 my_cb(i, &m_resultCallback); + + rayTestSingleInternal( + m_rayFromTrans, + m_rayToTrans, + &tmpOb, + my_cb); + + } + + void Process(const btDbvtNode* leaf) + { + ProcessLeaf(leaf->dataAsInt); + } + }; + + const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape); + const btDbvt* dbvt = compoundShape->getDynamicAabbTree(); + + + RayTester rayCB( + collisionObjectWrap->getCollisionObject(), + compoundShape, + colObjWorldTransform, + rayFromTrans, + rayToTrans, + resultCallback); +#ifndef DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION + if (dbvt) + { + btVector3 localRayFrom = colObjWorldTransform.inverseTimes(rayFromTrans).getOrigin(); + btVector3 localRayTo = colObjWorldTransform.inverseTimes(rayToTrans).getOrigin(); + btDbvt::rayTest(dbvt->m_root, localRayFrom , localRayTo, rayCB); + } + else +#endif //DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION + { + for (int i = 0, n = compoundShape->getNumChildShapes(); i < n; ++i) + { + rayCB.ProcessLeaf(i); + } + } + } + } + } +} + +void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans, + btCollisionObject* collisionObject, + const btCollisionShape* collisionShape, + const btTransform& colObjWorldTransform, + ConvexResultCallback& resultCallback, btScalar allowedPenetration) +{ + btCollisionObjectWrapper tmpOb(0,collisionShape,collisionObject,colObjWorldTransform,-1,-1); + btCollisionWorld::objectQuerySingleInternal(castShape,convexFromTrans,convexToTrans,&tmpOb,resultCallback,allowedPenetration); +} + +void btCollisionWorld::objectQuerySingleInternal(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans, + const btCollisionObjectWrapper* colObjWrap, + ConvexResultCallback& resultCallback, btScalar allowedPenetration) +{ + const btCollisionShape* collisionShape = colObjWrap->getCollisionShape(); + const btTransform& colObjWorldTransform = colObjWrap->getWorldTransform(); + + if (collisionShape->isConvex()) + { + //BT_PROFILE("convexSweepConvex"); + btConvexCast::CastResult castResult; + castResult.m_allowedPenetration = allowedPenetration; + castResult.m_fraction = resultCallback.m_closestHitFraction;//btScalar(1.);//?? + + btConvexShape* convexShape = (btConvexShape*) collisionShape; + btVoronoiSimplexSolver simplexSolver; + btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver; + + btContinuousConvexCollision convexCaster1(castShape,convexShape,&simplexSolver,&gjkEpaPenetrationSolver); + //btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver); + //btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver); + + btConvexCast* castPtr = &convexCaster1; + + + + if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult)) + { + //add hit + if (castResult.m_normal.length2() > btScalar(0.0001)) + { + if (castResult.m_fraction < resultCallback.m_closestHitFraction) + { + castResult.m_normal.normalize(); + btCollisionWorld::LocalConvexResult localConvexResult + ( + colObjWrap->getCollisionObject(), + 0, + castResult.m_normal, + castResult.m_hitPoint, + castResult.m_fraction + ); + + bool normalInWorldSpace = true; + resultCallback.addSingleResult(localConvexResult, normalInWorldSpace); + + } + } + } + } else { + if (collisionShape->isConcave()) + { + if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE) + { + //BT_PROFILE("convexSweepbtBvhTriangleMesh"); + btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape; + btTransform worldTocollisionObject = colObjWorldTransform.inverse(); + btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin(); + btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin(); + // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation + btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis()); + + //ConvexCast::CastResult + struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback + { + btCollisionWorld::ConvexResultCallback* m_resultCallback; + const btCollisionObject* m_collisionObject; + btTriangleMeshShape* m_triangleMesh; + + BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to, + btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld): + btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()), + m_resultCallback(resultCallback), + m_collisionObject(collisionObject), + m_triangleMesh(triangleMesh) + { + } + + + virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex ) + { + btCollisionWorld::LocalShapeInfo shapeInfo; + shapeInfo.m_shapePart = partId; + shapeInfo.m_triangleIndex = triangleIndex; + if (hitFraction <= m_resultCallback->m_closestHitFraction) + { + + btCollisionWorld::LocalConvexResult convexResult + (m_collisionObject, + &shapeInfo, + hitNormalLocal, + hitPointLocal, + hitFraction); + + bool normalInWorldSpace = true; + + + return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace); + } + return hitFraction; + } + + }; + + BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,colObjWrap->getCollisionObject(),triangleMesh, colObjWorldTransform); + tccb.m_hitFraction = resultCallback.m_closestHitFraction; + tccb.m_allowedPenetration = allowedPenetration; + btVector3 boxMinLocal, boxMaxLocal; + castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal); + triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal); + } else + { + if (collisionShape->getShapeType()==STATIC_PLANE_PROXYTYPE) + { + btConvexCast::CastResult castResult; + castResult.m_allowedPenetration = allowedPenetration; + castResult.m_fraction = resultCallback.m_closestHitFraction; + btStaticPlaneShape* planeShape = (btStaticPlaneShape*) collisionShape; + btContinuousConvexCollision convexCaster1(castShape,planeShape); + btConvexCast* castPtr = &convexCaster1; + + if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult)) + { + //add hit + if (castResult.m_normal.length2() > btScalar(0.0001)) + { + if (castResult.m_fraction < resultCallback.m_closestHitFraction) + { + castResult.m_normal.normalize(); + btCollisionWorld::LocalConvexResult localConvexResult + ( + colObjWrap->getCollisionObject(), + 0, + castResult.m_normal, + castResult.m_hitPoint, + castResult.m_fraction + ); + + bool normalInWorldSpace = true; + resultCallback.addSingleResult(localConvexResult, normalInWorldSpace); + } + } + } + + } else + { + //BT_PROFILE("convexSweepConcave"); + btConcaveShape* concaveShape = (btConcaveShape*)collisionShape; + btTransform worldTocollisionObject = colObjWorldTransform.inverse(); + btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin(); + btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin(); + // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation + btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis()); + + //ConvexCast::CastResult + struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback + { + btCollisionWorld::ConvexResultCallback* m_resultCallback; + const btCollisionObject* m_collisionObject; + btConcaveShape* m_triangleMesh; + + BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to, + btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject,btConcaveShape* triangleMesh, const btTransform& triangleToWorld): + btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()), + m_resultCallback(resultCallback), + m_collisionObject(collisionObject), + m_triangleMesh(triangleMesh) + { + } + + + virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex ) + { + btCollisionWorld::LocalShapeInfo shapeInfo; + shapeInfo.m_shapePart = partId; + shapeInfo.m_triangleIndex = triangleIndex; + if (hitFraction <= m_resultCallback->m_closestHitFraction) + { + + btCollisionWorld::LocalConvexResult convexResult + (m_collisionObject, + &shapeInfo, + hitNormalLocal, + hitPointLocal, + hitFraction); + + bool normalInWorldSpace = true; + + return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace); + } + return hitFraction; + } + + }; + + BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,colObjWrap->getCollisionObject(),concaveShape, colObjWorldTransform); + tccb.m_hitFraction = resultCallback.m_closestHitFraction; + tccb.m_allowedPenetration = allowedPenetration; + btVector3 boxMinLocal, boxMaxLocal; + castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal); + + btVector3 rayAabbMinLocal = convexFromLocal; + rayAabbMinLocal.setMin(convexToLocal); + btVector3 rayAabbMaxLocal = convexFromLocal; + rayAabbMaxLocal.setMax(convexToLocal); + rayAabbMinLocal += boxMinLocal; + rayAabbMaxLocal += boxMaxLocal; + concaveShape->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal); + } + } + } else { + if (collisionShape->isCompound()) + { + struct btCompoundLeafCallback : btDbvt::ICollide + { + btCompoundLeafCallback( + const btCollisionObjectWrapper* colObjWrap, + const btConvexShape* castShape, + const btTransform& convexFromTrans, + const btTransform& convexToTrans, + btScalar allowedPenetration, + const btCompoundShape* compoundShape, + const btTransform& colObjWorldTransform, + ConvexResultCallback& resultCallback) + : + m_colObjWrap(colObjWrap), + m_castShape(castShape), + m_convexFromTrans(convexFromTrans), + m_convexToTrans(convexToTrans), + m_allowedPenetration(allowedPenetration), + m_compoundShape(compoundShape), + m_colObjWorldTransform(colObjWorldTransform), + m_resultCallback(resultCallback) { + } + + const btCollisionObjectWrapper* m_colObjWrap; + const btConvexShape* m_castShape; + const btTransform& m_convexFromTrans; + const btTransform& m_convexToTrans; + btScalar m_allowedPenetration; + const btCompoundShape* m_compoundShape; + const btTransform& m_colObjWorldTransform; + ConvexResultCallback& m_resultCallback; + + public: + + void ProcessChild(int index, const btTransform& childTrans, const btCollisionShape* childCollisionShape) + { + btTransform childWorldTrans = m_colObjWorldTransform * childTrans; + + struct LocalInfoAdder : public ConvexResultCallback { + ConvexResultCallback* m_userCallback; + int m_i; + + LocalInfoAdder(int i, ConvexResultCallback *user) + : m_userCallback(user), m_i(i) + { + m_closestHitFraction = m_userCallback->m_closestHitFraction; + } + virtual bool needsCollision(btBroadphaseProxy* p) const + { + return m_userCallback->needsCollision(p); + } + virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& r, bool b) + { + btCollisionWorld::LocalShapeInfo shapeInfo; + shapeInfo.m_shapePart = -1; + shapeInfo.m_triangleIndex = m_i; + if (r.m_localShapeInfo == NULL) + r.m_localShapeInfo = &shapeInfo; + const btScalar result = m_userCallback->addSingleResult(r, b); + m_closestHitFraction = m_userCallback->m_closestHitFraction; + return result; + + } + }; + + LocalInfoAdder my_cb(index, &m_resultCallback); + + btCollisionObjectWrapper tmpObj(m_colObjWrap, childCollisionShape, m_colObjWrap->getCollisionObject(), childWorldTrans, -1, index); + + objectQuerySingleInternal(m_castShape, m_convexFromTrans, m_convexToTrans, &tmpObj, my_cb, m_allowedPenetration); + } + + void Process(const btDbvtNode* leaf) + { + // Processing leaf node + int index = leaf->dataAsInt; + + btTransform childTrans = m_compoundShape->getChildTransform(index); + const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(index); + + ProcessChild(index, childTrans, childCollisionShape); + } + }; + + BT_PROFILE("convexSweepCompound"); + const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape); + + btVector3 fromLocalAabbMin, fromLocalAabbMax; + btVector3 toLocalAabbMin, toLocalAabbMax; + + castShape->getAabb(colObjWorldTransform.inverse() * convexFromTrans, fromLocalAabbMin, fromLocalAabbMax); + castShape->getAabb(colObjWorldTransform.inverse() * convexToTrans, toLocalAabbMin, toLocalAabbMax); + + fromLocalAabbMin.setMin(toLocalAabbMin); + fromLocalAabbMax.setMax(toLocalAabbMax); + + btCompoundLeafCallback callback(colObjWrap, castShape, convexFromTrans, convexToTrans, + allowedPenetration, compoundShape, colObjWorldTransform, resultCallback); + + const btDbvt* tree = compoundShape->getDynamicAabbTree(); + if (tree) { + const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds = btDbvtVolume::FromMM(fromLocalAabbMin, fromLocalAabbMax); + tree->collideTV(tree->m_root, bounds, callback); + } else { + int i; + for (i=0;i<compoundShape->getNumChildShapes();i++) + { + const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i); + btTransform childTrans = compoundShape->getChildTransform(i); + callback.ProcessChild(i, childTrans, childCollisionShape); + } + } + } + } + } +} + + +struct btSingleRayCallback : public btBroadphaseRayCallback +{ + + btVector3 m_rayFromWorld; + btVector3 m_rayToWorld; + btTransform m_rayFromTrans; + btTransform m_rayToTrans; + btVector3 m_hitNormal; + + const btCollisionWorld* m_world; + btCollisionWorld::RayResultCallback& m_resultCallback; + + btSingleRayCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld,const btCollisionWorld* world,btCollisionWorld::RayResultCallback& resultCallback) + :m_rayFromWorld(rayFromWorld), + m_rayToWorld(rayToWorld), + m_world(world), + m_resultCallback(resultCallback) + { + m_rayFromTrans.setIdentity(); + m_rayFromTrans.setOrigin(m_rayFromWorld); + m_rayToTrans.setIdentity(); + m_rayToTrans.setOrigin(m_rayToWorld); + + btVector3 rayDir = (rayToWorld-rayFromWorld); + + rayDir.normalize (); + ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT + m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0]; + m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1]; + m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2]; + m_signs[0] = m_rayDirectionInverse[0] < 0.0; + m_signs[1] = m_rayDirectionInverse[1] < 0.0; + m_signs[2] = m_rayDirectionInverse[2] < 0.0; + + m_lambda_max = rayDir.dot(m_rayToWorld-m_rayFromWorld); + + } + + + + virtual bool process(const btBroadphaseProxy* proxy) + { + ///terminate further ray tests, once the closestHitFraction reached zero + if (m_resultCallback.m_closestHitFraction == btScalar(0.f)) + return false; + + btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject; + + //only perform raycast if filterMask matches + if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) + { + //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); + //btVector3 collisionObjectAabbMin,collisionObjectAabbMax; +#if 0 +#ifdef RECALCULATE_AABB + btVector3 collisionObjectAabbMin,collisionObjectAabbMax; + collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax); +#else + //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax); + const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin; + const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax; +#endif +#endif + //btScalar hitLambda = m_resultCallback.m_closestHitFraction; + //culling already done by broadphase + //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal)) + { + m_world->rayTestSingle(m_rayFromTrans,m_rayToTrans, + collisionObject, + collisionObject->getCollisionShape(), + collisionObject->getWorldTransform(), + m_resultCallback); + } + } + return true; + } +}; + +void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const +{ + //BT_PROFILE("rayTest"); + /// use the broadphase to accelerate the search for objects, based on their aabb + /// and for each object with ray-aabb overlap, perform an exact ray test + btSingleRayCallback rayCB(rayFromWorld,rayToWorld,this,resultCallback); + +#ifndef USE_BRUTEFORCE_RAYBROADPHASE + m_broadphasePairCache->rayTest(rayFromWorld,rayToWorld,rayCB); +#else + for (int i=0;i<this->getNumCollisionObjects();i++) + { + rayCB.process(m_collisionObjects[i]->getBroadphaseHandle()); + } +#endif //USE_BRUTEFORCE_RAYBROADPHASE + +} + + +struct btSingleSweepCallback : public btBroadphaseRayCallback +{ + + btTransform m_convexFromTrans; + btTransform m_convexToTrans; + btVector3 m_hitNormal; + const btCollisionWorld* m_world; + btCollisionWorld::ConvexResultCallback& m_resultCallback; + btScalar m_allowedCcdPenetration; + const btConvexShape* m_castShape; + + + btSingleSweepCallback(const btConvexShape* castShape, const btTransform& convexFromTrans,const btTransform& convexToTrans,const btCollisionWorld* world,btCollisionWorld::ConvexResultCallback& resultCallback,btScalar allowedPenetration) + :m_convexFromTrans(convexFromTrans), + m_convexToTrans(convexToTrans), + m_world(world), + m_resultCallback(resultCallback), + m_allowedCcdPenetration(allowedPenetration), + m_castShape(castShape) + { + btVector3 unnormalizedRayDir = (m_convexToTrans.getOrigin()-m_convexFromTrans.getOrigin()); + btVector3 rayDir = unnormalizedRayDir.normalized(); + ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT + m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0]; + m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1]; + m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2]; + m_signs[0] = m_rayDirectionInverse[0] < 0.0; + m_signs[1] = m_rayDirectionInverse[1] < 0.0; + m_signs[2] = m_rayDirectionInverse[2] < 0.0; + + m_lambda_max = rayDir.dot(unnormalizedRayDir); + + } + + virtual bool process(const btBroadphaseProxy* proxy) + { + ///terminate further convex sweep tests, once the closestHitFraction reached zero + if (m_resultCallback.m_closestHitFraction == btScalar(0.f)) + return false; + + btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject; + + //only perform raycast if filterMask matches + if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) { + //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); + m_world->objectQuerySingle(m_castShape, m_convexFromTrans,m_convexToTrans, + collisionObject, + collisionObject->getCollisionShape(), + collisionObject->getWorldTransform(), + m_resultCallback, + m_allowedCcdPenetration); + } + + return true; + } +}; + + + +void btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const +{ + + BT_PROFILE("convexSweepTest"); + /// use the broadphase to accelerate the search for objects, based on their aabb + /// and for each object with ray-aabb overlap, perform an exact ray test + /// unfortunately the implementation for rayTest and convexSweepTest duplicated, albeit practically identical + + + + btTransform convexFromTrans,convexToTrans; + convexFromTrans = convexFromWorld; + convexToTrans = convexToWorld; + btVector3 castShapeAabbMin, castShapeAabbMax; + /* Compute AABB that encompasses angular movement */ + { + btVector3 linVel, angVel; + btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0f, linVel, angVel); + btVector3 zeroLinVel; + zeroLinVel.setValue(0,0,0); + btTransform R; + R.setIdentity (); + R.setRotation (convexFromTrans.getRotation()); + castShape->calculateTemporalAabb (R, zeroLinVel, angVel, 1.0f, castShapeAabbMin, castShapeAabbMax); + } + +#ifndef USE_BRUTEFORCE_RAYBROADPHASE + + btSingleSweepCallback convexCB(castShape,convexFromWorld,convexToWorld,this,resultCallback,allowedCcdPenetration); + + m_broadphasePairCache->rayTest(convexFromTrans.getOrigin(),convexToTrans.getOrigin(),convexCB,castShapeAabbMin,castShapeAabbMax); + +#else + /// go over all objects, and if the ray intersects their aabb + cast shape aabb, + // do a ray-shape query using convexCaster (CCD) + int i; + for (i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* collisionObject= m_collisionObjects[i]; + //only perform raycast if filterMask matches + if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) { + //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject(); + btVector3 collisionObjectAabbMin,collisionObjectAabbMax; + collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax); + AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax); + btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing + btVector3 hitNormal; + if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal)) + { + objectQuerySingle(castShape, convexFromTrans,convexToTrans, + collisionObject, + collisionObject->getCollisionShape(), + collisionObject->getWorldTransform(), + resultCallback, + allowedCcdPenetration); + } + } + } +#endif //USE_BRUTEFORCE_RAYBROADPHASE +} + + + +struct btBridgedManifoldResult : public btManifoldResult +{ + + btCollisionWorld::ContactResultCallback& m_resultCallback; + + btBridgedManifoldResult( const btCollisionObjectWrapper* obj0Wrap,const btCollisionObjectWrapper* obj1Wrap,btCollisionWorld::ContactResultCallback& resultCallback ) + :btManifoldResult(obj0Wrap,obj1Wrap), + m_resultCallback(resultCallback) + { + } + + virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth) + { + bool isSwapped = m_manifoldPtr->getBody0() != m_body0Wrap->getCollisionObject(); + btVector3 pointA = pointInWorld + normalOnBInWorld * depth; + btVector3 localA; + btVector3 localB; + if (isSwapped) + { + localA = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointA ); + localB = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld); + } else + { + localA = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointA ); + localB = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld); + } + + btManifoldPoint newPt(localA,localB,normalOnBInWorld,depth); + newPt.m_positionWorldOnA = pointA; + newPt.m_positionWorldOnB = pointInWorld; + + //BP mod, store contact triangles. + if (isSwapped) + { + newPt.m_partId0 = m_partId1; + newPt.m_partId1 = m_partId0; + newPt.m_index0 = m_index1; + newPt.m_index1 = m_index0; + } else + { + newPt.m_partId0 = m_partId0; + newPt.m_partId1 = m_partId1; + newPt.m_index0 = m_index0; + newPt.m_index1 = m_index1; + } + + //experimental feature info, for per-triangle material etc. + const btCollisionObjectWrapper* obj0Wrap = isSwapped? m_body1Wrap : m_body0Wrap; + const btCollisionObjectWrapper* obj1Wrap = isSwapped? m_body0Wrap : m_body1Wrap; + m_resultCallback.addSingleResult(newPt,obj0Wrap,newPt.m_partId0,newPt.m_index0,obj1Wrap,newPt.m_partId1,newPt.m_index1); + + } + +}; + + + +struct btSingleContactCallback : public btBroadphaseAabbCallback +{ + + btCollisionObject* m_collisionObject; + btCollisionWorld* m_world; + btCollisionWorld::ContactResultCallback& m_resultCallback; + + + btSingleContactCallback(btCollisionObject* collisionObject, btCollisionWorld* world,btCollisionWorld::ContactResultCallback& resultCallback) + :m_collisionObject(collisionObject), + m_world(world), + m_resultCallback(resultCallback) + { + } + + virtual bool process(const btBroadphaseProxy* proxy) + { + btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject; + if (collisionObject == m_collisionObject) + return true; + + //only perform raycast if filterMask matches + if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) + { + btCollisionObjectWrapper ob0(0,m_collisionObject->getCollisionShape(),m_collisionObject,m_collisionObject->getWorldTransform(),-1,-1); + btCollisionObjectWrapper ob1(0,collisionObject->getCollisionShape(),collisionObject,collisionObject->getWorldTransform(),-1,-1); + + btCollisionAlgorithm* algorithm = m_world->getDispatcher()->findAlgorithm(&ob0,&ob1,0, BT_CLOSEST_POINT_ALGORITHMS); + if (algorithm) + { + btBridgedManifoldResult contactPointResult(&ob0,&ob1, m_resultCallback); + //discrete collision detection query + + algorithm->processCollision(&ob0,&ob1, m_world->getDispatchInfo(),&contactPointResult); + + algorithm->~btCollisionAlgorithm(); + m_world->getDispatcher()->freeCollisionAlgorithm(algorithm); + } + } + return true; + } +}; + + +///contactTest performs a discrete collision test against all objects in the btCollisionWorld, and calls the resultCallback. +///it reports one or more contact points for every overlapping object (including the one with deepest penetration) +void btCollisionWorld::contactTest( btCollisionObject* colObj, ContactResultCallback& resultCallback) +{ + btVector3 aabbMin,aabbMax; + colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(),aabbMin,aabbMax); + btSingleContactCallback contactCB(colObj,this,resultCallback); + + m_broadphasePairCache->aabbTest(aabbMin,aabbMax,contactCB); +} + + +///contactTest performs a discrete collision test between two collision objects and calls the resultCallback if overlap if detected. +///it reports one or more contact points (including the one with deepest penetration) +void btCollisionWorld::contactPairTest(btCollisionObject* colObjA, btCollisionObject* colObjB, ContactResultCallback& resultCallback) +{ + btCollisionObjectWrapper obA(0,colObjA->getCollisionShape(),colObjA,colObjA->getWorldTransform(),-1,-1); + btCollisionObjectWrapper obB(0,colObjB->getCollisionShape(),colObjB,colObjB->getWorldTransform(),-1,-1); + + btCollisionAlgorithm* algorithm = getDispatcher()->findAlgorithm(&obA,&obB, 0, BT_CLOSEST_POINT_ALGORITHMS); + if (algorithm) + { + btBridgedManifoldResult contactPointResult(&obA,&obB, resultCallback); + contactPointResult.m_closestPointDistanceThreshold = resultCallback.m_closestDistanceThreshold; + //discrete collision detection query + algorithm->processCollision(&obA,&obB, getDispatchInfo(),&contactPointResult); + + algorithm->~btCollisionAlgorithm(); + getDispatcher()->freeCollisionAlgorithm(algorithm); + } + +} + + + + +class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback +{ + btIDebugDraw* m_debugDrawer; + btVector3 m_color; + btTransform m_worldTrans; + +public: + + DebugDrawcallback(btIDebugDraw* debugDrawer,const btTransform& worldTrans,const btVector3& color) : + m_debugDrawer(debugDrawer), + m_color(color), + m_worldTrans(worldTrans) + { + } + + virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex) + { + processTriangle(triangle,partId,triangleIndex); + } + + virtual void processTriangle(btVector3* triangle,int partId, int triangleIndex) + { + (void)partId; + (void)triangleIndex; + + btVector3 wv0,wv1,wv2; + wv0 = m_worldTrans*triangle[0]; + wv1 = m_worldTrans*triangle[1]; + wv2 = m_worldTrans*triangle[2]; + btVector3 center = (wv0+wv1+wv2)*btScalar(1./3.); + + if (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawNormals ) + { + btVector3 normal = (wv1-wv0).cross(wv2-wv0); + normal.normalize(); + btVector3 normalColor(1,1,0); + m_debugDrawer->drawLine(center,center+normal,normalColor); + } + m_debugDrawer->drawLine(wv0,wv1,m_color); + m_debugDrawer->drawLine(wv1,wv2,m_color); + m_debugDrawer->drawLine(wv2,wv0,m_color); + } +}; + + +void btCollisionWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color) +{ + // Draw a small simplex at the center of the object + if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawFrames) + { + getDebugDrawer()->drawTransform(worldTransform,.1); + } + + if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) + { + const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape); + for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--) + { + btTransform childTrans = compoundShape->getChildTransform(i); + const btCollisionShape* colShape = compoundShape->getChildShape(i); + debugDrawObject(worldTransform*childTrans,colShape,color); + } + + } else + { + + switch (shape->getShapeType()) + { + + case BOX_SHAPE_PROXYTYPE: + { + const btBoxShape* boxShape = static_cast<const btBoxShape*>(shape); + btVector3 halfExtents = boxShape->getHalfExtentsWithMargin(); + getDebugDrawer()->drawBox(-halfExtents,halfExtents,worldTransform,color); + break; + } + + case SPHERE_SHAPE_PROXYTYPE: + { + const btSphereShape* sphereShape = static_cast<const btSphereShape*>(shape); + btScalar radius = sphereShape->getMargin();//radius doesn't include the margin, so draw with margin + + getDebugDrawer()->drawSphere(radius, worldTransform, color); + break; + } + case MULTI_SPHERE_SHAPE_PROXYTYPE: + { + const btMultiSphereShape* multiSphereShape = static_cast<const btMultiSphereShape*>(shape); + + btTransform childTransform; + childTransform.setIdentity(); + + for (int i = multiSphereShape->getSphereCount()-1; i>=0;i--) + { + childTransform.setOrigin(multiSphereShape->getSpherePosition(i)); + getDebugDrawer()->drawSphere(multiSphereShape->getSphereRadius(i), worldTransform*childTransform, color); + } + + break; + } + case CAPSULE_SHAPE_PROXYTYPE: + { + const btCapsuleShape* capsuleShape = static_cast<const btCapsuleShape*>(shape); + + btScalar radius = capsuleShape->getRadius(); + btScalar halfHeight = capsuleShape->getHalfHeight(); + + int upAxis = capsuleShape->getUpAxis(); + getDebugDrawer()->drawCapsule(radius, halfHeight, upAxis, worldTransform, color); + break; + } + case CONE_SHAPE_PROXYTYPE: + { + const btConeShape* coneShape = static_cast<const btConeShape*>(shape); + btScalar radius = coneShape->getRadius();//+coneShape->getMargin(); + btScalar height = coneShape->getHeight();//+coneShape->getMargin(); + + int upAxis= coneShape->getConeUpIndex(); + getDebugDrawer()->drawCone(radius, height, upAxis, worldTransform, color); + break; + + } + case CYLINDER_SHAPE_PROXYTYPE: + { + const btCylinderShape* cylinder = static_cast<const btCylinderShape*>(shape); + int upAxis = cylinder->getUpAxis(); + btScalar radius = cylinder->getRadius(); + btScalar halfHeight = cylinder->getHalfExtentsWithMargin()[upAxis]; + getDebugDrawer()->drawCylinder(radius, halfHeight, upAxis, worldTransform, color); + break; + } + + case STATIC_PLANE_PROXYTYPE: + { + const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(shape); + btScalar planeConst = staticPlaneShape->getPlaneConstant(); + const btVector3& planeNormal = staticPlaneShape->getPlaneNormal(); + getDebugDrawer()->drawPlane(planeNormal, planeConst,worldTransform, color); + break; + + } + default: + { + + /// for polyhedral shapes + if (shape->isPolyhedral()) + { + btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*) shape; + + int i; + if (polyshape->getConvexPolyhedron()) + { + const btConvexPolyhedron* poly = polyshape->getConvexPolyhedron(); + for (i=0;i<poly->m_faces.size();i++) + { + btVector3 centroid(0,0,0); + int numVerts = poly->m_faces[i].m_indices.size(); + if (numVerts) + { + int lastV = poly->m_faces[i].m_indices[numVerts-1]; + for (int v=0;v<poly->m_faces[i].m_indices.size();v++) + { + int curVert = poly->m_faces[i].m_indices[v]; + centroid+=poly->m_vertices[curVert]; + getDebugDrawer()->drawLine(worldTransform*poly->m_vertices[lastV],worldTransform*poly->m_vertices[curVert],color); + lastV = curVert; + } + } + centroid*= btScalar(1.f)/btScalar(numVerts); + if (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawNormals) + { + btVector3 normalColor(1,1,0); + btVector3 faceNormal(poly->m_faces[i].m_plane[0],poly->m_faces[i].m_plane[1],poly->m_faces[i].m_plane[2]); + getDebugDrawer()->drawLine(worldTransform*centroid,worldTransform*(centroid+faceNormal),normalColor); + } + + } + + + } else + { + for (i=0;i<polyshape->getNumEdges();i++) + { + btVector3 a,b; + polyshape->getEdge(i,a,b); + btVector3 wa = worldTransform * a; + btVector3 wb = worldTransform * b; + getDebugDrawer()->drawLine(wa,wb,color); + } + } + + + } + + if (shape->isConcave()) + { + btConcaveShape* concaveMesh = (btConcaveShape*) shape; + + ///@todo pass camera, for some culling? no -> we are not a graphics lib + btVector3 aabbMax(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT)); + btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); + + DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color); + concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax); + + } + + if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE) + { + btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*) shape; + //todo: pass camera for some culling + btVector3 aabbMax(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT)); + btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT)); + //DebugDrawcallback drawCallback; + DebugDrawcallback drawCallback(getDebugDrawer(),worldTransform,color); + convexMesh->getMeshInterface()->InternalProcessAllTriangles(&drawCallback,aabbMin,aabbMax); + } + + + + } + + } + } +} + + +void btCollisionWorld::debugDrawWorld() +{ + if (getDebugDrawer()) + { + getDebugDrawer()->clearLines(); + + btIDebugDraw::DefaultColors defaultColors = getDebugDrawer()->getDefaultColors(); + + if ( getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawContactPoints) + { + + + if (getDispatcher()) + { + int numManifolds = getDispatcher()->getNumManifolds(); + + for (int i=0;i<numManifolds;i++) + { + btPersistentManifold* contactManifold = getDispatcher()->getManifoldByIndexInternal(i); + //btCollisionObject* obA = static_cast<btCollisionObject*>(contactManifold->getBody0()); + //btCollisionObject* obB = static_cast<btCollisionObject*>(contactManifold->getBody1()); + + int numContacts = contactManifold->getNumContacts(); + for (int j=0;j<numContacts;j++) + { + btManifoldPoint& cp = contactManifold->getContactPoint(j); + getDebugDrawer()->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),defaultColors.m_contactPoint); + } + } + } + } + + if ((getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb))) + { + int i; + + for ( i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + if ((colObj->getCollisionFlags() & btCollisionObject::CF_DISABLE_VISUALIZE_OBJECT)==0) + { + if (getDebugDrawer() && (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawWireframe)) + { + btVector3 color(btScalar(0.4),btScalar(0.4),btScalar(0.4)); + + switch(colObj->getActivationState()) + { + case ACTIVE_TAG: + color = defaultColors.m_activeObject; break; + case ISLAND_SLEEPING: + color = defaultColors.m_deactivatedObject;break; + case WANTS_DEACTIVATION: + color = defaultColors.m_wantsDeactivationObject;break; + case DISABLE_DEACTIVATION: + color = defaultColors.m_disabledDeactivationObject;break; + case DISABLE_SIMULATION: + color = defaultColors.m_disabledSimulationObject;break; + default: + { + color = btVector3(btScalar(.3),btScalar(0.3),btScalar(0.3)); + } + }; + + colObj->getCustomDebugColor(color); + + debugDrawObject(colObj->getWorldTransform(),colObj->getCollisionShape(),color); + } + if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb)) + { + btVector3 minAabb,maxAabb; + btVector3 colorvec = defaultColors.m_aabb; + colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb); + btVector3 contactThreshold(gContactBreakingThreshold,gContactBreakingThreshold,gContactBreakingThreshold); + minAabb -= contactThreshold; + maxAabb += contactThreshold; + + btVector3 minAabb2,maxAabb2; + + if(getDispatchInfo().m_useContinuous && colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject()) + { + colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(),minAabb2,maxAabb2); + minAabb2 -= contactThreshold; + maxAabb2 += contactThreshold; + minAabb.setMin(minAabb2); + maxAabb.setMax(maxAabb2); + } + + m_debugDrawer->drawAabb(minAabb,maxAabb,colorvec); + } + } + } + } + } +} + + +void btCollisionWorld::serializeCollisionObjects(btSerializer* serializer) +{ + int i; + + ///keep track of shapes already serialized + btHashMap<btHashPtr,btCollisionShape*> serializedShapes; + + for (i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btCollisionShape* shape = colObj->getCollisionShape(); + + if (!serializedShapes.find(shape)) + { + serializedShapes.insert(shape,shape); + shape->serializeSingleShape(serializer); + } + } + + //serialize all collision objects + for (i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + if ((colObj->getInternalType() == btCollisionObject::CO_COLLISION_OBJECT) || (colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)) + { + colObj->serializeSingleObject(serializer); + } + } +} + + +void btCollisionWorld::serialize(btSerializer* serializer) +{ + + serializer->startSerialization(); + + serializeCollisionObjects(serializer); + + serializer->finishSerialization(); +} + |