summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp')
-rw-r--r--thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp1225
1 files changed, 637 insertions, 588 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp b/thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp
index 7043bde34f..202039956e 100644
--- a/thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp
+++ b/thirdparty/bullet/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp
@@ -24,14 +24,12 @@ subject to the following restrictions:
#include <float.h>
#include <string.h>
-btBoxBoxDetector::btBoxBoxDetector(const btBoxShape* box1,const btBoxShape* box2)
-: m_box1(box1),
-m_box2(box2)
+btBoxBoxDetector::btBoxBoxDetector(const btBoxShape* box1, const btBoxShape* box2)
+ : m_box1(box1),
+ m_box2(box2)
{
-
}
-
// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
// generate contact points. this returns 0 if there is no contact otherwise
// it returns the number of contacts generated.
@@ -48,67 +46,66 @@ m_box2(box2)
// collision functions. this function only fills in the position and depth
// fields.
struct dContactGeom;
-#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
+#define dDOTpq(a, b, p, q) ((a)[0] * (b)[0] + (a)[p] * (b)[q] + (a)[2 * (p)] * (b)[2 * (q)])
#define dInfinity FLT_MAX
-
/*PURE_INLINE btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); }
PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); }
PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); }
*/
-static btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
-static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); }
-static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); }
-static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); }
-#define dMULTIPLYOP1_331(A,op,B,C) \
-{\
- (A)[0] op dDOT41((B),(C)); \
- (A)[1] op dDOT41((B+1),(C)); \
- (A)[2] op dDOT41((B+2),(C)); \
-}
+static btScalar dDOT(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 1, 1); }
+static btScalar dDOT44(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 4, 4); }
+static btScalar dDOT41(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 4, 1); }
+static btScalar dDOT14(const btScalar* a, const btScalar* b) { return dDOTpq(a, b, 1, 4); }
+#define dMULTIPLYOP1_331(A, op, B, C) \
+ { \
+ (A)[0] op dDOT41((B), (C)); \
+ (A)[1] op dDOT41((B + 1), (C)); \
+ (A)[2] op dDOT41((B + 2), (C)); \
+ }
-#define dMULTIPLYOP0_331(A,op,B,C) \
-{ \
- (A)[0] op dDOT((B),(C)); \
- (A)[1] op dDOT((B+4),(C)); \
- (A)[2] op dDOT((B+8),(C)); \
-}
+#define dMULTIPLYOP0_331(A, op, B, C) \
+ { \
+ (A)[0] op dDOT((B), (C)); \
+ (A)[1] op dDOT((B + 4), (C)); \
+ (A)[2] op dDOT((B + 8), (C)); \
+ }
-#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
-#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
+#define dMULTIPLY1_331(A, B, C) dMULTIPLYOP1_331(A, =, B, C)
+#define dMULTIPLY0_331(A, B, C) dMULTIPLYOP0_331(A, =, B, C)
-typedef btScalar dMatrix3[4*3];
+typedef btScalar dMatrix3[4 * 3];
-void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
- const btVector3& pb, const btVector3& ub,
- btScalar *alpha, btScalar *beta);
-void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
- const btVector3& pb, const btVector3& ub,
- btScalar *alpha, btScalar *beta)
+void dLineClosestApproach(const btVector3& pa, const btVector3& ua,
+ const btVector3& pb, const btVector3& ub,
+ btScalar* alpha, btScalar* beta);
+void dLineClosestApproach(const btVector3& pa, const btVector3& ua,
+ const btVector3& pb, const btVector3& ub,
+ btScalar* alpha, btScalar* beta)
{
- btVector3 p;
- p[0] = pb[0] - pa[0];
- p[1] = pb[1] - pa[1];
- p[2] = pb[2] - pa[2];
- btScalar uaub = dDOT(ua,ub);
- btScalar q1 = dDOT(ua,p);
- btScalar q2 = -dDOT(ub,p);
- btScalar d = 1-uaub*uaub;
- if (d <= btScalar(0.0001f)) {
- // @@@ this needs to be made more robust
- *alpha = 0;
- *beta = 0;
- }
- else {
- d = 1.f/d;
- *alpha = (q1 + uaub*q2)*d;
- *beta = (uaub*q1 + q2)*d;
- }
+ btVector3 p;
+ p[0] = pb[0] - pa[0];
+ p[1] = pb[1] - pa[1];
+ p[2] = pb[2] - pa[2];
+ btScalar uaub = dDOT(ua, ub);
+ btScalar q1 = dDOT(ua, p);
+ btScalar q2 = -dDOT(ub, p);
+ btScalar d = 1 - uaub * uaub;
+ if (d <= btScalar(0.0001f))
+ {
+ // @@@ this needs to be made more robust
+ *alpha = 0;
+ *beta = 0;
+ }
+ else
+ {
+ d = 1.f / d;
+ *alpha = (q1 + uaub * q2) * d;
+ *beta = (uaub * q1 + q2) * d;
+ }
}
-
-
// find all the intersection points between the 2D rectangle with vertices
// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
@@ -117,60 +114,66 @@ void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
// the number of intersection points is returned by the function (this will
// be in the range 0 to 8).
-static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16])
+static int intersectRectQuad2(btScalar h[2], btScalar p[8], btScalar ret[16])
{
- // q (and r) contain nq (and nr) coordinate points for the current (and
- // chopped) polygons
- int nq=4,nr=0;
- btScalar buffer[16];
- btScalar *q = p;
- btScalar *r = ret;
- for (int dir=0; dir <= 1; dir++) {
- // direction notation: xy[0] = x axis, xy[1] = y axis
- for (int sign=-1; sign <= 1; sign += 2) {
- // chop q along the line xy[dir] = sign*h[dir]
- btScalar *pq = q;
- btScalar *pr = r;
- nr = 0;
- for (int i=nq; i > 0; i--) {
- // go through all points in q and all lines between adjacent points
- if (sign*pq[dir] < h[dir]) {
- // this point is inside the chopping line
- pr[0] = pq[0];
- pr[1] = pq[1];
- pr += 2;
- nr++;
- if (nr & 8) {
- q = r;
- goto done;
- }
- }
- btScalar *nextq = (i > 1) ? pq+2 : q;
- if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) {
- // this line crosses the chopping line
- pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) /
- (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]);
- pr[dir] = sign*h[dir];
- pr += 2;
- nr++;
- if (nr & 8) {
- q = r;
- goto done;
- }
+ // q (and r) contain nq (and nr) coordinate points for the current (and
+ // chopped) polygons
+ int nq = 4, nr = 0;
+ btScalar buffer[16];
+ btScalar* q = p;
+ btScalar* r = ret;
+ for (int dir = 0; dir <= 1; dir++)
+ {
+ // direction notation: xy[0] = x axis, xy[1] = y axis
+ for (int sign = -1; sign <= 1; sign += 2)
+ {
+ // chop q along the line xy[dir] = sign*h[dir]
+ btScalar* pq = q;
+ btScalar* pr = r;
+ nr = 0;
+ for (int i = nq; i > 0; i--)
+ {
+ // go through all points in q and all lines between adjacent points
+ if (sign * pq[dir] < h[dir])
+ {
+ // this point is inside the chopping line
+ pr[0] = pq[0];
+ pr[1] = pq[1];
+ pr += 2;
+ nr++;
+ if (nr & 8)
+ {
+ q = r;
+ goto done;
+ }
+ }
+ btScalar* nextq = (i > 1) ? pq + 2 : q;
+ if ((sign * pq[dir] < h[dir]) ^ (sign * nextq[dir] < h[dir]))
+ {
+ // this line crosses the chopping line
+ pr[1 - dir] = pq[1 - dir] + (nextq[1 - dir] - pq[1 - dir]) /
+ (nextq[dir] - pq[dir]) * (sign * h[dir] - pq[dir]);
+ pr[dir] = sign * h[dir];
+ pr += 2;
+ nr++;
+ if (nr & 8)
+ {
+ q = r;
+ goto done;
+ }
+ }
+ pq += 2;
+ }
+ q = r;
+ r = (q == ret) ? buffer : ret;
+ nq = nr;
+ }
}
- pq += 2;
- }
- q = r;
- r = (q==ret) ? buffer : ret;
- nq = nr;
- }
- }
- done:
- if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar));
- return nr;
+done:
+ if (q != ret) memcpy(ret, q, nr * 2 * sizeof(btScalar));
+ return nr;
}
-
#define M__PI 3.14159265f
// given n points in the plane (array p, of size 2*n), generate m points that
@@ -181,538 +184,584 @@ static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16])
// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
// in the range [0..n-1].
-void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]);
-void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[])
+void cullPoints2(int n, btScalar p[], int m, int i0, int iret[]);
+void cullPoints2(int n, btScalar p[], int m, int i0, int iret[])
{
- // compute the centroid of the polygon in cx,cy
- int i,j;
- btScalar a,cx,cy,q;
- if (n==1) {
- cx = p[0];
- cy = p[1];
- }
- else if (n==2) {
- cx = btScalar(0.5)*(p[0] + p[2]);
- cy = btScalar(0.5)*(p[1] + p[3]);
- }
- else {
- a = 0;
- cx = 0;
- cy = 0;
- for (i=0; i<(n-1); i++) {
- q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1];
- a += q;
- cx += q*(p[i*2]+p[i*2+2]);
- cy += q*(p[i*2+1]+p[i*2+3]);
- }
- q = p[n*2-2]*p[1] - p[0]*p[n*2-1];
- if (btFabs(a+q) > SIMD_EPSILON)
+ // compute the centroid of the polygon in cx,cy
+ int i, j;
+ btScalar a, cx, cy, q;
+ if (n == 1)
{
- a = 1.f/(btScalar(3.0)*(a+q));
- } else
+ cx = p[0];
+ cy = p[1];
+ }
+ else if (n == 2)
{
- a=BT_LARGE_FLOAT;
+ cx = btScalar(0.5) * (p[0] + p[2]);
+ cy = btScalar(0.5) * (p[1] + p[3]);
}
- cx = a*(cx + q*(p[n*2-2]+p[0]));
- cy = a*(cy + q*(p[n*2-1]+p[1]));
- }
-
- // compute the angle of each point w.r.t. the centroid
- btScalar A[8];
- for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx);
-
- // search for points that have angles closest to A[i0] + i*(2*pi/m).
- int avail[8];
- for (i=0; i<n; i++) avail[i] = 1;
- avail[i0] = 0;
- iret[0] = i0;
- iret++;
- for (j=1; j<m; j++) {
- a = btScalar(j)*(2*M__PI/m) + A[i0];
- if (a > M__PI) a -= 2*M__PI;
- btScalar maxdiff=1e9,diff;
-
- *iret = i0; // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0
-
- for (i=0; i<n; i++) {
- if (avail[i]) {
- diff = btFabs (A[i]-a);
- if (diff > M__PI) diff = 2*M__PI - diff;
- if (diff < maxdiff) {
- maxdiff = diff;
- *iret = i;
+ else
+ {
+ a = 0;
+ cx = 0;
+ cy = 0;
+ for (i = 0; i < (n - 1); i++)
+ {
+ q = p[i * 2] * p[i * 2 + 3] - p[i * 2 + 2] * p[i * 2 + 1];
+ a += q;
+ cx += q * (p[i * 2] + p[i * 2 + 2]);
+ cy += q * (p[i * 2 + 1] + p[i * 2 + 3]);
+ }
+ q = p[n * 2 - 2] * p[1] - p[0] * p[n * 2 - 1];
+ if (btFabs(a + q) > SIMD_EPSILON)
+ {
+ a = 1.f / (btScalar(3.0) * (a + q));
+ }
+ else
+ {
+ a = BT_LARGE_FLOAT;
+ }
+ cx = a * (cx + q * (p[n * 2 - 2] + p[0]));
+ cy = a * (cy + q * (p[n * 2 - 1] + p[1]));
}
- }
- }
-#if defined(DEBUG) || defined (_DEBUG)
- btAssert (*iret != i0); // ensure iret got set
+
+ // compute the angle of each point w.r.t. the centroid
+ btScalar A[8];
+ for (i = 0; i < n; i++) A[i] = btAtan2(p[i * 2 + 1] - cy, p[i * 2] - cx);
+
+ // search for points that have angles closest to A[i0] + i*(2*pi/m).
+ int avail[8];
+ for (i = 0; i < n; i++) avail[i] = 1;
+ avail[i0] = 0;
+ iret[0] = i0;
+ iret++;
+ for (j = 1; j < m; j++)
+ {
+ a = btScalar(j) * (2 * M__PI / m) + A[i0];
+ if (a > M__PI) a -= 2 * M__PI;
+ btScalar maxdiff = 1e9, diff;
+
+ *iret = i0; // iret is not allowed to keep this value, but it sometimes does, when diff=#QNAN0
+
+ for (i = 0; i < n; i++)
+ {
+ if (avail[i])
+ {
+ diff = btFabs(A[i] - a);
+ if (diff > M__PI) diff = 2 * M__PI - diff;
+ if (diff < maxdiff)
+ {
+ maxdiff = diff;
+ *iret = i;
+ }
+ }
+ }
+#if defined(DEBUG) || defined(_DEBUG)
+ btAssert(*iret != i0); // ensure iret got set
#endif
- avail[*iret] = 0;
- iret++;
- }
+ avail[*iret] = 0;
+ iret++;
+ }
}
+int dBoxBox2(const btVector3& p1, const dMatrix3 R1,
+ const btVector3& side1, const btVector3& p2,
+ const dMatrix3 R2, const btVector3& side2,
+ btVector3& normal, btScalar* depth, int* return_code,
+ int maxc, dContactGeom* /*contact*/, int /*skip*/, btDiscreteCollisionDetectorInterface::Result& output);
+int dBoxBox2(const btVector3& p1, const dMatrix3 R1,
+ const btVector3& side1, const btVector3& p2,
+ const dMatrix3 R2, const btVector3& side2,
+ btVector3& normal, btScalar* depth, int* return_code,
+ int maxc, dContactGeom* /*contact*/, int /*skip*/, btDiscreteCollisionDetectorInterface::Result& output)
+{
+ const btScalar fudge_factor = btScalar(1.05);
+ btVector3 p, pp, normalC(0.f, 0.f, 0.f);
+ const btScalar* normalR = 0;
+ btScalar A[3], B[3], R11, R12, R13, R21, R22, R23, R31, R32, R33,
+ Q11, Q12, Q13, Q21, Q22, Q23, Q31, Q32, Q33, s, s2, l;
+ int i, j, invert_normal, code;
+
+ // get vector from centers of box 1 to box 2, relative to box 1
+ p = p2 - p1;
+ dMULTIPLY1_331(pp, R1, p); // get pp = p relative to body 1
+
+ // get side lengths / 2
+ A[0] = side1[0] * btScalar(0.5);
+ A[1] = side1[1] * btScalar(0.5);
+ A[2] = side1[2] * btScalar(0.5);
+ B[0] = side2[0] * btScalar(0.5);
+ B[1] = side2[1] * btScalar(0.5);
+ B[2] = side2[2] * btScalar(0.5);
+
+ // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
+ R11 = dDOT44(R1 + 0, R2 + 0);
+ R12 = dDOT44(R1 + 0, R2 + 1);
+ R13 = dDOT44(R1 + 0, R2 + 2);
+ R21 = dDOT44(R1 + 1, R2 + 0);
+ R22 = dDOT44(R1 + 1, R2 + 1);
+ R23 = dDOT44(R1 + 1, R2 + 2);
+ R31 = dDOT44(R1 + 2, R2 + 0);
+ R32 = dDOT44(R1 + 2, R2 + 1);
+ R33 = dDOT44(R1 + 2, R2 + 2);
+
+ Q11 = btFabs(R11);
+ Q12 = btFabs(R12);
+ Q13 = btFabs(R13);
+ Q21 = btFabs(R21);
+ Q22 = btFabs(R22);
+ Q23 = btFabs(R23);
+ Q31 = btFabs(R31);
+ Q32 = btFabs(R32);
+ Q33 = btFabs(R33);
+
+ // for all 15 possible separating axes:
+ // * see if the axis separates the boxes. if so, return 0.
+ // * find the depth of the penetration along the separating axis (s2)
+ // * if this is the largest depth so far, record it.
+ // the normal vector will be set to the separating axis with the smallest
+ // depth. note: normalR is set to point to a column of R1 or R2 if that is
+ // the smallest depth normal so far. otherwise normalR is 0 and normalC is
+ // set to a vector relative to body 1. invert_normal is 1 if the sign of
+ // the normal should be flipped.
+
+#define TST(expr1, expr2, norm, cc) \
+ s2 = btFabs(expr1) - (expr2); \
+ if (s2 > 0) return 0; \
+ if (s2 > s) \
+ { \
+ s = s2; \
+ normalR = norm; \
+ invert_normal = ((expr1) < 0); \
+ code = (cc); \
+ }
+ s = -dInfinity;
+ invert_normal = 0;
+ code = 0;
-int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
- const btVector3& side1, const btVector3& p2,
- const dMatrix3 R2, const btVector3& side2,
- btVector3& normal, btScalar *depth, int *return_code,
- int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output);
-int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
- const btVector3& side1, const btVector3& p2,
- const dMatrix3 R2, const btVector3& side2,
- btVector3& normal, btScalar *depth, int *return_code,
- int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output)
-{
- const btScalar fudge_factor = btScalar(1.05);
- btVector3 p,pp,normalC(0.f,0.f,0.f);
- const btScalar *normalR = 0;
- btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
- Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l;
- int i,j,invert_normal,code;
-
- // get vector from centers of box 1 to box 2, relative to box 1
- p = p2 - p1;
- dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1
-
- // get side lengths / 2
- A[0] = side1[0]*btScalar(0.5);
- A[1] = side1[1]*btScalar(0.5);
- A[2] = side1[2]*btScalar(0.5);
- B[0] = side2[0]*btScalar(0.5);
- B[1] = side2[1]*btScalar(0.5);
- B[2] = side2[2]*btScalar(0.5);
-
- // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
- R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
- R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
- R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);
-
- Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13);
- Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23);
- Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33);
-
- // for all 15 possible separating axes:
- // * see if the axis separates the boxes. if so, return 0.
- // * find the depth of the penetration along the separating axis (s2)
- // * if this is the largest depth so far, record it.
- // the normal vector will be set to the separating axis with the smallest
- // depth. note: normalR is set to point to a column of R1 or R2 if that is
- // the smallest depth normal so far. otherwise normalR is 0 and normalC is
- // set to a vector relative to body 1. invert_normal is 1 if the sign of
- // the normal should be flipped.
-
-#define TST(expr1,expr2,norm,cc) \
- s2 = btFabs(expr1) - (expr2); \
- if (s2 > 0) return 0; \
- if (s2 > s) { \
- s = s2; \
- normalR = norm; \
- invert_normal = ((expr1) < 0); \
- code = (cc); \
- }
-
- s = -dInfinity;
- invert_normal = 0;
- code = 0;
-
- // separating axis = u1,u2,u3
- TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
- TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
- TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);
-
- // separating axis = v1,v2,v3
- TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
- TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
- TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);
-
- // note: cross product axes need to be scaled when s is computed.
- // normal (n1,n2,n3) is relative to box 1.
+ // separating axis = u1,u2,u3
+ TST(pp[0], (A[0] + B[0] * Q11 + B[1] * Q12 + B[2] * Q13), R1 + 0, 1);
+ TST(pp[1], (A[1] + B[0] * Q21 + B[1] * Q22 + B[2] * Q23), R1 + 1, 2);
+ TST(pp[2], (A[2] + B[0] * Q31 + B[1] * Q32 + B[2] * Q33), R1 + 2, 3);
+
+ // separating axis = v1,v2,v3
+ TST(dDOT41(R2 + 0, p), (A[0] * Q11 + A[1] * Q21 + A[2] * Q31 + B[0]), R2 + 0, 4);
+ TST(dDOT41(R2 + 1, p), (A[0] * Q12 + A[1] * Q22 + A[2] * Q32 + B[1]), R2 + 1, 5);
+ TST(dDOT41(R2 + 2, p), (A[0] * Q13 + A[1] * Q23 + A[2] * Q33 + B[2]), R2 + 2, 6);
+
+ // note: cross product axes need to be scaled when s is computed.
+ // normal (n1,n2,n3) is relative to box 1.
#undef TST
-#define TST(expr1,expr2,n1,n2,n3,cc) \
- s2 = btFabs(expr1) - (expr2); \
- if (s2 > SIMD_EPSILON) return 0; \
- l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
- if (l > SIMD_EPSILON) { \
- s2 /= l; \
- if (s2*fudge_factor > s) { \
- s = s2; \
- normalR = 0; \
- normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
- invert_normal = ((expr1) < 0); \
- code = (cc); \
- } \
- }
-
- btScalar fudge2 (1.0e-5f);
-
- Q11 += fudge2;
- Q12 += fudge2;
- Q13 += fudge2;
-
- Q21 += fudge2;
- Q22 += fudge2;
- Q23 += fudge2;
-
- Q31 += fudge2;
- Q32 += fudge2;
- Q33 += fudge2;
-
- // separating axis = u1 x (v1,v2,v3)
- TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
- TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
- TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);
-
- // separating axis = u2 x (v1,v2,v3)
- TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
- TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
- TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);
-
- // separating axis = u3 x (v1,v2,v3)
- TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
- TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
- TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
+#define TST(expr1, expr2, n1, n2, n3, cc) \
+ s2 = btFabs(expr1) - (expr2); \
+ if (s2 > SIMD_EPSILON) return 0; \
+ l = btSqrt((n1) * (n1) + (n2) * (n2) + (n3) * (n3)); \
+ if (l > SIMD_EPSILON) \
+ { \
+ s2 /= l; \
+ if (s2 * fudge_factor > s) \
+ { \
+ s = s2; \
+ normalR = 0; \
+ normalC[0] = (n1) / l; \
+ normalC[1] = (n2) / l; \
+ normalC[2] = (n3) / l; \
+ invert_normal = ((expr1) < 0); \
+ code = (cc); \
+ } \
+ }
+
+ btScalar fudge2(1.0e-5f);
+
+ Q11 += fudge2;
+ Q12 += fudge2;
+ Q13 += fudge2;
+
+ Q21 += fudge2;
+ Q22 += fudge2;
+ Q23 += fudge2;
+
+ Q31 += fudge2;
+ Q32 += fudge2;
+ Q33 += fudge2;
+
+ // separating axis = u1 x (v1,v2,v3)
+ TST(pp[2] * R21 - pp[1] * R31, (A[1] * Q31 + A[2] * Q21 + B[1] * Q13 + B[2] * Q12), 0, -R31, R21, 7);
+ TST(pp[2] * R22 - pp[1] * R32, (A[1] * Q32 + A[2] * Q22 + B[0] * Q13 + B[2] * Q11), 0, -R32, R22, 8);
+ TST(pp[2] * R23 - pp[1] * R33, (A[1] * Q33 + A[2] * Q23 + B[0] * Q12 + B[1] * Q11), 0, -R33, R23, 9);
+
+ // separating axis = u2 x (v1,v2,v3)
+ TST(pp[0] * R31 - pp[2] * R11, (A[0] * Q31 + A[2] * Q11 + B[1] * Q23 + B[2] * Q22), R31, 0, -R11, 10);
+ TST(pp[0] * R32 - pp[2] * R12, (A[0] * Q32 + A[2] * Q12 + B[0] * Q23 + B[2] * Q21), R32, 0, -R12, 11);
+ TST(pp[0] * R33 - pp[2] * R13, (A[0] * Q33 + A[2] * Q13 + B[0] * Q22 + B[1] * Q21), R33, 0, -R13, 12);
+
+ // separating axis = u3 x (v1,v2,v3)
+ TST(pp[1] * R11 - pp[0] * R21, (A[0] * Q21 + A[1] * Q11 + B[1] * Q33 + B[2] * Q32), -R21, R11, 0, 13);
+ TST(pp[1] * R12 - pp[0] * R22, (A[0] * Q22 + A[1] * Q12 + B[0] * Q33 + B[2] * Q31), -R22, R12, 0, 14);
+ TST(pp[1] * R13 - pp[0] * R23, (A[0] * Q23 + A[1] * Q13 + B[0] * Q32 + B[1] * Q31), -R23, R13, 0, 15);
#undef TST
- if (!code) return 0;
-
- // if we get to this point, the boxes interpenetrate. compute the normal
- // in global coordinates.
- if (normalR) {
- normal[0] = normalR[0];
- normal[1] = normalR[4];
- normal[2] = normalR[8];
- }
- else {
- dMULTIPLY0_331 (normal,R1,normalC);
- }
- if (invert_normal) {
- normal[0] = -normal[0];
- normal[1] = -normal[1];
- normal[2] = -normal[2];
- }
- *depth = -s;
-
- // compute contact point(s)
-
- if (code > 6) {
- // an edge from box 1 touches an edge from box 2.
- // find a point pa on the intersecting edge of box 1
- btVector3 pa;
- btScalar sign;
- for (i=0; i<3; i++) pa[i] = p1[i];
- for (j=0; j<3; j++) {
- sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0);
- for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
- }
-
- // find a point pb on the intersecting edge of box 2
- btVector3 pb;
- for (i=0; i<3; i++) pb[i] = p2[i];
- for (j=0; j<3; j++) {
- sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0);
- for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
- }
-
- btScalar alpha,beta;
- btVector3 ua,ub;
- for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
- for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];
-
- dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
- for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
- for (i=0; i<3; i++) pb[i] += ub[i]*beta;
+ if (!code) return 0;
+ // if we get to this point, the boxes interpenetrate. compute the normal
+ // in global coordinates.
+ if (normalR)
+ {
+ normal[0] = normalR[0];
+ normal[1] = normalR[4];
+ normal[2] = normalR[8];
+ }
+ else
{
-
- //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
- //contact[0].depth = *depth;
- btVector3 pointInWorld;
+ dMULTIPLY0_331(normal, R1, normalC);
+ }
+ if (invert_normal)
+ {
+ normal[0] = -normal[0];
+ normal[1] = -normal[1];
+ normal[2] = -normal[2];
+ }
+ *depth = -s;
+
+ // compute contact point(s)
+
+ if (code > 6)
+ {
+ // an edge from box 1 touches an edge from box 2.
+ // find a point pa on the intersecting edge of box 1
+ btVector3 pa;
+ btScalar sign;
+ for (i = 0; i < 3; i++) pa[i] = p1[i];
+ for (j = 0; j < 3; j++)
+ {
+ sign = (dDOT14(normal, R1 + j) > 0) ? btScalar(1.0) : btScalar(-1.0);
+ for (i = 0; i < 3; i++) pa[i] += sign * A[j] * R1[i * 4 + j];
+ }
+
+ // find a point pb on the intersecting edge of box 2
+ btVector3 pb;
+ for (i = 0; i < 3; i++) pb[i] = p2[i];
+ for (j = 0; j < 3; j++)
+ {
+ sign = (dDOT14(normal, R2 + j) > 0) ? btScalar(-1.0) : btScalar(1.0);
+ for (i = 0; i < 3; i++) pb[i] += sign * B[j] * R2[i * 4 + j];
+ }
+
+ btScalar alpha, beta;
+ btVector3 ua, ub;
+ for (i = 0; i < 3; i++) ua[i] = R1[((code)-7) / 3 + i * 4];
+ for (i = 0; i < 3; i++) ub[i] = R2[((code)-7) % 3 + i * 4];
+
+ dLineClosestApproach(pa, ua, pb, ub, &alpha, &beta);
+ for (i = 0; i < 3; i++) pa[i] += ua[i] * alpha;
+ for (i = 0; i < 3; i++) pb[i] += ub[i] * beta;
+
+ {
+ //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
+ //contact[0].depth = *depth;
+ btVector3 pointInWorld;
#ifdef USE_CENTER_POINT
- for (i=0; i<3; i++)
- pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5);
- output.addContactPoint(-normal,pointInWorld,-*depth);
+ for (i = 0; i < 3; i++)
+ pointInWorld[i] = (pa[i] + pb[i]) * btScalar(0.5);
+ output.addContactPoint(-normal, pointInWorld, -*depth);
#else
- output.addContactPoint(-normal,pb,-*depth);
+ output.addContactPoint(-normal, pb, -*depth);
-#endif //
- *return_code = code;
+#endif //
+ *return_code = code;
+ }
+ return 1;
+ }
+
+ // okay, we have a face-something intersection (because the separating
+ // axis is perpendicular to a face). define face 'a' to be the reference
+ // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
+ // the incident face (the closest face of the other box).
+
+ const btScalar *Ra, *Rb, *pa, *pb, *Sa, *Sb;
+ if (code <= 3)
+ {
+ Ra = R1;
+ Rb = R2;
+ pa = p1;
+ pb = p2;
+ Sa = A;
+ Sb = B;
+ }
+ else
+ {
+ Ra = R2;
+ Rb = R1;
+ pa = p2;
+ pb = p1;
+ Sa = B;
+ Sb = A;
+ }
+
+ // nr = normal vector of reference face dotted with axes of incident box.
+ // anr = absolute values of nr.
+ btVector3 normal2, nr, anr;
+ if (code <= 3)
+ {
+ normal2[0] = normal[0];
+ normal2[1] = normal[1];
+ normal2[2] = normal[2];
+ }
+ else
+ {
+ normal2[0] = -normal[0];
+ normal2[1] = -normal[1];
+ normal2[2] = -normal[2];
}
- return 1;
- }
-
- // okay, we have a face-something intersection (because the separating
- // axis is perpendicular to a face). define face 'a' to be the reference
- // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
- // the incident face (the closest face of the other box).
-
- const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb;
- if (code <= 3) {
- Ra = R1;
- Rb = R2;
- pa = p1;
- pb = p2;
- Sa = A;
- Sb = B;
- }
- else {
- Ra = R2;
- Rb = R1;
- pa = p2;
- pb = p1;
- Sa = B;
- Sb = A;
- }
-
- // nr = normal vector of reference face dotted with axes of incident box.
- // anr = absolute values of nr.
- btVector3 normal2,nr,anr;
- if (code <= 3) {
- normal2[0] = normal[0];
- normal2[1] = normal[1];
- normal2[2] = normal[2];
- }
- else {
- normal2[0] = -normal[0];
- normal2[1] = -normal[1];
- normal2[2] = -normal[2];
- }
- dMULTIPLY1_331 (nr,Rb,normal2);
- anr[0] = btFabs (nr[0]);
- anr[1] = btFabs (nr[1]);
- anr[2] = btFabs (nr[2]);
-
- // find the largest compontent of anr: this corresponds to the normal
- // for the indident face. the other axis numbers of the indicent face
- // are stored in a1,a2.
- int lanr,a1,a2;
- if (anr[1] > anr[0]) {
- if (anr[1] > anr[2]) {
- a1 = 0;
- lanr = 1;
- a2 = 2;
- }
- else {
- a1 = 0;
- a2 = 1;
- lanr = 2;
- }
- }
- else {
- if (anr[0] > anr[2]) {
- lanr = 0;
- a1 = 1;
- a2 = 2;
- }
- else {
- a1 = 0;
- a2 = 1;
- lanr = 2;
- }
- }
-
- // compute center point of incident face, in reference-face coordinates
- btVector3 center;
- if (nr[lanr] < 0) {
- for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
- }
- else {
- for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
- }
-
- // find the normal and non-normal axis numbers of the reference box
- int codeN,code1,code2;
- if (code <= 3) codeN = code-1; else codeN = code-4;
- if (codeN==0) {
- code1 = 1;
- code2 = 2;
- }
- else if (codeN==1) {
- code1 = 0;
- code2 = 2;
- }
- else {
- code1 = 0;
- code2 = 1;
- }
-
- // find the four corners of the incident face, in reference-face coordinates
- btScalar quad[8]; // 2D coordinate of incident face (x,y pairs)
- btScalar c1,c2,m11,m12,m21,m22;
- c1 = dDOT14 (center,Ra+code1);
- c2 = dDOT14 (center,Ra+code2);
- // optimize this? - we have already computed this data above, but it is not
- // stored in an easy-to-index format. for now it's quicker just to recompute
- // the four dot products.
- m11 = dDOT44 (Ra+code1,Rb+a1);
- m12 = dDOT44 (Ra+code1,Rb+a2);
- m21 = dDOT44 (Ra+code2,Rb+a1);
- m22 = dDOT44 (Ra+code2,Rb+a2);
- {
- btScalar k1 = m11*Sb[a1];
- btScalar k2 = m21*Sb[a1];
- btScalar k3 = m12*Sb[a2];
- btScalar k4 = m22*Sb[a2];
- quad[0] = c1 - k1 - k3;
- quad[1] = c2 - k2 - k4;
- quad[2] = c1 - k1 + k3;
- quad[3] = c2 - k2 + k4;
- quad[4] = c1 + k1 + k3;
- quad[5] = c2 + k2 + k4;
- quad[6] = c1 + k1 - k3;
- quad[7] = c2 + k2 - k4;
- }
-
- // find the size of the reference face
- btScalar rect[2];
- rect[0] = Sa[code1];
- rect[1] = Sa[code2];
-
- // intersect the incident and reference faces
- btScalar ret[16];
- int n = intersectRectQuad2 (rect,quad,ret);
- if (n < 1) return 0; // this should never happen
-
- // convert the intersection points into reference-face coordinates,
- // and compute the contact position and depth for each point. only keep
- // those points that have a positive (penetrating) depth. delete points in
- // the 'ret' array as necessary so that 'point' and 'ret' correspond.
- btScalar point[3*8]; // penetrating contact points
- btScalar dep[8]; // depths for those points
- btScalar det1 = 1.f/(m11*m22 - m12*m21);
- m11 *= det1;
- m12 *= det1;
- m21 *= det1;
- m22 *= det1;
- int cnum = 0; // number of penetrating contact points found
- for (j=0; j < n; j++) {
- btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
- btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
- for (i=0; i<3; i++) point[cnum*3+i] =
- center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
- dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
- if (dep[cnum] >= 0) {
- ret[cnum*2] = ret[j*2];
- ret[cnum*2+1] = ret[j*2+1];
- cnum++;
- }
- }
- if (cnum < 1) return 0; // this should never happen
-
- // we can't generate more contacts than we actually have
- if (maxc > cnum) maxc = cnum;
- if (maxc < 1) maxc = 1;
-
- if (cnum <= maxc) {
-
- if (code<4)
- {
- // we have less contacts than we need, so we use them all
- for (j=0; j < cnum; j++)
+ dMULTIPLY1_331(nr, Rb, normal2);
+ anr[0] = btFabs(nr[0]);
+ anr[1] = btFabs(nr[1]);
+ anr[2] = btFabs(nr[2]);
+
+ // find the largest compontent of anr: this corresponds to the normal
+ // for the indident face. the other axis numbers of the indicent face
+ // are stored in a1,a2.
+ int lanr, a1, a2;
+ if (anr[1] > anr[0])
{
- btVector3 pointInWorld;
- for (i=0; i<3; i++)
- pointInWorld[i] = point[j*3+i] + pa[i];
- output.addContactPoint(-normal,pointInWorld,-dep[j]);
-
- }
- } else
- {
- // we have less contacts than we need, so we use them all
- for (j=0; j < cnum; j++)
+ if (anr[1] > anr[2])
{
- btVector3 pointInWorld;
- for (i=0; i<3; i++)
- pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j];
+ a1 = 0;
+ lanr = 1;
+ a2 = 2;
+ }
+ else
+ {
+ a1 = 0;
+ a2 = 1;
+ lanr = 2;
+ }
+ }
+ else
+ {
+ if (anr[0] > anr[2])
+ {
+ lanr = 0;
+ a1 = 1;
+ a2 = 2;
+ }
+ else
+ {
+ a1 = 0;
+ a2 = 1;
+ lanr = 2;
+ }
+ }
+
+ // compute center point of incident face, in reference-face coordinates
+ btVector3 center;
+ if (nr[lanr] < 0)
+ {
+ for (i = 0; i < 3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i * 4 + lanr];
+ }
+ else
+ {
+ for (i = 0; i < 3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i * 4 + lanr];
+ }
+
+ // find the normal and non-normal axis numbers of the reference box
+ int codeN, code1, code2;
+ if (code <= 3)
+ codeN = code - 1;
+ else
+ codeN = code - 4;
+ if (codeN == 0)
+ {
+ code1 = 1;
+ code2 = 2;
+ }
+ else if (codeN == 1)
+ {
+ code1 = 0;
+ code2 = 2;
+ }
+ else
+ {
+ code1 = 0;
+ code2 = 1;
+ }
+
+ // find the four corners of the incident face, in reference-face coordinates
+ btScalar quad[8]; // 2D coordinate of incident face (x,y pairs)
+ btScalar c1, c2, m11, m12, m21, m22;
+ c1 = dDOT14(center, Ra + code1);
+ c2 = dDOT14(center, Ra + code2);
+ // optimize this? - we have already computed this data above, but it is not
+ // stored in an easy-to-index format. for now it's quicker just to recompute
+ // the four dot products.
+ m11 = dDOT44(Ra + code1, Rb + a1);
+ m12 = dDOT44(Ra + code1, Rb + a2);
+ m21 = dDOT44(Ra + code2, Rb + a1);
+ m22 = dDOT44(Ra + code2, Rb + a2);
+ {
+ btScalar k1 = m11 * Sb[a1];
+ btScalar k2 = m21 * Sb[a1];
+ btScalar k3 = m12 * Sb[a2];
+ btScalar k4 = m22 * Sb[a2];
+ quad[0] = c1 - k1 - k3;
+ quad[1] = c2 - k2 - k4;
+ quad[2] = c1 - k1 + k3;
+ quad[3] = c2 - k2 + k4;
+ quad[4] = c1 + k1 + k3;
+ quad[5] = c2 + k2 + k4;
+ quad[6] = c1 + k1 - k3;
+ quad[7] = c2 + k2 - k4;
+ }
+
+ // find the size of the reference face
+ btScalar rect[2];
+ rect[0] = Sa[code1];
+ rect[1] = Sa[code2];
+
+ // intersect the incident and reference faces
+ btScalar ret[16];
+ int n = intersectRectQuad2(rect, quad, ret);
+ if (n < 1) return 0; // this should never happen
+
+ // convert the intersection points into reference-face coordinates,
+ // and compute the contact position and depth for each point. only keep
+ // those points that have a positive (penetrating) depth. delete points in
+ // the 'ret' array as necessary so that 'point' and 'ret' correspond.
+ btScalar point[3 * 8]; // penetrating contact points
+ btScalar dep[8]; // depths for those points
+ btScalar det1 = 1.f / (m11 * m22 - m12 * m21);
+ m11 *= det1;
+ m12 *= det1;
+ m21 *= det1;
+ m22 *= det1;
+ int cnum = 0; // number of penetrating contact points found
+ for (j = 0; j < n; j++)
+ {
+ btScalar k1 = m22 * (ret[j * 2] - c1) - m12 * (ret[j * 2 + 1] - c2);
+ btScalar k2 = -m21 * (ret[j * 2] - c1) + m11 * (ret[j * 2 + 1] - c2);
+ for (i = 0; i < 3; i++) point[cnum * 3 + i] =
+ center[i] + k1 * Rb[i * 4 + a1] + k2 * Rb[i * 4 + a2];
+ dep[cnum] = Sa[codeN] - dDOT(normal2, point + cnum * 3);
+ if (dep[cnum] >= 0)
+ {
+ ret[cnum * 2] = ret[j * 2];
+ ret[cnum * 2 + 1] = ret[j * 2 + 1];
+ cnum++;
+ }
+ }
+ if (cnum < 1) return 0; // this should never happen
+
+ // we can't generate more contacts than we actually have
+ if (maxc > cnum) maxc = cnum;
+ if (maxc < 1) maxc = 1;
+
+ if (cnum <= maxc)
+ {
+ if (code < 4)
+ {
+ // we have less contacts than we need, so we use them all
+ for (j = 0; j < cnum; j++)
+ {
+ btVector3 pointInWorld;
+ for (i = 0; i < 3; i++)
+ pointInWorld[i] = point[j * 3 + i] + pa[i];
+ output.addContactPoint(-normal, pointInWorld, -dep[j]);
+ }
+ }
+ else
+ {
+ // we have less contacts than we need, so we use them all
+ for (j = 0; j < cnum; j++)
+ {
+ btVector3 pointInWorld;
+ for (i = 0; i < 3; i++)
+ pointInWorld[i] = point[j * 3 + i] + pa[i] - normal[i] * dep[j];
//pointInWorld[i] = point[j*3+i] + pa[i];
- output.addContactPoint(-normal,pointInWorld,-dep[j]);
+ output.addContactPoint(-normal, pointInWorld, -dep[j]);
+ }
}
- }
- }
- else {
- // we have more contacts than are wanted, some of them must be culled.
- // find the deepest point, it is always the first contact.
- int i1 = 0;
- btScalar maxdepth = dep[0];
- for (i=1; i<cnum; i++) {
- if (dep[i] > maxdepth) {
- maxdepth = dep[i];
- i1 = i;
- }
- }
-
- int iret[8];
- cullPoints2 (cnum,ret,maxc,i1,iret);
-
- for (j=0; j < maxc; j++) {
-// dContactGeom *con = CONTACT(contact,skip*j);
- // for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
- // con->depth = dep[iret[j]];
-
- btVector3 posInWorld;
- for (i=0; i<3; i++)
- posInWorld[i] = point[iret[j]*3+i] + pa[i];
- if (code<4)
- {
- output.addContactPoint(-normal,posInWorld,-dep[iret[j]]);
- } else
+ }
+ else
+ {
+ // we have more contacts than are wanted, some of them must be culled.
+ // find the deepest point, it is always the first contact.
+ int i1 = 0;
+ btScalar maxdepth = dep[0];
+ for (i = 1; i < cnum; i++)
{
- output.addContactPoint(-normal,posInWorld-normal*dep[iret[j]],-dep[iret[j]]);
+ if (dep[i] > maxdepth)
+ {
+ maxdepth = dep[i];
+ i1 = i;
+ }
}
- }
- cnum = maxc;
- }
- *return_code = code;
- return cnum;
+ int iret[8];
+ cullPoints2(cnum, ret, maxc, i1, iret);
+
+ for (j = 0; j < maxc; j++)
+ {
+ // dContactGeom *con = CONTACT(contact,skip*j);
+ // for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
+ // con->depth = dep[iret[j]];
+
+ btVector3 posInWorld;
+ for (i = 0; i < 3; i++)
+ posInWorld[i] = point[iret[j] * 3 + i] + pa[i];
+ if (code < 4)
+ {
+ output.addContactPoint(-normal, posInWorld, -dep[iret[j]]);
+ }
+ else
+ {
+ output.addContactPoint(-normal, posInWorld - normal * dep[iret[j]], -dep[iret[j]]);
+ }
+ }
+ cnum = maxc;
+ }
+
+ *return_code = code;
+ return cnum;
}
-void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/)
+void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input, Result& output, class btIDebugDraw* /*debugDraw*/, bool /*swapResults*/)
{
-
const btTransform& transformA = input.m_transformA;
const btTransform& transformB = input.m_transformB;
-
+
int skip = 0;
- dContactGeom *contact = 0;
+ dContactGeom* contact = 0;
dMatrix3 R1;
dMatrix3 R2;
- for (int j=0;j<3;j++)
+ for (int j = 0; j < 3; j++)
{
- R1[0+4*j] = transformA.getBasis()[j].x();
- R2[0+4*j] = transformB.getBasis()[j].x();
-
- R1[1+4*j] = transformA.getBasis()[j].y();
- R2[1+4*j] = transformB.getBasis()[j].y();
-
+ R1[0 + 4 * j] = transformA.getBasis()[j].x();
+ R2[0 + 4 * j] = transformB.getBasis()[j].x();
- R1[2+4*j] = transformA.getBasis()[j].z();
- R2[2+4*j] = transformB.getBasis()[j].z();
+ R1[1 + 4 * j] = transformA.getBasis()[j].y();
+ R2[1 + 4 * j] = transformB.getBasis()[j].y();
+ R1[2 + 4 * j] = transformA.getBasis()[j].z();
+ R2[2 + 4 * j] = transformB.getBasis()[j].z();
}
-
-
btVector3 normal;
btScalar depth;
int return_code;
int maxc = 4;
-
- dBoxBox2 (transformA.getOrigin(),
- R1,
- 2.f*m_box1->getHalfExtentsWithMargin(),
- transformB.getOrigin(),
- R2,
- 2.f*m_box2->getHalfExtentsWithMargin(),
- normal, &depth, &return_code,
- maxc, contact, skip,
- output
- );
-
+ dBoxBox2(transformA.getOrigin(),
+ R1,
+ 2.f * m_box1->getHalfExtentsWithMargin(),
+ transformB.getOrigin(),
+ R2,
+ 2.f * m_box2->getHalfExtentsWithMargin(),
+ normal, &depth, &return_code,
+ maxc, contact, skip,
+ output);
}