summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/BroadphaseCollision
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/BroadphaseCollision')
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp12
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.h8
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h528
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h53
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.cpp2
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h193
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp1
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h42
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.cpp1395
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.h1517
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp855
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h148
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.cpp2
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.h87
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp384
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h348
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h16
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp594
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.h336
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp147
-rw-r--r--thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h107
21 files changed, 3258 insertions, 3517 deletions
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp
index 77763305b1..ec6fe9f4d8 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.cpp
@@ -2,7 +2,6 @@
//Bullet Continuous Collision Detection and Physics Library
//Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
-
//
// btAxisSweep3
//
@@ -19,18 +18,15 @@
// 3. This notice may not be removed or altered from any source distribution.
#include "btAxisSweep3.h"
-
-btAxisSweep3::btAxisSweep3(const btVector3& worldAabbMin,const btVector3& worldAabbMax, unsigned short int maxHandles, btOverlappingPairCache* pairCache, bool disableRaycastAccelerator)
-:btAxisSweep3Internal<unsigned short int>(worldAabbMin,worldAabbMax,0xfffe,0xffff,maxHandles,pairCache,disableRaycastAccelerator)
+btAxisSweep3::btAxisSweep3(const btVector3& worldAabbMin, const btVector3& worldAabbMax, unsigned short int maxHandles, btOverlappingPairCache* pairCache, bool disableRaycastAccelerator)
+ : btAxisSweep3Internal<unsigned short int>(worldAabbMin, worldAabbMax, 0xfffe, 0xffff, maxHandles, pairCache, disableRaycastAccelerator)
{
// 1 handle is reserved as sentinel
btAssert(maxHandles > 1 && maxHandles < 32767);
-
}
-
-bt32BitAxisSweep3::bt32BitAxisSweep3(const btVector3& worldAabbMin,const btVector3& worldAabbMax, unsigned int maxHandles , btOverlappingPairCache* pairCache , bool disableRaycastAccelerator)
-:btAxisSweep3Internal<unsigned int>(worldAabbMin,worldAabbMax,0xfffffffe,0x7fffffff,maxHandles,pairCache,disableRaycastAccelerator)
+bt32BitAxisSweep3::bt32BitAxisSweep3(const btVector3& worldAabbMin, const btVector3& worldAabbMax, unsigned int maxHandles, btOverlappingPairCache* pairCache, bool disableRaycastAccelerator)
+ : btAxisSweep3Internal<unsigned int>(worldAabbMin, worldAabbMax, 0xfffffffe, 0x7fffffff, maxHandles, pairCache, disableRaycastAccelerator)
{
// 1 handle is reserved as sentinel
btAssert(maxHandles > 1 && maxHandles < 2147483647);
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.h
index a3648df1af..1e42f25f3b 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.h
@@ -33,9 +33,7 @@
class btAxisSweep3 : public btAxisSweep3Internal<unsigned short int>
{
public:
-
- btAxisSweep3(const btVector3& worldAabbMin,const btVector3& worldAabbMax, unsigned short int maxHandles = 16384, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false);
-
+ btAxisSweep3(const btVector3& worldAabbMin, const btVector3& worldAabbMax, unsigned short int maxHandles = 16384, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false);
};
/// The bt32BitAxisSweep3 allows higher precision quantization and more objects compared to the btAxisSweep3 sweep and prune.
@@ -44,9 +42,7 @@ public:
class bt32BitAxisSweep3 : public btAxisSweep3Internal<unsigned int>
{
public:
-
- bt32BitAxisSweep3(const btVector3& worldAabbMin,const btVector3& worldAabbMax, unsigned int maxHandles = 1500000, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false);
-
+ bt32BitAxisSweep3(const btVector3& worldAabbMin, const btVector3& worldAabbMax, unsigned int maxHandles = 1500000, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false);
};
#endif
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h
index 323aa96dca..2ee35528fd 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h
@@ -36,172 +36,158 @@ template <typename BP_FP_INT_TYPE>
class btAxisSweep3Internal : public btBroadphaseInterface
{
protected:
-
- BP_FP_INT_TYPE m_bpHandleMask;
- BP_FP_INT_TYPE m_handleSentinel;
+ BP_FP_INT_TYPE m_bpHandleMask;
+ BP_FP_INT_TYPE m_handleSentinel;
public:
-
- BT_DECLARE_ALIGNED_ALLOCATOR();
+ BT_DECLARE_ALIGNED_ALLOCATOR();
class Edge
{
public:
- BP_FP_INT_TYPE m_pos; // low bit is min/max
+ BP_FP_INT_TYPE m_pos; // low bit is min/max
BP_FP_INT_TYPE m_handle;
- BP_FP_INT_TYPE IsMax() const {return static_cast<BP_FP_INT_TYPE>(m_pos & 1);}
+ BP_FP_INT_TYPE IsMax() const { return static_cast<BP_FP_INT_TYPE>(m_pos & 1); }
};
public:
- class Handle : public btBroadphaseProxy
+ class Handle : public btBroadphaseProxy
{
public:
- BT_DECLARE_ALIGNED_ALLOCATOR();
-
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
// indexes into the edge arrays
- BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3]; // 6 * 2 = 12
-// BP_FP_INT_TYPE m_uniqueId;
- btBroadphaseProxy* m_dbvtProxy;//for faster raycast
+ BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3]; // 6 * 2 = 12
+ // BP_FP_INT_TYPE m_uniqueId;
+ btBroadphaseProxy* m_dbvtProxy; //for faster raycast
//void* m_pOwner; this is now in btBroadphaseProxy.m_clientObject
-
- SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) {m_minEdges[0] = next;}
- SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const {return m_minEdges[0];}
- }; // 24 bytes + 24 for Edge structures = 44 bytes total per entry
-
+ SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) { m_minEdges[0] = next; }
+ SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const { return m_minEdges[0]; }
+ }; // 24 bytes + 24 for Edge structures = 44 bytes total per entry
+
protected:
- btVector3 m_worldAabbMin; // overall system bounds
- btVector3 m_worldAabbMax; // overall system bounds
+ btVector3 m_worldAabbMin; // overall system bounds
+ btVector3 m_worldAabbMax; // overall system bounds
+
+ btVector3 m_quantize; // scaling factor for quantization
- btVector3 m_quantize; // scaling factor for quantization
+ BP_FP_INT_TYPE m_numHandles; // number of active handles
+ BP_FP_INT_TYPE m_maxHandles; // max number of handles
+ Handle* m_pHandles; // handles pool
- BP_FP_INT_TYPE m_numHandles; // number of active handles
- BP_FP_INT_TYPE m_maxHandles; // max number of handles
- Handle* m_pHandles; // handles pool
-
- BP_FP_INT_TYPE m_firstFreeHandle; // free handles list
+ BP_FP_INT_TYPE m_firstFreeHandle; // free handles list
- Edge* m_pEdges[3]; // edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries)
+ Edge* m_pEdges[3]; // edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries)
void* m_pEdgesRawPtr[3];
btOverlappingPairCache* m_pairCache;
///btOverlappingPairCallback is an additional optional user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache.
btOverlappingPairCallback* m_userPairCallback;
-
- bool m_ownsPairCache;
- int m_invalidPair;
+ bool m_ownsPairCache;
+
+ int m_invalidPair;
///additional dynamic aabb structure, used to accelerate ray cast queries.
///can be disabled using a optional argument in the constructor
- btDbvtBroadphase* m_raycastAccelerator;
- btOverlappingPairCache* m_nullPairCache;
-
+ btDbvtBroadphase* m_raycastAccelerator;
+ btOverlappingPairCache* m_nullPairCache;
// allocation/deallocation
BP_FP_INT_TYPE allocHandle();
void freeHandle(BP_FP_INT_TYPE handle);
-
- bool testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1);
+ bool testOverlap2D(const Handle* pHandleA, const Handle* pHandleB, int axis0, int axis1);
#ifdef DEBUG_BROADPHASE
- void debugPrintAxis(int axis,bool checkCardinality=true);
-#endif //DEBUG_BROADPHASE
+ void debugPrintAxis(int axis, bool checkCardinality = true);
+#endif //DEBUG_BROADPHASE
//Overlap* AddOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);
//void RemoveOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);
-
-
- void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
- void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
- void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
- void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
+ void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps);
+ void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps);
+ void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps);
+ void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps);
public:
+ btAxisSweep3Internal(const btVector3& worldAabbMin, const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false);
- btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache=0,bool disableRaycastAccelerator = false);
-
- virtual ~btAxisSweep3Internal();
+ virtual ~btAxisSweep3Internal();
BP_FP_INT_TYPE getNumHandles() const
{
return m_numHandles;
}
- virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
-
- BP_FP_INT_TYPE addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher);
- void removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher);
- void updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
- SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;}
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
+
+ BP_FP_INT_TYPE addHandle(const btVector3& aabbMin, const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher);
+ void removeHandle(BP_FP_INT_TYPE handle, btDispatcher* dispatcher);
+ void updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher);
+ SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const { return m_pHandles + index; }
virtual void resetPool(btDispatcher* dispatcher);
- void processAllOverlappingPairs(btOverlapCallback* callback);
+ void processAllOverlappingPairs(btOverlapCallback* callback);
//Broadphase Interface
- virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr , int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher);
- virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
- virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
- virtual void getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
-
- virtual void rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin=btVector3(0,0,0), const btVector3& aabbMax = btVector3(0,0,0));
- virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
-
-
+ virtual btBroadphaseProxy* createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher);
+ virtual void destroyProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher);
+ virtual void setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher);
+ virtual void getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const;
+
+ virtual void rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin = btVector3(0, 0, 0), const btVector3& aabbMax = btVector3(0, 0, 0));
+ virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
+
void quantize(BP_FP_INT_TYPE* out, const btVector3& point, int isMax) const;
///unQuantize should be conservative: aabbMin/aabbMax should be larger then 'getAabb' result
- void unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
-
- bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+ void unQuantize(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const;
+
+ bool testAabbOverlap(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
- btOverlappingPairCache* getOverlappingPairCache()
+ btOverlappingPairCache* getOverlappingPairCache()
{
return m_pairCache;
}
- const btOverlappingPairCache* getOverlappingPairCache() const
+ const btOverlappingPairCache* getOverlappingPairCache() const
{
return m_pairCache;
}
- void setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback)
+ void setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback)
{
m_userPairCallback = pairCallback;
}
- const btOverlappingPairCallback* getOverlappingPairUserCallback() const
+ const btOverlappingPairCallback* getOverlappingPairUserCallback() const
{
return m_userPairCallback;
}
///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
///will add some transform later
- virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
+ virtual void getBroadphaseAabb(btVector3& aabbMin, btVector3& aabbMax) const
{
aabbMin = m_worldAabbMin;
aabbMax = m_worldAabbMax;
}
- virtual void printStats()
+ virtual void printStats()
{
-/* printf("btAxisSweep3.h\n");
+ /* printf("btAxisSweep3.h\n");
printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
printf("aabbMin=%f,%f,%f,aabbMax=%f,%f,%f\n",m_worldAabbMin.getX(),m_worldAabbMin.getY(),m_worldAabbMin.getZ(),
m_worldAabbMax.getX(),m_worldAabbMax.getY(),m_worldAabbMax.getZ());
*/
-
}
-
};
////////////////////////////////////////////////////////////////////
-
-
-
#ifdef DEBUG_BROADPHASE
#include <stdio.h>
@@ -209,75 +195,73 @@ template <typename BP_FP_INT_TYPE>
void btAxisSweep3<BP_FP_INT_TYPE>::debugPrintAxis(int axis, bool checkCardinality)
{
int numEdges = m_pHandles[0].m_maxEdges[axis];
- printf("SAP Axis %d, numEdges=%d\n",axis,numEdges);
+ printf("SAP Axis %d, numEdges=%d\n", axis, numEdges);
int i;
- for (i=0;i<numEdges+1;i++)
+ for (i = 0; i < numEdges + 1; i++)
{
Edge* pEdge = m_pEdges[axis] + i;
Handle* pHandlePrev = getHandle(pEdge->m_handle);
- int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
+ int handleIndex = pEdge->IsMax() ? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
char beginOrEnd;
- beginOrEnd=pEdge->IsMax()?'E':'B';
- printf(" [%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex);
+ beginOrEnd = pEdge->IsMax() ? 'E' : 'B';
+ printf(" [%c,h=%d,p=%x,i=%d]\n", beginOrEnd, pEdge->m_handle, pEdge->m_pos, handleIndex);
}
if (checkCardinality)
- btAssert(numEdges == m_numHandles*2+1);
+ btAssert(numEdges == m_numHandles * 2 + 1);
}
-#endif //DEBUG_BROADPHASE
+#endif //DEBUG_BROADPHASE
template <typename BP_FP_INT_TYPE>
-btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher)
+btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher)
{
- (void)shapeType;
- BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask,dispatcher);
-
- Handle* handle = getHandle(handleId);
-
- if (m_raycastAccelerator)
- {
- btBroadphaseProxy* rayProxy = m_raycastAccelerator->createProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask,dispatcher);
- handle->m_dbvtProxy = rayProxy;
- }
- return handle;
-}
+ (void)shapeType;
+ BP_FP_INT_TYPE handleId = addHandle(aabbMin, aabbMax, userPtr, collisionFilterGroup, collisionFilterMask, dispatcher);
+ Handle* handle = getHandle(handleId);
+ if (m_raycastAccelerator)
+ {
+ btBroadphaseProxy* rayProxy = m_raycastAccelerator->createProxy(aabbMin, aabbMax, shapeType, userPtr, collisionFilterGroup, collisionFilterMask, dispatcher);
+ handle->m_dbvtProxy = rayProxy;
+ }
+ return handle;
+}
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher)
{
Handle* handle = static_cast<Handle*>(proxy);
if (m_raycastAccelerator)
- m_raycastAccelerator->destroyProxy(handle->m_dbvtProxy,dispatcher);
+ m_raycastAccelerator->destroyProxy(handle->m_dbvtProxy, dispatcher);
removeHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), dispatcher);
}
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher)
{
Handle* handle = static_cast<Handle*>(proxy);
handle->m_aabbMin = aabbMin;
handle->m_aabbMax = aabbMax;
- updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax,dispatcher);
+ updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax, dispatcher);
if (m_raycastAccelerator)
- m_raycastAccelerator->setAabb(handle->m_dbvtProxy,aabbMin,aabbMax,dispatcher);
-
+ m_raycastAccelerator->setAabb(handle->m_dbvtProxy, aabbMin, aabbMax, dispatcher);
}
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback,const btVector3& aabbMin,const btVector3& aabbMax)
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin, const btVector3& aabbMax)
{
if (m_raycastAccelerator)
{
- m_raycastAccelerator->rayTest(rayFrom,rayTo,rayCallback,aabbMin,aabbMax);
- } else
+ m_raycastAccelerator->rayTest(rayFrom, rayTo, rayCallback, aabbMin, aabbMax);
+ }
+ else
{
//choose axis?
BP_FP_INT_TYPE axis = 0;
//for each proxy
- for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++)
+ for (BP_FP_INT_TYPE i = 1; i < m_numHandles * 2 + 1; i++)
{
if (m_pEdges[axis][i].IsMax())
{
@@ -288,22 +272,23 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom,cons
}
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
{
if (m_raycastAccelerator)
{
- m_raycastAccelerator->aabbTest(aabbMin,aabbMax,callback);
- } else
+ m_raycastAccelerator->aabbTest(aabbMin, aabbMax, callback);
+ }
+ else
{
//choose axis?
BP_FP_INT_TYPE axis = 0;
//for each proxy
- for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++)
+ for (BP_FP_INT_TYPE i = 1; i < m_numHandles * 2 + 1; i++)
{
if (m_pEdges[axis][i].IsMax())
{
Handle* handle = getHandle(m_pEdges[axis][i].m_handle);
- if (TestAabbAgainstAabb2(aabbMin,aabbMax,handle->m_aabbMin,handle->m_aabbMax))
+ if (TestAabbAgainstAabb2(aabbMin, aabbMax, handle->m_aabbMin, handle->m_aabbMax))
{
callback.process(handle);
}
@@ -312,66 +297,60 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, co
}
}
-
-
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const
{
Handle* pHandle = static_cast<Handle*>(proxy);
aabbMin = pHandle->m_aabbMin;
aabbMax = pHandle->m_aabbMax;
}
-
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::unQuantize(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const
{
Handle* pHandle = static_cast<Handle*>(proxy);
unsigned short vecInMin[3];
unsigned short vecInMax[3];
- vecInMin[0] = m_pEdges[0][pHandle->m_minEdges[0]].m_pos ;
- vecInMax[0] = m_pEdges[0][pHandle->m_maxEdges[0]].m_pos +1 ;
- vecInMin[1] = m_pEdges[1][pHandle->m_minEdges[1]].m_pos ;
- vecInMax[1] = m_pEdges[1][pHandle->m_maxEdges[1]].m_pos +1 ;
- vecInMin[2] = m_pEdges[2][pHandle->m_minEdges[2]].m_pos ;
- vecInMax[2] = m_pEdges[2][pHandle->m_maxEdges[2]].m_pos +1 ;
-
- aabbMin.setValue((btScalar)(vecInMin[0]) / (m_quantize.getX()),(btScalar)(vecInMin[1]) / (m_quantize.getY()),(btScalar)(vecInMin[2]) / (m_quantize.getZ()));
+ vecInMin[0] = m_pEdges[0][pHandle->m_minEdges[0]].m_pos;
+ vecInMax[0] = m_pEdges[0][pHandle->m_maxEdges[0]].m_pos + 1;
+ vecInMin[1] = m_pEdges[1][pHandle->m_minEdges[1]].m_pos;
+ vecInMax[1] = m_pEdges[1][pHandle->m_maxEdges[1]].m_pos + 1;
+ vecInMin[2] = m_pEdges[2][pHandle->m_minEdges[2]].m_pos;
+ vecInMax[2] = m_pEdges[2][pHandle->m_maxEdges[2]].m_pos + 1;
+
+ aabbMin.setValue((btScalar)(vecInMin[0]) / (m_quantize.getX()), (btScalar)(vecInMin[1]) / (m_quantize.getY()), (btScalar)(vecInMin[2]) / (m_quantize.getZ()));
aabbMin += m_worldAabbMin;
-
- aabbMax.setValue((btScalar)(vecInMax[0]) / (m_quantize.getX()),(btScalar)(vecInMax[1]) / (m_quantize.getY()),(btScalar)(vecInMax[2]) / (m_quantize.getZ()));
+
+ aabbMax.setValue((btScalar)(vecInMax[0]) / (m_quantize.getX()), (btScalar)(vecInMax[1]) / (m_quantize.getY()), (btScalar)(vecInMax[2]) / (m_quantize.getZ()));
aabbMax += m_worldAabbMin;
}
-
-
-
template <typename BP_FP_INT_TYPE>
-btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel,BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache , bool disableRaycastAccelerator)
-:m_bpHandleMask(handleMask),
-m_handleSentinel(handleSentinel),
-m_pairCache(pairCache),
-m_userPairCallback(0),
-m_ownsPairCache(false),
-m_invalidPair(0),
-m_raycastAccelerator(0)
+btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btVector3& worldAabbMin, const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache, bool disableRaycastAccelerator)
+ : m_bpHandleMask(handleMask),
+ m_handleSentinel(handleSentinel),
+ m_pairCache(pairCache),
+ m_userPairCallback(0),
+ m_ownsPairCache(false),
+ m_invalidPair(0),
+ m_raycastAccelerator(0)
{
- BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles+1);//need to add one sentinel handle
+ BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles + 1); //need to add one sentinel handle
if (!m_pairCache)
{
- void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16);
- m_pairCache = new(ptr) btHashedOverlappingPairCache();
+ void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache), 16);
+ m_pairCache = new (ptr) btHashedOverlappingPairCache();
m_ownsPairCache = true;
}
if (!disableRaycastAccelerator)
{
- m_nullPairCache = new (btAlignedAlloc(sizeof(btNullPairCache),16)) btNullPairCache();
- m_raycastAccelerator = new (btAlignedAlloc(sizeof(btDbvtBroadphase),16)) btDbvtBroadphase(m_nullPairCache);//m_pairCache);
- m_raycastAccelerator->m_deferedcollide = true;//don't add/remove pairs
+ m_nullPairCache = new (btAlignedAlloc(sizeof(btNullPairCache), 16)) btNullPairCache();
+ m_raycastAccelerator = new (btAlignedAlloc(sizeof(btDbvtBroadphase), 16)) btDbvtBroadphase(m_nullPairCache); //m_pairCache);
+ m_raycastAccelerator->m_deferedcollide = true; //don't add/remove pairs
}
//btAssert(bounds.HasVolume());
@@ -382,13 +361,13 @@ m_raycastAccelerator(0)
btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;
- BP_FP_INT_TYPE maxInt = m_handleSentinel;
+ BP_FP_INT_TYPE maxInt = m_handleSentinel;
- m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize;
+ m_quantize = btVector3(btScalar(maxInt), btScalar(maxInt), btScalar(maxInt)) / aabbSize;
// allocate handles buffer, using btAlignedAlloc, and put all handles on free list
m_pHandles = new Handle[maxHandles];
-
+
m_maxHandles = maxHandles;
m_numHandles = 0;
@@ -404,14 +383,14 @@ m_raycastAccelerator(0)
// allocate edge buffers
for (int i = 0; i < 3; i++)
{
- m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge)*maxHandles*2,16);
- m_pEdges[i] = new(m_pEdgesRawPtr[i]) Edge[maxHandles * 2];
+ m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge) * maxHandles * 2, 16);
+ m_pEdges[i] = new (m_pEdgesRawPtr[i]) Edge[maxHandles * 2];
}
}
//removed overlap management
// make boundary sentinels
-
+
m_pHandles[0].m_clientObject = 0;
for (int axis = 0; axis < 3; axis++)
@@ -425,10 +404,8 @@ m_raycastAccelerator(0)
m_pEdges[axis][1].m_handle = 0;
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
-
+#endif //DEBUG_BROADPHASE
}
-
}
template <typename BP_FP_INT_TYPE>
@@ -439,14 +416,14 @@ btAxisSweep3Internal<BP_FP_INT_TYPE>::~btAxisSweep3Internal()
m_nullPairCache->~btOverlappingPairCache();
btAlignedFree(m_nullPairCache);
m_raycastAccelerator->~btDbvtBroadphase();
- btAlignedFree (m_raycastAccelerator);
+ btAlignedFree(m_raycastAccelerator);
}
for (int i = 2; i >= 0; i--)
{
btAlignedFree(m_pEdgesRawPtr[i]);
}
- delete [] m_pHandles;
+ delete[] m_pHandles;
if (m_ownsPairCache)
{
@@ -470,13 +447,12 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::quantize(BP_FP_INT_TYPE* out, const b
out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & m_bpHandleMask) | isMax);
#else
btVector3 v = (point - m_worldAabbMin) * m_quantize;
- out[0]=(v[0]<=0)?(BP_FP_INT_TYPE)isMax:(v[0]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[0]&m_bpHandleMask)|isMax);
- out[1]=(v[1]<=0)?(BP_FP_INT_TYPE)isMax:(v[1]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[1]&m_bpHandleMask)|isMax);
- out[2]=(v[2]<=0)?(BP_FP_INT_TYPE)isMax:(v[2]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[2]&m_bpHandleMask)|isMax);
-#endif //OLD_CLAMPING_METHOD
+ out[0] = (v[0] <= 0) ? (BP_FP_INT_TYPE)isMax : (v[0] >= m_handleSentinel) ? (BP_FP_INT_TYPE)((m_handleSentinel & m_bpHandleMask) | isMax) : (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[0] & m_bpHandleMask) | isMax);
+ out[1] = (v[1] <= 0) ? (BP_FP_INT_TYPE)isMax : (v[1] >= m_handleSentinel) ? (BP_FP_INT_TYPE)((m_handleSentinel & m_bpHandleMask) | isMax) : (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[1] & m_bpHandleMask) | isMax);
+ out[2] = (v[2] <= 0) ? (BP_FP_INT_TYPE)isMax : (v[2] >= m_handleSentinel) ? (BP_FP_INT_TYPE)((m_handleSentinel & m_bpHandleMask) | isMax) : (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[2] & m_bpHandleMask) | isMax);
+#endif //OLD_CLAMPING_METHOD
}
-
template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::allocHandle()
{
@@ -500,9 +476,8 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::freeHandle(BP_FP_INT_TYPE handle)
m_numHandles--;
}
-
template <typename BP_FP_INT_TYPE>
-BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher)
+BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& aabbMin, const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher)
{
// quantize the bounds
BP_FP_INT_TYPE min[3], max[3];
@@ -511,10 +486,9 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3&
// allocate a handle
BP_FP_INT_TYPE handle = allocHandle();
-
Handle* pHandle = getHandle(handle);
-
+
pHandle->m_uniqueId = static_cast<int>(handle);
//pHandle->m_pOverlaps = 0;
pHandle->m_clientObject = pOwner;
@@ -524,11 +498,9 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3&
// compute current limit of edge arrays
BP_FP_INT_TYPE limit = static_cast<BP_FP_INT_TYPE>(m_numHandles * 2);
-
// insert new edges just inside the max boundary edge
for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++)
{
-
m_pHandles[0].m_maxEdges[axis] += 2;
m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];
@@ -544,22 +516,19 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3&
}
// now sort the new edges to their correct position
- sortMinDown(0, pHandle->m_minEdges[0], dispatcher,false);
- sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher,false);
- sortMinDown(1, pHandle->m_minEdges[1], dispatcher,false);
- sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher,false);
- sortMinDown(2, pHandle->m_minEdges[2], dispatcher,true);
- sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher,true);
-
+ sortMinDown(0, pHandle->m_minEdges[0], dispatcher, false);
+ sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher, false);
+ sortMinDown(1, pHandle->m_minEdges[1], dispatcher, false);
+ sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher, false);
+ sortMinDown(2, pHandle->m_minEdges[2], dispatcher, true);
+ sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher, true);
return handle;
}
-
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher)
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle, btDispatcher* dispatcher)
{
-
Handle* pHandle = getHandle(handle);
//explicitly remove the pairs containing the proxy
@@ -567,50 +536,43 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,bt
///@todo: compare performance
if (!m_pairCache->hasDeferredRemoval())
{
- m_pairCache->removeOverlappingPairsContainingProxy(pHandle,dispatcher);
+ m_pairCache->removeOverlappingPairsContainingProxy(pHandle, dispatcher);
}
// compute current limit of edge arrays
int limit = static_cast<int>(m_numHandles * 2);
-
+
int axis;
- for (axis = 0;axis<3;axis++)
+ for (axis = 0; axis < 3; axis++)
{
m_pHandles[0].m_maxEdges[axis] -= 2;
}
// remove the edges by sorting them up to the end of the list
- for ( axis = 0; axis < 3; axis++)
+ for (axis = 0; axis < 3; axis++)
{
Edge* pEdges = m_pEdges[axis];
BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
pEdges[max].m_pos = m_handleSentinel;
- sortMaxUp(axis,max,dispatcher,false);
-
+ sortMaxUp(axis, max, dispatcher, false);
BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
pEdges[i].m_pos = m_handleSentinel;
+ sortMinUp(axis, i, dispatcher, false);
- sortMinUp(axis,i,dispatcher,false);
+ pEdges[limit - 1].m_handle = 0;
+ pEdges[limit - 1].m_pos = m_handleSentinel;
- pEdges[limit-1].m_handle = 0;
- pEdges[limit-1].m_pos = m_handleSentinel;
-
#ifdef DEBUG_BROADPHASE
- debugPrintAxis(axis,false);
-#endif //DEBUG_BROADPHASE
-
-
+ debugPrintAxis(axis, false);
+#endif //DEBUG_BROADPHASE
}
-
// free the handle
freeHandle(handle);
-
-
}
template <typename BP_FP_INT_TYPE>
@@ -625,19 +587,16 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::resetPool(btDispatcher* /*dispatcher*
m_pHandles[m_maxHandles - 1].SetNextFree(0);
}
}
-}
-
+}
//#include <stdio.h>
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher)
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher)
{
-
if (m_pairCache->hasDeferredRemoval())
{
-
- btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
+ btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
@@ -645,18 +604,15 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatche
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
-
int i;
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
-
-
- for (i=0;i<overlappingPairArray.size();i++)
+
+ for (i = 0; i < overlappingPairArray.size(); i++)
{
-
btBroadphasePair& pair = overlappingPairArray[i];
bool isDuplicate = (pair == previousPair);
@@ -668,91 +624,90 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatche
if (!isDuplicate)
{
///important to use an AABB test that is consistent with the broadphase
- bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
+ bool hasOverlap = testAabbOverlap(pair.m_pProxy0, pair.m_pProxy1);
if (hasOverlap)
{
- needsRemoval = false;//callback->processOverlap(pair);
- } else
+ needsRemoval = false; //callback->processOverlap(pair);
+ }
+ else
{
needsRemoval = true;
}
- } else
+ }
+ else
{
//remove duplicate
needsRemoval = true;
//should have no algorithm
btAssert(!pair.m_algorithm);
}
-
+
if (needsRemoval)
{
- m_pairCache->cleanOverlappingPair(pair,dispatcher);
+ m_pairCache->cleanOverlappingPair(pair, dispatcher);
- // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
- // m_overlappingPairArray.pop_back();
+ // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
+ // m_overlappingPairArray.pop_back();
pair.m_pProxy0 = 0;
pair.m_pProxy1 = 0;
m_invalidPair++;
- }
-
- }
+ }
+ }
- ///if you don't like to skip the invalid pairs in the array, execute following code:
- #define CLEAN_INVALID_PAIRS 1
- #ifdef CLEAN_INVALID_PAIRS
+///if you don't like to skip the invalid pairs in the array, execute following code:
+#define CLEAN_INVALID_PAIRS 1
+#ifdef CLEAN_INVALID_PAIRS
//perform a sort, to sort 'invalid' pairs to the end
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
- #endif//CLEAN_INVALID_PAIRS
-
+#endif //CLEAN_INVALID_PAIRS
+
//printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
}
-
}
-
template <typename BP_FP_INT_TYPE>
-bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
const Handle* pHandleA = static_cast<Handle*>(proxy0);
const Handle* pHandleB = static_cast<Handle*>(proxy1);
-
+
//optimization 1: check the array index (memory address), instead of the m_pos
for (int axis = 0; axis < 3; axis++)
- {
- if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
- pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
- {
- return false;
- }
- }
+ {
+ if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
+ pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
+ {
+ return false;
+ }
+ }
return true;
}
template <typename BP_FP_INT_TYPE>
-bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1)
+bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap2D(const Handle* pHandleA, const Handle* pHandleB, int axis0, int axis1)
{
//optimization 1: check the array index (memory address), instead of the m_pos
- if (pHandleA->m_maxEdges[axis0] < pHandleB->m_minEdges[axis0] ||
+ if (pHandleA->m_maxEdges[axis0] < pHandleB->m_minEdges[axis0] ||
pHandleB->m_maxEdges[axis0] < pHandleA->m_minEdges[axis0] ||
pHandleA->m_maxEdges[axis1] < pHandleB->m_minEdges[axis1] ||
- pHandleB->m_maxEdges[axis1] < pHandleA->m_minEdges[axis1])
- {
- return false;
- }
+ pHandleB->m_maxEdges[axis1] < pHandleA->m_minEdges[axis1])
+ {
+ return false;
+ }
return true;
}
template <typename BP_FP_INT_TYPE>
-void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
+void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher)
{
-// btAssert(bounds.IsFinite());
+ // btAssert(bounds.IsFinite());
//btAssert(bounds.HasVolume());
Handle* pHandle = getHandle(handle);
@@ -776,34 +731,28 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, c
// expand (only adds overlaps)
if (dmin < 0)
- sortMinDown(axis, emin,dispatcher,true);
+ sortMinDown(axis, emin, dispatcher, true);
if (dmax > 0)
- sortMaxUp(axis, emax,dispatcher,true);
+ sortMaxUp(axis, emax, dispatcher, true);
// shrink (only removes overlaps)
if (dmin > 0)
- sortMinUp(axis, emin,dispatcher,true);
+ sortMinUp(axis, emin, dispatcher, true);
if (dmax < 0)
- sortMaxDown(axis, emax,dispatcher,true);
+ sortMaxDown(axis, emax, dispatcher, true);
#ifdef DEBUG_BROADPHASE
- debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
+ debugPrintAxis(axis);
+#endif //DEBUG_BROADPHASE
}
-
-
}
-
-
-
// sorting a min edge downwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
{
-
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
@@ -815,16 +764,15 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE
if (pPrev->IsMax())
{
// if previous edge is a maximum check the bounds and add an overlap if necessary
- const int axis1 = (1 << axis) & 3;
- const int axis2 = (1 << axis1) & 3;
- if (updateOverlaps && testOverlap2D(pHandleEdge, pHandlePrev,axis1,axis2))
+ const int axis1 = (1 << axis) & 3;
+ const int axis2 = (1 << axis1) & 3;
+ if (updateOverlaps && testOverlap2D(pHandleEdge, pHandlePrev, axis1, axis2))
{
- m_pairCache->addOverlappingPair(pHandleEdge,pHandlePrev);
+ m_pairCache->addOverlappingPair(pHandleEdge, pHandlePrev);
if (m_userPairCallback)
- m_userPairCallback->addOverlappingPair(pHandleEdge,pHandlePrev);
+ m_userPairCallback->addOverlappingPair(pHandleEdge, pHandlePrev);
//AddOverlap(pEdge->m_handle, pPrev->m_handle);
-
}
// update edge reference in other handle
@@ -847,8 +795,7 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
-
+#endif //DEBUG_BROADPHASE
}
// sorting a min edge upwards can only ever *remove* overlaps
@@ -867,25 +814,21 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE ed
{
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pNext->m_handle);
- const int axis1 = (1 << axis) & 3;
- const int axis2 = (1 << axis1) & 3;
-
+ const int axis1 = (1 << axis) & 3;
+ const int axis2 = (1 << axis1) & 3;
+
// if next edge is maximum remove any overlap between the two handles
- if (updateOverlaps
+ if (updateOverlaps
#ifdef USE_OVERLAP_TEST_ON_REMOVES
- && testOverlap2D(handle0,handle1,axis1,axis2)
-#endif //USE_OVERLAP_TEST_ON_REMOVES
- )
+ && testOverlap2D(handle0, handle1, axis1, axis2)
+#endif //USE_OVERLAP_TEST_ON_REMOVES
+ )
{
-
-
- m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
+ m_pairCache->removeOverlappingPair(handle0, handle1, dispatcher);
if (m_userPairCallback)
- m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
-
+ m_userPairCallback->removeOverlappingPair(handle0, handle1, dispatcher);
}
-
// update edge reference in other handle
pHandleNext->m_maxEdges[axis]--;
}
@@ -903,15 +846,12 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE ed
pEdge++;
pNext++;
}
-
-
}
// sorting a max edge downwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
-
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
@@ -925,28 +865,25 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE
// if previous edge was a minimum remove any overlap between the two handles
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pPrev->m_handle);
- const int axis1 = (1 << axis) & 3;
- const int axis2 = (1 << axis1) & 3;
+ const int axis1 = (1 << axis) & 3;
+ const int axis2 = (1 << axis1) & 3;
- if (updateOverlaps
+ if (updateOverlaps
#ifdef USE_OVERLAP_TEST_ON_REMOVES
- && testOverlap2D(handle0,handle1,axis1,axis2)
-#endif //USE_OVERLAP_TEST_ON_REMOVES
- )
+ && testOverlap2D(handle0, handle1, axis1, axis2)
+#endif //USE_OVERLAP_TEST_ON_REMOVES
+ )
{
//this is done during the overlappingpairarray iteration/narrowphase collision
-
- m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
+ m_pairCache->removeOverlappingPair(handle0, handle1, dispatcher);
if (m_userPairCallback)
- m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
-
-
-
+ m_userPairCallback->removeOverlappingPair(handle0, handle1, dispatcher);
}
// update edge reference in other handle
- pHandlePrev->m_minEdges[axis]++;;
+ pHandlePrev->m_minEdges[axis]++;
+ ;
}
else
pHandlePrev->m_maxEdges[axis]++;
@@ -963,11 +900,9 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE
pPrev--;
}
-
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
-#endif //DEBUG_BROADPHASE
-
+#endif //DEBUG_BROADPHASE
}
// sorting a max edge upwards can only ever *add* overlaps
@@ -982,19 +917,19 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE ed
{
Handle* pHandleNext = getHandle(pNext->m_handle);
- const int axis1 = (1 << axis) & 3;
- const int axis2 = (1 << axis1) & 3;
+ const int axis1 = (1 << axis) & 3;
+ const int axis2 = (1 << axis1) & 3;
if (!pNext->IsMax())
{
// if next edge is a minimum check the bounds and add an overlap if necessary
- if (updateOverlaps && testOverlap2D(pHandleEdge, pHandleNext,axis1,axis2))
+ if (updateOverlaps && testOverlap2D(pHandleEdge, pHandleNext, axis1, axis2))
{
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pNext->m_handle);
- m_pairCache->addOverlappingPair(handle0,handle1);
+ m_pairCache->addOverlappingPair(handle0, handle1);
if (m_userPairCallback)
- m_userPairCallback->addOverlappingPair(handle0,handle1);
+ m_userPairCallback->addOverlappingPair(handle0, handle1);
}
// update edge reference in other handle
@@ -1014,7 +949,6 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE ed
pEdge++;
pNext++;
}
-
}
#endif
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h
index fb68e0024e..b097eca5f5 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseInterface.h
@@ -13,10 +13,8 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-#ifndef BT_BROADPHASE_INTERFACE_H
-#define BT_BROADPHASE_INTERFACE_H
-
-
+#ifndef BT_BROADPHASE_INTERFACE_H
+#define BT_BROADPHASE_INTERFACE_H
struct btDispatcherInfo;
class btDispatcher;
@@ -24,27 +22,23 @@ class btDispatcher;
class btOverlappingPairCache;
-
-
-struct btBroadphaseAabbCallback
+struct btBroadphaseAabbCallback
{
virtual ~btBroadphaseAabbCallback() {}
- virtual bool process(const btBroadphaseProxy* proxy) = 0;
+ virtual bool process(const btBroadphaseProxy* proxy) = 0;
};
-
-struct btBroadphaseRayCallback : public btBroadphaseAabbCallback
+struct btBroadphaseRayCallback : public btBroadphaseAabbCallback
{
///added some cached data to accelerate ray-AABB tests
- btVector3 m_rayDirectionInverse;
- unsigned int m_signs[3];
- btScalar m_lambda_max;
+ btVector3 m_rayDirectionInverse;
+ unsigned int m_signs[3];
+ btScalar m_lambda_max;
virtual ~btBroadphaseRayCallback() {}
-
+
protected:
-
- btBroadphaseRayCallback() {}
+ btBroadphaseRayCallback() {}
};
#include "LinearMath/btVector3.h"
@@ -57,30 +51,29 @@ class btBroadphaseInterface
public:
virtual ~btBroadphaseInterface() {}
- virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher) =0;
- virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)=0;
- virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher)=0;
- virtual void getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const =0;
+ virtual btBroadphaseProxy* createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher) = 0;
+ virtual void destroyProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher) = 0;
+ virtual void setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher) = 0;
+ virtual void getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const = 0;
- virtual void rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin=btVector3(0,0,0), const btVector3& aabbMax = btVector3(0,0,0)) = 0;
+ virtual void rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin = btVector3(0, 0, 0), const btVector3& aabbMax = btVector3(0, 0, 0)) = 0;
- virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback) = 0;
+ virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback) = 0;
///calculateOverlappingPairs is optional: incremental algorithms (sweep and prune) might do it during the set aabb
- virtual void calculateOverlappingPairs(btDispatcher* dispatcher)=0;
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher) = 0;
- virtual btOverlappingPairCache* getOverlappingPairCache()=0;
- virtual const btOverlappingPairCache* getOverlappingPairCache() const =0;
+ virtual btOverlappingPairCache* getOverlappingPairCache() = 0;
+ virtual const btOverlappingPairCache* getOverlappingPairCache() const = 0;
///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
///will add some transform later
- virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const =0;
+ virtual void getBroadphaseAabb(btVector3& aabbMin, btVector3& aabbMax) const = 0;
///reset broadphase internal structures, to ensure determinism/reproducability
- virtual void resetPool(btDispatcher* dispatcher) { (void) dispatcher; };
-
- virtual void printStats() = 0;
+ virtual void resetPool(btDispatcher* dispatcher) { (void)dispatcher; };
+ virtual void printStats() = 0;
};
-#endif //BT_BROADPHASE_INTERFACE_H
+#endif //BT_BROADPHASE_INTERFACE_H
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.cpp
index 0fd4ef46be..7ee065aac3 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.cpp
@@ -15,4 +15,4 @@ subject to the following restrictions:
#include "btBroadphaseProxy.h"
-BT_NOT_EMPTY_FILE // fix warning LNK4221: This object file does not define any previously undefined public symbols, so it will not be used by any link operation that consumes this library
+BT_NOT_EMPTY_FILE // fix warning LNK4221: This object file does not define any previously undefined public symbols, so it will not be used by any link operation that consumes this library
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h
index f6e1202a69..825caeef56 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btBroadphaseProxy.h
@@ -16,11 +16,10 @@ subject to the following restrictions:
#ifndef BT_BROADPHASE_PROXY_H
#define BT_BROADPHASE_PROXY_H
-#include "LinearMath/btScalar.h" //for SIMD_FORCE_INLINE
+#include "LinearMath/btScalar.h" //for SIMD_FORCE_INLINE
#include "LinearMath/btVector3.h"
#include "LinearMath/btAlignedAllocator.h"
-
/// btDispatcher uses these types
/// IMPORTANT NOTE:The types are ordered polyhedral, implicit convex and concave
/// to facilitate type checking
@@ -35,8 +34,8 @@ enum BroadphaseNativeTypes
CONVEX_HULL_SHAPE_PROXYTYPE,
CONVEX_POINT_CLOUD_SHAPE_PROXYTYPE,
CUSTOM_POLYHEDRAL_SHAPE_TYPE,
-//implicit convex shapes
-IMPLICIT_CONVEX_SHAPES_START_HERE,
+ //implicit convex shapes
+ IMPLICIT_CONVEX_SHAPES_START_HERE,
SPHERE_SHAPE_PROXYTYPE,
MULTI_SPHERE_SHAPE_PROXYTYPE,
CAPSULE_SHAPE_PROXYTYPE,
@@ -49,8 +48,8 @@ IMPLICIT_CONVEX_SHAPES_START_HERE,
BOX_2D_SHAPE_PROXYTYPE,
CONVEX_2D_SHAPE_PROXYTYPE,
CUSTOM_CONVEX_SHAPE_TYPE,
-//concave shapes
-CONCAVE_SHAPES_START_HERE,
+ //concave shapes
+ CONCAVE_SHAPES_START_HERE,
//keep all the convex shapetype below here, for the check IsConvexShape in broadphase proxy!
TRIANGLE_MESH_SHAPE_PROXYTYPE,
SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE,
@@ -58,16 +57,16 @@ CONCAVE_SHAPES_START_HERE,
FAST_CONCAVE_MESH_PROXYTYPE,
//terrain
TERRAIN_SHAPE_PROXYTYPE,
-///Used for GIMPACT Trimesh integration
+ ///Used for GIMPACT Trimesh integration
GIMPACT_SHAPE_PROXYTYPE,
-///Multimaterial mesh
- MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE,
-
+ ///Multimaterial mesh
+ MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE,
+
EMPTY_SHAPE_PROXYTYPE,
STATIC_PLANE_PROXYTYPE,
CUSTOM_CONCAVE_SHAPE_TYPE,
- SDF_SHAPE_PROXYTYPE=CUSTOM_CONCAVE_SHAPE_TYPE,
-CONCAVE_SHAPES_END_HERE,
+ SDF_SHAPE_PROXYTYPE = CUSTOM_CONCAVE_SHAPE_TYPE,
+ CONCAVE_SHAPES_END_HERE,
COMPOUND_SHAPE_PROXYTYPE,
@@ -77,38 +76,37 @@ CONCAVE_SHAPES_END_HERE,
INVALID_SHAPE_PROXYTYPE,
MAX_BROADPHASE_COLLISION_TYPES
-
-};
+};
-///The btBroadphaseProxy is the main class that can be used with the Bullet broadphases.
+///The btBroadphaseProxy is the main class that can be used with the Bullet broadphases.
///It stores collision shape type information, collision filter information and a client object, typically a btCollisionObject or btRigidBody.
-ATTRIBUTE_ALIGNED16(struct) btBroadphaseProxy
+ATTRIBUTE_ALIGNED16(struct)
+btBroadphaseProxy
{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
-BT_DECLARE_ALIGNED_ALLOCATOR();
-
///optional filtering to cull potential collisions
enum CollisionFilterGroups
{
- DefaultFilter = 1,
- StaticFilter = 2,
- KinematicFilter = 4,
- DebrisFilter = 8,
- SensorTrigger = 16,
- CharacterFilter = 32,
- AllFilter = -1 //all bits sets: DefaultFilter | StaticFilter | KinematicFilter | DebrisFilter | SensorTrigger
+ DefaultFilter = 1,
+ StaticFilter = 2,
+ KinematicFilter = 4,
+ DebrisFilter = 8,
+ SensorTrigger = 16,
+ CharacterFilter = 32,
+ AllFilter = -1 //all bits sets: DefaultFilter | StaticFilter | KinematicFilter | DebrisFilter | SensorTrigger
};
//Usually the client btCollisionObject or Rigidbody class
- void* m_clientObject;
- int m_collisionFilterGroup;
- int m_collisionFilterMask;
+ void* m_clientObject;
+ int m_collisionFilterGroup;
+ int m_collisionFilterMask;
- int m_uniqueId;//m_uniqueId is introduced for paircache. could get rid of this, by calculating the address offset etc.
+ int m_uniqueId; //m_uniqueId is introduced for paircache. could get rid of this, by calculating the address offset etc.
- btVector3 m_aabbMin;
- btVector3 m_aabbMax;
+ btVector3 m_aabbMin;
+ btVector3 m_aabbMax;
SIMD_FORCE_INLINE int getUid() const
{
@@ -116,47 +114,45 @@ BT_DECLARE_ALIGNED_ALLOCATOR();
}
//used for memory pools
- btBroadphaseProxy() :m_clientObject(0)
+ btBroadphaseProxy() : m_clientObject(0)
{
}
- btBroadphaseProxy(const btVector3& aabbMin,const btVector3& aabbMax,void* userPtr, int collisionFilterGroup, int collisionFilterMask)
- :m_clientObject(userPtr),
- m_collisionFilterGroup(collisionFilterGroup),
- m_collisionFilterMask(collisionFilterMask),
- m_aabbMin(aabbMin),
- m_aabbMax(aabbMax)
+ btBroadphaseProxy(const btVector3& aabbMin, const btVector3& aabbMax, void* userPtr, int collisionFilterGroup, int collisionFilterMask)
+ : m_clientObject(userPtr),
+ m_collisionFilterGroup(collisionFilterGroup),
+ m_collisionFilterMask(collisionFilterMask),
+ m_aabbMin(aabbMin),
+ m_aabbMax(aabbMax)
{
}
-
-
static SIMD_FORCE_INLINE bool isPolyhedral(int proxyType)
{
- return (proxyType < IMPLICIT_CONVEX_SHAPES_START_HERE);
+ return (proxyType < IMPLICIT_CONVEX_SHAPES_START_HERE);
}
- static SIMD_FORCE_INLINE bool isConvex(int proxyType)
+ static SIMD_FORCE_INLINE bool isConvex(int proxyType)
{
return (proxyType < CONCAVE_SHAPES_START_HERE);
}
- static SIMD_FORCE_INLINE bool isNonMoving(int proxyType)
+ static SIMD_FORCE_INLINE bool isNonMoving(int proxyType)
{
- return (isConcave(proxyType) && !(proxyType==GIMPACT_SHAPE_PROXYTYPE));
+ return (isConcave(proxyType) && !(proxyType == GIMPACT_SHAPE_PROXYTYPE));
}
- static SIMD_FORCE_INLINE bool isConcave(int proxyType)
+ static SIMD_FORCE_INLINE bool isConcave(int proxyType)
{
return ((proxyType > CONCAVE_SHAPES_START_HERE) &&
- (proxyType < CONCAVE_SHAPES_END_HERE));
+ (proxyType < CONCAVE_SHAPES_END_HERE));
}
- static SIMD_FORCE_INLINE bool isCompound(int proxyType)
+ static SIMD_FORCE_INLINE bool isCompound(int proxyType)
{
return (proxyType == COMPOUND_SHAPE_PROXYTYPE);
}
- static SIMD_FORCE_INLINE bool isSoftBody(int proxyType)
+ static SIMD_FORCE_INLINE bool isSoftBody(int proxyType)
{
return (proxyType == SOFTBODY_SHAPE_PROXYTYPE);
}
@@ -168,67 +164,62 @@ BT_DECLARE_ALIGNED_ALLOCATOR();
static SIMD_FORCE_INLINE bool isConvex2d(int proxyType)
{
- return (proxyType == BOX_2D_SHAPE_PROXYTYPE) || (proxyType == CONVEX_2D_SHAPE_PROXYTYPE);
+ return (proxyType == BOX_2D_SHAPE_PROXYTYPE) || (proxyType == CONVEX_2D_SHAPE_PROXYTYPE);
}
-
-
-}
-;
+};
class btCollisionAlgorithm;
struct btBroadphaseProxy;
-
-
///The btBroadphasePair class contains a pair of aabb-overlapping objects.
///A btDispatcher can search a btCollisionAlgorithm that performs exact/narrowphase collision detection on the actual collision shapes.
-ATTRIBUTE_ALIGNED16(struct) btBroadphasePair
+ATTRIBUTE_ALIGNED16(struct)
+btBroadphasePair
{
- btBroadphasePair ()
- :
- m_pProxy0(0),
- m_pProxy1(0),
- m_algorithm(0),
- m_internalInfo1(0)
+ btBroadphasePair()
+ : m_pProxy0(0),
+ m_pProxy1(0),
+ m_algorithm(0),
+ m_internalInfo1(0)
{
}
-BT_DECLARE_ALIGNED_ALLOCATOR();
+ BT_DECLARE_ALIGNED_ALLOCATOR();
btBroadphasePair(const btBroadphasePair& other)
- : m_pProxy0(other.m_pProxy0),
- m_pProxy1(other.m_pProxy1),
- m_algorithm(other.m_algorithm),
- m_internalInfo1(other.m_internalInfo1)
+ : m_pProxy0(other.m_pProxy0),
+ m_pProxy1(other.m_pProxy1),
+ m_algorithm(other.m_algorithm),
+ m_internalInfo1(other.m_internalInfo1)
{
}
- btBroadphasePair(btBroadphaseProxy& proxy0,btBroadphaseProxy& proxy1)
+ btBroadphasePair(btBroadphaseProxy & proxy0, btBroadphaseProxy & proxy1)
{
-
//keep them sorted, so the std::set operations work
if (proxy0.m_uniqueId < proxy1.m_uniqueId)
- {
- m_pProxy0 = &proxy0;
- m_pProxy1 = &proxy1;
- }
- else
- {
- m_pProxy0 = &proxy1;
- m_pProxy1 = &proxy0;
- }
+ {
+ m_pProxy0 = &proxy0;
+ m_pProxy1 = &proxy1;
+ }
+ else
+ {
+ m_pProxy0 = &proxy1;
+ m_pProxy1 = &proxy0;
+ }
m_algorithm = 0;
m_internalInfo1 = 0;
-
}
-
+
btBroadphaseProxy* m_pProxy0;
btBroadphaseProxy* m_pProxy1;
-
- mutable btCollisionAlgorithm* m_algorithm;
- union { void* m_internalInfo1; int m_internalTmpValue;};//don't use this data, it will be removed in future version.
+ mutable btCollisionAlgorithm* m_algorithm;
+ union {
+ void* m_internalInfo1;
+ int m_internalTmpValue;
+ }; //don't use this data, it will be removed in future version.
};
/*
@@ -240,31 +231,25 @@ SIMD_FORCE_INLINE bool operator<(const btBroadphasePair& a, const btBroadphasePa
}
*/
-
-
class btBroadphasePairSortPredicate
{
- public:
-
- bool operator() ( const btBroadphasePair& a, const btBroadphasePair& b ) const
- {
- const int uidA0 = a.m_pProxy0 ? a.m_pProxy0->m_uniqueId : -1;
- const int uidB0 = b.m_pProxy0 ? b.m_pProxy0->m_uniqueId : -1;
- const int uidA1 = a.m_pProxy1 ? a.m_pProxy1->m_uniqueId : -1;
- const int uidB1 = b.m_pProxy1 ? b.m_pProxy1->m_uniqueId : -1;
-
- return uidA0 > uidB0 ||
- (a.m_pProxy0 == b.m_pProxy0 && uidA1 > uidB1) ||
- (a.m_pProxy0 == b.m_pProxy0 && a.m_pProxy1 == b.m_pProxy1 && a.m_algorithm > b.m_algorithm);
- }
+public:
+ bool operator()(const btBroadphasePair& a, const btBroadphasePair& b) const
+ {
+ const int uidA0 = a.m_pProxy0 ? a.m_pProxy0->m_uniqueId : -1;
+ const int uidB0 = b.m_pProxy0 ? b.m_pProxy0->m_uniqueId : -1;
+ const int uidA1 = a.m_pProxy1 ? a.m_pProxy1->m_uniqueId : -1;
+ const int uidB1 = b.m_pProxy1 ? b.m_pProxy1->m_uniqueId : -1;
+
+ return uidA0 > uidB0 ||
+ (a.m_pProxy0 == b.m_pProxy0 && uidA1 > uidB1) ||
+ (a.m_pProxy0 == b.m_pProxy0 && a.m_pProxy1 == b.m_pProxy1 && a.m_algorithm > b.m_algorithm);
+ }
};
-
-SIMD_FORCE_INLINE bool operator==(const btBroadphasePair& a, const btBroadphasePair& b)
+SIMD_FORCE_INLINE bool operator==(const btBroadphasePair& a, const btBroadphasePair& b)
{
- return (a.m_pProxy0 == b.m_pProxy0) && (a.m_pProxy1 == b.m_pProxy1);
+ return (a.m_pProxy0 == b.m_pProxy0) && (a.m_pProxy1 == b.m_pProxy1);
}
-
-#endif //BT_BROADPHASE_PROXY_H
-
+#endif //BT_BROADPHASE_PROXY_H
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp
index c95d1be0f2..6e36d3bd73 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp
@@ -20,4 +20,3 @@ btCollisionAlgorithm::btCollisionAlgorithm(const btCollisionAlgorithmConstructio
{
m_dispatcher = ci.m_dispatcher1;
}
-
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h
index 405656236b..b00c0b1b4b 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h
@@ -25,57 +25,51 @@ class btManifoldResult;
class btCollisionObject;
struct btCollisionObjectWrapper;
struct btDispatcherInfo;
-class btPersistentManifold;
+class btPersistentManifold;
-typedef btAlignedObjectArray<btPersistentManifold*> btManifoldArray;
+typedef btAlignedObjectArray<btPersistentManifold*> btManifoldArray;
struct btCollisionAlgorithmConstructionInfo
{
btCollisionAlgorithmConstructionInfo()
- :m_dispatcher1(0),
- m_manifold(0)
+ : m_dispatcher1(0),
+ m_manifold(0)
{
}
- btCollisionAlgorithmConstructionInfo(btDispatcher* dispatcher,int temp)
- :m_dispatcher1(dispatcher)
+ btCollisionAlgorithmConstructionInfo(btDispatcher* dispatcher, int temp)
+ : m_dispatcher1(dispatcher)
{
(void)temp;
}
- btDispatcher* m_dispatcher1;
- btPersistentManifold* m_manifold;
-
-// int getDispatcherId();
+ btDispatcher* m_dispatcher1;
+ btPersistentManifold* m_manifold;
+ // int getDispatcherId();
};
-
///btCollisionAlgorithm is an collision interface that is compatible with the Broadphase and btDispatcher.
///It is persistent over frames
class btCollisionAlgorithm
{
-
protected:
-
- btDispatcher* m_dispatcher;
+ btDispatcher* m_dispatcher;
protected:
-// int getDispatcherId();
-
-public:
+ // int getDispatcherId();
- btCollisionAlgorithm() {};
+public:
+ btCollisionAlgorithm(){};
btCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci);
- virtual ~btCollisionAlgorithm() {};
+ virtual ~btCollisionAlgorithm(){};
- virtual void processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) = 0;
+ virtual void processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut) = 0;
- virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) = 0;
+ virtual btScalar calculateTimeOfImpact(btCollisionObject* body0, btCollisionObject* body1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut) = 0;
- virtual void getAllContactManifolds(btManifoldArray& manifoldArray) = 0;
+ virtual void getAllContactManifolds(btManifoldArray& manifoldArray) = 0;
};
-
-#endif //BT_COLLISION_ALGORITHM_H
+#endif //BT_COLLISION_ALGORITHM_H
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.cpp
index d791d07418..37156fd589 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.cpp
@@ -17,210 +17,225 @@ subject to the following restrictions:
#include "btDbvt.h"
//
-typedef btAlignedObjectArray<btDbvtNode*> tNodeArray;
-typedef btAlignedObjectArray<const btDbvtNode*> tConstNodeArray;
+typedef btAlignedObjectArray<btDbvtNode*> tNodeArray;
+typedef btAlignedObjectArray<const btDbvtNode*> tConstNodeArray;
//
struct btDbvtNodeEnumerator : btDbvt::ICollide
{
- tConstNodeArray nodes;
+ tConstNodeArray nodes;
void Process(const btDbvtNode* n) { nodes.push_back(n); }
};
//
-static DBVT_INLINE int indexof(const btDbvtNode* node)
+static DBVT_INLINE int indexof(const btDbvtNode* node)
{
- return(node->parent->childs[1]==node);
+ return (node->parent->childs[1] == node);
}
//
-static DBVT_INLINE btDbvtVolume merge( const btDbvtVolume& a,
+static DBVT_INLINE btDbvtVolume merge(const btDbvtVolume& a,
const btDbvtVolume& b)
{
-#if (DBVT_MERGE_IMPL==DBVT_IMPL_SSE)
- ATTRIBUTE_ALIGNED16( char locals[sizeof(btDbvtAabbMm)]);
- btDbvtVolume* ptr = (btDbvtVolume*) locals;
- btDbvtVolume& res=*ptr;
+#if (DBVT_MERGE_IMPL == DBVT_IMPL_SSE)
+ ATTRIBUTE_ALIGNED16(char locals[sizeof(btDbvtAabbMm)]);
+ btDbvtVolume* ptr = (btDbvtVolume*)locals;
+ btDbvtVolume& res = *ptr;
#else
- btDbvtVolume res;
+ btDbvtVolume res;
#endif
- Merge(a,b,res);
- return(res);
+ Merge(a, b, res);
+ return (res);
}
// volume+edge lengths
-static DBVT_INLINE btScalar size(const btDbvtVolume& a)
+static DBVT_INLINE btScalar size(const btDbvtVolume& a)
{
- const btVector3 edges=a.Lengths();
- return( edges.x()*edges.y()*edges.z()+
- edges.x()+edges.y()+edges.z());
+ const btVector3 edges = a.Lengths();
+ return (edges.x() * edges.y() * edges.z() +
+ edges.x() + edges.y() + edges.z());
}
//
-static void getmaxdepth(const btDbvtNode* node,int depth,int& maxdepth)
+static void getmaxdepth(const btDbvtNode* node, int depth, int& maxdepth)
{
- if(node->isinternal())
+ if (node->isinternal())
{
- getmaxdepth(node->childs[0],depth+1,maxdepth);
- getmaxdepth(node->childs[1],depth+1,maxdepth);
- } else maxdepth=btMax(maxdepth,depth);
+ getmaxdepth(node->childs[0], depth + 1, maxdepth);
+ getmaxdepth(node->childs[1], depth + 1, maxdepth);
+ }
+ else
+ maxdepth = btMax(maxdepth, depth);
}
//
-static DBVT_INLINE void deletenode( btDbvt* pdbvt,
- btDbvtNode* node)
+static DBVT_INLINE void deletenode(btDbvt* pdbvt,
+ btDbvtNode* node)
{
btAlignedFree(pdbvt->m_free);
- pdbvt->m_free=node;
+ pdbvt->m_free = node;
}
//
-static void recursedeletenode( btDbvt* pdbvt,
- btDbvtNode* node)
+static void recursedeletenode(btDbvt* pdbvt,
+ btDbvtNode* node)
{
- if(!node->isleaf())
+ if (!node->isleaf())
{
- recursedeletenode(pdbvt,node->childs[0]);
- recursedeletenode(pdbvt,node->childs[1]);
+ recursedeletenode(pdbvt, node->childs[0]);
+ recursedeletenode(pdbvt, node->childs[1]);
}
- if(node==pdbvt->m_root) pdbvt->m_root=0;
- deletenode(pdbvt,node);
+ if (node == pdbvt->m_root) pdbvt->m_root = 0;
+ deletenode(pdbvt, node);
}
//
-static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
- btDbvtNode* parent,
- void* data)
+static DBVT_INLINE btDbvtNode* createnode(btDbvt* pdbvt,
+ btDbvtNode* parent,
+ void* data)
{
- btDbvtNode* node;
- if(pdbvt->m_free)
- { node=pdbvt->m_free;pdbvt->m_free=0; }
+ btDbvtNode* node;
+ if (pdbvt->m_free)
+ {
+ node = pdbvt->m_free;
+ pdbvt->m_free = 0;
+ }
else
- { node=new(btAlignedAlloc(sizeof(btDbvtNode),16)) btDbvtNode(); }
- node->parent = parent;
- node->data = data;
- node->childs[1] = 0;
- return(node);
+ {
+ node = new (btAlignedAlloc(sizeof(btDbvtNode), 16)) btDbvtNode();
+ }
+ node->parent = parent;
+ node->data = data;
+ node->childs[1] = 0;
+ return (node);
}
//
-static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
- btDbvtNode* parent,
- const btDbvtVolume& volume,
- void* data)
+static DBVT_INLINE btDbvtNode* createnode(btDbvt* pdbvt,
+ btDbvtNode* parent,
+ const btDbvtVolume& volume,
+ void* data)
{
- btDbvtNode* node=createnode(pdbvt,parent,data);
- node->volume=volume;
- return(node);
+ btDbvtNode* node = createnode(pdbvt, parent, data);
+ node->volume = volume;
+ return (node);
}
//
-static DBVT_INLINE btDbvtNode* createnode( btDbvt* pdbvt,
- btDbvtNode* parent,
- const btDbvtVolume& volume0,
- const btDbvtVolume& volume1,
- void* data)
+static DBVT_INLINE btDbvtNode* createnode(btDbvt* pdbvt,
+ btDbvtNode* parent,
+ const btDbvtVolume& volume0,
+ const btDbvtVolume& volume1,
+ void* data)
{
- btDbvtNode* node=createnode(pdbvt,parent,data);
- Merge(volume0,volume1,node->volume);
- return(node);
+ btDbvtNode* node = createnode(pdbvt, parent, data);
+ Merge(volume0, volume1, node->volume);
+ return (node);
}
//
-static void insertleaf( btDbvt* pdbvt,
- btDbvtNode* root,
- btDbvtNode* leaf)
+static void insertleaf(btDbvt* pdbvt,
+ btDbvtNode* root,
+ btDbvtNode* leaf)
{
- if(!pdbvt->m_root)
+ if (!pdbvt->m_root)
{
- pdbvt->m_root = leaf;
- leaf->parent = 0;
+ pdbvt->m_root = leaf;
+ leaf->parent = 0;
}
else
{
- if(!root->isleaf())
+ if (!root->isleaf())
{
- do {
- root=root->childs[Select( leaf->volume,
- root->childs[0]->volume,
- root->childs[1]->volume)];
- } while(!root->isleaf());
+ do
+ {
+ root = root->childs[Select(leaf->volume,
+ root->childs[0]->volume,
+ root->childs[1]->volume)];
+ } while (!root->isleaf());
}
- btDbvtNode* prev=root->parent;
- btDbvtNode* node=createnode(pdbvt,prev,leaf->volume,root->volume,0);
- if(prev)
+ btDbvtNode* prev = root->parent;
+ btDbvtNode* node = createnode(pdbvt, prev, leaf->volume, root->volume, 0);
+ if (prev)
{
- prev->childs[indexof(root)] = node;
- node->childs[0] = root;root->parent=node;
- node->childs[1] = leaf;leaf->parent=node;
- do {
- if(!prev->volume.Contain(node->volume))
- Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume);
+ prev->childs[indexof(root)] = node;
+ node->childs[0] = root;
+ root->parent = node;
+ node->childs[1] = leaf;
+ leaf->parent = node;
+ do
+ {
+ if (!prev->volume.Contain(node->volume))
+ Merge(prev->childs[0]->volume, prev->childs[1]->volume, prev->volume);
else
break;
- node=prev;
- } while(0!=(prev=node->parent));
+ node = prev;
+ } while (0 != (prev = node->parent));
}
else
{
- node->childs[0] = root;root->parent=node;
- node->childs[1] = leaf;leaf->parent=node;
- pdbvt->m_root = node;
+ node->childs[0] = root;
+ root->parent = node;
+ node->childs[1] = leaf;
+ leaf->parent = node;
+ pdbvt->m_root = node;
}
}
}
//
-static btDbvtNode* removeleaf( btDbvt* pdbvt,
- btDbvtNode* leaf)
+static btDbvtNode* removeleaf(btDbvt* pdbvt,
+ btDbvtNode* leaf)
{
- if(leaf==pdbvt->m_root)
+ if (leaf == pdbvt->m_root)
{
- pdbvt->m_root=0;
- return(0);
+ pdbvt->m_root = 0;
+ return (0);
}
else
{
- btDbvtNode* parent=leaf->parent;
- btDbvtNode* prev=parent->parent;
- btDbvtNode* sibling=parent->childs[1-indexof(leaf)];
- if(prev)
+ btDbvtNode* parent = leaf->parent;
+ btDbvtNode* prev = parent->parent;
+ btDbvtNode* sibling = parent->childs[1 - indexof(leaf)];
+ if (prev)
{
- prev->childs[indexof(parent)]=sibling;
- sibling->parent=prev;
- deletenode(pdbvt,parent);
- while(prev)
+ prev->childs[indexof(parent)] = sibling;
+ sibling->parent = prev;
+ deletenode(pdbvt, parent);
+ while (prev)
{
- const btDbvtVolume pb=prev->volume;
- Merge(prev->childs[0]->volume,prev->childs[1]->volume,prev->volume);
- if(NotEqual(pb,prev->volume))
+ const btDbvtVolume pb = prev->volume;
+ Merge(prev->childs[0]->volume, prev->childs[1]->volume, prev->volume);
+ if (NotEqual(pb, prev->volume))
{
- prev=prev->parent;
- } else break;
+ prev = prev->parent;
+ }
+ else
+ break;
}
- return(prev?prev:pdbvt->m_root);
+ return (prev ? prev : pdbvt->m_root);
}
else
- {
- pdbvt->m_root=sibling;
- sibling->parent=0;
- deletenode(pdbvt,parent);
- return(pdbvt->m_root);
- }
+ {
+ pdbvt->m_root = sibling;
+ sibling->parent = 0;
+ deletenode(pdbvt, parent);
+ return (pdbvt->m_root);
+ }
}
}
//
-static void fetchleaves(btDbvt* pdbvt,
- btDbvtNode* root,
- tNodeArray& leaves,
- int depth=-1)
+static void fetchleaves(btDbvt* pdbvt,
+ btDbvtNode* root,
+ tNodeArray& leaves,
+ int depth = -1)
{
- if(root->isinternal()&&depth)
+ if (root->isinternal() && depth)
{
- fetchleaves(pdbvt,root->childs[0],leaves,depth-1);
- fetchleaves(pdbvt,root->childs[1],leaves,depth-1);
- deletenode(pdbvt,root);
+ fetchleaves(pdbvt, root->childs[0], leaves, depth - 1);
+ fetchleaves(pdbvt, root->childs[1], leaves, depth - 1);
+ deletenode(pdbvt, root);
}
else
{
@@ -229,51 +244,50 @@ static void fetchleaves(btDbvt* pdbvt,
}
//
-static bool leftOfAxis( const btDbvtNode* node,
- const btVector3& org,
- const btVector3& axis)
+static bool leftOfAxis(const btDbvtNode* node,
+ const btVector3& org,
+ const btVector3& axis)
{
return btDot(axis, node->volume.Center() - org) <= 0;
}
-
// Partitions leaves such that leaves[0, n) are on the
// left of axis, and leaves[n, count) are on the right
// of axis. returns N.
-static int split( btDbvtNode** leaves,
- int count,
- const btVector3& org,
- const btVector3& axis)
+static int split(btDbvtNode** leaves,
+ int count,
+ const btVector3& org,
+ const btVector3& axis)
{
- int begin=0;
- int end=count;
- for(;;)
+ int begin = 0;
+ int end = count;
+ for (;;)
{
- while(begin!=end && leftOfAxis(leaves[begin],org,axis))
+ while (begin != end && leftOfAxis(leaves[begin], org, axis))
{
++begin;
}
- if(begin==end)
+ if (begin == end)
{
break;
}
- while(begin!=end && !leftOfAxis(leaves[end-1],org,axis))
+ while (begin != end && !leftOfAxis(leaves[end - 1], org, axis))
{
--end;
}
- if(begin==end)
+ if (begin == end)
{
break;
}
// swap out of place nodes
--end;
- btDbvtNode* temp=leaves[begin];
- leaves[begin]=leaves[end];
- leaves[end]=temp;
+ btDbvtNode* temp = leaves[begin];
+ leaves[begin] = leaves[end];
+ leaves[end] = temp;
++begin;
}
@@ -281,150 +295,153 @@ static int split( btDbvtNode** leaves,
}
//
-static btDbvtVolume bounds( btDbvtNode** leaves,
- int count)
+static btDbvtVolume bounds(btDbvtNode** leaves,
+ int count)
{
-#if DBVT_MERGE_IMPL==DBVT_IMPL_SSE
- ATTRIBUTE_ALIGNED16(char locals[sizeof(btDbvtVolume)]);
- btDbvtVolume* ptr = (btDbvtVolume*) locals;
- btDbvtVolume& volume=*ptr;
- volume=leaves[0]->volume;
+#if DBVT_MERGE_IMPL == DBVT_IMPL_SSE
+ ATTRIBUTE_ALIGNED16(char locals[sizeof(btDbvtVolume)]);
+ btDbvtVolume* ptr = (btDbvtVolume*)locals;
+ btDbvtVolume& volume = *ptr;
+ volume = leaves[0]->volume;
#else
- btDbvtVolume volume=leaves[0]->volume;
+ btDbvtVolume volume = leaves[0]->volume;
#endif
- for(int i=1,ni=count;i<ni;++i)
+ for (int i = 1, ni = count; i < ni; ++i)
{
- Merge(volume,leaves[i]->volume,volume);
+ Merge(volume, leaves[i]->volume, volume);
}
- return(volume);
+ return (volume);
}
//
-static void bottomup( btDbvt* pdbvt,
- btDbvtNode** leaves,
- int count)
+static void bottomup(btDbvt* pdbvt,
+ btDbvtNode** leaves,
+ int count)
{
- while(count>1)
+ while (count > 1)
{
- btScalar minsize=SIMD_INFINITY;
- int minidx[2]={-1,-1};
- for(int i=0;i<count;++i)
+ btScalar minsize = SIMD_INFINITY;
+ int minidx[2] = {-1, -1};
+ for (int i = 0; i < count; ++i)
{
- for(int j=i+1;j<count;++j)
+ for (int j = i + 1; j < count; ++j)
{
- const btScalar sz=size(merge(leaves[i]->volume,leaves[j]->volume));
- if(sz<minsize)
+ const btScalar sz = size(merge(leaves[i]->volume, leaves[j]->volume));
+ if (sz < minsize)
{
- minsize = sz;
- minidx[0] = i;
- minidx[1] = j;
+ minsize = sz;
+ minidx[0] = i;
+ minidx[1] = j;
}
}
}
- btDbvtNode* n[] = {leaves[minidx[0]],leaves[minidx[1]]};
- btDbvtNode* p = createnode(pdbvt,0,n[0]->volume,n[1]->volume,0);
- p->childs[0] = n[0];
- p->childs[1] = n[1];
- n[0]->parent = p;
- n[1]->parent = p;
- leaves[minidx[0]] = p;
- leaves[minidx[1]] = leaves[count-1];
+ btDbvtNode* n[] = {leaves[minidx[0]], leaves[minidx[1]]};
+ btDbvtNode* p = createnode(pdbvt, 0, n[0]->volume, n[1]->volume, 0);
+ p->childs[0] = n[0];
+ p->childs[1] = n[1];
+ n[0]->parent = p;
+ n[1]->parent = p;
+ leaves[minidx[0]] = p;
+ leaves[minidx[1]] = leaves[count - 1];
--count;
}
}
//
-static btDbvtNode* topdown(btDbvt* pdbvt,
- btDbvtNode** leaves,
- int count,
- int bu_treshold)
+static btDbvtNode* topdown(btDbvt* pdbvt,
+ btDbvtNode** leaves,
+ int count,
+ int bu_treshold)
{
- static const btVector3 axis[]={btVector3(1,0,0),
- btVector3(0,1,0),
- btVector3(0,0,1)};
- btAssert(bu_treshold>2);
- if(count>1)
+ static const btVector3 axis[] = {btVector3(1, 0, 0),
+ btVector3(0, 1, 0),
+ btVector3(0, 0, 1)};
+ btAssert(bu_treshold > 2);
+ if (count > 1)
{
- if(count>bu_treshold)
+ if (count > bu_treshold)
{
- const btDbvtVolume vol=bounds(leaves,count);
- const btVector3 org=vol.Center();
- int partition;
- int bestaxis=-1;
- int bestmidp=count;
- int splitcount[3][2]={{0,0},{0,0},{0,0}};
+ const btDbvtVolume vol = bounds(leaves, count);
+ const btVector3 org = vol.Center();
+ int partition;
+ int bestaxis = -1;
+ int bestmidp = count;
+ int splitcount[3][2] = {{0, 0}, {0, 0}, {0, 0}};
int i;
- for( i=0;i<count;++i)
+ for (i = 0; i < count; ++i)
{
- const btVector3 x=leaves[i]->volume.Center()-org;
- for(int j=0;j<3;++j)
+ const btVector3 x = leaves[i]->volume.Center() - org;
+ for (int j = 0; j < 3; ++j)
{
- ++splitcount[j][btDot(x,axis[j])>0?1:0];
+ ++splitcount[j][btDot(x, axis[j]) > 0 ? 1 : 0];
}
}
- for( i=0;i<3;++i)
+ for (i = 0; i < 3; ++i)
{
- if((splitcount[i][0]>0)&&(splitcount[i][1]>0))
+ if ((splitcount[i][0] > 0) && (splitcount[i][1] > 0))
{
- const int midp=(int)btFabs(btScalar(splitcount[i][0]-splitcount[i][1]));
- if(midp<bestmidp)
+ const int midp = (int)btFabs(btScalar(splitcount[i][0] - splitcount[i][1]));
+ if (midp < bestmidp)
{
- bestaxis=i;
- bestmidp=midp;
+ bestaxis = i;
+ bestmidp = midp;
}
}
}
- if(bestaxis>=0)
+ if (bestaxis >= 0)
{
- partition=split(leaves,count,org,axis[bestaxis]);
- btAssert(partition!=0 && partition!=count);
+ partition = split(leaves, count, org, axis[bestaxis]);
+ btAssert(partition != 0 && partition != count);
}
else
{
- partition=count/2+1;
+ partition = count / 2 + 1;
}
- btDbvtNode* node=createnode(pdbvt,0,vol,0);
- node->childs[0]=topdown(pdbvt,&leaves[0],partition,bu_treshold);
- node->childs[1]=topdown(pdbvt,&leaves[partition],count-partition,bu_treshold);
- node->childs[0]->parent=node;
- node->childs[1]->parent=node;
- return(node);
+ btDbvtNode* node = createnode(pdbvt, 0, vol, 0);
+ node->childs[0] = topdown(pdbvt, &leaves[0], partition, bu_treshold);
+ node->childs[1] = topdown(pdbvt, &leaves[partition], count - partition, bu_treshold);
+ node->childs[0]->parent = node;
+ node->childs[1]->parent = node;
+ return (node);
}
else
{
- bottomup(pdbvt,leaves,count);
- return(leaves[0]);
+ bottomup(pdbvt, leaves, count);
+ return (leaves[0]);
}
}
- return(leaves[0]);
+ return (leaves[0]);
}
//
-static DBVT_INLINE btDbvtNode* sort(btDbvtNode* n,btDbvtNode*& r)
+static DBVT_INLINE btDbvtNode* sort(btDbvtNode* n, btDbvtNode*& r)
{
- btDbvtNode* p=n->parent;
+ btDbvtNode* p = n->parent;
btAssert(n->isinternal());
- if(p>n)
+ if (p > n)
{
- const int i=indexof(n);
- const int j=1-i;
- btDbvtNode* s=p->childs[j];
- btDbvtNode* q=p->parent;
- btAssert(n==p->childs[i]);
- if(q) q->childs[indexof(p)]=n; else r=n;
- s->parent=n;
- p->parent=n;
- n->parent=q;
- p->childs[0]=n->childs[0];
- p->childs[1]=n->childs[1];
- n->childs[0]->parent=p;
- n->childs[1]->parent=p;
- n->childs[i]=p;
- n->childs[j]=s;
- btSwap(p->volume,n->volume);
- return(p);
+ const int i = indexof(n);
+ const int j = 1 - i;
+ btDbvtNode* s = p->childs[j];
+ btDbvtNode* q = p->parent;
+ btAssert(n == p->childs[i]);
+ if (q)
+ q->childs[indexof(p)] = n;
+ else
+ r = n;
+ s->parent = n;
+ p->parent = n;
+ n->parent = q;
+ p->childs[0] = n->childs[0];
+ p->childs[1] = n->childs[1];
+ n->childs[0]->parent = p;
+ n->childs[1]->parent = p;
+ n->childs[i] = p;
+ n->childs[j] = s;
+ btSwap(p->volume, n->volume);
+ return (p);
}
- return(n);
+ return (n);
}
#if 0
@@ -442,11 +459,11 @@ static DBVT_INLINE btDbvtNode* walkup(btDbvtNode* n,int count)
//
btDbvt::btDbvt()
{
- m_root = 0;
- m_free = 0;
- m_lkhd = -1;
- m_leaves = 0;
- m_opath = 0;
+ m_root = 0;
+ m_free = 0;
+ m_lkhd = -1;
+ m_leaves = 0;
+ m_opath = 0;
}
//
@@ -456,228 +473,233 @@ btDbvt::~btDbvt()
}
//
-void btDbvt::clear()
+void btDbvt::clear()
{
- if(m_root)
- recursedeletenode(this,m_root);
+ if (m_root)
+ recursedeletenode(this, m_root);
btAlignedFree(m_free);
- m_free=0;
- m_lkhd = -1;
+ m_free = 0;
+ m_lkhd = -1;
m_stkStack.clear();
- m_opath = 0;
-
+ m_opath = 0;
}
//
-void btDbvt::optimizeBottomUp()
+void btDbvt::optimizeBottomUp()
{
- if(m_root)
+ if (m_root)
{
tNodeArray leaves;
leaves.reserve(m_leaves);
- fetchleaves(this,m_root,leaves);
- bottomup(this,&leaves[0],leaves.size());
- m_root=leaves[0];
+ fetchleaves(this, m_root, leaves);
+ bottomup(this, &leaves[0], leaves.size());
+ m_root = leaves[0];
}
}
//
-void btDbvt::optimizeTopDown(int bu_treshold)
+void btDbvt::optimizeTopDown(int bu_treshold)
{
- if(m_root)
+ if (m_root)
{
- tNodeArray leaves;
+ tNodeArray leaves;
leaves.reserve(m_leaves);
- fetchleaves(this,m_root,leaves);
- m_root=topdown(this,&leaves[0],leaves.size(),bu_treshold);
+ fetchleaves(this, m_root, leaves);
+ m_root = topdown(this, &leaves[0], leaves.size(), bu_treshold);
}
}
//
-void btDbvt::optimizeIncremental(int passes)
+void btDbvt::optimizeIncremental(int passes)
{
- if(passes<0) passes=m_leaves;
- if(m_root&&(passes>0))
+ if (passes < 0) passes = m_leaves;
+ if (m_root && (passes > 0))
{
- do {
- btDbvtNode* node=m_root;
- unsigned bit=0;
- while(node->isinternal())
+ do
+ {
+ btDbvtNode* node = m_root;
+ unsigned bit = 0;
+ while (node->isinternal())
{
- node=sort(node,m_root)->childs[(m_opath>>bit)&1];
- bit=(bit+1)&(sizeof(unsigned)*8-1);
+ node = sort(node, m_root)->childs[(m_opath >> bit) & 1];
+ bit = (bit + 1) & (sizeof(unsigned) * 8 - 1);
}
update(node);
++m_opath;
- } while(--passes);
+ } while (--passes);
}
}
//
-btDbvtNode* btDbvt::insert(const btDbvtVolume& volume,void* data)
+btDbvtNode* btDbvt::insert(const btDbvtVolume& volume, void* data)
{
- btDbvtNode* leaf=createnode(this,0,volume,data);
- insertleaf(this,m_root,leaf);
+ btDbvtNode* leaf = createnode(this, 0, volume, data);
+ insertleaf(this, m_root, leaf);
++m_leaves;
- return(leaf);
+ return (leaf);
}
//
-void btDbvt::update(btDbvtNode* leaf,int lookahead)
+void btDbvt::update(btDbvtNode* leaf, int lookahead)
{
- btDbvtNode* root=removeleaf(this,leaf);
- if(root)
+ btDbvtNode* root = removeleaf(this, leaf);
+ if (root)
{
- if(lookahead>=0)
+ if (lookahead >= 0)
{
- for(int i=0;(i<lookahead)&&root->parent;++i)
+ for (int i = 0; (i < lookahead) && root->parent; ++i)
{
- root=root->parent;
+ root = root->parent;
}
- } else root=m_root;
+ }
+ else
+ root = m_root;
}
- insertleaf(this,root,leaf);
+ insertleaf(this, root, leaf);
}
//
-void btDbvt::update(btDbvtNode* leaf,btDbvtVolume& volume)
+void btDbvt::update(btDbvtNode* leaf, btDbvtVolume& volume)
{
- btDbvtNode* root=removeleaf(this,leaf);
- if(root)
+ btDbvtNode* root = removeleaf(this, leaf);
+ if (root)
{
- if(m_lkhd>=0)
+ if (m_lkhd >= 0)
{
- for(int i=0;(i<m_lkhd)&&root->parent;++i)
+ for (int i = 0; (i < m_lkhd) && root->parent; ++i)
{
- root=root->parent;
+ root = root->parent;
}
- } else root=m_root;
+ }
+ else
+ root = m_root;
}
- leaf->volume=volume;
- insertleaf(this,root,leaf);
+ leaf->volume = volume;
+ insertleaf(this, root, leaf);
}
//
-bool btDbvt::update(btDbvtNode* leaf,btDbvtVolume& volume,const btVector3& velocity,btScalar margin)
+bool btDbvt::update(btDbvtNode* leaf, btDbvtVolume& volume, const btVector3& velocity, btScalar margin)
{
- if(leaf->volume.Contain(volume)) return(false);
- volume.Expand(btVector3(margin,margin,margin));
+ if (leaf->volume.Contain(volume)) return (false);
+ volume.Expand(btVector3(margin, margin, margin));
volume.SignedExpand(velocity);
- update(leaf,volume);
- return(true);
+ update(leaf, volume);
+ return (true);
}
//
-bool btDbvt::update(btDbvtNode* leaf,btDbvtVolume& volume,const btVector3& velocity)
+bool btDbvt::update(btDbvtNode* leaf, btDbvtVolume& volume, const btVector3& velocity)
{
- if(leaf->volume.Contain(volume)) return(false);
+ if (leaf->volume.Contain(volume)) return (false);
volume.SignedExpand(velocity);
- update(leaf,volume);
- return(true);
+ update(leaf, volume);
+ return (true);
}
//
-bool btDbvt::update(btDbvtNode* leaf,btDbvtVolume& volume,btScalar margin)
+bool btDbvt::update(btDbvtNode* leaf, btDbvtVolume& volume, btScalar margin)
{
- if(leaf->volume.Contain(volume)) return(false);
- volume.Expand(btVector3(margin,margin,margin));
- update(leaf,volume);
- return(true);
+ if (leaf->volume.Contain(volume)) return (false);
+ volume.Expand(btVector3(margin, margin, margin));
+ update(leaf, volume);
+ return (true);
}
//
-void btDbvt::remove(btDbvtNode* leaf)
+void btDbvt::remove(btDbvtNode* leaf)
{
- removeleaf(this,leaf);
- deletenode(this,leaf);
+ removeleaf(this, leaf);
+ deletenode(this, leaf);
--m_leaves;
}
//
-void btDbvt::write(IWriter* iwriter) const
+void btDbvt::write(IWriter* iwriter) const
{
- btDbvtNodeEnumerator nodes;
- nodes.nodes.reserve(m_leaves*2);
- enumNodes(m_root,nodes);
- iwriter->Prepare(m_root,nodes.nodes.size());
- for(int i=0;i<nodes.nodes.size();++i)
+ btDbvtNodeEnumerator nodes;
+ nodes.nodes.reserve(m_leaves * 2);
+ enumNodes(m_root, nodes);
+ iwriter->Prepare(m_root, nodes.nodes.size());
+ for (int i = 0; i < nodes.nodes.size(); ++i)
{
- const btDbvtNode* n=nodes.nodes[i];
- int p=-1;
- if(n->parent) p=nodes.nodes.findLinearSearch(n->parent);
- if(n->isinternal())
+ const btDbvtNode* n = nodes.nodes[i];
+ int p = -1;
+ if (n->parent) p = nodes.nodes.findLinearSearch(n->parent);
+ if (n->isinternal())
{
- const int c0=nodes.nodes.findLinearSearch(n->childs[0]);
- const int c1=nodes.nodes.findLinearSearch(n->childs[1]);
- iwriter->WriteNode(n,i,p,c0,c1);
+ const int c0 = nodes.nodes.findLinearSearch(n->childs[0]);
+ const int c1 = nodes.nodes.findLinearSearch(n->childs[1]);
+ iwriter->WriteNode(n, i, p, c0, c1);
}
else
{
- iwriter->WriteLeaf(n,i,p);
- }
+ iwriter->WriteLeaf(n, i, p);
+ }
}
}
//
-void btDbvt::clone(btDbvt& dest,IClone* iclone) const
+void btDbvt::clone(btDbvt& dest, IClone* iclone) const
{
dest.clear();
- if(m_root!=0)
- {
- btAlignedObjectArray<sStkCLN> stack;
+ if (m_root != 0)
+ {
+ btAlignedObjectArray<sStkCLN> stack;
stack.reserve(m_leaves);
- stack.push_back(sStkCLN(m_root,0));
- do {
- const int i=stack.size()-1;
- const sStkCLN e=stack[i];
- btDbvtNode* n=createnode(&dest,e.parent,e.node->volume,e.node->data);
+ stack.push_back(sStkCLN(m_root, 0));
+ do
+ {
+ const int i = stack.size() - 1;
+ const sStkCLN e = stack[i];
+ btDbvtNode* n = createnode(&dest, e.parent, e.node->volume, e.node->data);
stack.pop_back();
- if(e.parent!=0)
- e.parent->childs[i&1]=n;
+ if (e.parent != 0)
+ e.parent->childs[i & 1] = n;
else
- dest.m_root=n;
- if(e.node->isinternal())
+ dest.m_root = n;
+ if (e.node->isinternal())
{
- stack.push_back(sStkCLN(e.node->childs[0],n));
- stack.push_back(sStkCLN(e.node->childs[1],n));
+ stack.push_back(sStkCLN(e.node->childs[0], n));
+ stack.push_back(sStkCLN(e.node->childs[1], n));
}
else
{
iclone->CloneLeaf(n);
}
- } while(stack.size()>0);
+ } while (stack.size() > 0);
}
}
//
-int btDbvt::maxdepth(const btDbvtNode* node)
+int btDbvt::maxdepth(const btDbvtNode* node)
{
- int depth=0;
- if(node) getmaxdepth(node,1,depth);
- return(depth);
+ int depth = 0;
+ if (node) getmaxdepth(node, 1, depth);
+ return (depth);
}
//
-int btDbvt::countLeaves(const btDbvtNode* node)
+int btDbvt::countLeaves(const btDbvtNode* node)
{
- if(node->isinternal())
- return(countLeaves(node->childs[0])+countLeaves(node->childs[1]));
+ if (node->isinternal())
+ return (countLeaves(node->childs[0]) + countLeaves(node->childs[1]));
else
- return(1);
+ return (1);
}
//
-void btDbvt::extractLeaves(const btDbvtNode* node,btAlignedObjectArray<const btDbvtNode*>& leaves)
+void btDbvt::extractLeaves(const btDbvtNode* node, btAlignedObjectArray<const btDbvtNode*>& leaves)
{
- if(node->isinternal())
+ if (node->isinternal())
{
- extractLeaves(node->childs[0],leaves);
- extractLeaves(node->childs[1],leaves);
+ extractLeaves(node->childs[0], leaves);
+ extractLeaves(node->childs[1], leaves);
}
else
{
leaves.push_back(node);
- }
+ }
}
//
@@ -726,603 +748,608 @@ struct btDbvtBenchmark
{
struct NilPolicy : btDbvt::ICollide
{
- NilPolicy() : m_pcount(0),m_depth(-SIMD_INFINITY),m_checksort(true) {}
- void Process(const btDbvtNode*,const btDbvtNode*) { ++m_pcount; }
- void Process(const btDbvtNode*) { ++m_pcount; }
- void Process(const btDbvtNode*,btScalar depth)
+ NilPolicy() : m_pcount(0), m_depth(-SIMD_INFINITY), m_checksort(true) {}
+ void Process(const btDbvtNode*, const btDbvtNode*) { ++m_pcount; }
+ void Process(const btDbvtNode*) { ++m_pcount; }
+ void Process(const btDbvtNode*, btScalar depth)
{
++m_pcount;
- if(m_checksort)
- { if(depth>=m_depth) m_depth=depth; else printf("wrong depth: %f (should be >= %f)\r\n",depth,m_depth); }
+ if (m_checksort)
+ {
+ if (depth >= m_depth)
+ m_depth = depth;
+ else
+ printf("wrong depth: %f (should be >= %f)\r\n", depth, m_depth);
+ }
}
- int m_pcount;
- btScalar m_depth;
- bool m_checksort;
+ int m_pcount;
+ btScalar m_depth;
+ bool m_checksort;
};
struct P14 : btDbvt::ICollide
{
struct Node
{
- const btDbvtNode* leaf;
- btScalar depth;
+ const btDbvtNode* leaf;
+ btScalar depth;
};
- void Process(const btDbvtNode* leaf,btScalar depth)
+ void Process(const btDbvtNode* leaf, btScalar depth)
{
- Node n;
- n.leaf = leaf;
- n.depth = depth;
+ Node n;
+ n.leaf = leaf;
+ n.depth = depth;
}
- static int sortfnc(const Node& a,const Node& b)
+ static int sortfnc(const Node& a, const Node& b)
{
- if(a.depth<b.depth) return(+1);
- if(a.depth>b.depth) return(-1);
- return(0);
+ if (a.depth < b.depth) return (+1);
+ if (a.depth > b.depth) return (-1);
+ return (0);
}
- btAlignedObjectArray<Node> m_nodes;
+ btAlignedObjectArray<Node> m_nodes;
};
struct P15 : btDbvt::ICollide
{
struct Node
{
- const btDbvtNode* leaf;
- btScalar depth;
+ const btDbvtNode* leaf;
+ btScalar depth;
};
void Process(const btDbvtNode* leaf)
{
- Node n;
- n.leaf = leaf;
- n.depth = dot(leaf->volume.Center(),m_axis);
+ Node n;
+ n.leaf = leaf;
+ n.depth = dot(leaf->volume.Center(), m_axis);
}
- static int sortfnc(const Node& a,const Node& b)
+ static int sortfnc(const Node& a, const Node& b)
{
- if(a.depth<b.depth) return(+1);
- if(a.depth>b.depth) return(-1);
- return(0);
+ if (a.depth < b.depth) return (+1);
+ if (a.depth > b.depth) return (-1);
+ return (0);
}
- btAlignedObjectArray<Node> m_nodes;
- btVector3 m_axis;
+ btAlignedObjectArray<Node> m_nodes;
+ btVector3 m_axis;
};
- static btScalar RandUnit()
+ static btScalar RandUnit()
{
- return(rand()/(btScalar)RAND_MAX);
+ return (rand() / (btScalar)RAND_MAX);
}
- static btVector3 RandVector3()
+ static btVector3 RandVector3()
{
- return(btVector3(RandUnit(),RandUnit(),RandUnit()));
+ return (btVector3(RandUnit(), RandUnit(), RandUnit()));
}
- static btVector3 RandVector3(btScalar cs)
+ static btVector3 RandVector3(btScalar cs)
{
- return(RandVector3()*cs-btVector3(cs,cs,cs)/2);
+ return (RandVector3() * cs - btVector3(cs, cs, cs) / 2);
}
- static btDbvtVolume RandVolume(btScalar cs,btScalar eb,btScalar es)
+ static btDbvtVolume RandVolume(btScalar cs, btScalar eb, btScalar es)
{
- return(btDbvtVolume::FromCE(RandVector3(cs),btVector3(eb,eb,eb)+RandVector3()*es));
+ return (btDbvtVolume::FromCE(RandVector3(cs), btVector3(eb, eb, eb) + RandVector3() * es));
}
- static btTransform RandTransform(btScalar cs)
+ static btTransform RandTransform(btScalar cs)
{
- btTransform t;
+ btTransform t;
t.setOrigin(RandVector3(cs));
- t.setRotation(btQuaternion(RandUnit()*SIMD_PI*2,RandUnit()*SIMD_PI*2,RandUnit()*SIMD_PI*2).normalized());
- return(t);
+ t.setRotation(btQuaternion(RandUnit() * SIMD_PI * 2, RandUnit() * SIMD_PI * 2, RandUnit() * SIMD_PI * 2).normalized());
+ return (t);
}
- static void RandTree(btScalar cs,btScalar eb,btScalar es,int leaves,btDbvt& dbvt)
+ static void RandTree(btScalar cs, btScalar eb, btScalar es, int leaves, btDbvt& dbvt)
{
dbvt.clear();
- for(int i=0;i<leaves;++i)
+ for (int i = 0; i < leaves; ++i)
{
- dbvt.insert(RandVolume(cs,eb,es),0);
+ dbvt.insert(RandVolume(cs, eb, es), 0);
}
}
};
-void btDbvt::benchmark()
+void btDbvt::benchmark()
{
- static const btScalar cfgVolumeCenterScale = 100;
- static const btScalar cfgVolumeExentsBase = 1;
- static const btScalar cfgVolumeExentsScale = 4;
- static const int cfgLeaves = 8192;
- static const bool cfgEnable = true;
+ static const btScalar cfgVolumeCenterScale = 100;
+ static const btScalar cfgVolumeExentsBase = 1;
+ static const btScalar cfgVolumeExentsScale = 4;
+ static const int cfgLeaves = 8192;
+ static const bool cfgEnable = true;
//[1] btDbvtVolume intersections
- bool cfgBenchmark1_Enable = cfgEnable;
- static const int cfgBenchmark1_Iterations = 8;
- static const int cfgBenchmark1_Reference = 3499;
+ bool cfgBenchmark1_Enable = cfgEnable;
+ static const int cfgBenchmark1_Iterations = 8;
+ static const int cfgBenchmark1_Reference = 3499;
//[2] btDbvtVolume merges
- bool cfgBenchmark2_Enable = cfgEnable;
- static const int cfgBenchmark2_Iterations = 4;
- static const int cfgBenchmark2_Reference = 1945;
+ bool cfgBenchmark2_Enable = cfgEnable;
+ static const int cfgBenchmark2_Iterations = 4;
+ static const int cfgBenchmark2_Reference = 1945;
//[3] btDbvt::collideTT
- bool cfgBenchmark3_Enable = cfgEnable;
- static const int cfgBenchmark3_Iterations = 512;
- static const int cfgBenchmark3_Reference = 5485;
+ bool cfgBenchmark3_Enable = cfgEnable;
+ static const int cfgBenchmark3_Iterations = 512;
+ static const int cfgBenchmark3_Reference = 5485;
//[4] btDbvt::collideTT self
- bool cfgBenchmark4_Enable = cfgEnable;
- static const int cfgBenchmark4_Iterations = 512;
- static const int cfgBenchmark4_Reference = 2814;
+ bool cfgBenchmark4_Enable = cfgEnable;
+ static const int cfgBenchmark4_Iterations = 512;
+ static const int cfgBenchmark4_Reference = 2814;
//[5] btDbvt::collideTT xform
- bool cfgBenchmark5_Enable = cfgEnable;
- static const int cfgBenchmark5_Iterations = 512;
- static const btScalar cfgBenchmark5_OffsetScale = 2;
- static const int cfgBenchmark5_Reference = 7379;
+ bool cfgBenchmark5_Enable = cfgEnable;
+ static const int cfgBenchmark5_Iterations = 512;
+ static const btScalar cfgBenchmark5_OffsetScale = 2;
+ static const int cfgBenchmark5_Reference = 7379;
//[6] btDbvt::collideTT xform,self
- bool cfgBenchmark6_Enable = cfgEnable;
- static const int cfgBenchmark6_Iterations = 512;
- static const btScalar cfgBenchmark6_OffsetScale = 2;
- static const int cfgBenchmark6_Reference = 7270;
+ bool cfgBenchmark6_Enable = cfgEnable;
+ static const int cfgBenchmark6_Iterations = 512;
+ static const btScalar cfgBenchmark6_OffsetScale = 2;
+ static const int cfgBenchmark6_Reference = 7270;
//[7] btDbvt::rayTest
- bool cfgBenchmark7_Enable = cfgEnable;
- static const int cfgBenchmark7_Passes = 32;
- static const int cfgBenchmark7_Iterations = 65536;
- static const int cfgBenchmark7_Reference = 6307;
+ bool cfgBenchmark7_Enable = cfgEnable;
+ static const int cfgBenchmark7_Passes = 32;
+ static const int cfgBenchmark7_Iterations = 65536;
+ static const int cfgBenchmark7_Reference = 6307;
//[8] insert/remove
- bool cfgBenchmark8_Enable = cfgEnable;
- static const int cfgBenchmark8_Passes = 32;
- static const int cfgBenchmark8_Iterations = 65536;
- static const int cfgBenchmark8_Reference = 2105;
+ bool cfgBenchmark8_Enable = cfgEnable;
+ static const int cfgBenchmark8_Passes = 32;
+ static const int cfgBenchmark8_Iterations = 65536;
+ static const int cfgBenchmark8_Reference = 2105;
//[9] updates (teleport)
- bool cfgBenchmark9_Enable = cfgEnable;
- static const int cfgBenchmark9_Passes = 32;
- static const int cfgBenchmark9_Iterations = 65536;
- static const int cfgBenchmark9_Reference = 1879;
+ bool cfgBenchmark9_Enable = cfgEnable;
+ static const int cfgBenchmark9_Passes = 32;
+ static const int cfgBenchmark9_Iterations = 65536;
+ static const int cfgBenchmark9_Reference = 1879;
//[10] updates (jitter)
- bool cfgBenchmark10_Enable = cfgEnable;
- static const btScalar cfgBenchmark10_Scale = cfgVolumeCenterScale/10000;
- static const int cfgBenchmark10_Passes = 32;
- static const int cfgBenchmark10_Iterations = 65536;
- static const int cfgBenchmark10_Reference = 1244;
+ bool cfgBenchmark10_Enable = cfgEnable;
+ static const btScalar cfgBenchmark10_Scale = cfgVolumeCenterScale / 10000;
+ static const int cfgBenchmark10_Passes = 32;
+ static const int cfgBenchmark10_Iterations = 65536;
+ static const int cfgBenchmark10_Reference = 1244;
//[11] optimize (incremental)
- bool cfgBenchmark11_Enable = cfgEnable;
- static const int cfgBenchmark11_Passes = 64;
- static const int cfgBenchmark11_Iterations = 65536;
- static const int cfgBenchmark11_Reference = 2510;
+ bool cfgBenchmark11_Enable = cfgEnable;
+ static const int cfgBenchmark11_Passes = 64;
+ static const int cfgBenchmark11_Iterations = 65536;
+ static const int cfgBenchmark11_Reference = 2510;
//[12] btDbvtVolume notequal
- bool cfgBenchmark12_Enable = cfgEnable;
- static const int cfgBenchmark12_Iterations = 32;
- static const int cfgBenchmark12_Reference = 3677;
+ bool cfgBenchmark12_Enable = cfgEnable;
+ static const int cfgBenchmark12_Iterations = 32;
+ static const int cfgBenchmark12_Reference = 3677;
//[13] culling(OCL+fullsort)
- bool cfgBenchmark13_Enable = cfgEnable;
- static const int cfgBenchmark13_Iterations = 1024;
- static const int cfgBenchmark13_Reference = 2231;
+ bool cfgBenchmark13_Enable = cfgEnable;
+ static const int cfgBenchmark13_Iterations = 1024;
+ static const int cfgBenchmark13_Reference = 2231;
//[14] culling(OCL+qsort)
- bool cfgBenchmark14_Enable = cfgEnable;
- static const int cfgBenchmark14_Iterations = 8192;
- static const int cfgBenchmark14_Reference = 3500;
+ bool cfgBenchmark14_Enable = cfgEnable;
+ static const int cfgBenchmark14_Iterations = 8192;
+ static const int cfgBenchmark14_Reference = 3500;
//[15] culling(KDOP+qsort)
- bool cfgBenchmark15_Enable = cfgEnable;
- static const int cfgBenchmark15_Iterations = 8192;
- static const int cfgBenchmark15_Reference = 1151;
+ bool cfgBenchmark15_Enable = cfgEnable;
+ static const int cfgBenchmark15_Iterations = 8192;
+ static const int cfgBenchmark15_Reference = 1151;
//[16] insert/remove batch
- bool cfgBenchmark16_Enable = cfgEnable;
- static const int cfgBenchmark16_BatchCount = 256;
- static const int cfgBenchmark16_Passes = 16384;
- static const int cfgBenchmark16_Reference = 5138;
+ bool cfgBenchmark16_Enable = cfgEnable;
+ static const int cfgBenchmark16_BatchCount = 256;
+ static const int cfgBenchmark16_Passes = 16384;
+ static const int cfgBenchmark16_Reference = 5138;
//[17] select
- bool cfgBenchmark17_Enable = cfgEnable;
- static const int cfgBenchmark17_Iterations = 4;
- static const int cfgBenchmark17_Reference = 3390;
+ bool cfgBenchmark17_Enable = cfgEnable;
+ static const int cfgBenchmark17_Iterations = 4;
+ static const int cfgBenchmark17_Reference = 3390;
- btClock wallclock;
+ btClock wallclock;
printf("Benchmarking dbvt...\r\n");
- printf("\tWorld scale: %f\r\n",cfgVolumeCenterScale);
- printf("\tExtents base: %f\r\n",cfgVolumeExentsBase);
- printf("\tExtents range: %f\r\n",cfgVolumeExentsScale);
- printf("\tLeaves: %u\r\n",cfgLeaves);
- printf("\tsizeof(btDbvtVolume): %u bytes\r\n",sizeof(btDbvtVolume));
- printf("\tsizeof(btDbvtNode): %u bytes\r\n",sizeof(btDbvtNode));
- if(cfgBenchmark1_Enable)
- {// Benchmark 1
+ printf("\tWorld scale: %f\r\n", cfgVolumeCenterScale);
+ printf("\tExtents base: %f\r\n", cfgVolumeExentsBase);
+ printf("\tExtents range: %f\r\n", cfgVolumeExentsScale);
+ printf("\tLeaves: %u\r\n", cfgLeaves);
+ printf("\tsizeof(btDbvtVolume): %u bytes\r\n", sizeof(btDbvtVolume));
+ printf("\tsizeof(btDbvtNode): %u bytes\r\n", sizeof(btDbvtNode));
+ if (cfgBenchmark1_Enable)
+ { // Benchmark 1
srand(380843);
- btAlignedObjectArray<btDbvtVolume> volumes;
- btAlignedObjectArray<bool> results;
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<bool> results;
volumes.resize(cfgLeaves);
results.resize(cfgLeaves);
- for(int i=0;i<cfgLeaves;++i)
+ for (int i = 0; i < cfgLeaves; ++i)
{
- volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ volumes[i] = btDbvtBenchmark::RandVolume(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale);
}
printf("[1] btDbvtVolume intersections: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark1_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark1_Iterations; ++i)
{
- for(int j=0;j<cfgLeaves;++j)
+ for (int j = 0; j < cfgLeaves; ++j)
{
- for(int k=0;k<cfgLeaves;++k)
+ for (int k = 0; k < cfgLeaves; ++k)
{
- results[k]=Intersect(volumes[j],volumes[k]);
+ results[k] = Intersect(volumes[j], volumes[k]);
}
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark1_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark1_Reference) * 100 / time);
}
- if(cfgBenchmark2_Enable)
- {// Benchmark 2
+ if (cfgBenchmark2_Enable)
+ { // Benchmark 2
srand(380843);
- btAlignedObjectArray<btDbvtVolume> volumes;
- btAlignedObjectArray<btDbvtVolume> results;
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<btDbvtVolume> results;
volumes.resize(cfgLeaves);
results.resize(cfgLeaves);
- for(int i=0;i<cfgLeaves;++i)
+ for (int i = 0; i < cfgLeaves; ++i)
{
- volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ volumes[i] = btDbvtBenchmark::RandVolume(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale);
}
printf("[2] btDbvtVolume merges: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark2_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark2_Iterations; ++i)
{
- for(int j=0;j<cfgLeaves;++j)
+ for (int j = 0; j < cfgLeaves; ++j)
{
- for(int k=0;k<cfgLeaves;++k)
+ for (int k = 0; k < cfgLeaves; ++k)
{
- Merge(volumes[j],volumes[k],results[k]);
+ Merge(volumes[j], volumes[k], results[k]);
}
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark2_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark2_Reference) * 100 / time);
}
- if(cfgBenchmark3_Enable)
- {// Benchmark 3
+ if (cfgBenchmark3_Enable)
+ { // Benchmark 3
srand(380843);
- btDbvt dbvt[2];
- btDbvtBenchmark::NilPolicy policy;
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[0]);
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[1]);
+ btDbvt dbvt[2];
+ btDbvtBenchmark::NilPolicy policy;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt[0]);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt[1]);
dbvt[0].optimizeTopDown();
dbvt[1].optimizeTopDown();
printf("[3] btDbvt::collideTT: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark3_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark3_Iterations; ++i)
{
- btDbvt::collideTT(dbvt[0].m_root,dbvt[1].m_root,policy);
+ btDbvt::collideTT(dbvt[0].m_root, dbvt[1].m_root, policy);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark3_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark3_Reference) * 100 / time);
}
- if(cfgBenchmark4_Enable)
- {// Benchmark 4
+ if (cfgBenchmark4_Enable)
+ { // Benchmark 4
srand(380843);
- btDbvt dbvt;
- btDbvtBenchmark::NilPolicy policy;
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvt dbvt;
+ btDbvtBenchmark::NilPolicy policy;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
printf("[4] btDbvt::collideTT self: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark4_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark4_Iterations; ++i)
{
- btDbvt::collideTT(dbvt.m_root,dbvt.m_root,policy);
+ btDbvt::collideTT(dbvt.m_root, dbvt.m_root, policy);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark4_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark4_Reference) * 100 / time);
}
- if(cfgBenchmark5_Enable)
- {// Benchmark 5
+ if (cfgBenchmark5_Enable)
+ { // Benchmark 5
srand(380843);
- btDbvt dbvt[2];
- btAlignedObjectArray<btTransform> transforms;
- btDbvtBenchmark::NilPolicy policy;
+ btDbvt dbvt[2];
+ btAlignedObjectArray<btTransform> transforms;
+ btDbvtBenchmark::NilPolicy policy;
transforms.resize(cfgBenchmark5_Iterations);
- for(int i=0;i<transforms.size();++i)
+ for (int i = 0; i < transforms.size(); ++i)
{
- transforms[i]=btDbvtBenchmark::RandTransform(cfgVolumeCenterScale*cfgBenchmark5_OffsetScale);
+ transforms[i] = btDbvtBenchmark::RandTransform(cfgVolumeCenterScale * cfgBenchmark5_OffsetScale);
}
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[0]);
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt[1]);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt[0]);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt[1]);
dbvt[0].optimizeTopDown();
dbvt[1].optimizeTopDown();
printf("[5] btDbvt::collideTT xform: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark5_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark5_Iterations; ++i)
{
- btDbvt::collideTT(dbvt[0].m_root,dbvt[1].m_root,transforms[i],policy);
+ btDbvt::collideTT(dbvt[0].m_root, dbvt[1].m_root, transforms[i], policy);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark5_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark5_Reference) * 100 / time);
}
- if(cfgBenchmark6_Enable)
- {// Benchmark 6
+ if (cfgBenchmark6_Enable)
+ { // Benchmark 6
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<btTransform> transforms;
- btDbvtBenchmark::NilPolicy policy;
+ btDbvt dbvt;
+ btAlignedObjectArray<btTransform> transforms;
+ btDbvtBenchmark::NilPolicy policy;
transforms.resize(cfgBenchmark6_Iterations);
- for(int i=0;i<transforms.size();++i)
+ for (int i = 0; i < transforms.size(); ++i)
{
- transforms[i]=btDbvtBenchmark::RandTransform(cfgVolumeCenterScale*cfgBenchmark6_OffsetScale);
+ transforms[i] = btDbvtBenchmark::RandTransform(cfgVolumeCenterScale * cfgBenchmark6_OffsetScale);
}
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
printf("[6] btDbvt::collideTT xform,self: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark6_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark6_Iterations; ++i)
{
- btDbvt::collideTT(dbvt.m_root,dbvt.m_root,transforms[i],policy);
+ btDbvt::collideTT(dbvt.m_root, dbvt.m_root, transforms[i], policy);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark6_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark6_Reference) * 100 / time);
}
- if(cfgBenchmark7_Enable)
- {// Benchmark 7
+ if (cfgBenchmark7_Enable)
+ { // Benchmark 7
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<btVector3> rayorg;
- btAlignedObjectArray<btVector3> raydir;
- btDbvtBenchmark::NilPolicy policy;
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> rayorg;
+ btAlignedObjectArray<btVector3> raydir;
+ btDbvtBenchmark::NilPolicy policy;
rayorg.resize(cfgBenchmark7_Iterations);
raydir.resize(cfgBenchmark7_Iterations);
- for(int i=0;i<rayorg.size();++i)
+ for (int i = 0; i < rayorg.size(); ++i)
{
- rayorg[i]=btDbvtBenchmark::RandVector3(cfgVolumeCenterScale*2);
- raydir[i]=btDbvtBenchmark::RandVector3(cfgVolumeCenterScale*2);
+ rayorg[i] = btDbvtBenchmark::RandVector3(cfgVolumeCenterScale * 2);
+ raydir[i] = btDbvtBenchmark::RandVector3(cfgVolumeCenterScale * 2);
}
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
printf("[7] btDbvt::rayTest: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark7_Passes;++i)
+ for (int i = 0; i < cfgBenchmark7_Passes; ++i)
{
- for(int j=0;j<cfgBenchmark7_Iterations;++j)
+ for (int j = 0; j < cfgBenchmark7_Iterations; ++j)
{
- btDbvt::rayTest(dbvt.m_root,rayorg[j],rayorg[j]+raydir[j],policy);
+ btDbvt::rayTest(dbvt.m_root, rayorg[j], rayorg[j] + raydir[j], policy);
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- unsigned rays=cfgBenchmark7_Passes*cfgBenchmark7_Iterations;
- printf("%u ms (%i%%),(%u r/s)\r\n",time,(time-cfgBenchmark7_Reference)*100/time,(rays*1000)/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ unsigned rays = cfgBenchmark7_Passes * cfgBenchmark7_Iterations;
+ printf("%u ms (%i%%),(%u r/s)\r\n", time, (time - cfgBenchmark7_Reference) * 100 / time, (rays * 1000) / time);
}
- if(cfgBenchmark8_Enable)
- {// Benchmark 8
+ if (cfgBenchmark8_Enable)
+ { // Benchmark 8
srand(380843);
- btDbvt dbvt;
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvt dbvt;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
printf("[8] insert/remove: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark8_Passes;++i)
+ for (int i = 0; i < cfgBenchmark8_Passes; ++i)
{
- for(int j=0;j<cfgBenchmark8_Iterations;++j)
+ for (int j = 0; j < cfgBenchmark8_Iterations; ++j)
{
- dbvt.remove(dbvt.insert(btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale),0));
+ dbvt.remove(dbvt.insert(btDbvtBenchmark::RandVolume(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale), 0));
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int ir=cfgBenchmark8_Passes*cfgBenchmark8_Iterations;
- printf("%u ms (%i%%),(%u ir/s)\r\n",time,(time-cfgBenchmark8_Reference)*100/time,ir*1000/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int ir = cfgBenchmark8_Passes * cfgBenchmark8_Iterations;
+ printf("%u ms (%i%%),(%u ir/s)\r\n", time, (time - cfgBenchmark8_Reference) * 100 / time, ir * 1000 / time);
}
- if(cfgBenchmark9_Enable)
- {// Benchmark 9
+ if (cfgBenchmark9_Enable)
+ { // Benchmark 9
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<const btDbvtNode*> leaves;
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvt dbvt;
+ btAlignedObjectArray<const btDbvtNode*> leaves;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
- dbvt.extractLeaves(dbvt.m_root,leaves);
+ dbvt.extractLeaves(dbvt.m_root, leaves);
printf("[9] updates (teleport): ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark9_Passes;++i)
+ for (int i = 0; i < cfgBenchmark9_Passes; ++i)
{
- for(int j=0;j<cfgBenchmark9_Iterations;++j)
+ for (int j = 0; j < cfgBenchmark9_Iterations; ++j)
{
- dbvt.update(const_cast<btDbvtNode*>(leaves[rand()%cfgLeaves]),
- btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale));
+ dbvt.update(const_cast<btDbvtNode*>(leaves[rand() % cfgLeaves]),
+ btDbvtBenchmark::RandVolume(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale));
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int up=cfgBenchmark9_Passes*cfgBenchmark9_Iterations;
- printf("%u ms (%i%%),(%u u/s)\r\n",time,(time-cfgBenchmark9_Reference)*100/time,up*1000/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int up = cfgBenchmark9_Passes * cfgBenchmark9_Iterations;
+ printf("%u ms (%i%%),(%u u/s)\r\n", time, (time - cfgBenchmark9_Reference) * 100 / time, up * 1000 / time);
}
- if(cfgBenchmark10_Enable)
- {// Benchmark 10
+ if (cfgBenchmark10_Enable)
+ { // Benchmark 10
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<const btDbvtNode*> leaves;
- btAlignedObjectArray<btVector3> vectors;
+ btDbvt dbvt;
+ btAlignedObjectArray<const btDbvtNode*> leaves;
+ btAlignedObjectArray<btVector3> vectors;
vectors.resize(cfgBenchmark10_Iterations);
- for(int i=0;i<vectors.size();++i)
+ for (int i = 0; i < vectors.size(); ++i)
{
- vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1))*cfgBenchmark10_Scale;
+ vectors[i] = (btDbvtBenchmark::RandVector3() * 2 - btVector3(1, 1, 1)) * cfgBenchmark10_Scale;
}
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
- dbvt.extractLeaves(dbvt.m_root,leaves);
+ dbvt.extractLeaves(dbvt.m_root, leaves);
printf("[10] updates (jitter): ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark10_Passes;++i)
+ for (int i = 0; i < cfgBenchmark10_Passes; ++i)
{
- for(int j=0;j<cfgBenchmark10_Iterations;++j)
- {
- const btVector3& d=vectors[j];
- btDbvtNode* l=const_cast<btDbvtNode*>(leaves[rand()%cfgLeaves]);
- btDbvtVolume v=btDbvtVolume::FromMM(l->volume.Mins()+d,l->volume.Maxs()+d);
- dbvt.update(l,v);
+ for (int j = 0; j < cfgBenchmark10_Iterations; ++j)
+ {
+ const btVector3& d = vectors[j];
+ btDbvtNode* l = const_cast<btDbvtNode*>(leaves[rand() % cfgLeaves]);
+ btDbvtVolume v = btDbvtVolume::FromMM(l->volume.Mins() + d, l->volume.Maxs() + d);
+ dbvt.update(l, v);
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int up=cfgBenchmark10_Passes*cfgBenchmark10_Iterations;
- printf("%u ms (%i%%),(%u u/s)\r\n",time,(time-cfgBenchmark10_Reference)*100/time,up*1000/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int up = cfgBenchmark10_Passes * cfgBenchmark10_Iterations;
+ printf("%u ms (%i%%),(%u u/s)\r\n", time, (time - cfgBenchmark10_Reference) * 100 / time, up * 1000 / time);
}
- if(cfgBenchmark11_Enable)
- {// Benchmark 11
+ if (cfgBenchmark11_Enable)
+ { // Benchmark 11
srand(380843);
- btDbvt dbvt;
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvt dbvt;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
printf("[11] optimize (incremental): ");
- wallclock.reset();
- for(int i=0;i<cfgBenchmark11_Passes;++i)
+ wallclock.reset();
+ for (int i = 0; i < cfgBenchmark11_Passes; ++i)
{
dbvt.optimizeIncremental(cfgBenchmark11_Iterations);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int op=cfgBenchmark11_Passes*cfgBenchmark11_Iterations;
- printf("%u ms (%i%%),(%u o/s)\r\n",time,(time-cfgBenchmark11_Reference)*100/time,op/time*1000);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int op = cfgBenchmark11_Passes * cfgBenchmark11_Iterations;
+ printf("%u ms (%i%%),(%u o/s)\r\n", time, (time - cfgBenchmark11_Reference) * 100 / time, op / time * 1000);
}
- if(cfgBenchmark12_Enable)
- {// Benchmark 12
+ if (cfgBenchmark12_Enable)
+ { // Benchmark 12
srand(380843);
- btAlignedObjectArray<btDbvtVolume> volumes;
- btAlignedObjectArray<bool> results;
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<bool> results;
volumes.resize(cfgLeaves);
results.resize(cfgLeaves);
- for(int i=0;i<cfgLeaves;++i)
+ for (int i = 0; i < cfgLeaves; ++i)
{
- volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ volumes[i] = btDbvtBenchmark::RandVolume(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale);
}
printf("[12] btDbvtVolume notequal: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark12_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark12_Iterations; ++i)
{
- for(int j=0;j<cfgLeaves;++j)
+ for (int j = 0; j < cfgLeaves; ++j)
{
- for(int k=0;k<cfgLeaves;++k)
+ for (int k = 0; k < cfgLeaves; ++k)
{
- results[k]=NotEqual(volumes[j],volumes[k]);
+ results[k] = NotEqual(volumes[j], volumes[k]);
}
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark12_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark12_Reference) * 100 / time);
}
- if(cfgBenchmark13_Enable)
- {// Benchmark 13
+ if (cfgBenchmark13_Enable)
+ { // Benchmark 13
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<btVector3> vectors;
- btDbvtBenchmark::NilPolicy policy;
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> vectors;
+ btDbvtBenchmark::NilPolicy policy;
vectors.resize(cfgBenchmark13_Iterations);
- for(int i=0;i<vectors.size();++i)
+ for (int i = 0; i < vectors.size(); ++i)
{
- vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1)).normalized();
+ vectors[i] = (btDbvtBenchmark::RandVector3() * 2 - btVector3(1, 1, 1)).normalized();
}
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
printf("[13] culling(OCL+fullsort): ");
- wallclock.reset();
- for(int i=0;i<cfgBenchmark13_Iterations;++i)
+ wallclock.reset();
+ for (int i = 0; i < cfgBenchmark13_Iterations; ++i)
{
- static const btScalar offset=0;
- policy.m_depth=-SIMD_INFINITY;
- dbvt.collideOCL(dbvt.m_root,&vectors[i],&offset,vectors[i],1,policy);
+ static const btScalar offset = 0;
+ policy.m_depth = -SIMD_INFINITY;
+ dbvt.collideOCL(dbvt.m_root, &vectors[i], &offset, vectors[i], 1, policy);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int t=cfgBenchmark13_Iterations;
- printf("%u ms (%i%%),(%u t/s)\r\n",time,(time-cfgBenchmark13_Reference)*100/time,(t*1000)/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int t = cfgBenchmark13_Iterations;
+ printf("%u ms (%i%%),(%u t/s)\r\n", time, (time - cfgBenchmark13_Reference) * 100 / time, (t * 1000) / time);
}
- if(cfgBenchmark14_Enable)
- {// Benchmark 14
+ if (cfgBenchmark14_Enable)
+ { // Benchmark 14
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<btVector3> vectors;
- btDbvtBenchmark::P14 policy;
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> vectors;
+ btDbvtBenchmark::P14 policy;
vectors.resize(cfgBenchmark14_Iterations);
- for(int i=0;i<vectors.size();++i)
+ for (int i = 0; i < vectors.size(); ++i)
{
- vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1)).normalized();
+ vectors[i] = (btDbvtBenchmark::RandVector3() * 2 - btVector3(1, 1, 1)).normalized();
}
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
policy.m_nodes.reserve(cfgLeaves);
printf("[14] culling(OCL+qsort): ");
- wallclock.reset();
- for(int i=0;i<cfgBenchmark14_Iterations;++i)
+ wallclock.reset();
+ for (int i = 0; i < cfgBenchmark14_Iterations; ++i)
{
- static const btScalar offset=0;
+ static const btScalar offset = 0;
policy.m_nodes.resize(0);
- dbvt.collideOCL(dbvt.m_root,&vectors[i],&offset,vectors[i],1,policy,false);
+ dbvt.collideOCL(dbvt.m_root, &vectors[i], &offset, vectors[i], 1, policy, false);
policy.m_nodes.quickSort(btDbvtBenchmark::P14::sortfnc);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int t=cfgBenchmark14_Iterations;
- printf("%u ms (%i%%),(%u t/s)\r\n",time,(time-cfgBenchmark14_Reference)*100/time,(t*1000)/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int t = cfgBenchmark14_Iterations;
+ printf("%u ms (%i%%),(%u t/s)\r\n", time, (time - cfgBenchmark14_Reference) * 100 / time, (t * 1000) / time);
}
- if(cfgBenchmark15_Enable)
- {// Benchmark 15
+ if (cfgBenchmark15_Enable)
+ { // Benchmark 15
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<btVector3> vectors;
- btDbvtBenchmark::P15 policy;
+ btDbvt dbvt;
+ btAlignedObjectArray<btVector3> vectors;
+ btDbvtBenchmark::P15 policy;
vectors.resize(cfgBenchmark15_Iterations);
- for(int i=0;i<vectors.size();++i)
+ for (int i = 0; i < vectors.size(); ++i)
{
- vectors[i]=(btDbvtBenchmark::RandVector3()*2-btVector3(1,1,1)).normalized();
+ vectors[i] = (btDbvtBenchmark::RandVector3() * 2 - btVector3(1, 1, 1)).normalized();
}
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
policy.m_nodes.reserve(cfgLeaves);
printf("[15] culling(KDOP+qsort): ");
- wallclock.reset();
- for(int i=0;i<cfgBenchmark15_Iterations;++i)
+ wallclock.reset();
+ for (int i = 0; i < cfgBenchmark15_Iterations; ++i)
{
- static const btScalar offset=0;
+ static const btScalar offset = 0;
policy.m_nodes.resize(0);
- policy.m_axis=vectors[i];
- dbvt.collideKDOP(dbvt.m_root,&vectors[i],&offset,1,policy);
+ policy.m_axis = vectors[i];
+ dbvt.collideKDOP(dbvt.m_root, &vectors[i], &offset, 1, policy);
policy.m_nodes.quickSort(btDbvtBenchmark::P15::sortfnc);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int t=cfgBenchmark15_Iterations;
- printf("%u ms (%i%%),(%u t/s)\r\n",time,(time-cfgBenchmark15_Reference)*100/time,(t*1000)/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int t = cfgBenchmark15_Iterations;
+ printf("%u ms (%i%%),(%u t/s)\r\n", time, (time - cfgBenchmark15_Reference) * 100 / time, (t * 1000) / time);
}
- if(cfgBenchmark16_Enable)
- {// Benchmark 16
+ if (cfgBenchmark16_Enable)
+ { // Benchmark 16
srand(380843);
- btDbvt dbvt;
- btAlignedObjectArray<btDbvtNode*> batch;
- btDbvtBenchmark::RandTree(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale,cfgLeaves,dbvt);
+ btDbvt dbvt;
+ btAlignedObjectArray<btDbvtNode*> batch;
+ btDbvtBenchmark::RandTree(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale, cfgLeaves, dbvt);
dbvt.optimizeTopDown();
batch.reserve(cfgBenchmark16_BatchCount);
- printf("[16] insert/remove batch(%u): ",cfgBenchmark16_BatchCount);
+ printf("[16] insert/remove batch(%u): ", cfgBenchmark16_BatchCount);
wallclock.reset();
- for(int i=0;i<cfgBenchmark16_Passes;++i)
+ for (int i = 0; i < cfgBenchmark16_Passes; ++i)
{
- for(int j=0;j<cfgBenchmark16_BatchCount;++j)
+ for (int j = 0; j < cfgBenchmark16_BatchCount; ++j)
{
- batch.push_back(dbvt.insert(btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale),0));
+ batch.push_back(dbvt.insert(btDbvtBenchmark::RandVolume(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale), 0));
}
- for(int j=0;j<cfgBenchmark16_BatchCount;++j)
+ for (int j = 0; j < cfgBenchmark16_BatchCount; ++j)
{
dbvt.remove(batch[j]);
}
batch.resize(0);
}
- const int time=(int)wallclock.getTimeMilliseconds();
- const int ir=cfgBenchmark16_Passes*cfgBenchmark16_BatchCount;
- printf("%u ms (%i%%),(%u bir/s)\r\n",time,(time-cfgBenchmark16_Reference)*100/time,int(ir*1000.0/time));
+ const int time = (int)wallclock.getTimeMilliseconds();
+ const int ir = cfgBenchmark16_Passes * cfgBenchmark16_BatchCount;
+ printf("%u ms (%i%%),(%u bir/s)\r\n", time, (time - cfgBenchmark16_Reference) * 100 / time, int(ir * 1000.0 / time));
}
- if(cfgBenchmark17_Enable)
- {// Benchmark 17
+ if (cfgBenchmark17_Enable)
+ { // Benchmark 17
srand(380843);
- btAlignedObjectArray<btDbvtVolume> volumes;
- btAlignedObjectArray<int> results;
- btAlignedObjectArray<int> indices;
+ btAlignedObjectArray<btDbvtVolume> volumes;
+ btAlignedObjectArray<int> results;
+ btAlignedObjectArray<int> indices;
volumes.resize(cfgLeaves);
results.resize(cfgLeaves);
indices.resize(cfgLeaves);
- for(int i=0;i<cfgLeaves;++i)
+ for (int i = 0; i < cfgLeaves; ++i)
{
- indices[i]=i;
- volumes[i]=btDbvtBenchmark::RandVolume(cfgVolumeCenterScale,cfgVolumeExentsBase,cfgVolumeExentsScale);
+ indices[i] = i;
+ volumes[i] = btDbvtBenchmark::RandVolume(cfgVolumeCenterScale, cfgVolumeExentsBase, cfgVolumeExentsScale);
}
- for(int i=0;i<cfgLeaves;++i)
+ for (int i = 0; i < cfgLeaves; ++i)
{
- btSwap(indices[i],indices[rand()%cfgLeaves]);
+ btSwap(indices[i], indices[rand() % cfgLeaves]);
}
printf("[17] btDbvtVolume select: ");
wallclock.reset();
- for(int i=0;i<cfgBenchmark17_Iterations;++i)
+ for (int i = 0; i < cfgBenchmark17_Iterations; ++i)
{
- for(int j=0;j<cfgLeaves;++j)
+ for (int j = 0; j < cfgLeaves; ++j)
{
- for(int k=0;k<cfgLeaves;++k)
+ for (int k = 0; k < cfgLeaves; ++k)
{
- const int idx=indices[k];
- results[idx]=Select(volumes[idx],volumes[j],volumes[k]);
+ const int idx = indices[k];
+ results[idx] = Select(volumes[idx], volumes[j], volumes[k]);
}
}
}
- const int time=(int)wallclock.getTimeMilliseconds();
- printf("%u ms (%i%%)\r\n",time,(time-cfgBenchmark17_Reference)*100/time);
+ const int time = (int)wallclock.getTimeMilliseconds();
+ printf("%u ms (%i%%)\r\n", time, (time - cfgBenchmark17_Reference) * 100 / time);
}
printf("\r\n\r\n");
}
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.h
index b5a0014580..a316dbf207 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvt.h
@@ -26,50 +26,49 @@ subject to the following restrictions:
// Compile time configuration
//
-
// Implementation profiles
-#define DBVT_IMPL_GENERIC 0 // Generic implementation
-#define DBVT_IMPL_SSE 1 // SSE
+#define DBVT_IMPL_GENERIC 0 // Generic implementation
+#define DBVT_IMPL_SSE 1 // SSE
// Template implementation of ICollide
#ifdef _WIN32
-#if (defined (_MSC_VER) && _MSC_VER >= 1400)
-#define DBVT_USE_TEMPLATE 1
+#if (defined(_MSC_VER) && _MSC_VER >= 1400)
+#define DBVT_USE_TEMPLATE 1
#else
-#define DBVT_USE_TEMPLATE 0
+#define DBVT_USE_TEMPLATE 0
#endif
#else
-#define DBVT_USE_TEMPLATE 0
+#define DBVT_USE_TEMPLATE 0
#endif
// Use only intrinsics instead of inline asm
-#define DBVT_USE_INTRINSIC_SSE 1
+#define DBVT_USE_INTRINSIC_SSE 1
// Using memmov for collideOCL
-#define DBVT_USE_MEMMOVE 1
+#define DBVT_USE_MEMMOVE 1
// Enable benchmarking code
-#define DBVT_ENABLE_BENCHMARK 0
+#define DBVT_ENABLE_BENCHMARK 0
// Inlining
-#define DBVT_INLINE SIMD_FORCE_INLINE
+#define DBVT_INLINE SIMD_FORCE_INLINE
// Specific methods implementation
//SSE gives errors on a MSVC 7.1
-#if defined (BT_USE_SSE) //&& defined (_WIN32)
-#define DBVT_SELECT_IMPL DBVT_IMPL_SSE
-#define DBVT_MERGE_IMPL DBVT_IMPL_SSE
-#define DBVT_INT0_IMPL DBVT_IMPL_SSE
+#if defined(BT_USE_SSE) //&& defined (_WIN32)
+#define DBVT_SELECT_IMPL DBVT_IMPL_SSE
+#define DBVT_MERGE_IMPL DBVT_IMPL_SSE
+#define DBVT_INT0_IMPL DBVT_IMPL_SSE
#else
-#define DBVT_SELECT_IMPL DBVT_IMPL_GENERIC
-#define DBVT_MERGE_IMPL DBVT_IMPL_GENERIC
-#define DBVT_INT0_IMPL DBVT_IMPL_GENERIC
+#define DBVT_SELECT_IMPL DBVT_IMPL_GENERIC
+#define DBVT_MERGE_IMPL DBVT_IMPL_GENERIC
+#define DBVT_INT0_IMPL DBVT_IMPL_GENERIC
#endif
-#if (DBVT_SELECT_IMPL==DBVT_IMPL_SSE)|| \
- (DBVT_MERGE_IMPL==DBVT_IMPL_SSE)|| \
- (DBVT_INT0_IMPL==DBVT_IMPL_SSE)
+#if (DBVT_SELECT_IMPL == DBVT_IMPL_SSE) || \
+ (DBVT_MERGE_IMPL == DBVT_IMPL_SSE) || \
+ (DBVT_INT0_IMPL == DBVT_IMPL_SSE)
#include <emmintrin.h>
#endif
@@ -78,21 +77,24 @@ subject to the following restrictions:
//
#if DBVT_USE_TEMPLATE
-#define DBVT_VIRTUAL
+#define DBVT_VIRTUAL
#define DBVT_VIRTUAL_DTOR(a)
-#define DBVT_PREFIX template <typename T>
-#define DBVT_IPOLICY T& policy
-#define DBVT_CHECKTYPE static const ICollide& typechecker=*(T*)1;(void)typechecker;
+#define DBVT_PREFIX template <typename T>
+#define DBVT_IPOLICY T& policy
+#define DBVT_CHECKTYPE \
+ static const ICollide& typechecker = *(T*)1; \
+ (void)typechecker;
#else
-#define DBVT_VIRTUAL_DTOR(a) virtual ~a() {}
-#define DBVT_VIRTUAL virtual
+#define DBVT_VIRTUAL_DTOR(a) \
+ virtual ~a() {}
+#define DBVT_VIRTUAL virtual
#define DBVT_PREFIX
-#define DBVT_IPOLICY ICollide& policy
+#define DBVT_IPOLICY ICollide& policy
#define DBVT_CHECKTYPE
#endif
#if DBVT_USE_MEMMOVE
-#if !defined( __CELLOS_LV2__) && !defined(__MWERKS__)
+#if !defined(__CELLOS_LV2__) && !defined(__MWERKS__)
#include <memory.h>
#endif
#include <string.h>
@@ -122,194 +124,193 @@ subject to the following restrictions:
#error "DBVT_INT0_IMPL undefined"
#endif
-
//
// Defaults volumes
//
-/* btDbvtAabbMm */
-struct btDbvtAabbMm
+/* btDbvtAabbMm */
+struct btDbvtAabbMm
{
- DBVT_INLINE btVector3 Center() const { return((mi+mx)/2); }
- DBVT_INLINE btVector3 Lengths() const { return(mx-mi); }
- DBVT_INLINE btVector3 Extents() const { return((mx-mi)/2); }
- DBVT_INLINE const btVector3& Mins() const { return(mi); }
- DBVT_INLINE const btVector3& Maxs() const { return(mx); }
- static inline btDbvtAabbMm FromCE(const btVector3& c,const btVector3& e);
- static inline btDbvtAabbMm FromCR(const btVector3& c,btScalar r);
- static inline btDbvtAabbMm FromMM(const btVector3& mi,const btVector3& mx);
- static inline btDbvtAabbMm FromPoints(const btVector3* pts,int n);
- static inline btDbvtAabbMm FromPoints(const btVector3** ppts,int n);
- DBVT_INLINE void Expand(const btVector3& e);
- DBVT_INLINE void SignedExpand(const btVector3& e);
- DBVT_INLINE bool Contain(const btDbvtAabbMm& a) const;
- DBVT_INLINE int Classify(const btVector3& n,btScalar o,int s) const;
- DBVT_INLINE btScalar ProjectMinimum(const btVector3& v,unsigned signs) const;
- DBVT_INLINE friend bool Intersect( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b);
-
- DBVT_INLINE friend bool Intersect( const btDbvtAabbMm& a,
- const btVector3& b);
-
- DBVT_INLINE friend btScalar Proximity( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b);
- DBVT_INLINE friend int Select( const btDbvtAabbMm& o,
- const btDbvtAabbMm& a,
- const btDbvtAabbMm& b);
- DBVT_INLINE friend void Merge( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b,
- btDbvtAabbMm& r);
- DBVT_INLINE friend bool NotEqual( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b);
-
- DBVT_INLINE btVector3& tMins() { return(mi); }
- DBVT_INLINE btVector3& tMaxs() { return(mx); }
-
+ DBVT_INLINE btVector3 Center() const { return ((mi + mx) / 2); }
+ DBVT_INLINE btVector3 Lengths() const { return (mx - mi); }
+ DBVT_INLINE btVector3 Extents() const { return ((mx - mi) / 2); }
+ DBVT_INLINE const btVector3& Mins() const { return (mi); }
+ DBVT_INLINE const btVector3& Maxs() const { return (mx); }
+ static inline btDbvtAabbMm FromCE(const btVector3& c, const btVector3& e);
+ static inline btDbvtAabbMm FromCR(const btVector3& c, btScalar r);
+ static inline btDbvtAabbMm FromMM(const btVector3& mi, const btVector3& mx);
+ static inline btDbvtAabbMm FromPoints(const btVector3* pts, int n);
+ static inline btDbvtAabbMm FromPoints(const btVector3** ppts, int n);
+ DBVT_INLINE void Expand(const btVector3& e);
+ DBVT_INLINE void SignedExpand(const btVector3& e);
+ DBVT_INLINE bool Contain(const btDbvtAabbMm& a) const;
+ DBVT_INLINE int Classify(const btVector3& n, btScalar o, int s) const;
+ DBVT_INLINE btScalar ProjectMinimum(const btVector3& v, unsigned signs) const;
+ DBVT_INLINE friend bool Intersect(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+
+ DBVT_INLINE friend bool Intersect(const btDbvtAabbMm& a,
+ const btVector3& b);
+
+ DBVT_INLINE friend btScalar Proximity(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+ DBVT_INLINE friend int Select(const btDbvtAabbMm& o,
+ const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+ DBVT_INLINE friend void Merge(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b,
+ btDbvtAabbMm& r);
+ DBVT_INLINE friend bool NotEqual(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b);
+
+ DBVT_INLINE btVector3& tMins() { return (mi); }
+ DBVT_INLINE btVector3& tMaxs() { return (mx); }
+
private:
- DBVT_INLINE void AddSpan(const btVector3& d,btScalar& smi,btScalar& smx) const;
+ DBVT_INLINE void AddSpan(const btVector3& d, btScalar& smi, btScalar& smx) const;
+
private:
- btVector3 mi,mx;
+ btVector3 mi, mx;
};
-// Types
-typedef btDbvtAabbMm btDbvtVolume;
+// Types
+typedef btDbvtAabbMm btDbvtVolume;
-/* btDbvtNode */
-struct btDbvtNode
+/* btDbvtNode */
+struct btDbvtNode
{
- btDbvtVolume volume;
- btDbvtNode* parent;
- DBVT_INLINE bool isleaf() const { return(childs[1]==0); }
- DBVT_INLINE bool isinternal() const { return(!isleaf()); }
- union
- {
- btDbvtNode* childs[2];
- void* data;
- int dataAsInt;
+ btDbvtVolume volume;
+ btDbvtNode* parent;
+ DBVT_INLINE bool isleaf() const { return (childs[1] == 0); }
+ DBVT_INLINE bool isinternal() const { return (!isleaf()); }
+ union {
+ btDbvtNode* childs[2];
+ void* data;
+ int dataAsInt;
};
};
typedef btAlignedObjectArray<const btDbvtNode*> btNodeStack;
-
///The btDbvt class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree).
///This btDbvt is used for soft body collision detection and for the btDbvtBroadphase. It has a fast insert, remove and update of nodes.
///Unlike the btQuantizedBvh, nodes can be dynamically moved around, which allows for change in topology of the underlying data structure.
-struct btDbvt
+struct btDbvt
{
- /* Stack element */
- struct sStkNN
+ /* Stack element */
+ struct sStkNN
{
- const btDbvtNode* a;
- const btDbvtNode* b;
+ const btDbvtNode* a;
+ const btDbvtNode* b;
sStkNN() {}
- sStkNN(const btDbvtNode* na,const btDbvtNode* nb) : a(na),b(nb) {}
+ sStkNN(const btDbvtNode* na, const btDbvtNode* nb) : a(na), b(nb) {}
};
- struct sStkNP
+ struct sStkNP
{
- const btDbvtNode* node;
- int mask;
- sStkNP(const btDbvtNode* n,unsigned m) : node(n),mask(m) {}
+ const btDbvtNode* node;
+ int mask;
+ sStkNP(const btDbvtNode* n, unsigned m) : node(n), mask(m) {}
};
- struct sStkNPS
+ struct sStkNPS
{
- const btDbvtNode* node;
- int mask;
- btScalar value;
+ const btDbvtNode* node;
+ int mask;
+ btScalar value;
sStkNPS() {}
- sStkNPS(const btDbvtNode* n,unsigned m,btScalar v) : node(n),mask(m),value(v) {}
+ sStkNPS(const btDbvtNode* n, unsigned m, btScalar v) : node(n), mask(m), value(v) {}
};
- struct sStkCLN
+ struct sStkCLN
{
- const btDbvtNode* node;
- btDbvtNode* parent;
- sStkCLN(const btDbvtNode* n,btDbvtNode* p) : node(n),parent(p) {}
+ const btDbvtNode* node;
+ btDbvtNode* parent;
+ sStkCLN(const btDbvtNode* n, btDbvtNode* p) : node(n), parent(p) {}
};
// Policies/Interfaces
- /* ICollide */
- struct ICollide
- {
+ /* ICollide */
+ struct ICollide
+ {
DBVT_VIRTUAL_DTOR(ICollide)
- DBVT_VIRTUAL void Process(const btDbvtNode*,const btDbvtNode*) {}
- DBVT_VIRTUAL void Process(const btDbvtNode*) {}
- DBVT_VIRTUAL void Process(const btDbvtNode* n,btScalar) { Process(n); }
- DBVT_VIRTUAL bool Descent(const btDbvtNode*) { return(true); }
- DBVT_VIRTUAL bool AllLeaves(const btDbvtNode*) { return(true); }
+ DBVT_VIRTUAL void Process(const btDbvtNode*, const btDbvtNode*) {}
+ DBVT_VIRTUAL void Process(const btDbvtNode*) {}
+ DBVT_VIRTUAL void Process(const btDbvtNode* n, btScalar) { Process(n); }
+ DBVT_VIRTUAL bool Descent(const btDbvtNode*) { return (true); }
+ DBVT_VIRTUAL bool AllLeaves(const btDbvtNode*) { return (true); }
};
- /* IWriter */
- struct IWriter
+ /* IWriter */
+ struct IWriter
{
virtual ~IWriter() {}
- virtual void Prepare(const btDbvtNode* root,int numnodes)=0;
- virtual void WriteNode(const btDbvtNode*,int index,int parent,int child0,int child1)=0;
- virtual void WriteLeaf(const btDbvtNode*,int index,int parent)=0;
+ virtual void Prepare(const btDbvtNode* root, int numnodes) = 0;
+ virtual void WriteNode(const btDbvtNode*, int index, int parent, int child0, int child1) = 0;
+ virtual void WriteLeaf(const btDbvtNode*, int index, int parent) = 0;
};
- /* IClone */
- struct IClone
+ /* IClone */
+ struct IClone
{
- virtual ~IClone() {}
- virtual void CloneLeaf(btDbvtNode*) {}
+ virtual ~IClone() {}
+ virtual void CloneLeaf(btDbvtNode*) {}
};
// Constants
- enum {
- SIMPLE_STACKSIZE = 64,
- DOUBLE_STACKSIZE = SIMPLE_STACKSIZE*2
+ enum
+ {
+ SIMPLE_STACKSIZE = 64,
+ DOUBLE_STACKSIZE = SIMPLE_STACKSIZE * 2
};
// Fields
- btDbvtNode* m_root;
- btDbvtNode* m_free;
- int m_lkhd;
- int m_leaves;
- unsigned m_opath;
-
-
- btAlignedObjectArray<sStkNN> m_stkStack;
+ btDbvtNode* m_root;
+ btDbvtNode* m_free;
+ int m_lkhd;
+ int m_leaves;
+ unsigned m_opath;
+ btAlignedObjectArray<sStkNN> m_stkStack;
// Methods
btDbvt();
~btDbvt();
- void clear();
- bool empty() const { return(0==m_root); }
- void optimizeBottomUp();
- void optimizeTopDown(int bu_treshold=128);
- void optimizeIncremental(int passes);
- btDbvtNode* insert(const btDbvtVolume& box,void* data);
- void update(btDbvtNode* leaf,int lookahead=-1);
- void update(btDbvtNode* leaf,btDbvtVolume& volume);
- bool update(btDbvtNode* leaf,btDbvtVolume& volume,const btVector3& velocity,btScalar margin);
- bool update(btDbvtNode* leaf,btDbvtVolume& volume,const btVector3& velocity);
- bool update(btDbvtNode* leaf,btDbvtVolume& volume,btScalar margin);
- void remove(btDbvtNode* leaf);
- void write(IWriter* iwriter) const;
- void clone(btDbvt& dest,IClone* iclone=0) const;
- static int maxdepth(const btDbvtNode* node);
- static int countLeaves(const btDbvtNode* node);
- static void extractLeaves(const btDbvtNode* node,btAlignedObjectArray<const btDbvtNode*>& leaves);
+ void clear();
+ bool empty() const { return (0 == m_root); }
+ void optimizeBottomUp();
+ void optimizeTopDown(int bu_treshold = 128);
+ void optimizeIncremental(int passes);
+ btDbvtNode* insert(const btDbvtVolume& box, void* data);
+ void update(btDbvtNode* leaf, int lookahead = -1);
+ void update(btDbvtNode* leaf, btDbvtVolume& volume);
+ bool update(btDbvtNode* leaf, btDbvtVolume& volume, const btVector3& velocity, btScalar margin);
+ bool update(btDbvtNode* leaf, btDbvtVolume& volume, const btVector3& velocity);
+ bool update(btDbvtNode* leaf, btDbvtVolume& volume, btScalar margin);
+ void remove(btDbvtNode* leaf);
+ void write(IWriter* iwriter) const;
+ void clone(btDbvt& dest, IClone* iclone = 0) const;
+ static int maxdepth(const btDbvtNode* node);
+ static int countLeaves(const btDbvtNode* node);
+ static void extractLeaves(const btDbvtNode* node, btAlignedObjectArray<const btDbvtNode*>& leaves);
#if DBVT_ENABLE_BENCHMARK
- static void benchmark();
+ static void benchmark();
#else
- static void benchmark(){}
+ static void benchmark()
+ {
+ }
#endif
// DBVT_IPOLICY must support ICollide policy/interface
DBVT_PREFIX
- static void enumNodes( const btDbvtNode* root,
- DBVT_IPOLICY);
+ static void enumNodes(const btDbvtNode* root,
+ DBVT_IPOLICY);
DBVT_PREFIX
- static void enumLeaves( const btDbvtNode* root,
- DBVT_IPOLICY);
+ static void enumLeaves(const btDbvtNode* root,
+ DBVT_IPOLICY);
DBVT_PREFIX
- void collideTT( const btDbvtNode* root0,
- const btDbvtNode* root1,
- DBVT_IPOLICY);
+ void collideTT(const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ DBVT_IPOLICY);
DBVT_PREFIX
- void collideTTpersistentStack( const btDbvtNode* root0,
- const btDbvtNode* root1,
- DBVT_IPOLICY);
+ void collideTTpersistentStack(const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ DBVT_IPOLICY);
#if 0
DBVT_PREFIX
void collideTT( const btDbvtNode* root0,
@@ -325,82 +326,89 @@ struct btDbvt
#endif
DBVT_PREFIX
- void collideTV( const btDbvtNode* root,
- const btDbvtVolume& volume,
- DBVT_IPOLICY) const;
-
+ void collideTV(const btDbvtNode* root,
+ const btDbvtVolume& volume,
+ DBVT_IPOLICY) const;
+
DBVT_PREFIX
- void collideTVNoStackAlloc( const btDbvtNode* root,
- const btDbvtVolume& volume,
- btNodeStack& stack,
- DBVT_IPOLICY) const;
-
-
-
-
+ void collideTVNoStackAlloc(const btDbvtNode* root,
+ const btDbvtVolume& volume,
+ btNodeStack& stack,
+ DBVT_IPOLICY) const;
+
///rayTest is a re-entrant ray test, and can be called in parallel as long as the btAlignedAlloc is thread-safe (uses locking etc)
///rayTest is slower than rayTestInternal, because it builds a local stack, using memory allocations, and it recomputes signs/rayDirectionInverses each time
DBVT_PREFIX
- static void rayTest( const btDbvtNode* root,
- const btVector3& rayFrom,
- const btVector3& rayTo,
- DBVT_IPOLICY);
+ static void rayTest(const btDbvtNode* root,
+ const btVector3& rayFrom,
+ const btVector3& rayTo,
+ DBVT_IPOLICY);
///rayTestInternal is faster than rayTest, because it uses a persistent stack (to reduce dynamic memory allocations to a minimum) and it uses precomputed signs/rayInverseDirections
///rayTestInternal is used by btDbvtBroadphase to accelerate world ray casts
DBVT_PREFIX
- void rayTestInternal( const btDbvtNode* root,
- const btVector3& rayFrom,
- const btVector3& rayTo,
- const btVector3& rayDirectionInverse,
- unsigned int signs[3],
- btScalar lambda_max,
- const btVector3& aabbMin,
- const btVector3& aabbMax,
- btAlignedObjectArray<const btDbvtNode*>& stack,
- DBVT_IPOLICY) const;
+ void rayTestInternal(const btDbvtNode* root,
+ const btVector3& rayFrom,
+ const btVector3& rayTo,
+ const btVector3& rayDirectionInverse,
+ unsigned int signs[3],
+ btScalar lambda_max,
+ const btVector3& aabbMin,
+ const btVector3& aabbMax,
+ btAlignedObjectArray<const btDbvtNode*>& stack,
+ DBVT_IPOLICY) const;
DBVT_PREFIX
- static void collideKDOP(const btDbvtNode* root,
- const btVector3* normals,
- const btScalar* offsets,
- int count,
- DBVT_IPOLICY);
+ static void collideKDOP(const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ int count,
+ DBVT_IPOLICY);
DBVT_PREFIX
- static void collideOCL( const btDbvtNode* root,
- const btVector3* normals,
- const btScalar* offsets,
- const btVector3& sortaxis,
- int count,
- DBVT_IPOLICY,
- bool fullsort=true);
+ static void collideOCL(const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ const btVector3& sortaxis,
+ int count,
+ DBVT_IPOLICY,
+ bool fullsort = true);
DBVT_PREFIX
- static void collideTU( const btDbvtNode* root,
- DBVT_IPOLICY);
- // Helpers
- static DBVT_INLINE int nearest(const int* i,const btDbvt::sStkNPS* a,btScalar v,int l,int h)
+ static void collideTU(const btDbvtNode* root,
+ DBVT_IPOLICY);
+ // Helpers
+ static DBVT_INLINE int nearest(const int* i, const btDbvt::sStkNPS* a, btScalar v, int l, int h)
{
- int m=0;
- while(l<h)
+ int m = 0;
+ while (l < h)
{
- m=(l+h)>>1;
- if(a[i[m]].value>=v) l=m+1; else h=m;
+ m = (l + h) >> 1;
+ if (a[i[m]].value >= v)
+ l = m + 1;
+ else
+ h = m;
}
- return(h);
+ return (h);
}
- static DBVT_INLINE int allocate( btAlignedObjectArray<int>& ifree,
- btAlignedObjectArray<sStkNPS>& stock,
- const sStkNPS& value)
+ static DBVT_INLINE int allocate(btAlignedObjectArray<int>& ifree,
+ btAlignedObjectArray<sStkNPS>& stock,
+ const sStkNPS& value)
{
- int i;
- if(ifree.size()>0)
- { i=ifree[ifree.size()-1];ifree.pop_back();stock[i]=value; }
+ int i;
+ if (ifree.size() > 0)
+ {
+ i = ifree[ifree.size() - 1];
+ ifree.pop_back();
+ stock[i] = value;
+ }
else
- { i=stock.size();stock.push_back(value); }
- return(i);
+ {
+ i = stock.size();
+ stock.push_back(value);
+ }
+ return (i);
}
//
private:
- btDbvt(const btDbvt&) {}
+ btDbvt(const btDbvt&) {}
};
//
@@ -408,227 +416,252 @@ private:
//
//
-inline btDbvtAabbMm btDbvtAabbMm::FromCE(const btVector3& c,const btVector3& e)
+inline btDbvtAabbMm btDbvtAabbMm::FromCE(const btVector3& c, const btVector3& e)
{
btDbvtAabbMm box;
- box.mi=c-e;box.mx=c+e;
- return(box);
+ box.mi = c - e;
+ box.mx = c + e;
+ return (box);
}
//
-inline btDbvtAabbMm btDbvtAabbMm::FromCR(const btVector3& c,btScalar r)
+inline btDbvtAabbMm btDbvtAabbMm::FromCR(const btVector3& c, btScalar r)
{
- return(FromCE(c,btVector3(r,r,r)));
+ return (FromCE(c, btVector3(r, r, r)));
}
//
-inline btDbvtAabbMm btDbvtAabbMm::FromMM(const btVector3& mi,const btVector3& mx)
+inline btDbvtAabbMm btDbvtAabbMm::FromMM(const btVector3& mi, const btVector3& mx)
{
btDbvtAabbMm box;
- box.mi=mi;box.mx=mx;
- return(box);
+ box.mi = mi;
+ box.mx = mx;
+ return (box);
}
//
-inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3* pts,int n)
+inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3* pts, int n)
{
btDbvtAabbMm box;
- box.mi=box.mx=pts[0];
- for(int i=1;i<n;++i)
+ box.mi = box.mx = pts[0];
+ for (int i = 1; i < n; ++i)
{
box.mi.setMin(pts[i]);
box.mx.setMax(pts[i]);
}
- return(box);
+ return (box);
}
//
-inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3** ppts,int n)
+inline btDbvtAabbMm btDbvtAabbMm::FromPoints(const btVector3** ppts, int n)
{
btDbvtAabbMm box;
- box.mi=box.mx=*ppts[0];
- for(int i=1;i<n;++i)
+ box.mi = box.mx = *ppts[0];
+ for (int i = 1; i < n; ++i)
{
box.mi.setMin(*ppts[i]);
box.mx.setMax(*ppts[i]);
}
- return(box);
+ return (box);
}
//
-DBVT_INLINE void btDbvtAabbMm::Expand(const btVector3& e)
+DBVT_INLINE void btDbvtAabbMm::Expand(const btVector3& e)
{
- mi-=e;mx+=e;
+ mi -= e;
+ mx += e;
}
//
-DBVT_INLINE void btDbvtAabbMm::SignedExpand(const btVector3& e)
+DBVT_INLINE void btDbvtAabbMm::SignedExpand(const btVector3& e)
{
- if(e.x()>0) mx.setX(mx.x()+e[0]); else mi.setX(mi.x()+e[0]);
- if(e.y()>0) mx.setY(mx.y()+e[1]); else mi.setY(mi.y()+e[1]);
- if(e.z()>0) mx.setZ(mx.z()+e[2]); else mi.setZ(mi.z()+e[2]);
+ if (e.x() > 0)
+ mx.setX(mx.x() + e[0]);
+ else
+ mi.setX(mi.x() + e[0]);
+ if (e.y() > 0)
+ mx.setY(mx.y() + e[1]);
+ else
+ mi.setY(mi.y() + e[1]);
+ if (e.z() > 0)
+ mx.setZ(mx.z() + e[2]);
+ else
+ mi.setZ(mi.z() + e[2]);
}
//
-DBVT_INLINE bool btDbvtAabbMm::Contain(const btDbvtAabbMm& a) const
+DBVT_INLINE bool btDbvtAabbMm::Contain(const btDbvtAabbMm& a) const
{
- return( (mi.x()<=a.mi.x())&&
- (mi.y()<=a.mi.y())&&
- (mi.z()<=a.mi.z())&&
- (mx.x()>=a.mx.x())&&
- (mx.y()>=a.mx.y())&&
- (mx.z()>=a.mx.z()));
+ return ((mi.x() <= a.mi.x()) &&
+ (mi.y() <= a.mi.y()) &&
+ (mi.z() <= a.mi.z()) &&
+ (mx.x() >= a.mx.x()) &&
+ (mx.y() >= a.mx.y()) &&
+ (mx.z() >= a.mx.z()));
}
//
-DBVT_INLINE int btDbvtAabbMm::Classify(const btVector3& n,btScalar o,int s) const
+DBVT_INLINE int btDbvtAabbMm::Classify(const btVector3& n, btScalar o, int s) const
{
- btVector3 pi,px;
- switch(s)
+ btVector3 pi, px;
+ switch (s)
{
- case (0+0+0): px=btVector3(mi.x(),mi.y(),mi.z());
- pi=btVector3(mx.x(),mx.y(),mx.z());break;
- case (1+0+0): px=btVector3(mx.x(),mi.y(),mi.z());
- pi=btVector3(mi.x(),mx.y(),mx.z());break;
- case (0+2+0): px=btVector3(mi.x(),mx.y(),mi.z());
- pi=btVector3(mx.x(),mi.y(),mx.z());break;
- case (1+2+0): px=btVector3(mx.x(),mx.y(),mi.z());
- pi=btVector3(mi.x(),mi.y(),mx.z());break;
- case (0+0+4): px=btVector3(mi.x(),mi.y(),mx.z());
- pi=btVector3(mx.x(),mx.y(),mi.z());break;
- case (1+0+4): px=btVector3(mx.x(),mi.y(),mx.z());
- pi=btVector3(mi.x(),mx.y(),mi.z());break;
- case (0+2+4): px=btVector3(mi.x(),mx.y(),mx.z());
- pi=btVector3(mx.x(),mi.y(),mi.z());break;
- case (1+2+4): px=btVector3(mx.x(),mx.y(),mx.z());
- pi=btVector3(mi.x(),mi.y(),mi.z());break;
+ case (0 + 0 + 0):
+ px = btVector3(mi.x(), mi.y(), mi.z());
+ pi = btVector3(mx.x(), mx.y(), mx.z());
+ break;
+ case (1 + 0 + 0):
+ px = btVector3(mx.x(), mi.y(), mi.z());
+ pi = btVector3(mi.x(), mx.y(), mx.z());
+ break;
+ case (0 + 2 + 0):
+ px = btVector3(mi.x(), mx.y(), mi.z());
+ pi = btVector3(mx.x(), mi.y(), mx.z());
+ break;
+ case (1 + 2 + 0):
+ px = btVector3(mx.x(), mx.y(), mi.z());
+ pi = btVector3(mi.x(), mi.y(), mx.z());
+ break;
+ case (0 + 0 + 4):
+ px = btVector3(mi.x(), mi.y(), mx.z());
+ pi = btVector3(mx.x(), mx.y(), mi.z());
+ break;
+ case (1 + 0 + 4):
+ px = btVector3(mx.x(), mi.y(), mx.z());
+ pi = btVector3(mi.x(), mx.y(), mi.z());
+ break;
+ case (0 + 2 + 4):
+ px = btVector3(mi.x(), mx.y(), mx.z());
+ pi = btVector3(mx.x(), mi.y(), mi.z());
+ break;
+ case (1 + 2 + 4):
+ px = btVector3(mx.x(), mx.y(), mx.z());
+ pi = btVector3(mi.x(), mi.y(), mi.z());
+ break;
}
- if((btDot(n,px)+o)<0) return(-1);
- if((btDot(n,pi)+o)>=0) return(+1);
- return(0);
+ if ((btDot(n, px) + o) < 0) return (-1);
+ if ((btDot(n, pi) + o) >= 0) return (+1);
+ return (0);
}
//
-DBVT_INLINE btScalar btDbvtAabbMm::ProjectMinimum(const btVector3& v,unsigned signs) const
+DBVT_INLINE btScalar btDbvtAabbMm::ProjectMinimum(const btVector3& v, unsigned signs) const
{
- const btVector3* b[]={&mx,&mi};
- const btVector3 p( b[(signs>>0)&1]->x(),
- b[(signs>>1)&1]->y(),
- b[(signs>>2)&1]->z());
- return(btDot(p,v));
+ const btVector3* b[] = {&mx, &mi};
+ const btVector3 p(b[(signs >> 0) & 1]->x(),
+ b[(signs >> 1) & 1]->y(),
+ b[(signs >> 2) & 1]->z());
+ return (btDot(p, v));
}
//
-DBVT_INLINE void btDbvtAabbMm::AddSpan(const btVector3& d,btScalar& smi,btScalar& smx) const
+DBVT_INLINE void btDbvtAabbMm::AddSpan(const btVector3& d, btScalar& smi, btScalar& smx) const
{
- for(int i=0;i<3;++i)
+ for (int i = 0; i < 3; ++i)
{
- if(d[i]<0)
- { smi+=mx[i]*d[i];smx+=mi[i]*d[i]; }
+ if (d[i] < 0)
+ {
+ smi += mx[i] * d[i];
+ smx += mi[i] * d[i];
+ }
else
- { smi+=mi[i]*d[i];smx+=mx[i]*d[i]; }
+ {
+ smi += mi[i] * d[i];
+ smx += mx[i] * d[i];
+ }
}
}
//
-DBVT_INLINE bool Intersect( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b)
+DBVT_INLINE bool Intersect(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
{
-#if DBVT_INT0_IMPL == DBVT_IMPL_SSE
- const __m128 rt(_mm_or_ps( _mm_cmplt_ps(_mm_load_ps(b.mx),_mm_load_ps(a.mi)),
- _mm_cmplt_ps(_mm_load_ps(a.mx),_mm_load_ps(b.mi))));
-#if defined (_WIN32)
- const __int32* pu((const __int32*)&rt);
+#if DBVT_INT0_IMPL == DBVT_IMPL_SSE
+ const __m128 rt(_mm_or_ps(_mm_cmplt_ps(_mm_load_ps(b.mx), _mm_load_ps(a.mi)),
+ _mm_cmplt_ps(_mm_load_ps(a.mx), _mm_load_ps(b.mi))));
+#if defined(_WIN32)
+ const __int32* pu((const __int32*)&rt);
#else
- const int* pu((const int*)&rt);
+ const int* pu((const int*)&rt);
#endif
- return((pu[0]|pu[1]|pu[2])==0);
+ return ((pu[0] | pu[1] | pu[2]) == 0);
#else
- return( (a.mi.x()<=b.mx.x())&&
- (a.mx.x()>=b.mi.x())&&
- (a.mi.y()<=b.mx.y())&&
- (a.mx.y()>=b.mi.y())&&
- (a.mi.z()<=b.mx.z())&&
- (a.mx.z()>=b.mi.z()));
+ return ((a.mi.x() <= b.mx.x()) &&
+ (a.mx.x() >= b.mi.x()) &&
+ (a.mi.y() <= b.mx.y()) &&
+ (a.mx.y() >= b.mi.y()) &&
+ (a.mi.z() <= b.mx.z()) &&
+ (a.mx.z() >= b.mi.z()));
#endif
}
-
-
//
-DBVT_INLINE bool Intersect( const btDbvtAabbMm& a,
- const btVector3& b)
+DBVT_INLINE bool Intersect(const btDbvtAabbMm& a,
+ const btVector3& b)
{
- return( (b.x()>=a.mi.x())&&
- (b.y()>=a.mi.y())&&
- (b.z()>=a.mi.z())&&
- (b.x()<=a.mx.x())&&
- (b.y()<=a.mx.y())&&
- (b.z()<=a.mx.z()));
+ return ((b.x() >= a.mi.x()) &&
+ (b.y() >= a.mi.y()) &&
+ (b.z() >= a.mi.z()) &&
+ (b.x() <= a.mx.x()) &&
+ (b.y() <= a.mx.y()) &&
+ (b.z() <= a.mx.z()));
}
-
-
-
-
//////////////////////////////////////
-
//
-DBVT_INLINE btScalar Proximity( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b)
+DBVT_INLINE btScalar Proximity(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
{
- const btVector3 d=(a.mi+a.mx)-(b.mi+b.mx);
- return(btFabs(d.x())+btFabs(d.y())+btFabs(d.z()));
+ const btVector3 d = (a.mi + a.mx) - (b.mi + b.mx);
+ return (btFabs(d.x()) + btFabs(d.y()) + btFabs(d.z()));
}
-
-
//
-DBVT_INLINE int Select( const btDbvtAabbMm& o,
- const btDbvtAabbMm& a,
- const btDbvtAabbMm& b)
+DBVT_INLINE int Select(const btDbvtAabbMm& o,
+ const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
{
-#if DBVT_SELECT_IMPL == DBVT_IMPL_SSE
-
-#if defined (_WIN32)
- static ATTRIBUTE_ALIGNED16(const unsigned __int32) mask[]={0x7fffffff,0x7fffffff,0x7fffffff,0x7fffffff};
+#if DBVT_SELECT_IMPL == DBVT_IMPL_SSE
+
+#if defined(_WIN32)
+ static ATTRIBUTE_ALIGNED16(const unsigned __int32) mask[] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
#else
- static ATTRIBUTE_ALIGNED16(const unsigned int) mask[]={0x7fffffff,0x7fffffff,0x7fffffff,0x00000000 /*0x7fffffff*/};
+ static ATTRIBUTE_ALIGNED16(const unsigned int) mask[] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x00000000 /*0x7fffffff*/};
#endif
///@todo: the intrinsic version is 11% slower
#if DBVT_USE_INTRINSIC_SSE
- union btSSEUnion ///NOTE: if we use more intrinsics, move btSSEUnion into the LinearMath directory
+ union btSSEUnion ///NOTE: if we use more intrinsics, move btSSEUnion into the LinearMath directory
{
- __m128 ssereg;
- float floats[4];
- int ints[4];
+ __m128 ssereg;
+ float floats[4];
+ int ints[4];
};
- __m128 omi(_mm_load_ps(o.mi));
- omi=_mm_add_ps(omi,_mm_load_ps(o.mx));
- __m128 ami(_mm_load_ps(a.mi));
- ami=_mm_add_ps(ami,_mm_load_ps(a.mx));
- ami=_mm_sub_ps(ami,omi);
- ami=_mm_and_ps(ami,_mm_load_ps((const float*)mask));
- __m128 bmi(_mm_load_ps(b.mi));
- bmi=_mm_add_ps(bmi,_mm_load_ps(b.mx));
- bmi=_mm_sub_ps(bmi,omi);
- bmi=_mm_and_ps(bmi,_mm_load_ps((const float*)mask));
- __m128 t0(_mm_movehl_ps(ami,ami));
- ami=_mm_add_ps(ami,t0);
- ami=_mm_add_ss(ami,_mm_shuffle_ps(ami,ami,1));
- __m128 t1(_mm_movehl_ps(bmi,bmi));
- bmi=_mm_add_ps(bmi,t1);
- bmi=_mm_add_ss(bmi,_mm_shuffle_ps(bmi,bmi,1));
-
+ __m128 omi(_mm_load_ps(o.mi));
+ omi = _mm_add_ps(omi, _mm_load_ps(o.mx));
+ __m128 ami(_mm_load_ps(a.mi));
+ ami = _mm_add_ps(ami, _mm_load_ps(a.mx));
+ ami = _mm_sub_ps(ami, omi);
+ ami = _mm_and_ps(ami, _mm_load_ps((const float*)mask));
+ __m128 bmi(_mm_load_ps(b.mi));
+ bmi = _mm_add_ps(bmi, _mm_load_ps(b.mx));
+ bmi = _mm_sub_ps(bmi, omi);
+ bmi = _mm_and_ps(bmi, _mm_load_ps((const float*)mask));
+ __m128 t0(_mm_movehl_ps(ami, ami));
+ ami = _mm_add_ps(ami, t0);
+ ami = _mm_add_ss(ami, _mm_shuffle_ps(ami, ami, 1));
+ __m128 t1(_mm_movehl_ps(bmi, bmi));
+ bmi = _mm_add_ps(bmi, t1);
+ bmi = _mm_add_ss(bmi, _mm_shuffle_ps(bmi, bmi, 1));
+
btSSEUnion tmp;
- tmp.ssereg = _mm_cmple_ss(bmi,ami);
- return tmp.ints[0]&1;
+ tmp.ssereg = _mm_cmple_ss(bmi, ami);
+ return tmp.ints[0] & 1;
#else
- ATTRIBUTE_ALIGNED16(__int32 r[1]);
+ ATTRIBUTE_ALIGNED16(__int32 r[1]);
__asm
{
mov eax,o
@@ -656,46 +689,52 @@ DBVT_INLINE int Select( const btDbvtAabbMm& o,
cmpless xmm2,xmm1
movss r,xmm2
}
- return(r[0]&1);
+ return (r[0] & 1);
#endif
#else
- return(Proximity(o,a)<Proximity(o,b)?0:1);
+ return (Proximity(o, a) < Proximity(o, b) ? 0 : 1);
#endif
}
//
-DBVT_INLINE void Merge( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b,
- btDbvtAabbMm& r)
+DBVT_INLINE void Merge(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b,
+ btDbvtAabbMm& r)
{
-#if DBVT_MERGE_IMPL==DBVT_IMPL_SSE
- __m128 ami(_mm_load_ps(a.mi));
- __m128 amx(_mm_load_ps(a.mx));
- __m128 bmi(_mm_load_ps(b.mi));
- __m128 bmx(_mm_load_ps(b.mx));
- ami=_mm_min_ps(ami,bmi);
- amx=_mm_max_ps(amx,bmx);
- _mm_store_ps(r.mi,ami);
- _mm_store_ps(r.mx,amx);
+#if DBVT_MERGE_IMPL == DBVT_IMPL_SSE
+ __m128 ami(_mm_load_ps(a.mi));
+ __m128 amx(_mm_load_ps(a.mx));
+ __m128 bmi(_mm_load_ps(b.mi));
+ __m128 bmx(_mm_load_ps(b.mx));
+ ami = _mm_min_ps(ami, bmi);
+ amx = _mm_max_ps(amx, bmx);
+ _mm_store_ps(r.mi, ami);
+ _mm_store_ps(r.mx, amx);
#else
- for(int i=0;i<3;++i)
+ for (int i = 0; i < 3; ++i)
{
- if(a.mi[i]<b.mi[i]) r.mi[i]=a.mi[i]; else r.mi[i]=b.mi[i];
- if(a.mx[i]>b.mx[i]) r.mx[i]=a.mx[i]; else r.mx[i]=b.mx[i];
+ if (a.mi[i] < b.mi[i])
+ r.mi[i] = a.mi[i];
+ else
+ r.mi[i] = b.mi[i];
+ if (a.mx[i] > b.mx[i])
+ r.mx[i] = a.mx[i];
+ else
+ r.mx[i] = b.mx[i];
}
#endif
}
//
-DBVT_INLINE bool NotEqual( const btDbvtAabbMm& a,
- const btDbvtAabbMm& b)
+DBVT_INLINE bool NotEqual(const btDbvtAabbMm& a,
+ const btDbvtAabbMm& b)
{
- return( (a.mi.x()!=b.mi.x())||
- (a.mi.y()!=b.mi.y())||
- (a.mi.z()!=b.mi.z())||
- (a.mx.x()!=b.mx.x())||
- (a.mx.y()!=b.mx.y())||
- (a.mx.z()!=b.mx.z()));
+ return ((a.mi.x() != b.mi.x()) ||
+ (a.mi.y() != b.mi.y()) ||
+ (a.mi.z() != b.mi.z()) ||
+ (a.mx.x() != b.mx.x()) ||
+ (a.mx.y() != b.mx.y()) ||
+ (a.mx.z() != b.mx.z()));
}
//
@@ -704,162 +743,162 @@ DBVT_INLINE bool NotEqual( const btDbvtAabbMm& a,
//
DBVT_PREFIX
-inline void btDbvt::enumNodes( const btDbvtNode* root,
- DBVT_IPOLICY)
+inline void btDbvt::enumNodes(const btDbvtNode* root,
+ DBVT_IPOLICY)
{
DBVT_CHECKTYPE
- policy.Process(root);
- if(root->isinternal())
+ policy.Process(root);
+ if (root->isinternal())
{
- enumNodes(root->childs[0],policy);
- enumNodes(root->childs[1],policy);
+ enumNodes(root->childs[0], policy);
+ enumNodes(root->childs[1], policy);
}
}
//
DBVT_PREFIX
-inline void btDbvt::enumLeaves( const btDbvtNode* root,
- DBVT_IPOLICY)
+inline void btDbvt::enumLeaves(const btDbvtNode* root,
+ DBVT_IPOLICY)
{
DBVT_CHECKTYPE
- if(root->isinternal())
- {
- enumLeaves(root->childs[0],policy);
- enumLeaves(root->childs[1],policy);
- }
- else
- {
- policy.Process(root);
- }
+ if (root->isinternal())
+ {
+ enumLeaves(root->childs[0], policy);
+ enumLeaves(root->childs[1], policy);
+ }
+ else
+ {
+ policy.Process(root);
+ }
}
//
DBVT_PREFIX
-inline void btDbvt::collideTT( const btDbvtNode* root0,
- const btDbvtNode* root1,
- DBVT_IPOLICY)
+inline void btDbvt::collideTT(const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ DBVT_IPOLICY)
{
DBVT_CHECKTYPE
- if(root0&&root1)
+ if (root0 && root1)
+ {
+ int depth = 1;
+ int treshold = DOUBLE_STACKSIZE - 4;
+ btAlignedObjectArray<sStkNN> stkStack;
+ stkStack.resize(DOUBLE_STACKSIZE);
+ stkStack[0] = sStkNN(root0, root1);
+ do
{
- int depth=1;
- int treshold=DOUBLE_STACKSIZE-4;
- btAlignedObjectArray<sStkNN> stkStack;
- stkStack.resize(DOUBLE_STACKSIZE);
- stkStack[0]=sStkNN(root0,root1);
- do {
- sStkNN p=stkStack[--depth];
- if(depth>treshold)
+ sStkNN p = stkStack[--depth];
+ if (depth > treshold)
+ {
+ stkStack.resize(stkStack.size() * 2);
+ treshold = stkStack.size() - 4;
+ }
+ if (p.a == p.b)
+ {
+ if (p.a->isinternal())
{
- stkStack.resize(stkStack.size()*2);
- treshold=stkStack.size()-4;
+ stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[0]);
+ stkStack[depth++] = sStkNN(p.a->childs[1], p.a->childs[1]);
+ stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[1]);
}
- if(p.a==p.b)
+ }
+ else if (Intersect(p.a->volume, p.b->volume))
+ {
+ if (p.a->isinternal())
{
- if(p.a->isinternal())
+ if (p.b->isinternal())
+ {
+ stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[0]);
+ stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[0]);
+ stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[1]);
+ stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[1]);
+ }
+ else
{
- stkStack[depth++]=sStkNN(p.a->childs[0],p.a->childs[0]);
- stkStack[depth++]=sStkNN(p.a->childs[1],p.a->childs[1]);
- stkStack[depth++]=sStkNN(p.a->childs[0],p.a->childs[1]);
+ stkStack[depth++] = sStkNN(p.a->childs[0], p.b);
+ stkStack[depth++] = sStkNN(p.a->childs[1], p.b);
}
}
- else if(Intersect(p.a->volume,p.b->volume))
+ else
{
- if(p.a->isinternal())
+ if (p.b->isinternal())
{
- if(p.b->isinternal())
- {
- stkStack[depth++]=sStkNN(p.a->childs[0],p.b->childs[0]);
- stkStack[depth++]=sStkNN(p.a->childs[1],p.b->childs[0]);
- stkStack[depth++]=sStkNN(p.a->childs[0],p.b->childs[1]);
- stkStack[depth++]=sStkNN(p.a->childs[1],p.b->childs[1]);
- }
- else
- {
- stkStack[depth++]=sStkNN(p.a->childs[0],p.b);
- stkStack[depth++]=sStkNN(p.a->childs[1],p.b);
- }
+ stkStack[depth++] = sStkNN(p.a, p.b->childs[0]);
+ stkStack[depth++] = sStkNN(p.a, p.b->childs[1]);
}
else
{
- if(p.b->isinternal())
- {
- stkStack[depth++]=sStkNN(p.a,p.b->childs[0]);
- stkStack[depth++]=sStkNN(p.a,p.b->childs[1]);
- }
- else
- {
- policy.Process(p.a,p.b);
- }
+ policy.Process(p.a, p.b);
}
}
- } while(depth);
- }
+ }
+ } while (depth);
+ }
}
-
-
DBVT_PREFIX
-inline void btDbvt::collideTTpersistentStack( const btDbvtNode* root0,
- const btDbvtNode* root1,
- DBVT_IPOLICY)
+inline void btDbvt::collideTTpersistentStack(const btDbvtNode* root0,
+ const btDbvtNode* root1,
+ DBVT_IPOLICY)
{
DBVT_CHECKTYPE
- if(root0&&root1)
+ if (root0 && root1)
+ {
+ int depth = 1;
+ int treshold = DOUBLE_STACKSIZE - 4;
+
+ m_stkStack.resize(DOUBLE_STACKSIZE);
+ m_stkStack[0] = sStkNN(root0, root1);
+ do
{
- int depth=1;
- int treshold=DOUBLE_STACKSIZE-4;
-
- m_stkStack.resize(DOUBLE_STACKSIZE);
- m_stkStack[0]=sStkNN(root0,root1);
- do {
- sStkNN p=m_stkStack[--depth];
- if(depth>treshold)
+ sStkNN p = m_stkStack[--depth];
+ if (depth > treshold)
+ {
+ m_stkStack.resize(m_stkStack.size() * 2);
+ treshold = m_stkStack.size() - 4;
+ }
+ if (p.a == p.b)
+ {
+ if (p.a->isinternal())
{
- m_stkStack.resize(m_stkStack.size()*2);
- treshold=m_stkStack.size()-4;
+ m_stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[0]);
+ m_stkStack[depth++] = sStkNN(p.a->childs[1], p.a->childs[1]);
+ m_stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[1]);
}
- if(p.a==p.b)
+ }
+ else if (Intersect(p.a->volume, p.b->volume))
+ {
+ if (p.a->isinternal())
{
- if(p.a->isinternal())
+ if (p.b->isinternal())
{
- m_stkStack[depth++]=sStkNN(p.a->childs[0],p.a->childs[0]);
- m_stkStack[depth++]=sStkNN(p.a->childs[1],p.a->childs[1]);
- m_stkStack[depth++]=sStkNN(p.a->childs[0],p.a->childs[1]);
+ m_stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[0]);
+ m_stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[0]);
+ m_stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[1]);
+ m_stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[1]);
+ }
+ else
+ {
+ m_stkStack[depth++] = sStkNN(p.a->childs[0], p.b);
+ m_stkStack[depth++] = sStkNN(p.a->childs[1], p.b);
}
}
- else if(Intersect(p.a->volume,p.b->volume))
+ else
{
- if(p.a->isinternal())
+ if (p.b->isinternal())
{
- if(p.b->isinternal())
- {
- m_stkStack[depth++]=sStkNN(p.a->childs[0],p.b->childs[0]);
- m_stkStack[depth++]=sStkNN(p.a->childs[1],p.b->childs[0]);
- m_stkStack[depth++]=sStkNN(p.a->childs[0],p.b->childs[1]);
- m_stkStack[depth++]=sStkNN(p.a->childs[1],p.b->childs[1]);
- }
- else
- {
- m_stkStack[depth++]=sStkNN(p.a->childs[0],p.b);
- m_stkStack[depth++]=sStkNN(p.a->childs[1],p.b);
- }
+ m_stkStack[depth++] = sStkNN(p.a, p.b->childs[0]);
+ m_stkStack[depth++] = sStkNN(p.a, p.b->childs[1]);
}
else
{
- if(p.b->isinternal())
- {
- m_stkStack[depth++]=sStkNN(p.a,p.b->childs[0]);
- m_stkStack[depth++]=sStkNN(p.a,p.b->childs[1]);
- }
- else
- {
- policy.Process(p.a,p.b);
- }
+ policy.Process(p.a, p.b);
}
}
- } while(depth);
- }
+ }
+ } while (depth);
+ }
}
#if 0
@@ -929,33 +968,35 @@ inline void btDbvt::collideTT( const btDbvtNode* root0,
const btTransform xform=xform0.inverse()*xform1;
collideTT(root0,root1,xform,policy);
}
-#endif
+#endif
DBVT_PREFIX
-inline void btDbvt::collideTV( const btDbvtNode* root,
- const btDbvtVolume& vol,
- DBVT_IPOLICY) const
+inline void btDbvt::collideTV(const btDbvtNode* root,
+ const btDbvtVolume& vol,
+ DBVT_IPOLICY) const
{
DBVT_CHECKTYPE
- if(root)
+ if (root)
{
- ATTRIBUTE_ALIGNED16(btDbvtVolume) volume(vol);
- btAlignedObjectArray<const btDbvtNode*> stack;
+ ATTRIBUTE_ALIGNED16(btDbvtVolume)
+ volume(vol);
+ btAlignedObjectArray<const btDbvtNode*> stack;
stack.resize(0);
#ifndef BT_DISABLE_STACK_TEMP_MEMORY
- char tempmemory[SIMPLE_STACKSIZE*sizeof(const btDbvtNode*)];
+ char tempmemory[SIMPLE_STACKSIZE * sizeof(const btDbvtNode*)];
stack.initializeFromBuffer(tempmemory, 0, SIMPLE_STACKSIZE);
#else
stack.reserve(SIMPLE_STACKSIZE);
-#endif //BT_DISABLE_STACK_TEMP_MEMORY
+#endif //BT_DISABLE_STACK_TEMP_MEMORY
stack.push_back(root);
- do {
- const btDbvtNode* n=stack[stack.size()-1];
+ do
+ {
+ const btDbvtNode* n = stack[stack.size() - 1];
stack.pop_back();
- if(Intersect(n->volume,volume))
+ if (Intersect(n->volume, volume))
{
- if(n->isinternal())
+ if (n->isinternal())
{
stack.push_back(n->childs[0]);
stack.push_back(n->childs[1]);
@@ -965,30 +1006,32 @@ inline void btDbvt::collideTV( const btDbvtNode* root,
policy.Process(n);
}
}
- } while(stack.size()>0);
+ } while (stack.size() > 0);
}
}
//
DBVT_PREFIX
-inline void btDbvt::collideTVNoStackAlloc( const btDbvtNode* root,
- const btDbvtVolume& vol,
- btNodeStack& stack,
- DBVT_IPOLICY) const
+inline void btDbvt::collideTVNoStackAlloc(const btDbvtNode* root,
+ const btDbvtVolume& vol,
+ btNodeStack& stack,
+ DBVT_IPOLICY) const
{
DBVT_CHECKTYPE
- if(root)
+ if (root)
{
- ATTRIBUTE_ALIGNED16(btDbvtVolume) volume(vol);
+ ATTRIBUTE_ALIGNED16(btDbvtVolume)
+ volume(vol);
stack.resize(0);
stack.reserve(SIMPLE_STACKSIZE);
stack.push_back(root);
- do {
- const btDbvtNode* n=stack[stack.size()-1];
+ do
+ {
+ const btDbvtNode* n = stack[stack.size() - 1];
stack.pop_back();
- if(Intersect(n->volume,volume))
+ if (Intersect(n->volume, volume))
{
- if(n->isinternal())
+ if (n->isinternal())
{
stack.push_back(n->childs[0]);
stack.push_back(n->childs[1]);
@@ -998,328 +1041,346 @@ inline void btDbvt::collideTVNoStackAlloc( const btDbvtNode* root,
policy.Process(n);
}
}
- } while(stack.size()>0);
+ } while (stack.size() > 0);
}
}
-
DBVT_PREFIX
-inline void btDbvt::rayTestInternal( const btDbvtNode* root,
- const btVector3& rayFrom,
- const btVector3& rayTo,
- const btVector3& rayDirectionInverse,
- unsigned int signs[3],
- btScalar lambda_max,
- const btVector3& aabbMin,
- const btVector3& aabbMax,
- btAlignedObjectArray<const btDbvtNode*>& stack,
- DBVT_IPOLICY ) const
+inline void btDbvt::rayTestInternal(const btDbvtNode* root,
+ const btVector3& rayFrom,
+ const btVector3& rayTo,
+ const btVector3& rayDirectionInverse,
+ unsigned int signs[3],
+ btScalar lambda_max,
+ const btVector3& aabbMin,
+ const btVector3& aabbMax,
+ btAlignedObjectArray<const btDbvtNode*>& stack,
+ DBVT_IPOLICY) const
{
- (void) rayTo;
+ (void)rayTo;
DBVT_CHECKTYPE
- if(root)
+ if (root)
{
btVector3 resultNormal;
- int depth=1;
- int treshold=DOUBLE_STACKSIZE-2;
+ int depth = 1;
+ int treshold = DOUBLE_STACKSIZE - 2;
stack.resize(DOUBLE_STACKSIZE);
- stack[0]=root;
+ stack[0] = root;
btVector3 bounds[2];
- do
+ do
{
- const btDbvtNode* node=stack[--depth];
- bounds[0] = node->volume.Mins()-aabbMax;
- bounds[1] = node->volume.Maxs()-aabbMin;
- btScalar tmin=1.f,lambda_min=0.f;
- unsigned int result1=false;
- result1 = btRayAabb2(rayFrom,rayDirectionInverse,signs,bounds,tmin,lambda_min,lambda_max);
- if(result1)
+ const btDbvtNode* node = stack[--depth];
+ bounds[0] = node->volume.Mins() - aabbMax;
+ bounds[1] = node->volume.Maxs() - aabbMin;
+ btScalar tmin = 1.f, lambda_min = 0.f;
+ unsigned int result1 = false;
+ result1 = btRayAabb2(rayFrom, rayDirectionInverse, signs, bounds, tmin, lambda_min, lambda_max);
+ if (result1)
{
- if(node->isinternal())
+ if (node->isinternal())
{
- if(depth>treshold)
+ if (depth > treshold)
{
- stack.resize(stack.size()*2);
- treshold=stack.size()-2;
+ stack.resize(stack.size() * 2);
+ treshold = stack.size() - 2;
}
- stack[depth++]=node->childs[0];
- stack[depth++]=node->childs[1];
+ stack[depth++] = node->childs[0];
+ stack[depth++] = node->childs[1];
}
else
{
policy.Process(node);
}
}
- } while(depth);
+ } while (depth);
}
}
//
DBVT_PREFIX
-inline void btDbvt::rayTest( const btDbvtNode* root,
- const btVector3& rayFrom,
- const btVector3& rayTo,
- DBVT_IPOLICY)
+inline void btDbvt::rayTest(const btDbvtNode* root,
+ const btVector3& rayFrom,
+ const btVector3& rayTo,
+ DBVT_IPOLICY)
{
DBVT_CHECKTYPE
- if(root)
- {
- btVector3 rayDir = (rayTo-rayFrom);
- rayDir.normalize ();
+ if (root)
+ {
+ btVector3 rayDir = (rayTo - rayFrom);
+ rayDir.normalize();
- ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
- btVector3 rayDirectionInverse;
- rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
- rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
- rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
- unsigned int signs[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0};
+ ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
+ btVector3 rayDirectionInverse;
+ rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
+ rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
+ rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
+ unsigned int signs[3] = {rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0};
- btScalar lambda_max = rayDir.dot(rayTo-rayFrom);
+ btScalar lambda_max = rayDir.dot(rayTo - rayFrom);
- btVector3 resultNormal;
+ btVector3 resultNormal;
- btAlignedObjectArray<const btDbvtNode*> stack;
+ btAlignedObjectArray<const btDbvtNode*> stack;
- int depth=1;
- int treshold=DOUBLE_STACKSIZE-2;
+ int depth = 1;
+ int treshold = DOUBLE_STACKSIZE - 2;
- char tempmemory[DOUBLE_STACKSIZE * sizeof(const btDbvtNode*)];
+ char tempmemory[DOUBLE_STACKSIZE * sizeof(const btDbvtNode*)];
#ifndef BT_DISABLE_STACK_TEMP_MEMORY
- stack.initializeFromBuffer(tempmemory, DOUBLE_STACKSIZE, DOUBLE_STACKSIZE);
-#else//BT_DISABLE_STACK_TEMP_MEMORY
- stack.resize(DOUBLE_STACKSIZE);
-#endif //BT_DISABLE_STACK_TEMP_MEMORY
- stack[0]=root;
- btVector3 bounds[2];
- do {
- const btDbvtNode* node=stack[--depth];
+ stack.initializeFromBuffer(tempmemory, DOUBLE_STACKSIZE, DOUBLE_STACKSIZE);
+#else //BT_DISABLE_STACK_TEMP_MEMORY
+ stack.resize(DOUBLE_STACKSIZE);
+#endif //BT_DISABLE_STACK_TEMP_MEMORY
+ stack[0] = root;
+ btVector3 bounds[2];
+ do
+ {
+ const btDbvtNode* node = stack[--depth];
+
+ bounds[0] = node->volume.Mins();
+ bounds[1] = node->volume.Maxs();
- bounds[0] = node->volume.Mins();
- bounds[1] = node->volume.Maxs();
-
- btScalar tmin=1.f,lambda_min=0.f;
- unsigned int result1 = btRayAabb2(rayFrom,rayDirectionInverse,signs,bounds,tmin,lambda_min,lambda_max);
+ btScalar tmin = 1.f, lambda_min = 0.f;
+ unsigned int result1 = btRayAabb2(rayFrom, rayDirectionInverse, signs, bounds, tmin, lambda_min, lambda_max);
#ifdef COMPARE_BTRAY_AABB2
- btScalar param=1.f;
- bool result2 = btRayAabb(rayFrom,rayTo,node->volume.Mins(),node->volume.Maxs(),param,resultNormal);
- btAssert(result1 == result2);
-#endif //TEST_BTRAY_AABB2
+ btScalar param = 1.f;
+ bool result2 = btRayAabb(rayFrom, rayTo, node->volume.Mins(), node->volume.Maxs(), param, resultNormal);
+ btAssert(result1 == result2);
+#endif //TEST_BTRAY_AABB2
- if(result1)
+ if (result1)
+ {
+ if (node->isinternal())
{
- if(node->isinternal())
+ if (depth > treshold)
{
- if(depth>treshold)
- {
- stack.resize(stack.size()*2);
- treshold=stack.size()-2;
- }
- stack[depth++]=node->childs[0];
- stack[depth++]=node->childs[1];
- }
- else
- {
- policy.Process(node);
+ stack.resize(stack.size() * 2);
+ treshold = stack.size() - 2;
}
+ stack[depth++] = node->childs[0];
+ stack[depth++] = node->childs[1];
}
- } while(depth);
-
- }
+ else
+ {
+ policy.Process(node);
+ }
+ }
+ } while (depth);
+ }
}
//
DBVT_PREFIX
-inline void btDbvt::collideKDOP(const btDbvtNode* root,
- const btVector3* normals,
- const btScalar* offsets,
- int count,
- DBVT_IPOLICY)
+inline void btDbvt::collideKDOP(const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ int count,
+ DBVT_IPOLICY)
{
DBVT_CHECKTYPE
- if(root)
+ if (root)
+ {
+ const int inside = (1 << count) - 1;
+ btAlignedObjectArray<sStkNP> stack;
+ int signs[sizeof(unsigned) * 8];
+ btAssert(count < int(sizeof(signs) / sizeof(signs[0])));
+ for (int i = 0; i < count; ++i)
{
- const int inside=(1<<count)-1;
- btAlignedObjectArray<sStkNP> stack;
- int signs[sizeof(unsigned)*8];
- btAssert(count<int (sizeof(signs)/sizeof(signs[0])));
- for(int i=0;i<count;++i)
+ signs[i] = ((normals[i].x() >= 0) ? 1 : 0) +
+ ((normals[i].y() >= 0) ? 2 : 0) +
+ ((normals[i].z() >= 0) ? 4 : 0);
+ }
+ stack.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(sStkNP(root, 0));
+ do
+ {
+ sStkNP se = stack[stack.size() - 1];
+ bool out = false;
+ stack.pop_back();
+ for (int i = 0, j = 1; (!out) && (i < count); ++i, j <<= 1)
{
- signs[i]= ((normals[i].x()>=0)?1:0)+
- ((normals[i].y()>=0)?2:0)+
- ((normals[i].z()>=0)?4:0);
- }
- stack.reserve(SIMPLE_STACKSIZE);
- stack.push_back(sStkNP(root,0));
- do {
- sStkNP se=stack[stack.size()-1];
- bool out=false;
- stack.pop_back();
- for(int i=0,j=1;(!out)&&(i<count);++i,j<<=1)
+ if (0 == (se.mask & j))
{
- if(0==(se.mask&j))
+ const int side = se.node->volume.Classify(normals[i], offsets[i], signs[i]);
+ switch (side)
{
- const int side=se.node->volume.Classify(normals[i],offsets[i],signs[i]);
- switch(side)
- {
- case -1: out=true;break;
- case +1: se.mask|=j;break;
- }
+ case -1:
+ out = true;
+ break;
+ case +1:
+ se.mask |= j;
+ break;
}
}
- if(!out)
+ }
+ if (!out)
+ {
+ if ((se.mask != inside) && (se.node->isinternal()))
{
- if((se.mask!=inside)&&(se.node->isinternal()))
- {
- stack.push_back(sStkNP(se.node->childs[0],se.mask));
- stack.push_back(sStkNP(se.node->childs[1],se.mask));
- }
- else
- {
- if(policy.AllLeaves(se.node)) enumLeaves(se.node,policy);
- }
+ stack.push_back(sStkNP(se.node->childs[0], se.mask));
+ stack.push_back(sStkNP(se.node->childs[1], se.mask));
}
- } while(stack.size());
- }
+ else
+ {
+ if (policy.AllLeaves(se.node)) enumLeaves(se.node, policy);
+ }
+ }
+ } while (stack.size());
+ }
}
//
DBVT_PREFIX
-inline void btDbvt::collideOCL( const btDbvtNode* root,
- const btVector3* normals,
- const btScalar* offsets,
- const btVector3& sortaxis,
- int count,
- DBVT_IPOLICY,
- bool fsort)
+inline void btDbvt::collideOCL(const btDbvtNode* root,
+ const btVector3* normals,
+ const btScalar* offsets,
+ const btVector3& sortaxis,
+ int count,
+ DBVT_IPOLICY,
+ bool fsort)
{
DBVT_CHECKTYPE
- if(root)
+ if (root)
+ {
+ const unsigned srtsgns = (sortaxis[0] >= 0 ? 1 : 0) +
+ (sortaxis[1] >= 0 ? 2 : 0) +
+ (sortaxis[2] >= 0 ? 4 : 0);
+ const int inside = (1 << count) - 1;
+ btAlignedObjectArray<sStkNPS> stock;
+ btAlignedObjectArray<int> ifree;
+ btAlignedObjectArray<int> stack;
+ int signs[sizeof(unsigned) * 8];
+ btAssert(count < int(sizeof(signs) / sizeof(signs[0])));
+ for (int i = 0; i < count; ++i)
{
- const unsigned srtsgns=(sortaxis[0]>=0?1:0)+
- (sortaxis[1]>=0?2:0)+
- (sortaxis[2]>=0?4:0);
- const int inside=(1<<count)-1;
- btAlignedObjectArray<sStkNPS> stock;
- btAlignedObjectArray<int> ifree;
- btAlignedObjectArray<int> stack;
- int signs[sizeof(unsigned)*8];
- btAssert(count<int (sizeof(signs)/sizeof(signs[0])));
- for(int i=0;i<count;++i)
+ signs[i] = ((normals[i].x() >= 0) ? 1 : 0) +
+ ((normals[i].y() >= 0) ? 2 : 0) +
+ ((normals[i].z() >= 0) ? 4 : 0);
+ }
+ stock.reserve(SIMPLE_STACKSIZE);
+ stack.reserve(SIMPLE_STACKSIZE);
+ ifree.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(allocate(ifree, stock, sStkNPS(root, 0, root->volume.ProjectMinimum(sortaxis, srtsgns))));
+ do
+ {
+ const int id = stack[stack.size() - 1];
+ sStkNPS se = stock[id];
+ stack.pop_back();
+ ifree.push_back(id);
+ if (se.mask != inside)
{
- signs[i]= ((normals[i].x()>=0)?1:0)+
- ((normals[i].y()>=0)?2:0)+
- ((normals[i].z()>=0)?4:0);
- }
- stock.reserve(SIMPLE_STACKSIZE);
- stack.reserve(SIMPLE_STACKSIZE);
- ifree.reserve(SIMPLE_STACKSIZE);
- stack.push_back(allocate(ifree,stock,sStkNPS(root,0,root->volume.ProjectMinimum(sortaxis,srtsgns))));
- do {
- const int id=stack[stack.size()-1];
- sStkNPS se=stock[id];
- stack.pop_back();ifree.push_back(id);
- if(se.mask!=inside)
+ bool out = false;
+ for (int i = 0, j = 1; (!out) && (i < count); ++i, j <<= 1)
{
- bool out=false;
- for(int i=0,j=1;(!out)&&(i<count);++i,j<<=1)
+ if (0 == (se.mask & j))
{
- if(0==(se.mask&j))
+ const int side = se.node->volume.Classify(normals[i], offsets[i], signs[i]);
+ switch (side)
{
- const int side=se.node->volume.Classify(normals[i],offsets[i],signs[i]);
- switch(side)
- {
- case -1: out=true;break;
- case +1: se.mask|=j;break;
- }
+ case -1:
+ out = true;
+ break;
+ case +1:
+ se.mask |= j;
+ break;
}
}
- if(out) continue;
}
- if(policy.Descent(se.node))
+ if (out) continue;
+ }
+ if (policy.Descent(se.node))
+ {
+ if (se.node->isinternal())
{
- if(se.node->isinternal())
+ const btDbvtNode* pns[] = {se.node->childs[0], se.node->childs[1]};
+ sStkNPS nes[] = {sStkNPS(pns[0], se.mask, pns[0]->volume.ProjectMinimum(sortaxis, srtsgns)),
+ sStkNPS(pns[1], se.mask, pns[1]->volume.ProjectMinimum(sortaxis, srtsgns))};
+ const int q = nes[0].value < nes[1].value ? 1 : 0;
+ int j = stack.size();
+ if (fsort && (j > 0))
{
- const btDbvtNode* pns[]={ se.node->childs[0],se.node->childs[1]};
- sStkNPS nes[]={ sStkNPS(pns[0],se.mask,pns[0]->volume.ProjectMinimum(sortaxis,srtsgns)),
- sStkNPS(pns[1],se.mask,pns[1]->volume.ProjectMinimum(sortaxis,srtsgns))};
- const int q=nes[0].value<nes[1].value?1:0;
- int j=stack.size();
- if(fsort&&(j>0))
- {
- /* Insert 0 */
- j=nearest(&stack[0],&stock[0],nes[q].value,0,stack.size());
- stack.push_back(0);
-
- //void * memmove ( void * destination, const void * source, size_t num );
-
+ /* Insert 0 */
+ j = nearest(&stack[0], &stock[0], nes[q].value, 0, stack.size());
+ stack.push_back(0);
+
+ //void * memmove ( void * destination, const void * source, size_t num );
+
#if DBVT_USE_MEMMOVE
- {
- int num_items_to_move = stack.size()-1-j;
- if(num_items_to_move > 0)
- memmove(&stack[j+1],&stack[j],sizeof(int)*num_items_to_move);
- }
+ {
+ int num_items_to_move = stack.size() - 1 - j;
+ if (num_items_to_move > 0)
+ memmove(&stack[j + 1], &stack[j], sizeof(int) * num_items_to_move);
+ }
#else
- for(int k=stack.size()-1;k>j;--k) {
- stack[k]=stack[k-1];
- }
+ for (int k = stack.size() - 1; k > j; --k)
+ {
+ stack[k] = stack[k - 1];
+ }
#endif
- stack[j]=allocate(ifree,stock,nes[q]);
- /* Insert 1 */
- j=nearest(&stack[0],&stock[0],nes[1-q].value,j,stack.size());
- stack.push_back(0);
+ stack[j] = allocate(ifree, stock, nes[q]);
+ /* Insert 1 */
+ j = nearest(&stack[0], &stock[0], nes[1 - q].value, j, stack.size());
+ stack.push_back(0);
#if DBVT_USE_MEMMOVE
- {
- int num_items_to_move = stack.size()-1-j;
- if(num_items_to_move > 0)
- memmove(&stack[j+1],&stack[j],sizeof(int)*num_items_to_move);
- }
-#else
- for(int k=stack.size()-1;k>j;--k) {
- stack[k]=stack[k-1];
- }
-#endif
- stack[j]=allocate(ifree,stock,nes[1-q]);
+ {
+ int num_items_to_move = stack.size() - 1 - j;
+ if (num_items_to_move > 0)
+ memmove(&stack[j + 1], &stack[j], sizeof(int) * num_items_to_move);
}
- else
+#else
+ for (int k = stack.size() - 1; k > j; --k)
{
- stack.push_back(allocate(ifree,stock,nes[q]));
- stack.push_back(allocate(ifree,stock,nes[1-q]));
+ stack[k] = stack[k - 1];
}
+#endif
+ stack[j] = allocate(ifree, stock, nes[1 - q]);
}
else
{
- policy.Process(se.node,se.value);
+ stack.push_back(allocate(ifree, stock, nes[q]));
+ stack.push_back(allocate(ifree, stock, nes[1 - q]));
}
}
- } while(stack.size());
- }
+ else
+ {
+ policy.Process(se.node, se.value);
+ }
+ }
+ } while (stack.size());
+ }
}
//
DBVT_PREFIX
-inline void btDbvt::collideTU( const btDbvtNode* root,
- DBVT_IPOLICY)
+inline void btDbvt::collideTU(const btDbvtNode* root,
+ DBVT_IPOLICY)
{
DBVT_CHECKTYPE
- if(root)
+ if (root)
+ {
+ btAlignedObjectArray<const btDbvtNode*> stack;
+ stack.reserve(SIMPLE_STACKSIZE);
+ stack.push_back(root);
+ do
{
- btAlignedObjectArray<const btDbvtNode*> stack;
- stack.reserve(SIMPLE_STACKSIZE);
- stack.push_back(root);
- do {
- const btDbvtNode* n=stack[stack.size()-1];
- stack.pop_back();
- if(policy.Descent(n))
+ const btDbvtNode* n = stack[stack.size() - 1];
+ stack.pop_back();
+ if (policy.Descent(n))
+ {
+ if (n->isinternal())
{
- if(n->isinternal())
- { stack.push_back(n->childs[0]);stack.push_back(n->childs[1]); }
- else
- { policy.Process(n); }
+ stack.push_back(n->childs[0]);
+ stack.push_back(n->childs[1]);
}
- } while(stack.size()>0);
- }
+ else
+ {
+ policy.Process(n);
+ }
+ }
+ } while (stack.size() > 0);
+ }
}
//
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp
index 14cd1a31ea..7b39dbdc0f 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp
@@ -22,28 +22,27 @@ btScalar gDbvtMargin = btScalar(0.05);
// Profiling
//
-#if DBVT_BP_PROFILE||DBVT_BP_ENABLE_BENCHMARK
+#if DBVT_BP_PROFILE || DBVT_BP_ENABLE_BENCHMARK
#include <stdio.h>
#endif
#if DBVT_BP_PROFILE
-struct ProfileScope
+struct ProfileScope
{
- __forceinline ProfileScope(btClock& clock,unsigned long& value) :
- m_clock(&clock),m_value(&value),m_base(clock.getTimeMicroseconds())
+ __forceinline ProfileScope(btClock& clock, unsigned long& value) : m_clock(&clock), m_value(&value), m_base(clock.getTimeMicroseconds())
{
}
__forceinline ~ProfileScope()
{
- (*m_value)+=m_clock->getTimeMicroseconds()-m_base;
+ (*m_value) += m_clock->getTimeMicroseconds() - m_base;
}
- btClock* m_clock;
- unsigned long* m_value;
- unsigned long m_base;
+ btClock* m_clock;
+ unsigned long* m_value;
+ unsigned long m_base;
};
-#define SPC(_value_) ProfileScope spc_scope(m_clock,_value_)
+#define SPC(_value_) ProfileScope spc_scope(m_clock, _value_)
#else
-#define SPC(_value_)
+#define SPC(_value_)
#endif
//
@@ -52,66 +51,75 @@ struct ProfileScope
//
template <typename T>
-static inline void listappend(T* item,T*& list)
+static inline void listappend(T* item, T*& list)
{
- item->links[0]=0;
- item->links[1]=list;
- if(list) list->links[0]=item;
- list=item;
+ item->links[0] = 0;
+ item->links[1] = list;
+ if (list) list->links[0] = item;
+ list = item;
}
//
template <typename T>
-static inline void listremove(T* item,T*& list)
+static inline void listremove(T* item, T*& list)
{
- if(item->links[0]) item->links[0]->links[1]=item->links[1]; else list=item->links[1];
- if(item->links[1]) item->links[1]->links[0]=item->links[0];
+ if (item->links[0])
+ item->links[0]->links[1] = item->links[1];
+ else
+ list = item->links[1];
+ if (item->links[1]) item->links[1]->links[0] = item->links[0];
}
//
template <typename T>
-static inline int listcount(T* root)
+static inline int listcount(T* root)
{
- int n=0;
- while(root) { ++n;root=root->links[1]; }
- return(n);
+ int n = 0;
+ while (root)
+ {
+ ++n;
+ root = root->links[1];
+ }
+ return (n);
}
//
template <typename T>
-static inline void clear(T& value)
+static inline void clear(T& value)
{
- static const struct ZeroDummy : T {} zerodummy;
- value=zerodummy;
+ static const struct ZeroDummy : T
+ {
+ } zerodummy;
+ value = zerodummy;
}
//
// Colliders
//
-/* Tree collider */
-struct btDbvtTreeCollider : btDbvt::ICollide
+/* Tree collider */
+struct btDbvtTreeCollider : btDbvt::ICollide
{
- btDbvtBroadphase* pbp;
- btDbvtProxy* proxy;
+ btDbvtBroadphase* pbp;
+ btDbvtProxy* proxy;
btDbvtTreeCollider(btDbvtBroadphase* p) : pbp(p) {}
- void Process(const btDbvtNode* na,const btDbvtNode* nb)
+ void Process(const btDbvtNode* na, const btDbvtNode* nb)
{
- if(na!=nb)
+ if (na != nb)
{
- btDbvtProxy* pa=(btDbvtProxy*)na->data;
- btDbvtProxy* pb=(btDbvtProxy*)nb->data;
+ btDbvtProxy* pa = (btDbvtProxy*)na->data;
+ btDbvtProxy* pb = (btDbvtProxy*)nb->data;
#if DBVT_BP_SORTPAIRS
- if(pa->m_uniqueId>pb->m_uniqueId)
- btSwap(pa,pb);
+ if (pa->m_uniqueId > pb->m_uniqueId)
+ btSwap(pa, pb);
#endif
- pbp->m_paircache->addOverlappingPair(pa,pb);
+ pbp->m_paircache->addOverlappingPair(pa, pb);
++pbp->m_newpairs;
}
}
- void Process(const btDbvtNode* n)
+ void Process(const btDbvtNode* n)
{
- Process(n,proxy->leaf);
+ Process(n, proxy->leaf);
}
};
@@ -122,31 +130,31 @@ struct btDbvtTreeCollider : btDbvt::ICollide
//
btDbvtBroadphase::btDbvtBroadphase(btOverlappingPairCache* paircache)
{
- m_deferedcollide = false;
- m_needcleanup = true;
- m_releasepaircache = (paircache!=0)?false:true;
- m_prediction = 0;
- m_stageCurrent = 0;
- m_fixedleft = 0;
- m_fupdates = 1;
- m_dupdates = 0;
- m_cupdates = 10;
- m_newpairs = 1;
- m_updates_call = 0;
- m_updates_done = 0;
- m_updates_ratio = 0;
- m_paircache = paircache? paircache : new(btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache();
- m_gid = 0;
- m_pid = 0;
- m_cid = 0;
- for(int i=0;i<=STAGECOUNT;++i)
+ m_deferedcollide = false;
+ m_needcleanup = true;
+ m_releasepaircache = (paircache != 0) ? false : true;
+ m_prediction = 0;
+ m_stageCurrent = 0;
+ m_fixedleft = 0;
+ m_fupdates = 1;
+ m_dupdates = 0;
+ m_cupdates = 10;
+ m_newpairs = 1;
+ m_updates_call = 0;
+ m_updates_done = 0;
+ m_updates_ratio = 0;
+ m_paircache = paircache ? paircache : new (btAlignedAlloc(sizeof(btHashedOverlappingPairCache), 16)) btHashedOverlappingPairCache();
+ m_gid = 0;
+ m_pid = 0;
+ m_cid = 0;
+ for (int i = 0; i <= STAGECOUNT; ++i)
{
- m_stageRoots[i]=0;
+ m_stageRoots[i] = 0;
}
#if BT_THREADSAFE
- m_rayTestStacks.resize(BT_MAX_THREAD_COUNT);
+ m_rayTestStacks.resize(BT_MAX_THREAD_COUNT);
#else
- m_rayTestStacks.resize(1);
+ m_rayTestStacks.resize(1);
#endif
#if DBVT_BP_PROFILE
clear(m_profiling);
@@ -156,7 +164,7 @@ btDbvtBroadphase::btDbvtBroadphase(btOverlappingPairCache* paircache)
//
btDbvtBroadphase::~btDbvtBroadphase()
{
- if(m_releasepaircache)
+ if (m_releasepaircache)
{
m_paircache->~btOverlappingPairCache();
btAlignedFree(m_paircache);
@@ -164,302 +172,294 @@ btDbvtBroadphase::~btDbvtBroadphase()
}
//
-btBroadphaseProxy* btDbvtBroadphase::createProxy( const btVector3& aabbMin,
- const btVector3& aabbMax,
- int /*shapeType*/,
- void* userPtr,
- int collisionFilterGroup,
- int collisionFilterMask,
- btDispatcher* /*dispatcher*/)
+btBroadphaseProxy* btDbvtBroadphase::createProxy(const btVector3& aabbMin,
+ const btVector3& aabbMax,
+ int /*shapeType*/,
+ void* userPtr,
+ int collisionFilterGroup,
+ int collisionFilterMask,
+ btDispatcher* /*dispatcher*/)
{
- btDbvtProxy* proxy=new(btAlignedAlloc(sizeof(btDbvtProxy),16)) btDbvtProxy( aabbMin,aabbMax,userPtr,
- collisionFilterGroup,
- collisionFilterMask);
+ btDbvtProxy* proxy = new (btAlignedAlloc(sizeof(btDbvtProxy), 16)) btDbvtProxy(aabbMin, aabbMax, userPtr,
+ collisionFilterGroup,
+ collisionFilterMask);
- btDbvtAabbMm aabb = btDbvtVolume::FromMM(aabbMin,aabbMax);
+ btDbvtAabbMm aabb = btDbvtVolume::FromMM(aabbMin, aabbMax);
//bproxy->aabb = btDbvtVolume::FromMM(aabbMin,aabbMax);
- proxy->stage = m_stageCurrent;
- proxy->m_uniqueId = ++m_gid;
- proxy->leaf = m_sets[0].insert(aabb,proxy);
- listappend(proxy,m_stageRoots[m_stageCurrent]);
- if(!m_deferedcollide)
+ proxy->stage = m_stageCurrent;
+ proxy->m_uniqueId = ++m_gid;
+ proxy->leaf = m_sets[0].insert(aabb, proxy);
+ listappend(proxy, m_stageRoots[m_stageCurrent]);
+ if (!m_deferedcollide)
{
- btDbvtTreeCollider collider(this);
- collider.proxy=proxy;
- m_sets[0].collideTV(m_sets[0].m_root,aabb,collider);
- m_sets[1].collideTV(m_sets[1].m_root,aabb,collider);
+ btDbvtTreeCollider collider(this);
+ collider.proxy = proxy;
+ m_sets[0].collideTV(m_sets[0].m_root, aabb, collider);
+ m_sets[1].collideTV(m_sets[1].m_root, aabb, collider);
}
- return(proxy);
+ return (proxy);
}
//
-void btDbvtBroadphase::destroyProxy( btBroadphaseProxy* absproxy,
- btDispatcher* dispatcher)
+void btDbvtBroadphase::destroyProxy(btBroadphaseProxy* absproxy,
+ btDispatcher* dispatcher)
{
- btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
- if(proxy->stage==STAGECOUNT)
+ btDbvtProxy* proxy = (btDbvtProxy*)absproxy;
+ if (proxy->stage == STAGECOUNT)
m_sets[1].remove(proxy->leaf);
else
m_sets[0].remove(proxy->leaf);
- listremove(proxy,m_stageRoots[proxy->stage]);
- m_paircache->removeOverlappingPairsContainingProxy(proxy,dispatcher);
+ listremove(proxy, m_stageRoots[proxy->stage]);
+ m_paircache->removeOverlappingPairsContainingProxy(proxy, dispatcher);
btAlignedFree(proxy);
- m_needcleanup=true;
+ m_needcleanup = true;
}
-void btDbvtBroadphase::getAabb(btBroadphaseProxy* absproxy,btVector3& aabbMin, btVector3& aabbMax ) const
+void btDbvtBroadphase::getAabb(btBroadphaseProxy* absproxy, btVector3& aabbMin, btVector3& aabbMax) const
{
- btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
+ btDbvtProxy* proxy = (btDbvtProxy*)absproxy;
aabbMin = proxy->m_aabbMin;
aabbMax = proxy->m_aabbMax;
}
-struct BroadphaseRayTester : btDbvt::ICollide
+struct BroadphaseRayTester : btDbvt::ICollide
{
btBroadphaseRayCallback& m_rayCallback;
BroadphaseRayTester(btBroadphaseRayCallback& orgCallback)
- :m_rayCallback(orgCallback)
+ : m_rayCallback(orgCallback)
{
}
- void Process(const btDbvtNode* leaf)
+ void Process(const btDbvtNode* leaf)
{
- btDbvtProxy* proxy=(btDbvtProxy*)leaf->data;
+ btDbvtProxy* proxy = (btDbvtProxy*)leaf->data;
m_rayCallback.process(proxy);
}
-};
+};
-void btDbvtBroadphase::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback,const btVector3& aabbMin,const btVector3& aabbMax)
+void btDbvtBroadphase::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin, const btVector3& aabbMax)
{
BroadphaseRayTester callback(rayCallback);
- btAlignedObjectArray<const btDbvtNode*>* stack = &m_rayTestStacks[0];
+ btAlignedObjectArray<const btDbvtNode*>* stack = &m_rayTestStacks[0];
#if BT_THREADSAFE
- // for this function to be threadsafe, each thread must have a separate copy
- // of this stack. This could be thread-local static to avoid dynamic allocations,
- // instead of just a local.
- int threadIndex = btGetCurrentThreadIndex();
- btAlignedObjectArray<const btDbvtNode*> localStack;
- if (threadIndex < m_rayTestStacks.size())
- {
- // use per-thread preallocated stack if possible to avoid dynamic allocations
- stack = &m_rayTestStacks[threadIndex];
- }
- else
- {
- stack = &localStack;
- }
+ // for this function to be threadsafe, each thread must have a separate copy
+ // of this stack. This could be thread-local static to avoid dynamic allocations,
+ // instead of just a local.
+ int threadIndex = btGetCurrentThreadIndex();
+ btAlignedObjectArray<const btDbvtNode*> localStack;
+ //todo(erwincoumans, "why do we get tsan issue here?")
+ if (0)//threadIndex < m_rayTestStacks.size())
+ //if (threadIndex < m_rayTestStacks.size())
+ {
+ // use per-thread preallocated stack if possible to avoid dynamic allocations
+ stack = &m_rayTestStacks[threadIndex];
+ }
+ else
+ {
+ stack = &localStack;
+ }
#endif
- m_sets[0].rayTestInternal( m_sets[0].m_root,
- rayFrom,
- rayTo,
- rayCallback.m_rayDirectionInverse,
- rayCallback.m_signs,
- rayCallback.m_lambda_max,
- aabbMin,
- aabbMax,
- *stack,
- callback);
-
- m_sets[1].rayTestInternal( m_sets[1].m_root,
- rayFrom,
- rayTo,
- rayCallback.m_rayDirectionInverse,
- rayCallback.m_signs,
- rayCallback.m_lambda_max,
- aabbMin,
- aabbMax,
- *stack,
- callback);
-
+ m_sets[0].rayTestInternal(m_sets[0].m_root,
+ rayFrom,
+ rayTo,
+ rayCallback.m_rayDirectionInverse,
+ rayCallback.m_signs,
+ rayCallback.m_lambda_max,
+ aabbMin,
+ aabbMax,
+ *stack,
+ callback);
+
+ m_sets[1].rayTestInternal(m_sets[1].m_root,
+ rayFrom,
+ rayTo,
+ rayCallback.m_rayDirectionInverse,
+ rayCallback.m_signs,
+ rayCallback.m_lambda_max,
+ aabbMin,
+ aabbMax,
+ *stack,
+ callback);
}
-
-struct BroadphaseAabbTester : btDbvt::ICollide
+struct BroadphaseAabbTester : btDbvt::ICollide
{
btBroadphaseAabbCallback& m_aabbCallback;
BroadphaseAabbTester(btBroadphaseAabbCallback& orgCallback)
- :m_aabbCallback(orgCallback)
+ : m_aabbCallback(orgCallback)
{
}
- void Process(const btDbvtNode* leaf)
+ void Process(const btDbvtNode* leaf)
{
- btDbvtProxy* proxy=(btDbvtProxy*)leaf->data;
+ btDbvtProxy* proxy = (btDbvtProxy*)leaf->data;
m_aabbCallback.process(proxy);
}
-};
+};
-void btDbvtBroadphase::aabbTest(const btVector3& aabbMin,const btVector3& aabbMax,btBroadphaseAabbCallback& aabbCallback)
+void btDbvtBroadphase::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& aabbCallback)
{
BroadphaseAabbTester callback(aabbCallback);
- const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds=btDbvtVolume::FromMM(aabbMin,aabbMax);
- //process all children, that overlap with the given AABB bounds
- m_sets[0].collideTV(m_sets[0].m_root,bounds,callback);
- m_sets[1].collideTV(m_sets[1].m_root,bounds,callback);
-
+ const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds = btDbvtVolume::FromMM(aabbMin, aabbMax);
+ //process all children, that overlap with the given AABB bounds
+ m_sets[0].collideTV(m_sets[0].m_root, bounds, callback);
+ m_sets[1].collideTV(m_sets[1].m_root, bounds, callback);
}
-
-
//
-void btDbvtBroadphase::setAabb( btBroadphaseProxy* absproxy,
- const btVector3& aabbMin,
- const btVector3& aabbMax,
- btDispatcher* /*dispatcher*/)
+void btDbvtBroadphase::setAabb(btBroadphaseProxy* absproxy,
+ const btVector3& aabbMin,
+ const btVector3& aabbMax,
+ btDispatcher* /*dispatcher*/)
{
- btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
- ATTRIBUTE_ALIGNED16(btDbvtVolume) aabb=btDbvtVolume::FromMM(aabbMin,aabbMax);
+ btDbvtProxy* proxy = (btDbvtProxy*)absproxy;
+ ATTRIBUTE_ALIGNED16(btDbvtVolume)
+ aabb = btDbvtVolume::FromMM(aabbMin, aabbMax);
#if DBVT_BP_PREVENTFALSEUPDATE
- if(NotEqual(aabb,proxy->leaf->volume))
+ if (NotEqual(aabb, proxy->leaf->volume))
#endif
{
- bool docollide=false;
- if(proxy->stage==STAGECOUNT)
- {/* fixed -> dynamic set */
+ bool docollide = false;
+ if (proxy->stage == STAGECOUNT)
+ { /* fixed -> dynamic set */
m_sets[1].remove(proxy->leaf);
- proxy->leaf=m_sets[0].insert(aabb,proxy);
- docollide=true;
+ proxy->leaf = m_sets[0].insert(aabb, proxy);
+ docollide = true;
}
else
- {/* dynamic set */
+ { /* dynamic set */
++m_updates_call;
- if(Intersect(proxy->leaf->volume,aabb))
- {/* Moving */
-
- const btVector3 delta=aabbMin-proxy->m_aabbMin;
- btVector3 velocity(((proxy->m_aabbMax-proxy->m_aabbMin)/2)*m_prediction);
- if(delta[0]<0) velocity[0]=-velocity[0];
- if(delta[1]<0) velocity[1]=-velocity[1];
- if(delta[2]<0) velocity[2]=-velocity[2];
+ if (Intersect(proxy->leaf->volume, aabb))
+ { /* Moving */
+
+ const btVector3 delta = aabbMin - proxy->m_aabbMin;
+ btVector3 velocity(((proxy->m_aabbMax - proxy->m_aabbMin) / 2) * m_prediction);
+ if (delta[0] < 0) velocity[0] = -velocity[0];
+ if (delta[1] < 0) velocity[1] = -velocity[1];
+ if (delta[2] < 0) velocity[2] = -velocity[2];
if (
m_sets[0].update(proxy->leaf, aabb, velocity, gDbvtMargin)
- )
+ )
{
++m_updates_done;
- docollide=true;
+ docollide = true;
}
}
else
- {/* Teleporting */
- m_sets[0].update(proxy->leaf,aabb);
+ { /* Teleporting */
+ m_sets[0].update(proxy->leaf, aabb);
++m_updates_done;
- docollide=true;
- }
+ docollide = true;
+ }
}
- listremove(proxy,m_stageRoots[proxy->stage]);
+ listremove(proxy, m_stageRoots[proxy->stage]);
proxy->m_aabbMin = aabbMin;
proxy->m_aabbMax = aabbMax;
- proxy->stage = m_stageCurrent;
- listappend(proxy,m_stageRoots[m_stageCurrent]);
- if(docollide)
+ proxy->stage = m_stageCurrent;
+ listappend(proxy, m_stageRoots[m_stageCurrent]);
+ if (docollide)
{
- m_needcleanup=true;
- if(!m_deferedcollide)
+ m_needcleanup = true;
+ if (!m_deferedcollide)
{
- btDbvtTreeCollider collider(this);
- m_sets[1].collideTTpersistentStack(m_sets[1].m_root,proxy->leaf,collider);
- m_sets[0].collideTTpersistentStack(m_sets[0].m_root,proxy->leaf,collider);
+ btDbvtTreeCollider collider(this);
+ m_sets[1].collideTTpersistentStack(m_sets[1].m_root, proxy->leaf, collider);
+ m_sets[0].collideTTpersistentStack(m_sets[0].m_root, proxy->leaf, collider);
}
- }
+ }
}
}
-
//
-void btDbvtBroadphase::setAabbForceUpdate( btBroadphaseProxy* absproxy,
- const btVector3& aabbMin,
- const btVector3& aabbMax,
- btDispatcher* /*dispatcher*/)
+void btDbvtBroadphase::setAabbForceUpdate(btBroadphaseProxy* absproxy,
+ const btVector3& aabbMin,
+ const btVector3& aabbMax,
+ btDispatcher* /*dispatcher*/)
{
- btDbvtProxy* proxy=(btDbvtProxy*)absproxy;
- ATTRIBUTE_ALIGNED16(btDbvtVolume) aabb=btDbvtVolume::FromMM(aabbMin,aabbMax);
- bool docollide=false;
- if(proxy->stage==STAGECOUNT)
- {/* fixed -> dynamic set */
+ btDbvtProxy* proxy = (btDbvtProxy*)absproxy;
+ ATTRIBUTE_ALIGNED16(btDbvtVolume)
+ aabb = btDbvtVolume::FromMM(aabbMin, aabbMax);
+ bool docollide = false;
+ if (proxy->stage == STAGECOUNT)
+ { /* fixed -> dynamic set */
m_sets[1].remove(proxy->leaf);
- proxy->leaf=m_sets[0].insert(aabb,proxy);
- docollide=true;
+ proxy->leaf = m_sets[0].insert(aabb, proxy);
+ docollide = true;
}
else
- {/* dynamic set */
+ { /* dynamic set */
++m_updates_call;
- /* Teleporting */
- m_sets[0].update(proxy->leaf,aabb);
+ /* Teleporting */
+ m_sets[0].update(proxy->leaf, aabb);
++m_updates_done;
- docollide=true;
+ docollide = true;
}
- listremove(proxy,m_stageRoots[proxy->stage]);
+ listremove(proxy, m_stageRoots[proxy->stage]);
proxy->m_aabbMin = aabbMin;
proxy->m_aabbMax = aabbMax;
- proxy->stage = m_stageCurrent;
- listappend(proxy,m_stageRoots[m_stageCurrent]);
- if(docollide)
+ proxy->stage = m_stageCurrent;
+ listappend(proxy, m_stageRoots[m_stageCurrent]);
+ if (docollide)
{
- m_needcleanup=true;
- if(!m_deferedcollide)
+ m_needcleanup = true;
+ if (!m_deferedcollide)
{
- btDbvtTreeCollider collider(this);
- m_sets[1].collideTTpersistentStack(m_sets[1].m_root,proxy->leaf,collider);
- m_sets[0].collideTTpersistentStack(m_sets[0].m_root,proxy->leaf,collider);
+ btDbvtTreeCollider collider(this);
+ m_sets[1].collideTTpersistentStack(m_sets[1].m_root, proxy->leaf, collider);
+ m_sets[0].collideTTpersistentStack(m_sets[0].m_root, proxy->leaf, collider);
}
- }
+ }
}
//
-void btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
+void btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
{
collide(dispatcher);
#if DBVT_BP_PROFILE
- if(0==(m_pid%DBVT_BP_PROFILING_RATE))
- {
- printf("fixed(%u) dynamics(%u) pairs(%u)\r\n",m_sets[1].m_leaves,m_sets[0].m_leaves,m_paircache->getNumOverlappingPairs());
- unsigned int total=m_profiling.m_total;
- if(total<=0) total=1;
- printf("ddcollide: %u%% (%uus)\r\n",(50+m_profiling.m_ddcollide*100)/total,m_profiling.m_ddcollide/DBVT_BP_PROFILING_RATE);
- printf("fdcollide: %u%% (%uus)\r\n",(50+m_profiling.m_fdcollide*100)/total,m_profiling.m_fdcollide/DBVT_BP_PROFILING_RATE);
- printf("cleanup: %u%% (%uus)\r\n",(50+m_profiling.m_cleanup*100)/total,m_profiling.m_cleanup/DBVT_BP_PROFILING_RATE);
- printf("total: %uus\r\n",total/DBVT_BP_PROFILING_RATE);
- const unsigned long sum=m_profiling.m_ddcollide+
- m_profiling.m_fdcollide+
- m_profiling.m_cleanup;
- printf("leaked: %u%% (%uus)\r\n",100-((50+sum*100)/total),(total-sum)/DBVT_BP_PROFILING_RATE);
- printf("job counts: %u%%\r\n",(m_profiling.m_jobcount*100)/((m_sets[0].m_leaves+m_sets[1].m_leaves)*DBVT_BP_PROFILING_RATE));
+ if (0 == (m_pid % DBVT_BP_PROFILING_RATE))
+ {
+ printf("fixed(%u) dynamics(%u) pairs(%u)\r\n", m_sets[1].m_leaves, m_sets[0].m_leaves, m_paircache->getNumOverlappingPairs());
+ unsigned int total = m_profiling.m_total;
+ if (total <= 0) total = 1;
+ printf("ddcollide: %u%% (%uus)\r\n", (50 + m_profiling.m_ddcollide * 100) / total, m_profiling.m_ddcollide / DBVT_BP_PROFILING_RATE);
+ printf("fdcollide: %u%% (%uus)\r\n", (50 + m_profiling.m_fdcollide * 100) / total, m_profiling.m_fdcollide / DBVT_BP_PROFILING_RATE);
+ printf("cleanup: %u%% (%uus)\r\n", (50 + m_profiling.m_cleanup * 100) / total, m_profiling.m_cleanup / DBVT_BP_PROFILING_RATE);
+ printf("total: %uus\r\n", total / DBVT_BP_PROFILING_RATE);
+ const unsigned long sum = m_profiling.m_ddcollide +
+ m_profiling.m_fdcollide +
+ m_profiling.m_cleanup;
+ printf("leaked: %u%% (%uus)\r\n", 100 - ((50 + sum * 100) / total), (total - sum) / DBVT_BP_PROFILING_RATE);
+ printf("job counts: %u%%\r\n", (m_profiling.m_jobcount * 100) / ((m_sets[0].m_leaves + m_sets[1].m_leaves) * DBVT_BP_PROFILING_RATE));
clear(m_profiling);
m_clock.reset();
}
#endif
performDeferredRemoval(dispatcher);
-
}
void btDbvtBroadphase::performDeferredRemoval(btDispatcher* dispatcher)
{
-
if (m_paircache->hasDeferredRemoval())
{
-
- btBroadphasePairArray& overlappingPairArray = m_paircache->getOverlappingPairArray();
+ btBroadphasePairArray& overlappingPairArray = m_paircache->getOverlappingPairArray();
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
int invalidPair = 0;
-
int i;
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
-
-
- for (i=0;i<overlappingPairArray.size();i++)
+
+ for (i = 0; i < overlappingPairArray.size(); i++)
{
-
btBroadphasePair& pair = overlappingPairArray[i];
bool isDuplicate = (pair == previousPair);
@@ -471,34 +471,35 @@ void btDbvtBroadphase::performDeferredRemoval(btDispatcher* dispatcher)
if (!isDuplicate)
{
//important to perform AABB check that is consistent with the broadphase
- btDbvtProxy* pa=(btDbvtProxy*)pair.m_pProxy0;
- btDbvtProxy* pb=(btDbvtProxy*)pair.m_pProxy1;
- bool hasOverlap = Intersect(pa->leaf->volume,pb->leaf->volume);
+ btDbvtProxy* pa = (btDbvtProxy*)pair.m_pProxy0;
+ btDbvtProxy* pb = (btDbvtProxy*)pair.m_pProxy1;
+ bool hasOverlap = Intersect(pa->leaf->volume, pb->leaf->volume);
if (hasOverlap)
{
needsRemoval = false;
- } else
+ }
+ else
{
needsRemoval = true;
}
- } else
+ }
+ else
{
//remove duplicate
needsRemoval = true;
//should have no algorithm
btAssert(!pair.m_algorithm);
}
-
+
if (needsRemoval)
{
- m_paircache->cleanOverlappingPair(pair,dispatcher);
+ m_paircache->cleanOverlappingPair(pair, dispatcher);
pair.m_pProxy0 = 0;
pair.m_pProxy1 = 0;
invalidPair++;
- }
-
+ }
}
//perform a sort, to sort 'invalid' pairs to the end
@@ -508,7 +509,7 @@ void btDbvtBroadphase::performDeferredRemoval(btDispatcher* dispatcher)
}
//
-void btDbvtBroadphase::collide(btDispatcher* dispatcher)
+void btDbvtBroadphase::collide(btDispatcher* dispatcher)
{
/*printf("---------------------------------------------------------\n");
printf("m_sets[0].m_leaves=%d\n",m_sets[0].m_leaves);
@@ -525,295 +526,303 @@ void btDbvtBroadphase::collide(btDispatcher* dispatcher)
}
*/
-
-
SPC(m_profiling.m_total);
- /* optimize */
- m_sets[0].optimizeIncremental(1+(m_sets[0].m_leaves*m_dupdates)/100);
- if(m_fixedleft)
+ /* optimize */
+ m_sets[0].optimizeIncremental(1 + (m_sets[0].m_leaves * m_dupdates) / 100);
+ if (m_fixedleft)
{
- const int count=1+(m_sets[1].m_leaves*m_fupdates)/100;
- m_sets[1].optimizeIncremental(1+(m_sets[1].m_leaves*m_fupdates)/100);
- m_fixedleft=btMax<int>(0,m_fixedleft-count);
+ const int count = 1 + (m_sets[1].m_leaves * m_fupdates) / 100;
+ m_sets[1].optimizeIncremental(1 + (m_sets[1].m_leaves * m_fupdates) / 100);
+ m_fixedleft = btMax<int>(0, m_fixedleft - count);
}
- /* dynamic -> fixed set */
- m_stageCurrent=(m_stageCurrent+1)%STAGECOUNT;
- btDbvtProxy* current=m_stageRoots[m_stageCurrent];
- if(current)
+ /* dynamic -> fixed set */
+ m_stageCurrent = (m_stageCurrent + 1) % STAGECOUNT;
+ btDbvtProxy* current = m_stageRoots[m_stageCurrent];
+ if (current)
{
#if DBVT_BP_ACCURATESLEEPING
- btDbvtTreeCollider collider(this);
+ btDbvtTreeCollider collider(this);
#endif
- do {
- btDbvtProxy* next=current->links[1];
- listremove(current,m_stageRoots[current->stage]);
- listappend(current,m_stageRoots[STAGECOUNT]);
+ do
+ {
+ btDbvtProxy* next = current->links[1];
+ listremove(current, m_stageRoots[current->stage]);
+ listappend(current, m_stageRoots[STAGECOUNT]);
#if DBVT_BP_ACCURATESLEEPING
- m_paircache->removeOverlappingPairsContainingProxy(current,dispatcher);
- collider.proxy=current;
- btDbvt::collideTV(m_sets[0].m_root,current->aabb,collider);
- btDbvt::collideTV(m_sets[1].m_root,current->aabb,collider);
+ m_paircache->removeOverlappingPairsContainingProxy(current, dispatcher);
+ collider.proxy = current;
+ btDbvt::collideTV(m_sets[0].m_root, current->aabb, collider);
+ btDbvt::collideTV(m_sets[1].m_root, current->aabb, collider);
#endif
m_sets[0].remove(current->leaf);
- ATTRIBUTE_ALIGNED16(btDbvtVolume) curAabb=btDbvtVolume::FromMM(current->m_aabbMin,current->m_aabbMax);
- current->leaf = m_sets[1].insert(curAabb,current);
- current->stage = STAGECOUNT;
- current = next;
- } while(current);
- m_fixedleft=m_sets[1].m_leaves;
- m_needcleanup=true;
+ ATTRIBUTE_ALIGNED16(btDbvtVolume)
+ curAabb = btDbvtVolume::FromMM(current->m_aabbMin, current->m_aabbMax);
+ current->leaf = m_sets[1].insert(curAabb, current);
+ current->stage = STAGECOUNT;
+ current = next;
+ } while (current);
+ m_fixedleft = m_sets[1].m_leaves;
+ m_needcleanup = true;
}
- /* collide dynamics */
+ /* collide dynamics */
{
- btDbvtTreeCollider collider(this);
- if(m_deferedcollide)
+ btDbvtTreeCollider collider(this);
+ if (m_deferedcollide)
{
SPC(m_profiling.m_fdcollide);
- m_sets[0].collideTTpersistentStack(m_sets[0].m_root,m_sets[1].m_root,collider);
+ m_sets[0].collideTTpersistentStack(m_sets[0].m_root, m_sets[1].m_root, collider);
}
- if(m_deferedcollide)
+ if (m_deferedcollide)
{
SPC(m_profiling.m_ddcollide);
- m_sets[0].collideTTpersistentStack(m_sets[0].m_root,m_sets[0].m_root,collider);
+ m_sets[0].collideTTpersistentStack(m_sets[0].m_root, m_sets[0].m_root, collider);
}
}
- /* clean up */
- if(m_needcleanup)
+ /* clean up */
+ if (m_needcleanup)
{
SPC(m_profiling.m_cleanup);
- btBroadphasePairArray& pairs=m_paircache->getOverlappingPairArray();
- if(pairs.size()>0)
+ btBroadphasePairArray& pairs = m_paircache->getOverlappingPairArray();
+ if (pairs.size() > 0)
{
-
- int ni=btMin(pairs.size(),btMax<int>(m_newpairs,(pairs.size()*m_cupdates)/100));
- for(int i=0;i<ni;++i)
+ int ni = btMin(pairs.size(), btMax<int>(m_newpairs, (pairs.size() * m_cupdates) / 100));
+ for (int i = 0; i < ni; ++i)
{
- btBroadphasePair& p=pairs[(m_cid+i)%pairs.size()];
- btDbvtProxy* pa=(btDbvtProxy*)p.m_pProxy0;
- btDbvtProxy* pb=(btDbvtProxy*)p.m_pProxy1;
- if(!Intersect(pa->leaf->volume,pb->leaf->volume))
+ btBroadphasePair& p = pairs[(m_cid + i) % pairs.size()];
+ btDbvtProxy* pa = (btDbvtProxy*)p.m_pProxy0;
+ btDbvtProxy* pb = (btDbvtProxy*)p.m_pProxy1;
+ if (!Intersect(pa->leaf->volume, pb->leaf->volume))
{
#if DBVT_BP_SORTPAIRS
- if(pa->m_uniqueId>pb->m_uniqueId)
- btSwap(pa,pb);
+ if (pa->m_uniqueId > pb->m_uniqueId)
+ btSwap(pa, pb);
#endif
- m_paircache->removeOverlappingPair(pa,pb,dispatcher);
- --ni;--i;
+ m_paircache->removeOverlappingPair(pa, pb, dispatcher);
+ --ni;
+ --i;
}
}
- if(pairs.size()>0) m_cid=(m_cid+ni)%pairs.size(); else m_cid=0;
+ if (pairs.size() > 0)
+ m_cid = (m_cid + ni) % pairs.size();
+ else
+ m_cid = 0;
}
}
++m_pid;
- m_newpairs=1;
- m_needcleanup=false;
- if(m_updates_call>0)
- { m_updates_ratio=m_updates_done/(btScalar)m_updates_call; }
+ m_newpairs = 1;
+ m_needcleanup = false;
+ if (m_updates_call > 0)
+ {
+ m_updates_ratio = m_updates_done / (btScalar)m_updates_call;
+ }
else
- { m_updates_ratio=0; }
- m_updates_done/=2;
- m_updates_call/=2;
+ {
+ m_updates_ratio = 0;
+ }
+ m_updates_done /= 2;
+ m_updates_call /= 2;
}
//
-void btDbvtBroadphase::optimize()
+void btDbvtBroadphase::optimize()
{
m_sets[0].optimizeTopDown();
m_sets[1].optimizeTopDown();
}
//
-btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache()
+btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache()
{
- return(m_paircache);
+ return (m_paircache);
}
//
-const btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() const
+const btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() const
{
- return(m_paircache);
+ return (m_paircache);
}
//
-void btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
+void btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin, btVector3& aabbMax) const
{
+ ATTRIBUTE_ALIGNED16(btDbvtVolume)
+ bounds;
- ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds;
-
- if(!m_sets[0].empty())
- if(!m_sets[1].empty()) Merge( m_sets[0].m_root->volume,
- m_sets[1].m_root->volume,bounds);
+ if (!m_sets[0].empty())
+ if (!m_sets[1].empty())
+ Merge(m_sets[0].m_root->volume,
+ m_sets[1].m_root->volume, bounds);
else
- bounds=m_sets[0].m_root->volume;
- else if(!m_sets[1].empty()) bounds=m_sets[1].m_root->volume;
+ bounds = m_sets[0].m_root->volume;
+ else if (!m_sets[1].empty())
+ bounds = m_sets[1].m_root->volume;
else
- bounds=btDbvtVolume::FromCR(btVector3(0,0,0),0);
- aabbMin=bounds.Mins();
- aabbMax=bounds.Maxs();
+ bounds = btDbvtVolume::FromCR(btVector3(0, 0, 0), 0);
+ aabbMin = bounds.Mins();
+ aabbMax = bounds.Maxs();
}
void btDbvtBroadphase::resetPool(btDispatcher* dispatcher)
{
-
int totalObjects = m_sets[0].m_leaves + m_sets[1].m_leaves;
if (!totalObjects)
{
//reset internal dynamic tree data structures
m_sets[0].clear();
m_sets[1].clear();
-
- m_deferedcollide = false;
- m_needcleanup = true;
- m_stageCurrent = 0;
- m_fixedleft = 0;
- m_fupdates = 1;
- m_dupdates = 0;
- m_cupdates = 10;
- m_newpairs = 1;
- m_updates_call = 0;
- m_updates_done = 0;
- m_updates_ratio = 0;
-
- m_gid = 0;
- m_pid = 0;
- m_cid = 0;
- for(int i=0;i<=STAGECOUNT;++i)
+
+ m_deferedcollide = false;
+ m_needcleanup = true;
+ m_stageCurrent = 0;
+ m_fixedleft = 0;
+ m_fupdates = 1;
+ m_dupdates = 0;
+ m_cupdates = 10;
+ m_newpairs = 1;
+ m_updates_call = 0;
+ m_updates_done = 0;
+ m_updates_ratio = 0;
+
+ m_gid = 0;
+ m_pid = 0;
+ m_cid = 0;
+ for (int i = 0; i <= STAGECOUNT; ++i)
{
- m_stageRoots[i]=0;
+ m_stageRoots[i] = 0;
}
}
}
//
-void btDbvtBroadphase::printStats()
-{}
+void btDbvtBroadphase::printStats()
+{
+}
//
#if DBVT_BP_ENABLE_BENCHMARK
-struct btBroadphaseBenchmark
+struct btBroadphaseBenchmark
{
- struct Experiment
+ struct Experiment
{
- const char* name;
- int object_count;
- int update_count;
- int spawn_count;
- int iterations;
- btScalar speed;
- btScalar amplitude;
+ const char* name;
+ int object_count;
+ int update_count;
+ int spawn_count;
+ int iterations;
+ btScalar speed;
+ btScalar amplitude;
};
- struct Object
+ struct Object
{
- btVector3 center;
- btVector3 extents;
- btBroadphaseProxy* proxy;
- btScalar time;
- void update(btScalar speed,btScalar amplitude,btBroadphaseInterface* pbi)
+ btVector3 center;
+ btVector3 extents;
+ btBroadphaseProxy* proxy;
+ btScalar time;
+ void update(btScalar speed, btScalar amplitude, btBroadphaseInterface* pbi)
{
- time += speed;
- center[0] = btCos(time*(btScalar)2.17)*amplitude+
- btSin(time)*amplitude/2;
- center[1] = btCos(time*(btScalar)1.38)*amplitude+
- btSin(time)*amplitude;
- center[2] = btSin(time*(btScalar)0.777)*amplitude;
- pbi->setAabb(proxy,center-extents,center+extents,0);
+ time += speed;
+ center[0] = btCos(time * (btScalar)2.17) * amplitude +
+ btSin(time) * amplitude / 2;
+ center[1] = btCos(time * (btScalar)1.38) * amplitude +
+ btSin(time) * amplitude;
+ center[2] = btSin(time * (btScalar)0.777) * amplitude;
+ pbi->setAabb(proxy, center - extents, center + extents, 0);
}
};
- static int UnsignedRand(int range=RAND_MAX-1) { return(rand()%(range+1)); }
- static btScalar UnitRand() { return(UnsignedRand(16384)/(btScalar)16384); }
- static void OutputTime(const char* name,btClock& c,unsigned count=0)
+ static int UnsignedRand(int range = RAND_MAX - 1) { return (rand() % (range + 1)); }
+ static btScalar UnitRand() { return (UnsignedRand(16384) / (btScalar)16384); }
+ static void OutputTime(const char* name, btClock& c, unsigned count = 0)
{
- const unsigned long us=c.getTimeMicroseconds();
- const unsigned long ms=(us+500)/1000;
- const btScalar sec=us/(btScalar)(1000*1000);
- if(count>0)
- printf("%s : %u us (%u ms), %.2f/s\r\n",name,us,ms,count/sec);
+ const unsigned long us = c.getTimeMicroseconds();
+ const unsigned long ms = (us + 500) / 1000;
+ const btScalar sec = us / (btScalar)(1000 * 1000);
+ if (count > 0)
+ printf("%s : %u us (%u ms), %.2f/s\r\n", name, us, ms, count / sec);
else
- printf("%s : %u us (%u ms)\r\n",name,us,ms);
+ printf("%s : %u us (%u ms)\r\n", name, us, ms);
}
};
-void btDbvtBroadphase::benchmark(btBroadphaseInterface* pbi)
+void btDbvtBroadphase::benchmark(btBroadphaseInterface* pbi)
{
- static const btBroadphaseBenchmark::Experiment experiments[]=
- {
- {"1024o.10%",1024,10,0,8192,(btScalar)0.005,(btScalar)100},
- /*{"4096o.10%",4096,10,0,8192,(btScalar)0.005,(btScalar)100},
+ static const btBroadphaseBenchmark::Experiment experiments[] =
+ {
+ {"1024o.10%", 1024, 10, 0, 8192, (btScalar)0.005, (btScalar)100},
+ /*{"4096o.10%",4096,10,0,8192,(btScalar)0.005,(btScalar)100},
{"8192o.10%",8192,10,0,8192,(btScalar)0.005,(btScalar)100},*/
- };
- static const int nexperiments=sizeof(experiments)/sizeof(experiments[0]);
- btAlignedObjectArray<btBroadphaseBenchmark::Object*> objects;
- btClock wallclock;
- /* Begin */
- for(int iexp=0;iexp<nexperiments;++iexp)
+ };
+ static const int nexperiments = sizeof(experiments) / sizeof(experiments[0]);
+ btAlignedObjectArray<btBroadphaseBenchmark::Object*> objects;
+ btClock wallclock;
+ /* Begin */
+ for (int iexp = 0; iexp < nexperiments; ++iexp)
{
- const btBroadphaseBenchmark::Experiment& experiment=experiments[iexp];
- const int object_count=experiment.object_count;
- const int update_count=(object_count*experiment.update_count)/100;
- const int spawn_count=(object_count*experiment.spawn_count)/100;
- const btScalar speed=experiment.speed;
- const btScalar amplitude=experiment.amplitude;
- printf("Experiment #%u '%s':\r\n",iexp,experiment.name);
- printf("\tObjects: %u\r\n",object_count);
- printf("\tUpdate: %u\r\n",update_count);
- printf("\tSpawn: %u\r\n",spawn_count);
- printf("\tSpeed: %f\r\n",speed);
- printf("\tAmplitude: %f\r\n",amplitude);
+ const btBroadphaseBenchmark::Experiment& experiment = experiments[iexp];
+ const int object_count = experiment.object_count;
+ const int update_count = (object_count * experiment.update_count) / 100;
+ const int spawn_count = (object_count * experiment.spawn_count) / 100;
+ const btScalar speed = experiment.speed;
+ const btScalar amplitude = experiment.amplitude;
+ printf("Experiment #%u '%s':\r\n", iexp, experiment.name);
+ printf("\tObjects: %u\r\n", object_count);
+ printf("\tUpdate: %u\r\n", update_count);
+ printf("\tSpawn: %u\r\n", spawn_count);
+ printf("\tSpeed: %f\r\n", speed);
+ printf("\tAmplitude: %f\r\n", amplitude);
srand(180673);
- /* Create objects */
+ /* Create objects */
wallclock.reset();
objects.reserve(object_count);
- for(int i=0;i<object_count;++i)
+ for (int i = 0; i < object_count; ++i)
{
- btBroadphaseBenchmark::Object* po=new btBroadphaseBenchmark::Object();
- po->center[0]=btBroadphaseBenchmark::UnitRand()*50;
- po->center[1]=btBroadphaseBenchmark::UnitRand()*50;
- po->center[2]=btBroadphaseBenchmark::UnitRand()*50;
- po->extents[0]=btBroadphaseBenchmark::UnitRand()*2+2;
- po->extents[1]=btBroadphaseBenchmark::UnitRand()*2+2;
- po->extents[2]=btBroadphaseBenchmark::UnitRand()*2+2;
- po->time=btBroadphaseBenchmark::UnitRand()*2000;
- po->proxy=pbi->createProxy(po->center-po->extents,po->center+po->extents,0,po,1,1,0,0);
+ btBroadphaseBenchmark::Object* po = new btBroadphaseBenchmark::Object();
+ po->center[0] = btBroadphaseBenchmark::UnitRand() * 50;
+ po->center[1] = btBroadphaseBenchmark::UnitRand() * 50;
+ po->center[2] = btBroadphaseBenchmark::UnitRand() * 50;
+ po->extents[0] = btBroadphaseBenchmark::UnitRand() * 2 + 2;
+ po->extents[1] = btBroadphaseBenchmark::UnitRand() * 2 + 2;
+ po->extents[2] = btBroadphaseBenchmark::UnitRand() * 2 + 2;
+ po->time = btBroadphaseBenchmark::UnitRand() * 2000;
+ po->proxy = pbi->createProxy(po->center - po->extents, po->center + po->extents, 0, po, 1, 1, 0, 0);
objects.push_back(po);
}
- btBroadphaseBenchmark::OutputTime("\tInitialization",wallclock);
- /* First update */
+ btBroadphaseBenchmark::OutputTime("\tInitialization", wallclock);
+ /* First update */
wallclock.reset();
- for(int i=0;i<objects.size();++i)
+ for (int i = 0; i < objects.size(); ++i)
{
- objects[i]->update(speed,amplitude,pbi);
+ objects[i]->update(speed, amplitude, pbi);
}
- btBroadphaseBenchmark::OutputTime("\tFirst update",wallclock);
- /* Updates */
+ btBroadphaseBenchmark::OutputTime("\tFirst update", wallclock);
+ /* Updates */
wallclock.reset();
- for(int i=0;i<experiment.iterations;++i)
+ for (int i = 0; i < experiment.iterations; ++i)
{
- for(int j=0;j<update_count;++j)
- {
- objects[j]->update(speed,amplitude,pbi);
+ for (int j = 0; j < update_count; ++j)
+ {
+ objects[j]->update(speed, amplitude, pbi);
}
pbi->calculateOverlappingPairs(0);
}
- btBroadphaseBenchmark::OutputTime("\tUpdate",wallclock,experiment.iterations);
- /* Clean up */
+ btBroadphaseBenchmark::OutputTime("\tUpdate", wallclock, experiment.iterations);
+ /* Clean up */
wallclock.reset();
- for(int i=0;i<objects.size();++i)
+ for (int i = 0; i < objects.size(); ++i)
{
- pbi->destroyProxy(objects[i]->proxy,0);
+ pbi->destroyProxy(objects[i]->proxy, 0);
delete objects[i];
}
objects.resize(0);
- btBroadphaseBenchmark::OutputTime("\tRelease",wallclock);
+ btBroadphaseBenchmark::OutputTime("\tRelease", wallclock);
}
-
}
#else
-void btDbvtBroadphase::benchmark(btBroadphaseInterface*)
-{}
+void btDbvtBroadphase::benchmark(btBroadphaseInterface*)
+{
+}
#endif
#if DBVT_BP_PROFILE
-#undef SPC
+#undef SPC
#endif
-
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
index 90b333d846..a71feef53b 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h
@@ -24,16 +24,16 @@ subject to the following restrictions:
// Compile time config
//
-#define DBVT_BP_PROFILE 0
+#define DBVT_BP_PROFILE 0
//#define DBVT_BP_SORTPAIRS 1
-#define DBVT_BP_PREVENTFALSEUPDATE 0
-#define DBVT_BP_ACCURATESLEEPING 0
-#define DBVT_BP_ENABLE_BENCHMARK 0
+#define DBVT_BP_PREVENTFALSEUPDATE 0
+#define DBVT_BP_ACCURATESLEEPING 0
+#define DBVT_BP_ENABLE_BENCHMARK 0
//#define DBVT_BP_MARGIN (btScalar)0.05
extern btScalar gDbvtMargin;
#if DBVT_BP_PROFILE
-#define DBVT_BP_PROFILING_RATE 256
+#define DBVT_BP_PROFILING_RATE 256
#include "LinearMath/btQuickprof.h"
#endif
@@ -42,90 +42,90 @@ extern btScalar gDbvtMargin;
//
struct btDbvtProxy : btBroadphaseProxy
{
- /* Fields */
+ /* Fields */
//btDbvtAabbMm aabb;
- btDbvtNode* leaf;
- btDbvtProxy* links[2];
- int stage;
- /* ctor */
- btDbvtProxy(const btVector3& aabbMin,const btVector3& aabbMax,void* userPtr, int collisionFilterGroup, int collisionFilterMask) :
- btBroadphaseProxy(aabbMin,aabbMax,userPtr,collisionFilterGroup,collisionFilterMask)
+ btDbvtNode* leaf;
+ btDbvtProxy* links[2];
+ int stage;
+ /* ctor */
+ btDbvtProxy(const btVector3& aabbMin, const btVector3& aabbMax, void* userPtr, int collisionFilterGroup, int collisionFilterMask) : btBroadphaseProxy(aabbMin, aabbMax, userPtr, collisionFilterGroup, collisionFilterMask)
{
- links[0]=links[1]=0;
+ links[0] = links[1] = 0;
}
};
-typedef btAlignedObjectArray<btDbvtProxy*> btDbvtProxyArray;
+typedef btAlignedObjectArray<btDbvtProxy*> btDbvtProxyArray;
///The btDbvtBroadphase implements a broadphase using two dynamic AABB bounding volume hierarchies/trees (see btDbvt).
///One tree is used for static/non-moving objects, and another tree is used for dynamic objects. Objects can move from one tree to the other.
///This is a very fast broadphase, especially for very dynamic worlds where many objects are moving. Its insert/add and remove of objects is generally faster than the sweep and prune broadphases btAxisSweep3 and bt32BitAxisSweep3.
-struct btDbvtBroadphase : btBroadphaseInterface
+struct btDbvtBroadphase : btBroadphaseInterface
{
- /* Config */
- enum {
- DYNAMIC_SET = 0, /* Dynamic set index */
- FIXED_SET = 1, /* Fixed set index */
- STAGECOUNT = 2 /* Number of stages */
+ /* Config */
+ enum
+ {
+ DYNAMIC_SET = 0, /* Dynamic set index */
+ FIXED_SET = 1, /* Fixed set index */
+ STAGECOUNT = 2 /* Number of stages */
};
- /* Fields */
- btDbvt m_sets[2]; // Dbvt sets
- btDbvtProxy* m_stageRoots[STAGECOUNT+1]; // Stages list
- btOverlappingPairCache* m_paircache; // Pair cache
- btScalar m_prediction; // Velocity prediction
- int m_stageCurrent; // Current stage
- int m_fupdates; // % of fixed updates per frame
- int m_dupdates; // % of dynamic updates per frame
- int m_cupdates; // % of cleanup updates per frame
- int m_newpairs; // Number of pairs created
- int m_fixedleft; // Fixed optimization left
- unsigned m_updates_call; // Number of updates call
- unsigned m_updates_done; // Number of updates done
- btScalar m_updates_ratio; // m_updates_done/m_updates_call
- int m_pid; // Parse id
- int m_cid; // Cleanup index
- int m_gid; // Gen id
- bool m_releasepaircache; // Release pair cache on delete
- bool m_deferedcollide; // Defere dynamic/static collision to collide call
- bool m_needcleanup; // Need to run cleanup?
- btAlignedObjectArray< btAlignedObjectArray<const btDbvtNode*> > m_rayTestStacks;
+ /* Fields */
+ btDbvt m_sets[2]; // Dbvt sets
+ btDbvtProxy* m_stageRoots[STAGECOUNT + 1]; // Stages list
+ btOverlappingPairCache* m_paircache; // Pair cache
+ btScalar m_prediction; // Velocity prediction
+ int m_stageCurrent; // Current stage
+ int m_fupdates; // % of fixed updates per frame
+ int m_dupdates; // % of dynamic updates per frame
+ int m_cupdates; // % of cleanup updates per frame
+ int m_newpairs; // Number of pairs created
+ int m_fixedleft; // Fixed optimization left
+ unsigned m_updates_call; // Number of updates call
+ unsigned m_updates_done; // Number of updates done
+ btScalar m_updates_ratio; // m_updates_done/m_updates_call
+ int m_pid; // Parse id
+ int m_cid; // Cleanup index
+ int m_gid; // Gen id
+ bool m_releasepaircache; // Release pair cache on delete
+ bool m_deferedcollide; // Defere dynamic/static collision to collide call
+ bool m_needcleanup; // Need to run cleanup?
+ btAlignedObjectArray<btAlignedObjectArray<const btDbvtNode*> > m_rayTestStacks;
#if DBVT_BP_PROFILE
- btClock m_clock;
- struct {
- unsigned long m_total;
- unsigned long m_ddcollide;
- unsigned long m_fdcollide;
- unsigned long m_cleanup;
- unsigned long m_jobcount;
- } m_profiling;
+ btClock m_clock;
+ struct
+ {
+ unsigned long m_total;
+ unsigned long m_ddcollide;
+ unsigned long m_fdcollide;
+ unsigned long m_cleanup;
+ unsigned long m_jobcount;
+ } m_profiling;
#endif
- /* Methods */
- btDbvtBroadphase(btOverlappingPairCache* paircache=0);
+ /* Methods */
+ btDbvtBroadphase(btOverlappingPairCache* paircache = 0);
~btDbvtBroadphase();
- void collide(btDispatcher* dispatcher);
- void optimize();
-
- /* btBroadphaseInterface Implementation */
- btBroadphaseProxy* createProxy(const btVector3& aabbMin,const btVector3& aabbMax,int shapeType,void* userPtr, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher);
- virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
- virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
- virtual void rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin=btVector3(0,0,0), const btVector3& aabbMax = btVector3(0,0,0));
- virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
-
- virtual void getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
- virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
- virtual btOverlappingPairCache* getOverlappingPairCache();
- virtual const btOverlappingPairCache* getOverlappingPairCache() const;
- virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const;
- virtual void printStats();
+ void collide(btDispatcher* dispatcher);
+ void optimize();
+ /* btBroadphaseInterface Implementation */
+ btBroadphaseProxy* createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher);
+ virtual void destroyProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher);
+ virtual void setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher);
+ virtual void rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin = btVector3(0, 0, 0), const btVector3& aabbMax = btVector3(0, 0, 0));
+ virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
+
+ virtual void getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const;
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
+ virtual btOverlappingPairCache* getOverlappingPairCache();
+ virtual const btOverlappingPairCache* getOverlappingPairCache() const;
+ virtual void getBroadphaseAabb(btVector3& aabbMin, btVector3& aabbMax) const;
+ virtual void printStats();
///reset broadphase internal structures, to ensure determinism/reproducability
virtual void resetPool(btDispatcher* dispatcher);
- void performDeferredRemoval(btDispatcher* dispatcher);
-
- void setVelocityPrediction(btScalar prediction)
+ void performDeferredRemoval(btDispatcher* dispatcher);
+
+ void setVelocityPrediction(btScalar prediction)
{
m_prediction = prediction;
}
@@ -134,15 +134,13 @@ struct btDbvtBroadphase : btBroadphaseInterface
return m_prediction;
}
- ///this setAabbForceUpdate is similar to setAabb but always forces the aabb update.
+ ///this setAabbForceUpdate is similar to setAabb but always forces the aabb update.
///it is not part of the btBroadphaseInterface but specific to btDbvtBroadphase.
///it bypasses certain optimizations that prevent aabb updates (when the aabb shrinks), see
///http://code.google.com/p/bullet/issues/detail?id=223
- void setAabbForceUpdate( btBroadphaseProxy* absproxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* /*dispatcher*/);
-
- static void benchmark(btBroadphaseInterface*);
-
+ void setAabbForceUpdate(btBroadphaseProxy* absproxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* /*dispatcher*/);
+ static void benchmark(btBroadphaseInterface*);
};
#endif
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.cpp
index 20768225b3..d76d408aa6 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.cpp
@@ -17,6 +17,4 @@ subject to the following restrictions:
btDispatcher::~btDispatcher()
{
-
}
-
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.h
index a0e4c18927..b09b7d4d42 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btDispatcher.h
@@ -20,7 +20,7 @@ subject to the following restrictions:
class btCollisionAlgorithm;
struct btBroadphaseProxy;
class btRigidBody;
-class btCollisionObject;
+class btCollisionObject;
class btOverlappingPairCache;
struct btCollisionObjectWrapper;
@@ -35,35 +35,34 @@ struct btDispatcherInfo
DISPATCH_CONTINUOUS
};
btDispatcherInfo()
- :m_timeStep(btScalar(0.)),
- m_stepCount(0),
- m_dispatchFunc(DISPATCH_DISCRETE),
- m_timeOfImpact(btScalar(1.)),
- m_useContinuous(true),
- m_debugDraw(0),
- m_enableSatConvex(false),
- m_enableSPU(true),
- m_useEpa(true),
- m_allowedCcdPenetration(btScalar(0.04)),
- m_useConvexConservativeDistanceUtil(false),
- m_convexConservativeDistanceThreshold(0.0f),
- m_deterministicOverlappingPairs(false)
+ : m_timeStep(btScalar(0.)),
+ m_stepCount(0),
+ m_dispatchFunc(DISPATCH_DISCRETE),
+ m_timeOfImpact(btScalar(1.)),
+ m_useContinuous(true),
+ m_debugDraw(0),
+ m_enableSatConvex(false),
+ m_enableSPU(true),
+ m_useEpa(true),
+ m_allowedCcdPenetration(btScalar(0.04)),
+ m_useConvexConservativeDistanceUtil(false),
+ m_convexConservativeDistanceThreshold(0.0f),
+ m_deterministicOverlappingPairs(false)
{
-
}
- btScalar m_timeStep;
- int m_stepCount;
- int m_dispatchFunc;
- mutable btScalar m_timeOfImpact;
- bool m_useContinuous;
- class btIDebugDraw* m_debugDraw;
- bool m_enableSatConvex;
- bool m_enableSPU;
- bool m_useEpa;
- btScalar m_allowedCcdPenetration;
- bool m_useConvexConservativeDistanceUtil;
- btScalar m_convexConservativeDistanceThreshold;
- bool m_deterministicOverlappingPairs;
+ btScalar m_timeStep;
+ int m_stepCount;
+ int m_dispatchFunc;
+ mutable btScalar m_timeOfImpact;
+ bool m_useContinuous;
+ class btIDebugDraw* m_debugDraw;
+ bool m_enableSatConvex;
+ bool m_enableSPU;
+ bool m_useEpa;
+ btScalar m_allowedCcdPenetration;
+ bool m_useConvexConservativeDistanceUtil;
+ btScalar m_convexConservativeDistanceThreshold;
+ bool m_deterministicOverlappingPairs;
};
enum ebtDispatcherQueryType
@@ -76,40 +75,36 @@ enum ebtDispatcherQueryType
///For example for pairwise collision detection, calculating contact points stored in btPersistentManifold or user callbacks (game logic).
class btDispatcher
{
-
-
public:
- virtual ~btDispatcher() ;
+ virtual ~btDispatcher();
- virtual btCollisionAlgorithm* findAlgorithm(const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,btPersistentManifold* sharedManifold, ebtDispatcherQueryType queryType) = 0;
+ virtual btCollisionAlgorithm* findAlgorithm(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btPersistentManifold* sharedManifold, ebtDispatcherQueryType queryType) = 0;
- virtual btPersistentManifold* getNewManifold(const btCollisionObject* b0,const btCollisionObject* b1)=0;
+ virtual btPersistentManifold* getNewManifold(const btCollisionObject* b0, const btCollisionObject* b1) = 0;
- virtual void releaseManifold(btPersistentManifold* manifold)=0;
+ virtual void releaseManifold(btPersistentManifold* manifold) = 0;
- virtual void clearManifold(btPersistentManifold* manifold)=0;
+ virtual void clearManifold(btPersistentManifold* manifold) = 0;
- virtual bool needsCollision(const btCollisionObject* body0,const btCollisionObject* body1) = 0;
+ virtual bool needsCollision(const btCollisionObject* body0, const btCollisionObject* body1) = 0;
- virtual bool needsResponse(const btCollisionObject* body0,const btCollisionObject* body1)=0;
+ virtual bool needsResponse(const btCollisionObject* body0, const btCollisionObject* body1) = 0;
- virtual void dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,const btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher) =0;
+ virtual void dispatchAllCollisionPairs(btOverlappingPairCache* pairCache, const btDispatcherInfo& dispatchInfo, btDispatcher* dispatcher) = 0;
virtual int getNumManifolds() const = 0;
virtual btPersistentManifold* getManifoldByIndexInternal(int index) = 0;
- virtual btPersistentManifold** getInternalManifoldPointer() = 0;
+ virtual btPersistentManifold** getInternalManifoldPointer() = 0;
- virtual btPoolAllocator* getInternalManifoldPool() = 0;
+ virtual btPoolAllocator* getInternalManifoldPool() = 0;
- virtual const btPoolAllocator* getInternalManifoldPool() const = 0;
+ virtual const btPoolAllocator* getInternalManifoldPool() const = 0;
- virtual void* allocateCollisionAlgorithm(int size) = 0;
-
- virtual void freeCollisionAlgorithm(void* ptr) = 0;
+ virtual void* allocateCollisionAlgorithm(int size) = 0;
+ virtual void freeCollisionAlgorithm(void* ptr) = 0;
};
-
-#endif //BT_DISPATCHER_H
+#endif //BT_DISPATCHER_H
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp
index 9e3337c5f6..8ce1087c9f 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp
@@ -13,8 +13,6 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-
-
#include "btOverlappingPairCache.h"
#include "btDispatcher.h"
@@ -23,121 +21,95 @@ subject to the following restrictions:
#include <stdio.h>
-
-
-
-
-btHashedOverlappingPairCache::btHashedOverlappingPairCache():
- m_overlapFilterCallback(0),
- m_ghostPairCallback(0)
+btHashedOverlappingPairCache::btHashedOverlappingPairCache() : m_overlapFilterCallback(0),
+ m_ghostPairCallback(0)
{
- int initialAllocatedSize= 2;
+ int initialAllocatedSize = 2;
m_overlappingPairArray.reserve(initialAllocatedSize);
growTables();
}
-
-
-
btHashedOverlappingPairCache::~btHashedOverlappingPairCache()
{
}
-
-
-void btHashedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher)
+void btHashedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair, btDispatcher* dispatcher)
{
if (pair.m_algorithm && dispatcher)
{
{
pair.m_algorithm->~btCollisionAlgorithm();
dispatcher->freeCollisionAlgorithm(pair.m_algorithm);
- pair.m_algorithm=0;
+ pair.m_algorithm = 0;
}
}
}
-
-
-
-void btHashedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+void btHashedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy, btDispatcher* dispatcher)
{
-
- class CleanPairCallback : public btOverlapCallback
+ class CleanPairCallback : public btOverlapCallback
{
btBroadphaseProxy* m_cleanProxy;
- btOverlappingPairCache* m_pairCache;
+ btOverlappingPairCache* m_pairCache;
btDispatcher* m_dispatcher;
public:
- CleanPairCallback(btBroadphaseProxy* cleanProxy,btOverlappingPairCache* pairCache,btDispatcher* dispatcher)
- :m_cleanProxy(cleanProxy),
- m_pairCache(pairCache),
- m_dispatcher(dispatcher)
+ CleanPairCallback(btBroadphaseProxy* cleanProxy, btOverlappingPairCache* pairCache, btDispatcher* dispatcher)
+ : m_cleanProxy(cleanProxy),
+ m_pairCache(pairCache),
+ m_dispatcher(dispatcher)
{
}
- virtual bool processOverlap(btBroadphasePair& pair)
+ virtual bool processOverlap(btBroadphasePair& pair)
{
if ((pair.m_pProxy0 == m_cleanProxy) ||
(pair.m_pProxy1 == m_cleanProxy))
{
- m_pairCache->cleanOverlappingPair(pair,m_dispatcher);
+ m_pairCache->cleanOverlappingPair(pair, m_dispatcher);
}
return false;
}
-
};
- CleanPairCallback cleanPairs(proxy,this,dispatcher);
-
- processAllOverlappingPairs(&cleanPairs,dispatcher);
+ CleanPairCallback cleanPairs(proxy, this, dispatcher);
+ processAllOverlappingPairs(&cleanPairs, dispatcher);
}
-
-
-
-void btHashedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+void btHashedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher)
{
-
- class RemovePairCallback : public btOverlapCallback
+ class RemovePairCallback : public btOverlapCallback
{
btBroadphaseProxy* m_obsoleteProxy;
public:
RemovePairCallback(btBroadphaseProxy* obsoleteProxy)
- :m_obsoleteProxy(obsoleteProxy)
+ : m_obsoleteProxy(obsoleteProxy)
{
}
- virtual bool processOverlap(btBroadphasePair& pair)
+ virtual bool processOverlap(btBroadphasePair& pair)
{
return ((pair.m_pProxy0 == m_obsoleteProxy) ||
- (pair.m_pProxy1 == m_obsoleteProxy));
+ (pair.m_pProxy1 == m_obsoleteProxy));
}
-
};
-
RemovePairCallback removeCallback(proxy);
- processAllOverlappingPairs(&removeCallback,dispatcher);
+ processAllOverlappingPairs(&removeCallback, dispatcher);
}
-
-
-
-
btBroadphasePair* btHashedOverlappingPairCache::findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
- if(proxy0->m_uniqueId>proxy1->m_uniqueId)
- btSwap(proxy0,proxy1);
+ if (proxy0->m_uniqueId > proxy1->m_uniqueId)
+ btSwap(proxy0, proxy1);
int proxyId1 = proxy0->getUid();
int proxyId2 = proxy1->getUid();
/*if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);*/
- int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1), static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1));
+ int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1), static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity() - 1));
if (hash >= m_hashTable.size())
{
@@ -162,9 +134,8 @@ btBroadphasePair* btHashedOverlappingPairCache::findPair(btBroadphaseProxy* prox
//#include <stdio.h>
-void btHashedOverlappingPairCache::growTables()
+void btHashedOverlappingPairCache::growTables()
{
-
int newCapacity = m_overlappingPairArray.capacity();
if (m_hashTable.size() < newCapacity)
@@ -175,10 +146,9 @@ void btHashedOverlappingPairCache::growTables()
m_hashTable.resize(newCapacity);
m_next.resize(newCapacity);
-
int i;
- for (i= 0; i < newCapacity; ++i)
+ for (i = 0; i < newCapacity; ++i)
{
m_hashTable[i] = BT_NULL_PAIR;
}
@@ -187,35 +157,31 @@ void btHashedOverlappingPairCache::growTables()
m_next[i] = BT_NULL_PAIR;
}
- for(i=0;i<curHashtableSize;i++)
+ for (i = 0; i < curHashtableSize; i++)
{
-
const btBroadphasePair& pair = m_overlappingPairArray[i];
int proxyId1 = pair.m_pProxy0->getUid();
int proxyId2 = pair.m_pProxy1->getUid();
/*if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);*/
- int hashValue = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
+ int hashValue = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1), static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity() - 1)); // New hash value with new mask
m_next[i] = m_hashTable[hashValue];
m_hashTable[hashValue] = i;
}
-
-
}
}
btBroadphasePair* btHashedOverlappingPairCache::internalAddPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
- if(proxy0->m_uniqueId>proxy1->m_uniqueId)
- btSwap(proxy0,proxy1);
+ if (proxy0->m_uniqueId > proxy1->m_uniqueId)
+ btSwap(proxy0, proxy1);
int proxyId1 = proxy0->getUid();
int proxyId2 = proxy1->getUid();
/*if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);*/
- int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
-
+ int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1), static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity() - 1)); // New hash value with new mask
btBroadphasePair* pair = internalFindPair(proxy0, proxy1, hash);
if (pair != NULL)
@@ -237,7 +203,7 @@ btBroadphasePair* btHashedOverlappingPairCache::internalAddPair(btBroadphaseProx
//this is where we add an actual pair, so also call the 'ghost'
if (m_ghostPairCallback)
- m_ghostPairCallback->addOverlappingPair(proxy0,proxy1);
+ m_ghostPairCallback->addOverlappingPair(proxy0, proxy1);
int newCapacity = m_overlappingPairArray.capacity();
@@ -245,15 +211,14 @@ btBroadphasePair* btHashedOverlappingPairCache::internalAddPair(btBroadphaseProx
{
growTables();
//hash with new capacity
- hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1));
+ hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1), static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity() - 1));
}
-
- pair = new (mem) btBroadphasePair(*proxy0,*proxy1);
-// pair->m_pProxy0 = proxy0;
-// pair->m_pProxy1 = proxy1;
+
+ pair = new (mem) btBroadphasePair(*proxy0, *proxy1);
+ // pair->m_pProxy0 = proxy0;
+ // pair->m_pProxy1 = proxy1;
pair->m_algorithm = 0;
pair->m_internalTmpValue = 0;
-
m_next[count] = m_hashTable[hash];
m_hashTable[hash] = count;
@@ -261,19 +226,17 @@ btBroadphasePair* btHashedOverlappingPairCache::internalAddPair(btBroadphaseProx
return pair;
}
-
-
-void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1,btDispatcher* dispatcher)
+void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, btDispatcher* dispatcher)
{
- if(proxy0->m_uniqueId>proxy1->m_uniqueId)
- btSwap(proxy0,proxy1);
+ if (proxy0->m_uniqueId > proxy1->m_uniqueId)
+ btSwap(proxy0, proxy1);
int proxyId1 = proxy0->getUid();
int proxyId2 = proxy1->getUid();
/*if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);*/
- int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1),static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity()-1));
+ int hash = static_cast<int>(getHash(static_cast<unsigned int>(proxyId1), static_cast<unsigned int>(proxyId2)) & (m_overlappingPairArray.capacity() - 1));
btBroadphasePair* pair = internalFindPair(proxy0, proxy1, hash);
if (pair == NULL)
@@ -281,7 +244,7 @@ void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* pro
return 0;
}
- cleanOverlappingPair(*pair,dispatcher);
+ cleanOverlappingPair(*pair, dispatcher);
void* userData = pair->m_internalInfo1;
@@ -319,7 +282,7 @@ void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* pro
int lastPairIndex = m_overlappingPairArray.size() - 1;
if (m_ghostPairCallback)
- m_ghostPairCallback->removeOverlappingPair(proxy0, proxy1,dispatcher);
+ m_ghostPairCallback->removeOverlappingPair(proxy0, proxy1, dispatcher);
// If the removed pair is the last pair, we are done.
if (lastPairIndex == pairIndex)
@@ -330,8 +293,8 @@ void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* pro
// Remove the last pair from the hash table.
const btBroadphasePair* last = &m_overlappingPairArray[lastPairIndex];
- /* missing swap here too, Nat. */
- int lastHash = static_cast<int>(getHash(static_cast<unsigned int>(last->m_pProxy0->getUid()), static_cast<unsigned int>(last->m_pProxy1->getUid())) & (m_overlappingPairArray.capacity()-1));
+ /* missing swap here too, Nat. */
+ int lastHash = static_cast<int>(getHash(static_cast<unsigned int>(last->m_pProxy0->getUid()), static_cast<unsigned int>(last->m_pProxy1->getUid())) & (m_overlappingPairArray.capacity() - 1));
index = m_hashTable[lastHash];
btAssert(index != BT_NULL_PAIR);
@@ -366,20 +329,20 @@ void* btHashedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* pro
}
//#include <stdio.h>
#include "LinearMath/btQuickprof.h"
-void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher)
+void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback, btDispatcher* dispatcher)
{
BT_PROFILE("btHashedOverlappingPairCache::processAllOverlappingPairs");
int i;
-// printf("m_overlappingPairArray.size()=%d\n",m_overlappingPairArray.size());
- for (i=0;i<m_overlappingPairArray.size();)
+ // printf("m_overlappingPairArray.size()=%d\n",m_overlappingPairArray.size());
+ for (i = 0; i < m_overlappingPairArray.size();)
{
-
btBroadphasePair* pair = &m_overlappingPairArray[i];
if (callback->processOverlap(*pair))
{
- removeOverlappingPair(pair->m_pProxy0,pair->m_pProxy1,dispatcher);
- } else
+ removeOverlappingPair(pair->m_pProxy0, pair->m_pProxy1, dispatcher);
+ }
+ else
{
i++;
}
@@ -388,83 +351,83 @@ void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback*
struct MyPairIndex
{
- int m_orgIndex;
- int m_uidA0;
- int m_uidA1;
+ int m_orgIndex;
+ int m_uidA0;
+ int m_uidA1;
};
class MyPairIndeSortPredicate
{
public:
-
- bool operator() ( const MyPairIndex& a, const MyPairIndex& b ) const
- {
- const int uidA0 = a.m_uidA0;
- const int uidB0 = b.m_uidA0;
- const int uidA1 = a.m_uidA1;
- const int uidB1 = b.m_uidA1;
- return uidA0 > uidB0 || (uidA0 == uidB0 && uidA1 > uidB1);
- }
+ bool operator()(const MyPairIndex& a, const MyPairIndex& b) const
+ {
+ const int uidA0 = a.m_uidA0;
+ const int uidB0 = b.m_uidA0;
+ const int uidA1 = a.m_uidA1;
+ const int uidB1 = b.m_uidA1;
+ return uidA0 > uidB0 || (uidA0 == uidB0 && uidA1 > uidB1);
+ }
};
-void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher, const struct btDispatcherInfo& dispatchInfo)
+void btHashedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback, btDispatcher* dispatcher, const struct btDispatcherInfo& dispatchInfo)
{
- if (dispatchInfo.m_deterministicOverlappingPairs)
- {
- btBroadphasePairArray& pa = getOverlappingPairArray();
- btAlignedObjectArray<MyPairIndex> indices;
- {
- BT_PROFILE("sortOverlappingPairs");
- indices.resize(pa.size());
- for (int i=0;i<indices.size();i++)
- {
- const btBroadphasePair& p = pa[i];
- const int uidA0 = p.m_pProxy0 ? p.m_pProxy0->m_uniqueId : -1;
- const int uidA1 = p.m_pProxy1 ? p.m_pProxy1->m_uniqueId : -1;
-
- indices[i].m_uidA0 = uidA0;
- indices[i].m_uidA1 = uidA1;
- indices[i].m_orgIndex = i;
- }
- indices.quickSort(MyPairIndeSortPredicate());
- }
- {
- BT_PROFILE("btHashedOverlappingPairCache::processAllOverlappingPairs");
- int i;
- for (i=0;i<indices.size();)
- {
- btBroadphasePair* pair = &pa[indices[i].m_orgIndex];
- if (callback->processOverlap(*pair))
- {
- removeOverlappingPair(pair->m_pProxy0,pair->m_pProxy1,dispatcher);
- } else
- {
- i++;
- }
- }
- }
- } else
- {
- processAllOverlappingPairs(callback, dispatcher);
- }
-}
+ if (dispatchInfo.m_deterministicOverlappingPairs)
+ {
+ btBroadphasePairArray& pa = getOverlappingPairArray();
+ btAlignedObjectArray<MyPairIndex> indices;
+ {
+ BT_PROFILE("sortOverlappingPairs");
+ indices.resize(pa.size());
+ for (int i = 0; i < indices.size(); i++)
+ {
+ const btBroadphasePair& p = pa[i];
+ const int uidA0 = p.m_pProxy0 ? p.m_pProxy0->m_uniqueId : -1;
+ const int uidA1 = p.m_pProxy1 ? p.m_pProxy1->m_uniqueId : -1;
+ indices[i].m_uidA0 = uidA0;
+ indices[i].m_uidA1 = uidA1;
+ indices[i].m_orgIndex = i;
+ }
+ indices.quickSort(MyPairIndeSortPredicate());
+ }
+ {
+ BT_PROFILE("btHashedOverlappingPairCache::processAllOverlappingPairs");
+ int i;
+ for (i = 0; i < indices.size();)
+ {
+ btBroadphasePair* pair = &pa[indices[i].m_orgIndex];
+ if (callback->processOverlap(*pair))
+ {
+ removeOverlappingPair(pair->m_pProxy0, pair->m_pProxy1, dispatcher);
+ }
+ else
+ {
+ i++;
+ }
+ }
+ }
+ }
+ else
+ {
+ processAllOverlappingPairs(callback, dispatcher);
+ }
+}
-void btHashedOverlappingPairCache::sortOverlappingPairs(btDispatcher* dispatcher)
+void btHashedOverlappingPairCache::sortOverlappingPairs(btDispatcher* dispatcher)
{
///need to keep hashmap in sync with pair address, so rebuild all
btBroadphasePairArray tmpPairs;
int i;
- for (i=0;i<m_overlappingPairArray.size();i++)
+ for (i = 0; i < m_overlappingPairArray.size(); i++)
{
tmpPairs.push_back(m_overlappingPairArray[i]);
}
- for (i=0;i<tmpPairs.size();i++)
+ for (i = 0; i < tmpPairs.size(); i++)
{
- removeOverlappingPair(tmpPairs[i].m_pProxy0,tmpPairs[i].m_pProxy1,dispatcher);
+ removeOverlappingPair(tmpPairs[i].m_pProxy0, tmpPairs[i].m_pProxy1, dispatcher);
}
-
+
for (i = 0; i < m_next.size(); i++)
{
m_next[i] = BT_NULL_PAIR;
@@ -472,31 +435,28 @@ void btHashedOverlappingPairCache::sortOverlappingPairs(btDispatcher* dispatcher
tmpPairs.quickSort(btBroadphasePairSortPredicate());
- for (i=0;i<tmpPairs.size();i++)
+ for (i = 0; i < tmpPairs.size(); i++)
{
- addOverlappingPair(tmpPairs[i].m_pProxy0,tmpPairs[i].m_pProxy1);
+ addOverlappingPair(tmpPairs[i].m_pProxy0, tmpPairs[i].m_pProxy1);
}
-
-
}
-
-void* btSortedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1, btDispatcher* dispatcher )
+void* btSortedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, btDispatcher* dispatcher)
{
if (!hasDeferredRemoval())
{
- btBroadphasePair findPair(*proxy0,*proxy1);
+ btBroadphasePair findPair(*proxy0, *proxy1);
int findIndex = m_overlappingPairArray.findLinearSearch(findPair);
if (findIndex < m_overlappingPairArray.size())
{
btBroadphasePair& pair = m_overlappingPairArray[findIndex];
void* userData = pair.m_internalInfo1;
- cleanOverlappingPair(pair,dispatcher);
+ cleanOverlappingPair(pair, dispatcher);
if (m_ghostPairCallback)
- m_ghostPairCallback->removeOverlappingPair(proxy0, proxy1,dispatcher);
-
- m_overlappingPairArray.swap(findIndex,m_overlappingPairArray.capacity()-1);
+ m_ghostPairCallback->removeOverlappingPair(proxy0, proxy1, dispatcher);
+
+ m_overlappingPairArray.swap(findIndex, m_overlappingPairArray.capacity() - 1);
m_overlappingPairArray.pop_back();
return userData;
}
@@ -505,95 +465,73 @@ void* btSortedOverlappingPairCache::removeOverlappingPair(btBroadphaseProxy* pro
return 0;
}
-
-
-
-
-
-
-
-btBroadphasePair* btSortedOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+btBroadphasePair* btSortedOverlappingPairCache::addOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
//don't add overlap with own
btAssert(proxy0 != proxy1);
- if (!needsBroadphaseCollision(proxy0,proxy1))
+ if (!needsBroadphaseCollision(proxy0, proxy1))
return 0;
-
+
void* mem = &m_overlappingPairArray.expandNonInitializing();
- btBroadphasePair* pair = new (mem) btBroadphasePair(*proxy0,*proxy1);
+ btBroadphasePair* pair = new (mem) btBroadphasePair(*proxy0, *proxy1);
- if (m_ghostPairCallback)
+ if (m_ghostPairCallback)
m_ghostPairCallback->addOverlappingPair(proxy0, proxy1);
return pair;
-
}
///this findPair becomes really slow. Either sort the list to speedup the query, or
///use a different solution. It is mainly used for Removing overlapping pairs. Removal could be delayed.
///we could keep a linked list in each proxy, and store pair in one of the proxies (with lowest memory address)
///Also we can use a 2D bitmap, which can be useful for a future GPU implementation
- btBroadphasePair* btSortedOverlappingPairCache::findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+btBroadphasePair* btSortedOverlappingPairCache::findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
- if (!needsBroadphaseCollision(proxy0,proxy1))
+ if (!needsBroadphaseCollision(proxy0, proxy1))
return 0;
- btBroadphasePair tmpPair(*proxy0,*proxy1);
+ btBroadphasePair tmpPair(*proxy0, *proxy1);
int findIndex = m_overlappingPairArray.findLinearSearch(tmpPair);
if (findIndex < m_overlappingPairArray.size())
{
//btAssert(it != m_overlappingPairSet.end());
- btBroadphasePair* pair = &m_overlappingPairArray[findIndex];
+ btBroadphasePair* pair = &m_overlappingPairArray[findIndex];
return pair;
}
return 0;
}
-
-
-
-
-
-
-
-
-
//#include <stdio.h>
-void btSortedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher)
+void btSortedOverlappingPairCache::processAllOverlappingPairs(btOverlapCallback* callback, btDispatcher* dispatcher)
{
-
int i;
- for (i=0;i<m_overlappingPairArray.size();)
+ for (i = 0; i < m_overlappingPairArray.size();)
{
-
btBroadphasePair* pair = &m_overlappingPairArray[i];
if (callback->processOverlap(*pair))
{
- cleanOverlappingPair(*pair,dispatcher);
+ cleanOverlappingPair(*pair, dispatcher);
pair->m_pProxy0 = 0;
pair->m_pProxy1 = 0;
- m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
+ m_overlappingPairArray.swap(i, m_overlappingPairArray.size() - 1);
m_overlappingPairArray.pop_back();
- } else
+ }
+ else
{
i++;
}
}
}
-
-
-
-btSortedOverlappingPairCache::btSortedOverlappingPairCache():
- m_blockedForChanges(false),
- m_hasDeferredRemoval(true),
- m_overlapFilterCallback(0),
- m_ghostPairCallback(0)
+btSortedOverlappingPairCache::btSortedOverlappingPairCache() : m_blockedForChanges(false),
+ m_hasDeferredRemoval(true),
+ m_overlapFilterCallback(0),
+ m_ghostPairCallback(0)
{
- int initialAllocatedSize= 2;
+ int initialAllocatedSize = 2;
m_overlappingPairArray.reserve(initialAllocatedSize);
}
@@ -601,81 +539,73 @@ btSortedOverlappingPairCache::~btSortedOverlappingPairCache()
{
}
-void btSortedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher)
+void btSortedOverlappingPairCache::cleanOverlappingPair(btBroadphasePair& pair, btDispatcher* dispatcher)
{
if (pair.m_algorithm)
{
{
pair.m_algorithm->~btCollisionAlgorithm();
dispatcher->freeCollisionAlgorithm(pair.m_algorithm);
- pair.m_algorithm=0;
+ pair.m_algorithm = 0;
}
}
}
-
-void btSortedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+void btSortedOverlappingPairCache::cleanProxyFromPairs(btBroadphaseProxy* proxy, btDispatcher* dispatcher)
{
-
- class CleanPairCallback : public btOverlapCallback
+ class CleanPairCallback : public btOverlapCallback
{
btBroadphaseProxy* m_cleanProxy;
- btOverlappingPairCache* m_pairCache;
+ btOverlappingPairCache* m_pairCache;
btDispatcher* m_dispatcher;
public:
- CleanPairCallback(btBroadphaseProxy* cleanProxy,btOverlappingPairCache* pairCache,btDispatcher* dispatcher)
- :m_cleanProxy(cleanProxy),
- m_pairCache(pairCache),
- m_dispatcher(dispatcher)
+ CleanPairCallback(btBroadphaseProxy* cleanProxy, btOverlappingPairCache* pairCache, btDispatcher* dispatcher)
+ : m_cleanProxy(cleanProxy),
+ m_pairCache(pairCache),
+ m_dispatcher(dispatcher)
{
}
- virtual bool processOverlap(btBroadphasePair& pair)
+ virtual bool processOverlap(btBroadphasePair& pair)
{
if ((pair.m_pProxy0 == m_cleanProxy) ||
(pair.m_pProxy1 == m_cleanProxy))
{
- m_pairCache->cleanOverlappingPair(pair,m_dispatcher);
+ m_pairCache->cleanOverlappingPair(pair, m_dispatcher);
}
return false;
}
-
};
- CleanPairCallback cleanPairs(proxy,this,dispatcher);
-
- processAllOverlappingPairs(&cleanPairs,dispatcher);
+ CleanPairCallback cleanPairs(proxy, this, dispatcher);
+ processAllOverlappingPairs(&cleanPairs, dispatcher);
}
-
-void btSortedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
+void btSortedOverlappingPairCache::removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher)
{
-
- class RemovePairCallback : public btOverlapCallback
+ class RemovePairCallback : public btOverlapCallback
{
btBroadphaseProxy* m_obsoleteProxy;
public:
RemovePairCallback(btBroadphaseProxy* obsoleteProxy)
- :m_obsoleteProxy(obsoleteProxy)
+ : m_obsoleteProxy(obsoleteProxy)
{
}
- virtual bool processOverlap(btBroadphasePair& pair)
+ virtual bool processOverlap(btBroadphasePair& pair)
{
return ((pair.m_pProxy0 == m_obsoleteProxy) ||
- (pair.m_pProxy1 == m_obsoleteProxy));
+ (pair.m_pProxy1 == m_obsoleteProxy));
}
-
};
RemovePairCallback removeCallback(proxy);
- processAllOverlappingPairs(&removeCallback,dispatcher);
+ processAllOverlappingPairs(&removeCallback, dispatcher);
}
-void btSortedOverlappingPairCache::sortOverlappingPairs(btDispatcher* dispatcher)
+void btSortedOverlappingPairCache::sortOverlappingPairs(btDispatcher* dispatcher)
{
//should already be sorted
}
-
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h
index 7a38d34f05..a85782bc8a 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCache.h
@@ -16,7 +16,6 @@ subject to the following restrictions:
#ifndef BT_OVERLAPPING_PAIR_CACHE_H
#define BT_OVERLAPPING_PAIR_CACHE_H
-
#include "btBroadphaseInterface.h"
#include "btBroadphaseProxy.h"
#include "btOverlappingPairCallback.h"
@@ -24,177 +23,163 @@ subject to the following restrictions:
#include "LinearMath/btAlignedObjectArray.h"
class btDispatcher;
-typedef btAlignedObjectArray<btBroadphasePair> btBroadphasePairArray;
+typedef btAlignedObjectArray<btBroadphasePair> btBroadphasePairArray;
-struct btOverlapCallback
+struct btOverlapCallback
{
virtual ~btOverlapCallback()
- {}
+ {
+ }
//return true for deletion of the pair
- virtual bool processOverlap(btBroadphasePair& pair) = 0;
-
+ virtual bool processOverlap(btBroadphasePair& pair) = 0;
};
struct btOverlapFilterCallback
{
virtual ~btOverlapFilterCallback()
- {}
+ {
+ }
// return true when pairs need collision
- virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const = 0;
+ virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) const = 0;
};
-
-
-
-
-
-
-const int BT_NULL_PAIR=0xffffffff;
+const int BT_NULL_PAIR = 0xffffffff;
///The btOverlappingPairCache provides an interface for overlapping pair management (add, remove, storage), used by the btBroadphaseInterface broadphases.
///The btHashedOverlappingPairCache and btSortedOverlappingPairCache classes are two implementations.
class btOverlappingPairCache : public btOverlappingPairCallback
{
public:
- virtual ~btOverlappingPairCache() {} // this is needed so we can get to the derived class destructor
+ virtual ~btOverlappingPairCache() {} // this is needed so we can get to the derived class destructor
+
+ virtual btBroadphasePair* getOverlappingPairArrayPtr() = 0;
- virtual btBroadphasePair* getOverlappingPairArrayPtr() = 0;
-
- virtual const btBroadphasePair* getOverlappingPairArrayPtr() const = 0;
+ virtual const btBroadphasePair* getOverlappingPairArrayPtr() const = 0;
- virtual btBroadphasePairArray& getOverlappingPairArray() = 0;
+ virtual btBroadphasePairArray& getOverlappingPairArray() = 0;
- virtual void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher) = 0;
+ virtual void cleanOverlappingPair(btBroadphasePair& pair, btDispatcher* dispatcher) = 0;
virtual int getNumOverlappingPairs() const = 0;
- virtual void cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher) = 0;
+ virtual void cleanProxyFromPairs(btBroadphaseProxy* proxy, btDispatcher* dispatcher) = 0;
- virtual void setOverlapFilterCallback(btOverlapFilterCallback* callback) = 0;
+ virtual void setOverlapFilterCallback(btOverlapFilterCallback* callback) = 0;
- virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher) = 0;
+ virtual void processAllOverlappingPairs(btOverlapCallback*, btDispatcher* dispatcher) = 0;
- virtual void processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher, const struct btDispatcherInfo& dispatchInfo)
+ virtual void processAllOverlappingPairs(btOverlapCallback* callback, btDispatcher* dispatcher, const struct btDispatcherInfo& dispatchInfo)
{
processAllOverlappingPairs(callback, dispatcher);
}
virtual btBroadphasePair* findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) = 0;
- virtual bool hasDeferredRemoval() = 0;
-
- virtual void setInternalGhostPairCallback(btOverlappingPairCallback* ghostPairCallback)=0;
-
- virtual void sortOverlappingPairs(btDispatcher* dispatcher) = 0;
+ virtual bool hasDeferredRemoval() = 0;
+ virtual void setInternalGhostPairCallback(btOverlappingPairCallback* ghostPairCallback) = 0;
+ virtual void sortOverlappingPairs(btDispatcher* dispatcher) = 0;
};
/// Hash-space based Pair Cache, thanks to Erin Catto, Box2D, http://www.box2d.org, and Pierre Terdiman, Codercorner, http://codercorner.com
-ATTRIBUTE_ALIGNED16(class) btHashedOverlappingPairCache : public btOverlappingPairCache
+ATTRIBUTE_ALIGNED16(class)
+btHashedOverlappingPairCache : public btOverlappingPairCache
{
- btBroadphasePairArray m_overlappingPairArray;
+ btBroadphasePairArray m_overlappingPairArray;
btOverlapFilterCallback* m_overlapFilterCallback;
protected:
-
- btAlignedObjectArray<int> m_hashTable;
- btAlignedObjectArray<int> m_next;
- btOverlappingPairCallback* m_ghostPairCallback;
-
+ btAlignedObjectArray<int> m_hashTable;
+ btAlignedObjectArray<int> m_next;
+ btOverlappingPairCallback* m_ghostPairCallback;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
-
+
btHashedOverlappingPairCache();
virtual ~btHashedOverlappingPairCache();
-
- void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+ void removeOverlappingPairsContainingProxy(btBroadphaseProxy * proxy, btDispatcher * dispatcher);
+
+ virtual void* removeOverlappingPair(btBroadphaseProxy * proxy0, btBroadphaseProxy * proxy1, btDispatcher * dispatcher);
- virtual void* removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher);
-
- SIMD_FORCE_INLINE bool needsBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const
+ SIMD_FORCE_INLINE bool needsBroadphaseCollision(btBroadphaseProxy * proxy0, btBroadphaseProxy * proxy1) const
{
if (m_overlapFilterCallback)
- return m_overlapFilterCallback->needBroadphaseCollision(proxy0,proxy1);
+ return m_overlapFilterCallback->needBroadphaseCollision(proxy0, proxy1);
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
-
+
return collides;
}
// Add a pair and return the new pair. If the pair already exists,
// no new pair is created and the old one is returned.
- virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+ virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy * proxy0, btBroadphaseProxy * proxy1)
{
- if (!needsBroadphaseCollision(proxy0,proxy1))
+ if (!needsBroadphaseCollision(proxy0, proxy1))
return 0;
- return internalAddPair(proxy0,proxy1);
+ return internalAddPair(proxy0, proxy1);
}
-
-
- void cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+ void cleanProxyFromPairs(btBroadphaseProxy * proxy, btDispatcher * dispatcher);
-
- virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher);
+ virtual void processAllOverlappingPairs(btOverlapCallback*, btDispatcher * dispatcher);
- virtual void processAllOverlappingPairs(btOverlapCallback* callback,btDispatcher* dispatcher, const struct btDispatcherInfo& dispatchInfo);
+ virtual void processAllOverlappingPairs(btOverlapCallback * callback, btDispatcher * dispatcher, const struct btDispatcherInfo& dispatchInfo);
- virtual btBroadphasePair* getOverlappingPairArrayPtr()
+ virtual btBroadphasePair* getOverlappingPairArrayPtr()
{
return &m_overlappingPairArray[0];
}
- const btBroadphasePair* getOverlappingPairArrayPtr() const
+ const btBroadphasePair* getOverlappingPairArrayPtr() const
{
return &m_overlappingPairArray[0];
}
- btBroadphasePairArray& getOverlappingPairArray()
+ btBroadphasePairArray& getOverlappingPairArray()
{
return m_overlappingPairArray;
}
- const btBroadphasePairArray& getOverlappingPairArray() const
+ const btBroadphasePairArray& getOverlappingPairArray() const
{
return m_overlappingPairArray;
}
- void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher);
-
+ void cleanOverlappingPair(btBroadphasePair & pair, btDispatcher * dispatcher);
-
- btBroadphasePair* findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
+ btBroadphasePair* findPair(btBroadphaseProxy * proxy0, btBroadphaseProxy * proxy1);
int GetCount() const { return m_overlappingPairArray.size(); }
-// btBroadphasePair* GetPairs() { return m_pairs; }
+ // btBroadphasePair* GetPairs() { return m_pairs; }
btOverlapFilterCallback* getOverlapFilterCallback()
{
return m_overlapFilterCallback;
}
- void setOverlapFilterCallback(btOverlapFilterCallback* callback)
+ void setOverlapFilterCallback(btOverlapFilterCallback * callback)
{
m_overlapFilterCallback = callback;
}
- int getNumOverlappingPairs() const
+ int getNumOverlappingPairs() const
{
return m_overlappingPairArray.size();
}
+
private:
-
- btBroadphasePair* internalAddPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+ btBroadphasePair* internalAddPair(btBroadphaseProxy * proxy0, btBroadphaseProxy * proxy1);
- void growTables();
+ void growTables();
SIMD_FORCE_INLINE bool equalsPair(const btBroadphasePair& pair, int proxyId1, int proxyId2)
- {
+ {
return pair.m_pProxy0->getUid() == proxyId1 && pair.m_pProxy1->getUid() == proxyId2;
}
@@ -214,40 +199,37 @@ private:
}
*/
-
SIMD_FORCE_INLINE unsigned int getHash(unsigned int proxyId1, unsigned int proxyId2)
{
unsigned int key = proxyId1 | (proxyId2 << 16);
// Thomas Wang's hash
key += ~(key << 15);
- key ^= (key >> 10);
- key += (key << 3);
- key ^= (key >> 6);
+ key ^= (key >> 10);
+ key += (key << 3);
+ key ^= (key >> 6);
key += ~(key << 11);
- key ^= (key >> 16);
+ key ^= (key >> 16);
return key;
}
-
-
- SIMD_FORCE_INLINE btBroadphasePair* internalFindPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, int hash)
+ SIMD_FORCE_INLINE btBroadphasePair* internalFindPair(btBroadphaseProxy * proxy0, btBroadphaseProxy * proxy1, int hash)
{
int proxyId1 = proxy0->getUid();
int proxyId2 = proxy1->getUid();
- #if 0 // wrong, 'equalsPair' use unsorted uids, copy-past devil striked again. Nat.
+#if 0 // wrong, 'equalsPair' use unsorted uids, copy-past devil striked again. Nat.
if (proxyId1 > proxyId2)
btSwap(proxyId1, proxyId2);
- #endif
+#endif
int index = m_hashTable[hash];
-
- while( index != BT_NULL_PAIR && equalsPair(m_overlappingPairArray[index], proxyId1, proxyId2) == false)
+
+ while (index != BT_NULL_PAIR && equalsPair(m_overlappingPairArray[index], proxyId1, proxyId2) == false)
{
index = m_next[index];
}
- if ( index == BT_NULL_PAIR )
+ if (index == BT_NULL_PAIR)
{
return NULL;
}
@@ -257,155 +239,136 @@ private:
return &m_overlappingPairArray[index];
}
- virtual bool hasDeferredRemoval()
+ virtual bool hasDeferredRemoval()
{
return false;
}
- virtual void setInternalGhostPairCallback(btOverlappingPairCallback* ghostPairCallback)
+ virtual void setInternalGhostPairCallback(btOverlappingPairCallback * ghostPairCallback)
{
m_ghostPairCallback = ghostPairCallback;
}
- virtual void sortOverlappingPairs(btDispatcher* dispatcher);
-
-
-
+ virtual void sortOverlappingPairs(btDispatcher * dispatcher);
};
-
-
-
///btSortedOverlappingPairCache maintains the objects with overlapping AABB
///Typically managed by the Broadphase, Axis3Sweep or btSimpleBroadphase
-class btSortedOverlappingPairCache : public btOverlappingPairCache
+class btSortedOverlappingPairCache : public btOverlappingPairCache
{
- protected:
- //avoid brute-force finding all the time
- btBroadphasePairArray m_overlappingPairArray;
+protected:
+ //avoid brute-force finding all the time
+ btBroadphasePairArray m_overlappingPairArray;
- //during the dispatch, check that user doesn't destroy/create proxy
- bool m_blockedForChanges;
+ //during the dispatch, check that user doesn't destroy/create proxy
+ bool m_blockedForChanges;
- ///by default, do the removal during the pair traversal
- bool m_hasDeferredRemoval;
-
- //if set, use the callback instead of the built in filter in needBroadphaseCollision
- btOverlapFilterCallback* m_overlapFilterCallback;
+ ///by default, do the removal during the pair traversal
+ bool m_hasDeferredRemoval;
- btOverlappingPairCallback* m_ghostPairCallback;
+ //if set, use the callback instead of the built in filter in needBroadphaseCollision
+ btOverlapFilterCallback* m_overlapFilterCallback;
- public:
-
- btSortedOverlappingPairCache();
- virtual ~btSortedOverlappingPairCache();
+ btOverlappingPairCallback* m_ghostPairCallback;
- virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* dispatcher);
+public:
+ btSortedOverlappingPairCache();
+ virtual ~btSortedOverlappingPairCache();
- void* removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher);
+ virtual void processAllOverlappingPairs(btOverlapCallback*, btDispatcher* dispatcher);
- void cleanOverlappingPair(btBroadphasePair& pair,btDispatcher* dispatcher);
-
- btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
+ void* removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, btDispatcher* dispatcher);
- btBroadphasePair* findPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
-
-
- void cleanProxyFromPairs(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+ void cleanOverlappingPair(btBroadphasePair& pair, btDispatcher* dispatcher);
- void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
+ btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
+ btBroadphasePair* findPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
- inline bool needsBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const
- {
- if (m_overlapFilterCallback)
- return m_overlapFilterCallback->needBroadphaseCollision(proxy0,proxy1);
+ void cleanProxyFromPairs(btBroadphaseProxy* proxy, btDispatcher* dispatcher);
- bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
- collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
-
- return collides;
- }
-
- btBroadphasePairArray& getOverlappingPairArray()
- {
- return m_overlappingPairArray;
- }
+ void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher);
- const btBroadphasePairArray& getOverlappingPairArray() const
- {
- return m_overlappingPairArray;
- }
+ inline bool needsBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) const
+ {
+ if (m_overlapFilterCallback)
+ return m_overlapFilterCallback->needBroadphaseCollision(proxy0, proxy1);
-
+ bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
+ collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
+ return collides;
+ }
- btBroadphasePair* getOverlappingPairArrayPtr()
- {
- return &m_overlappingPairArray[0];
- }
+ btBroadphasePairArray& getOverlappingPairArray()
+ {
+ return m_overlappingPairArray;
+ }
- const btBroadphasePair* getOverlappingPairArrayPtr() const
- {
- return &m_overlappingPairArray[0];
- }
+ const btBroadphasePairArray& getOverlappingPairArray() const
+ {
+ return m_overlappingPairArray;
+ }
- int getNumOverlappingPairs() const
- {
- return m_overlappingPairArray.size();
- }
-
- btOverlapFilterCallback* getOverlapFilterCallback()
- {
- return m_overlapFilterCallback;
- }
+ btBroadphasePair* getOverlappingPairArrayPtr()
+ {
+ return &m_overlappingPairArray[0];
+ }
- void setOverlapFilterCallback(btOverlapFilterCallback* callback)
- {
- m_overlapFilterCallback = callback;
- }
+ const btBroadphasePair* getOverlappingPairArrayPtr() const
+ {
+ return &m_overlappingPairArray[0];
+ }
- virtual bool hasDeferredRemoval()
- {
- return m_hasDeferredRemoval;
- }
+ int getNumOverlappingPairs() const
+ {
+ return m_overlappingPairArray.size();
+ }
- virtual void setInternalGhostPairCallback(btOverlappingPairCallback* ghostPairCallback)
- {
- m_ghostPairCallback = ghostPairCallback;
- }
+ btOverlapFilterCallback* getOverlapFilterCallback()
+ {
+ return m_overlapFilterCallback;
+ }
- virtual void sortOverlappingPairs(btDispatcher* dispatcher);
-
+ void setOverlapFilterCallback(btOverlapFilterCallback* callback)
+ {
+ m_overlapFilterCallback = callback;
+ }
-};
+ virtual bool hasDeferredRemoval()
+ {
+ return m_hasDeferredRemoval;
+ }
+ virtual void setInternalGhostPairCallback(btOverlappingPairCallback* ghostPairCallback)
+ {
+ m_ghostPairCallback = ghostPairCallback;
+ }
+ virtual void sortOverlappingPairs(btDispatcher* dispatcher);
+};
///btNullPairCache skips add/removal of overlapping pairs. Userful for benchmarking and unit testing.
class btNullPairCache : public btOverlappingPairCache
{
-
- btBroadphasePairArray m_overlappingPairArray;
+ btBroadphasePairArray m_overlappingPairArray;
public:
-
- virtual btBroadphasePair* getOverlappingPairArrayPtr()
+ virtual btBroadphasePair* getOverlappingPairArrayPtr()
{
return &m_overlappingPairArray[0];
}
- const btBroadphasePair* getOverlappingPairArrayPtr() const
+ const btBroadphasePair* getOverlappingPairArrayPtr() const
{
return &m_overlappingPairArray[0];
}
- btBroadphasePairArray& getOverlappingPairArray()
+ btBroadphasePairArray& getOverlappingPairArray()
{
return m_overlappingPairArray;
}
-
- virtual void cleanOverlappingPair(btBroadphasePair& /*pair*/,btDispatcher* /*dispatcher*/)
- {
+ virtual void cleanOverlappingPair(btBroadphasePair& /*pair*/, btDispatcher* /*dispatcher*/)
+ {
}
virtual int getNumOverlappingPairs() const
@@ -413,16 +376,15 @@ public:
return 0;
}
- virtual void cleanProxyFromPairs(btBroadphaseProxy* /*proxy*/,btDispatcher* /*dispatcher*/)
+ virtual void cleanProxyFromPairs(btBroadphaseProxy* /*proxy*/, btDispatcher* /*dispatcher*/)
{
-
}
- virtual void setOverlapFilterCallback(btOverlapFilterCallback* /*callback*/)
+ virtual void setOverlapFilterCallback(btOverlapFilterCallback* /*callback*/)
{
}
- virtual void processAllOverlappingPairs(btOverlapCallback*,btDispatcher* /*dispatcher*/)
+ virtual void processAllOverlappingPairs(btOverlapCallback*, btDispatcher* /*dispatcher*/)
{
}
@@ -431,39 +393,33 @@ public:
return 0;
}
- virtual bool hasDeferredRemoval()
+ virtual bool hasDeferredRemoval()
{
return true;
}
- virtual void setInternalGhostPairCallback(btOverlappingPairCallback* /* ghostPairCallback */)
+ virtual void setInternalGhostPairCallback(btOverlappingPairCallback* /* ghostPairCallback */)
{
-
}
- virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* /*proxy0*/,btBroadphaseProxy* /*proxy1*/)
+ virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* /*proxy0*/, btBroadphaseProxy* /*proxy1*/)
{
return 0;
}
- virtual void* removeOverlappingPair(btBroadphaseProxy* /*proxy0*/,btBroadphaseProxy* /*proxy1*/,btDispatcher* /*dispatcher*/)
+ virtual void* removeOverlappingPair(btBroadphaseProxy* /*proxy0*/, btBroadphaseProxy* /*proxy1*/, btDispatcher* /*dispatcher*/)
{
return 0;
}
- virtual void removeOverlappingPairsContainingProxy(btBroadphaseProxy* /*proxy0*/,btDispatcher* /*dispatcher*/)
+ virtual void removeOverlappingPairsContainingProxy(btBroadphaseProxy* /*proxy0*/, btDispatcher* /*dispatcher*/)
{
}
-
- virtual void sortOverlappingPairs(btDispatcher* dispatcher)
+
+ virtual void sortOverlappingPairs(btDispatcher* dispatcher)
{
- (void) dispatcher;
+ (void)dispatcher;
}
-
-
};
-
-#endif //BT_OVERLAPPING_PAIR_CACHE_H
-
-
+#endif //BT_OVERLAPPING_PAIR_CACHE_H
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h
index 3e069fa5e2..d16c72542f 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btOverlappingPairCallback.h
@@ -18,26 +18,24 @@ subject to the following restrictions:
#define OVERLAPPING_PAIR_CALLBACK_H
class btDispatcher;
-struct btBroadphasePair;
+struct btBroadphasePair;
///The btOverlappingPairCallback class is an additional optional broadphase user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache.
class btOverlappingPairCallback
{
protected:
- btOverlappingPairCallback() {}
-
+ btOverlappingPairCallback() {}
+
public:
virtual ~btOverlappingPairCallback()
{
-
}
-
- virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) = 0;
- virtual void* removeOverlappingPair(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1,btDispatcher* dispatcher) = 0;
+ virtual btBroadphasePair* addOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) = 0;
- virtual void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy0,btDispatcher* dispatcher) = 0;
+ virtual void* removeOverlappingPair(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1, btDispatcher* dispatcher) = 0;
+ virtual void removeOverlappingPairsContainingProxy(btBroadphaseProxy* proxy0, btDispatcher* dispatcher) = 0;
};
-#endif //OVERLAPPING_PAIR_CALLBACK_H
+#endif //OVERLAPPING_PAIR_CALLBACK_H
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp
index 875d89c53e..b814fd84d8 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp
@@ -21,43 +21,38 @@ subject to the following restrictions:
#define RAYAABB2
-btQuantizedBvh::btQuantizedBvh() :
- m_bulletVersion(BT_BULLET_VERSION),
- m_useQuantization(false),
- //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY)
- m_traversalMode(TRAVERSAL_STACKLESS)
- //m_traversalMode(TRAVERSAL_RECURSIVE)
- ,m_subtreeHeaderCount(0) //PCK: add this line
+btQuantizedBvh::btQuantizedBvh() : m_bulletVersion(BT_BULLET_VERSION),
+ m_useQuantization(false),
+ //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY)
+ m_traversalMode(TRAVERSAL_STACKLESS)
+ //m_traversalMode(TRAVERSAL_RECURSIVE)
+ ,
+ m_subtreeHeaderCount(0) //PCK: add this line
{
- m_bvhAabbMin.setValue(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY);
- m_bvhAabbMax.setValue(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY);
+ m_bvhAabbMin.setValue(-SIMD_INFINITY, -SIMD_INFINITY, -SIMD_INFINITY);
+ m_bvhAabbMax.setValue(SIMD_INFINITY, SIMD_INFINITY, SIMD_INFINITY);
}
-
-
-
-
void btQuantizedBvh::buildInternal()
{
///assumes that caller filled in the m_quantizedLeafNodes
m_useQuantization = true;
int numLeafNodes = 0;
-
+
if (m_useQuantization)
{
//now we have an array of leafnodes in m_leafNodes
numLeafNodes = m_quantizedLeafNodes.size();
- m_quantizedContiguousNodes.resize(2*numLeafNodes);
-
+ m_quantizedContiguousNodes.resize(2 * numLeafNodes);
}
m_curNodeIndex = 0;
- buildTree(0,numLeafNodes);
+ buildTree(0, numLeafNodes);
///if the entire tree is small then subtree size, we need to create a header info for the tree
- if(m_useQuantization && !m_SubtreeHeaders.size())
+ if (m_useQuantization && !m_SubtreeHeaders.size())
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
@@ -73,29 +68,24 @@ void btQuantizedBvh::buildInternal()
m_leafNodes.clear();
}
-
-
///just for debugging, to visualize the individual patches/subtrees
#ifdef DEBUG_PATCH_COLORS
-btVector3 color[4]=
-{
- btVector3(1,0,0),
- btVector3(0,1,0),
- btVector3(0,0,1),
- btVector3(0,1,1)
-};
-#endif //DEBUG_PATCH_COLORS
-
-
+btVector3 color[4] =
+ {
+ btVector3(1, 0, 0),
+ btVector3(0, 1, 0),
+ btVector3(0, 0, 1),
+ btVector3(0, 1, 1)};
+#endif //DEBUG_PATCH_COLORS
-void btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin)
+void btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin, const btVector3& bvhAabbMax, btScalar quantizationMargin)
{
//enlarge the AABB to avoid division by zero when initializing the quantization values
- btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin);
+ btVector3 clampValue(quantizationMargin, quantizationMargin, quantizationMargin);
m_bvhAabbMin = bvhAabbMin - clampValue;
m_bvhAabbMax = bvhAabbMax + clampValue;
btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin;
- m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize;
+ m_bvhQuantization = btVector3(btScalar(65533.0), btScalar(65533.0), btScalar(65533.0)) / aabbSize;
m_useQuantization = true;
@@ -103,25 +93,22 @@ void btQuantizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btV
unsigned short vecIn[3];
btVector3 v;
{
- quantize(vecIn,m_bvhAabbMin,false);
+ quantize(vecIn, m_bvhAabbMin, false);
v = unQuantize(vecIn);
- m_bvhAabbMin.setMin(v-clampValue);
+ m_bvhAabbMin.setMin(v - clampValue);
}
- aabbSize = m_bvhAabbMax - m_bvhAabbMin;
- m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize;
+ aabbSize = m_bvhAabbMax - m_bvhAabbMin;
+ m_bvhQuantization = btVector3(btScalar(65533.0), btScalar(65533.0), btScalar(65533.0)) / aabbSize;
{
- quantize(vecIn,m_bvhAabbMax,true);
+ quantize(vecIn, m_bvhAabbMax, true);
v = unQuantize(vecIn);
- m_bvhAabbMax.setMax(v+clampValue);
+ m_bvhAabbMax.setMax(v + clampValue);
}
aabbSize = m_bvhAabbMax - m_bvhAabbMin;
- m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize;
+ m_bvhQuantization = btVector3(btScalar(65533.0), btScalar(65533.0), btScalar(65533.0)) / aabbSize;
}
}
-
-
-
btQuantizedBvh::~btQuantizedBvh()
{
}
@@ -129,104 +116,100 @@ btQuantizedBvh::~btQuantizedBvh()
#ifdef DEBUG_TREE_BUILDING
int gStackDepth = 0;
int gMaxStackDepth = 0;
-#endif //DEBUG_TREE_BUILDING
+#endif //DEBUG_TREE_BUILDING
-void btQuantizedBvh::buildTree (int startIndex,int endIndex)
+void btQuantizedBvh::buildTree(int startIndex, int endIndex)
{
#ifdef DEBUG_TREE_BUILDING
gStackDepth++;
if (gStackDepth > gMaxStackDepth)
gMaxStackDepth = gStackDepth;
-#endif //DEBUG_TREE_BUILDING
-
+#endif //DEBUG_TREE_BUILDING
int splitAxis, splitIndex, i;
- int numIndices =endIndex-startIndex;
+ int numIndices = endIndex - startIndex;
int curIndex = m_curNodeIndex;
- btAssert(numIndices>0);
+ btAssert(numIndices > 0);
- if (numIndices==1)
+ if (numIndices == 1)
{
#ifdef DEBUG_TREE_BUILDING
gStackDepth--;
-#endif //DEBUG_TREE_BUILDING
-
- assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex);
+#endif //DEBUG_TREE_BUILDING
+
+ assignInternalNodeFromLeafNode(m_curNodeIndex, startIndex);
m_curNodeIndex++;
- return;
+ return;
}
//calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.
-
- splitAxis = calcSplittingAxis(startIndex,endIndex);
- splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis);
+ splitAxis = calcSplittingAxis(startIndex, endIndex);
+
+ splitIndex = sortAndCalcSplittingIndex(startIndex, endIndex, splitAxis);
int internalNodeIndex = m_curNodeIndex;
-
+
//set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value.
//the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values
- setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);//can't use btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY)) because of quantization
- setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);//can't use btVector3(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY)) because of quantization
-
-
- for (i=startIndex;i<endIndex;i++)
+ setInternalNodeAabbMin(m_curNodeIndex, m_bvhAabbMax); //can't use btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY)) because of quantization
+ setInternalNodeAabbMax(m_curNodeIndex, m_bvhAabbMin); //can't use btVector3(-SIMD_INFINITY,-SIMD_INFINITY,-SIMD_INFINITY)) because of quantization
+
+ for (i = startIndex; i < endIndex; i++)
{
- mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i));
+ mergeInternalNodeAabb(m_curNodeIndex, getAabbMin(i), getAabbMax(i));
}
m_curNodeIndex++;
-
//internalNode->m_escapeIndex;
-
+
int leftChildNodexIndex = m_curNodeIndex;
//build left child tree
- buildTree(startIndex,splitIndex);
+ buildTree(startIndex, splitIndex);
int rightChildNodexIndex = m_curNodeIndex;
//build right child tree
- buildTree(splitIndex,endIndex);
+ buildTree(splitIndex, endIndex);
#ifdef DEBUG_TREE_BUILDING
gStackDepth--;
-#endif //DEBUG_TREE_BUILDING
+#endif //DEBUG_TREE_BUILDING
int escapeIndex = m_curNodeIndex - curIndex;
if (m_useQuantization)
{
//escapeIndex is the number of nodes of this subtree
- const int sizeQuantizedNode =sizeof(btQuantizedBvhNode);
+ const int sizeQuantizedNode = sizeof(btQuantizedBvhNode);
const int treeSizeInBytes = escapeIndex * sizeQuantizedNode;
if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES)
{
- updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex);
+ updateSubtreeHeaders(leftChildNodexIndex, rightChildNodexIndex);
}
- } else
+ }
+ else
{
-
}
- setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex);
-
+ setInternalNodeEscapeIndex(internalNodeIndex, escapeIndex);
}
-void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex)
+void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex, int rightChildNodexIndex)
{
btAssert(m_useQuantization);
btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex];
int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex();
- int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode));
-
+ int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode));
+
btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex];
int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex();
- int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode));
+ int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(btQuantizedBvhNode));
- if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
+ if (leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(leftChildNode);
@@ -234,7 +217,7 @@ void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChild
subtree.m_subtreeSize = leftSubTreeSize;
}
- if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
+ if (rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES)
{
btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(rightChildNode);
@@ -246,32 +229,31 @@ void btQuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChild
m_subtreeHeaderCount = m_SubtreeHeaders.size();
}
-
-int btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis)
+int btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex, int endIndex, int splitAxis)
{
int i;
- int splitIndex =startIndex;
+ int splitIndex = startIndex;
int numIndices = endIndex - startIndex;
btScalar splitValue;
- btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
- for (i=startIndex;i<endIndex;i++)
+ btVector3 means(btScalar(0.), btScalar(0.), btScalar(0.));
+ for (i = startIndex; i < endIndex; i++)
{
- btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
- means+=center;
+ btVector3 center = btScalar(0.5) * (getAabbMax(i) + getAabbMin(i));
+ means += center;
}
- means *= (btScalar(1.)/(btScalar)numIndices);
-
+ means *= (btScalar(1.) / (btScalar)numIndices);
+
splitValue = means[splitAxis];
-
+
//sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
- for (i=startIndex;i<endIndex;i++)
+ for (i = startIndex; i < endIndex; i++)
{
- btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
+ btVector3 center = btScalar(0.5) * (getAabbMax(i) + getAabbMin(i));
if (center[splitAxis] > splitValue)
{
//swap
- swapLeafNodes(i,splitIndex);
+ swapLeafNodes(i, splitIndex);
splitIndex++;
}
}
@@ -281,56 +263,53 @@ int btQuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int sp
//unbalanced1 is unsafe: it can cause stack overflows
//bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));
- //unbalanced2 should work too: always use center (perfect balanced trees)
+ //unbalanced2 should work too: always use center (perfect balanced trees)
//bool unbalanced2 = true;
//this should be safe too:
- int rangeBalancedIndices = numIndices/3;
- bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));
-
+ int rangeBalancedIndices = numIndices / 3;
+ bool unbalanced = ((splitIndex <= (startIndex + rangeBalancedIndices)) || (splitIndex >= (endIndex - 1 - rangeBalancedIndices)));
+
if (unbalanced)
{
- splitIndex = startIndex+ (numIndices>>1);
+ splitIndex = startIndex + (numIndices >> 1);
}
- bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex));
+ bool unbal = (splitIndex == startIndex) || (splitIndex == (endIndex));
(void)unbal;
btAssert(!unbal);
return splitIndex;
}
-
-int btQuantizedBvh::calcSplittingAxis(int startIndex,int endIndex)
+int btQuantizedBvh::calcSplittingAxis(int startIndex, int endIndex)
{
int i;
- btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
- btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
- int numIndices = endIndex-startIndex;
+ btVector3 means(btScalar(0.), btScalar(0.), btScalar(0.));
+ btVector3 variance(btScalar(0.), btScalar(0.), btScalar(0.));
+ int numIndices = endIndex - startIndex;
- for (i=startIndex;i<endIndex;i++)
+ for (i = startIndex; i < endIndex; i++)
{
- btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
- means+=center;
+ btVector3 center = btScalar(0.5) * (getAabbMax(i) + getAabbMin(i));
+ means += center;
}
- means *= (btScalar(1.)/(btScalar)numIndices);
-
- for (i=startIndex;i<endIndex;i++)
+ means *= (btScalar(1.) / (btScalar)numIndices);
+
+ for (i = startIndex; i < endIndex; i++)
{
- btVector3 center = btScalar(0.5)*(getAabbMax(i)+getAabbMin(i));
- btVector3 diff2 = center-means;
+ btVector3 center = btScalar(0.5) * (getAabbMax(i) + getAabbMin(i));
+ btVector3 diff2 = center - means;
diff2 = diff2 * diff2;
variance += diff2;
}
- variance *= (btScalar(1.)/ ((btScalar)numIndices-1) );
-
+ variance *= (btScalar(1.) / ((btScalar)numIndices - 1));
+
return variance.maxAxis();
}
-
-
-void btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
+void btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& aabbMin, const btVector3& aabbMax) const
{
//either choose recursive traversal (walkTree) or stackless (walkStacklessTree)
@@ -339,38 +318,37 @@ void btQuantizedBvh::reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallb
///quantize query AABB
unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3];
- quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0);
- quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1);
+ quantizeWithClamp(quantizedQueryAabbMin, aabbMin, 0);
+ quantizeWithClamp(quantizedQueryAabbMax, aabbMax, 1);
switch (m_traversalMode)
{
- case TRAVERSAL_STACKLESS:
- walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex);
- break;
- case TRAVERSAL_STACKLESS_CACHE_FRIENDLY:
- walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
- break;
- case TRAVERSAL_RECURSIVE:
+ case TRAVERSAL_STACKLESS:
+ walkStacklessQuantizedTree(nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax, 0, m_curNodeIndex);
+ break;
+ case TRAVERSAL_STACKLESS_CACHE_FRIENDLY:
+ walkStacklessQuantizedTreeCacheFriendly(nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax);
+ break;
+ case TRAVERSAL_RECURSIVE:
{
const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0];
- walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
+ walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode, nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax);
}
break;
- default:
- //unsupported
- btAssert(0);
+ default:
+ //unsupported
+ btAssert(0);
}
- } else
+ }
+ else
{
- walkStacklessTree(nodeCallback,aabbMin,aabbMax);
+ walkStacklessTree(nodeCallback, aabbMin, aabbMax);
}
}
-
int maxIterations = 0;
-
-void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const
+void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback, const btVector3& aabbMin, const btVector3& aabbMax) const
{
btAssert(!m_useQuantization);
@@ -384,24 +362,25 @@ void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const
while (curIndex < m_curNodeIndex)
{
//catch bugs in tree data
- btAssert (walkIterations < m_curNodeIndex);
+ btAssert(walkIterations < m_curNodeIndex);
walkIterations++;
- aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg);
+ aabbOverlap = TestAabbAgainstAabb2(aabbMin, aabbMax, rootNode->m_aabbMinOrg, rootNode->m_aabbMaxOrg);
isLeafNode = rootNode->m_escapeIndex == -1;
-
+
//PCK: unsigned instead of bool
if (isLeafNode && (aabbOverlap != 0))
{
- nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex);
- }
-
+ nodeCallback->processNode(rootNode->m_subPart, rootNode->m_triangleIndex);
+ }
+
//PCK: unsigned instead of bool
if ((aabbOverlap != 0) || isLeafNode)
{
rootNode++;
curIndex++;
- } else
+ }
+ else
{
escapeIndex = rootNode->m_escapeIndex;
rootNode += escapeIndex;
@@ -410,7 +389,6 @@ void btQuantizedBvh::walkStacklessTree(btNodeOverlapCallback* nodeCallback,const
}
if (maxIterations < walkIterations)
maxIterations = walkIterations;
-
}
/*
@@ -434,39 +412,38 @@ void btQuantizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback
}
*/
-void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
+void btQuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode, btNodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const
{
btAssert(m_useQuantization);
-
+
bool isLeafNode;
//PCK: unsigned instead of bool
unsigned aabbOverlap;
//PCK: unsigned instead of bool
- aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax);
+ aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, currentNode->m_quantizedAabbMin, currentNode->m_quantizedAabbMax);
isLeafNode = currentNode->isLeafNode();
-
+
//PCK: unsigned instead of bool
if (aabbOverlap != 0)
{
if (isLeafNode)
{
- nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex());
- } else
+ nodeCallback->processNode(currentNode->getPartId(), currentNode->getTriangleIndex());
+ }
+ else
{
//process left and right children
- const btQuantizedBvhNode* leftChildNode = currentNode+1;
- walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
+ const btQuantizedBvhNode* leftChildNode = currentNode + 1;
+ walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode, nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax);
- const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex();
- walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax);
+ const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode + 1 : leftChildNode + leftChildNode->getEscapeIndex();
+ walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode, nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax);
}
- }
+ }
}
-
-
-void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const
+void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex, int endNodeIndex) const
{
btAssert(!m_useQuantization);
@@ -475,11 +452,11 @@ void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCall
int walkIterations = 0;
bool isLeafNode;
//PCK: unsigned instead of bool
- unsigned aabbOverlap=0;
- unsigned rayBoxOverlap=0;
+ unsigned aabbOverlap = 0;
+ unsigned rayBoxOverlap = 0;
btScalar lambda_max = 1.0;
-
- /* Quick pruning by quantized box */
+
+ /* Quick pruning by quantized box */
btVector3 rayAabbMin = raySource;
btVector3 rayAabbMax = raySource;
rayAabbMin.setMin(rayTarget);
@@ -490,15 +467,15 @@ void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCall
rayAabbMax += aabbMax;
#ifdef RAYAABB2
- btVector3 rayDir = (rayTarget-raySource);
- rayDir.normalize ();
- lambda_max = rayDir.dot(rayTarget-raySource);
+ btVector3 rayDir = (rayTarget - raySource);
+ rayDir.normalize();
+ lambda_max = rayDir.dot(rayTarget - raySource);
///what about division by zero? --> just set rayDirection[i] to 1.0
btVector3 rayDirectionInverse;
rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
- unsigned int sign[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0};
+ unsigned int sign[3] = {rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0};
#endif
btVector3 bounds[2];
@@ -507,7 +484,7 @@ void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCall
{
btScalar param = 1.0;
//catch bugs in tree data
- btAssert (walkIterations < m_curNodeIndex);
+ btAssert(walkIterations < m_curNodeIndex);
walkIterations++;
@@ -517,34 +494,35 @@ void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCall
bounds[0] -= aabbMax;
bounds[1] -= aabbMin;
- aabbOverlap = TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg);
+ aabbOverlap = TestAabbAgainstAabb2(rayAabbMin, rayAabbMax, rootNode->m_aabbMinOrg, rootNode->m_aabbMaxOrg);
//perhaps profile if it is worth doing the aabbOverlap test first
#ifdef RAYAABB2
- ///careful with this check: need to check division by zero (above) and fix the unQuantize method
- ///thanks Joerg/hiker for the reproduction case!
- ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858
- rayBoxOverlap = aabbOverlap ? btRayAabb2 (raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false;
+ ///careful with this check: need to check division by zero (above) and fix the unQuantize method
+ ///thanks Joerg/hiker for the reproduction case!
+ ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858
+ rayBoxOverlap = aabbOverlap ? btRayAabb2(raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false;
#else
btVector3 normal;
- rayBoxOverlap = btRayAabb(raySource, rayTarget,bounds[0],bounds[1],param, normal);
+ rayBoxOverlap = btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
#endif
isLeafNode = rootNode->m_escapeIndex == -1;
-
+
//PCK: unsigned instead of bool
if (isLeafNode && (rayBoxOverlap != 0))
{
- nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex);
- }
-
+ nodeCallback->processNode(rootNode->m_subPart, rootNode->m_triangleIndex);
+ }
+
//PCK: unsigned instead of bool
if ((rayBoxOverlap != 0) || isLeafNode)
{
rootNode++;
curIndex++;
- } else
+ }
+ else
{
escapeIndex = rootNode->m_escapeIndex;
rootNode += escapeIndex;
@@ -553,15 +531,12 @@ void btQuantizedBvh::walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCall
}
if (maxIterations < walkIterations)
maxIterations = walkIterations;
-
}
-
-
-void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const
+void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex, int endNodeIndex) const
{
btAssert(m_useQuantization);
-
+
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
@@ -569,7 +544,7 @@ void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback*
const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
int escapeIndex;
-
+
bool isLeafNode;
//PCK: unsigned instead of bool
unsigned boxBoxOverlap = 0;
@@ -578,14 +553,14 @@ void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback*
btScalar lambda_max = 1.0;
#ifdef RAYAABB2
- btVector3 rayDirection = (rayTarget-raySource);
- rayDirection.normalize ();
- lambda_max = rayDirection.dot(rayTarget-raySource);
+ btVector3 rayDirection = (rayTarget - raySource);
+ rayDirection.normalize();
+ lambda_max = rayDirection.dot(rayTarget - raySource);
///what about division by zero? --> just set rayDirection[i] to 1.0
rayDirection[0] = rayDirection[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[0];
rayDirection[1] = rayDirection[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[1];
rayDirection[2] = rayDirection[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDirection[2];
- unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0};
+ unsigned int sign[3] = {rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0};
#endif
/* Quick pruning by quantized box */
@@ -600,37 +575,36 @@ void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback*
unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3];
- quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0);
- quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1);
+ quantizeWithClamp(quantizedQueryAabbMin, rayAabbMin, 0);
+ quantizeWithClamp(quantizedQueryAabbMax, rayAabbMax, 1);
while (curIndex < endNodeIndex)
{
-
//#define VISUALLY_ANALYZE_BVH 1
#ifdef VISUALLY_ANALYZE_BVH
//some code snippet to debugDraw aabb, to visually analyze bvh structure
static int drawPatch = 0;
//need some global access to a debugDrawer
extern btIDebugDraw* debugDrawerPtr;
- if (curIndex==drawPatch)
+ if (curIndex == drawPatch)
{
- btVector3 aabbMin,aabbMax;
+ btVector3 aabbMin, aabbMax;
aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
- btVector3 color(1,0,0);
- debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
+ btVector3 color(1, 0, 0);
+ debugDrawerPtr->drawAabb(aabbMin, aabbMax, color);
}
-#endif//VISUALLY_ANALYZE_BVH
+#endif //VISUALLY_ANALYZE_BVH
//catch bugs in tree data
- btAssert (walkIterations < subTreeSize);
+ btAssert(walkIterations < subTreeSize);
walkIterations++;
//PCK: unsigned instead of bool
// only interested if this is closer than any previous hit
btScalar param = 1.0;
rayBoxOverlap = 0;
- boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
+ boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, rootNode->m_quantizedAabbMin, rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
if (boxBoxOverlap)
{
@@ -655,24 +629,25 @@ void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback*
///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858
//BT_PROFILE("btRayAabb2");
- rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max);
-
+ rayBoxOverlap = btRayAabb2(raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max);
+
#else
- rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
+ rayBoxOverlap = true; //btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
#endif
}
-
+
if (isLeafNode && rayBoxOverlap)
{
- nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex());
+ nodeCallback->processNode(rootNode->getPartId(), rootNode->getTriangleIndex());
}
-
+
//PCK: unsigned instead of bool
if ((rayBoxOverlap != 0) || isLeafNode)
{
rootNode++;
curIndex++;
- } else
+ }
+ else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
@@ -681,13 +656,12 @@ void btQuantizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback*
}
if (maxIterations < walkIterations)
maxIterations = walkIterations;
-
}
-void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const
+void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax, int startNodeIndex, int endNodeIndex) const
{
btAssert(m_useQuantization);
-
+
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
@@ -695,49 +669,49 @@ void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallb
const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex];
int escapeIndex;
-
+
bool isLeafNode;
//PCK: unsigned instead of bool
unsigned aabbOverlap;
while (curIndex < endNodeIndex)
{
-
//#define VISUALLY_ANALYZE_BVH 1
#ifdef VISUALLY_ANALYZE_BVH
//some code snippet to debugDraw aabb, to visually analyze bvh structure
static int drawPatch = 0;
//need some global access to a debugDrawer
extern btIDebugDraw* debugDrawerPtr;
- if (curIndex==drawPatch)
+ if (curIndex == drawPatch)
{
- btVector3 aabbMin,aabbMax;
+ btVector3 aabbMin, aabbMax;
aabbMin = unQuantize(rootNode->m_quantizedAabbMin);
aabbMax = unQuantize(rootNode->m_quantizedAabbMax);
- btVector3 color(1,0,0);
- debugDrawerPtr->drawAabb(aabbMin,aabbMax,color);
+ btVector3 color(1, 0, 0);
+ debugDrawerPtr->drawAabb(aabbMin, aabbMax, color);
}
-#endif//VISUALLY_ANALYZE_BVH
+#endif //VISUALLY_ANALYZE_BVH
//catch bugs in tree data
- btAssert (walkIterations < subTreeSize);
+ btAssert(walkIterations < subTreeSize);
walkIterations++;
//PCK: unsigned instead of bool
- aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
+ aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, rootNode->m_quantizedAabbMin, rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
-
+
if (isLeafNode && aabbOverlap)
{
- nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex());
- }
-
+ nodeCallback->processNode(rootNode->getPartId(), rootNode->getTriangleIndex());
+ }
+
//PCK: unsigned instead of bool
if ((aabbOverlap != 0) || isLeafNode)
{
rootNode++;
curIndex++;
- } else
+ }
+ else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
@@ -746,40 +720,36 @@ void btQuantizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallb
}
if (maxIterations < walkIterations)
maxIterations = walkIterations;
-
}
//This traversal can be called from Playstation 3 SPU
-void btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const
+void btQuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const
{
btAssert(m_useQuantization);
int i;
-
- for (i=0;i<this->m_SubtreeHeaders.size();i++)
+ for (i = 0; i < this->m_SubtreeHeaders.size(); i++)
{
const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
//PCK: unsigned instead of bool
- unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
+ unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, subtree.m_quantizedAabbMin, subtree.m_quantizedAabbMax);
if (overlap != 0)
{
- walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
- subtree.m_rootNodeIndex,
- subtree.m_rootNodeIndex+subtree.m_subtreeSize);
+ walkStacklessQuantizedTree(nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax,
+ subtree.m_rootNodeIndex,
+ subtree.m_rootNodeIndex + subtree.m_subtreeSize);
}
}
}
-
-void btQuantizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const
+void btQuantizedBvh::reportRayOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const
{
- reportBoxCastOverlappingNodex(nodeCallback,raySource,rayTarget,btVector3(0,0,0),btVector3(0,0,0));
+ reportBoxCastOverlappingNodex(nodeCallback, raySource, rayTarget, btVector3(0, 0, 0), btVector3(0, 0, 0));
}
-
-void btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const
+void btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax) const
{
//always use stackless
@@ -803,31 +773,31 @@ void btQuantizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCa
reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax);
}
*/
-
}
-
-void btQuantizedBvh::swapLeafNodes(int i,int splitIndex)
+void btQuantizedBvh::swapLeafNodes(int i, int splitIndex)
{
if (m_useQuantization)
{
- btQuantizedBvhNode tmp = m_quantizedLeafNodes[i];
- m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex];
- m_quantizedLeafNodes[splitIndex] = tmp;
- } else
+ btQuantizedBvhNode tmp = m_quantizedLeafNodes[i];
+ m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex];
+ m_quantizedLeafNodes[splitIndex] = tmp;
+ }
+ else
{
- btOptimizedBvhNode tmp = m_leafNodes[i];
- m_leafNodes[i] = m_leafNodes[splitIndex];
- m_leafNodes[splitIndex] = tmp;
+ btOptimizedBvhNode tmp = m_leafNodes[i];
+ m_leafNodes[i] = m_leafNodes[splitIndex];
+ m_leafNodes[splitIndex] = tmp;
}
}
-void btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex)
+void btQuantizedBvh::assignInternalNodeFromLeafNode(int internalNode, int leafNodeIndex)
{
if (m_useQuantization)
{
m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex];
- } else
+ }
+ else
{
m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex];
}
@@ -844,11 +814,10 @@ static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1;
static const unsigned BVH_ALIGNMENT_BLOCKS = 2;
#endif
-
unsigned int btQuantizedBvh::getAlignmentSerializationPadding()
{
// I changed this to 0 since the extra padding is not needed or used.
- return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT;
+ return 0; //BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT;
}
unsigned btQuantizedBvh::calculateSerializeBufferSize() const
@@ -862,12 +831,12 @@ unsigned btQuantizedBvh::calculateSerializeBufferSize() const
return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode);
}
-bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const
+bool btQuantizedBvh::serialize(void* o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const
{
btAssert(m_subtreeHeaderCount == m_SubtreeHeaders.size());
m_subtreeHeaderCount = m_SubtreeHeaders.size();
-/* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
+ /* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
{
///check alignedment for buffer?
btAssert(0);
@@ -875,7 +844,7 @@ bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBuffe
}
*/
- btQuantizedBvh *targetBvh = (btQuantizedBvh *)o_alignedDataBuffer;
+ btQuantizedBvh* targetBvh = (btQuantizedBvh*)o_alignedDataBuffer;
// construct the class so the virtual function table, etc will be set up
// Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor
@@ -885,10 +854,9 @@ bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBuffe
{
targetBvh->m_curNodeIndex = static_cast<int>(btSwapEndian(m_curNodeIndex));
-
- btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin);
- btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax);
- btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization);
+ btSwapVector3Endian(m_bvhAabbMin, targetBvh->m_bvhAabbMin);
+ btSwapVector3Endian(m_bvhAabbMax, targetBvh->m_bvhAabbMax);
+ btSwapVector3Endian(m_bvhQuantization, targetBvh->m_bvhQuantization);
targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode);
targetBvh->m_subtreeHeaderCount = static_cast<int>(btSwapEndian(m_subtreeHeaderCount));
@@ -905,12 +873,12 @@ bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBuffe
targetBvh->m_useQuantization = m_useQuantization;
- unsigned char *nodeData = (unsigned char *)targetBvh;
+ unsigned char* nodeData = (unsigned char*)targetBvh;
nodeData += sizeof(btQuantizedBvh);
-
- unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+
+ unsigned sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
-
+
int nodeCount = m_curNodeIndex;
if (m_useQuantization)
@@ -936,7 +904,6 @@ bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBuffe
{
for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++)
{
-
targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0];
targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1];
targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2];
@@ -946,8 +913,6 @@ bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBuffe
targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2];
targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex;
-
-
}
}
nodeData += sizeof(btQuantizedBvhNode) * nodeCount;
@@ -993,7 +958,7 @@ bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBuffe
targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0);
}
- sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+ sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
// Now serialize the subtree headers
@@ -1048,14 +1013,13 @@ bool btQuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBuffe
return true;
}
-btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
+btQuantizedBvh* btQuantizedBvh::deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
{
-
- if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
+ if (i_alignedDataBuffer == NULL) // || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0))
{
return NULL;
}
- btQuantizedBvh *bvh = (btQuantizedBvh *)i_alignedDataBuffer;
+ btQuantizedBvh* bvh = (btQuantizedBvh*)i_alignedDataBuffer;
if (i_swapEndian)
{
@@ -1077,12 +1041,12 @@ btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, un
return NULL;
}
- unsigned char *nodeData = (unsigned char *)bvh;
+ unsigned char* nodeData = (unsigned char*)bvh;
nodeData += sizeof(btQuantizedBvh);
-
- unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+
+ unsigned sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
-
+
int nodeCount = bvh->m_curNodeIndex;
// Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor
@@ -1120,7 +1084,7 @@ btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, un
{
btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg);
btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg);
-
+
bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex));
bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart));
bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex));
@@ -1129,7 +1093,7 @@ btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, un
nodeData += sizeof(btOptimizedBvhNode) * nodeCount;
}
- sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
+ sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK;
nodeData += sizeToAdd;
// Now serialize the subtree headers
@@ -1155,13 +1119,11 @@ btQuantizedBvh *btQuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, un
}
// Constructor that prevents btVector3's default constructor from being called
-btQuantizedBvh::btQuantizedBvh(btQuantizedBvh &self, bool /* ownsMemory */) :
-m_bvhAabbMin(self.m_bvhAabbMin),
-m_bvhAabbMax(self.m_bvhAabbMax),
-m_bvhQuantization(self.m_bvhQuantization),
-m_bulletVersion(BT_BULLET_VERSION)
+btQuantizedBvh::btQuantizedBvh(btQuantizedBvh& self, bool /* ownsMemory */) : m_bvhAabbMin(self.m_bvhAabbMin),
+ m_bvhAabbMax(self.m_bvhAabbMax),
+ m_bvhQuantization(self.m_bvhQuantization),
+ m_bulletVersion(BT_BULLET_VERSION)
{
-
}
void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedBvhFloatData)
@@ -1171,8 +1133,8 @@ void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedB
m_bvhQuantization.deSerializeFloat(quantizedBvhFloatData.m_bvhQuantization);
m_curNodeIndex = quantizedBvhFloatData.m_curNodeIndex;
- m_useQuantization = quantizedBvhFloatData.m_useQuantization!=0;
-
+ m_useQuantization = quantizedBvhFloatData.m_useQuantization != 0;
+
{
int numElem = quantizedBvhFloatData.m_numContiguousLeafNodes;
m_contiguousNodes.resize(numElem);
@@ -1181,7 +1143,7 @@ void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedB
{
btOptimizedBvhNodeFloatData* memPtr = quantizedBvhFloatData.m_contiguousNodesPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
m_contiguousNodes[i].m_aabbMaxOrg.deSerializeFloat(memPtr->m_aabbMaxOrg);
m_contiguousNodes[i].m_aabbMinOrg.deSerializeFloat(memPtr->m_aabbMinOrg);
@@ -1195,11 +1157,11 @@ void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedB
{
int numElem = quantizedBvhFloatData.m_numQuantizedContiguousNodes;
m_quantizedContiguousNodes.resize(numElem);
-
+
if (numElem)
{
btQuantizedBvhNodeData* memPtr = quantizedBvhFloatData.m_quantizedContiguousNodesPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex;
m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0];
@@ -1213,16 +1175,16 @@ void btQuantizedBvh::deSerializeFloat(struct btQuantizedBvhFloatData& quantizedB
}
m_traversalMode = btTraversalMode(quantizedBvhFloatData.m_traversalMode);
-
+
{
int numElem = quantizedBvhFloatData.m_numSubtreeHeaders;
m_SubtreeHeaders.resize(numElem);
if (numElem)
{
btBvhSubtreeInfoData* memPtr = quantizedBvhFloatData.m_subTreeInfoPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
- m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ;
+ m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0];
m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1];
m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2];
m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0];
@@ -1242,8 +1204,8 @@ void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantize
m_bvhQuantization.deSerializeDouble(quantizedBvhDoubleData.m_bvhQuantization);
m_curNodeIndex = quantizedBvhDoubleData.m_curNodeIndex;
- m_useQuantization = quantizedBvhDoubleData.m_useQuantization!=0;
-
+ m_useQuantization = quantizedBvhDoubleData.m_useQuantization != 0;
+
{
int numElem = quantizedBvhDoubleData.m_numContiguousLeafNodes;
m_contiguousNodes.resize(numElem);
@@ -1252,7 +1214,7 @@ void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantize
{
btOptimizedBvhNodeDoubleData* memPtr = quantizedBvhDoubleData.m_contiguousNodesPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
m_contiguousNodes[i].m_aabbMaxOrg.deSerializeDouble(memPtr->m_aabbMaxOrg);
m_contiguousNodes[i].m_aabbMinOrg.deSerializeDouble(memPtr->m_aabbMinOrg);
@@ -1266,11 +1228,11 @@ void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantize
{
int numElem = quantizedBvhDoubleData.m_numQuantizedContiguousNodes;
m_quantizedContiguousNodes.resize(numElem);
-
+
if (numElem)
{
btQuantizedBvhNodeData* memPtr = quantizedBvhDoubleData.m_quantizedContiguousNodesPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex;
m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0];
@@ -1284,16 +1246,16 @@ void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantize
}
m_traversalMode = btTraversalMode(quantizedBvhDoubleData.m_traversalMode);
-
+
{
int numElem = quantizedBvhDoubleData.m_numSubtreeHeaders;
m_SubtreeHeaders.resize(numElem);
if (numElem)
{
btBvhSubtreeInfoData* memPtr = quantizedBvhDoubleData.m_subTreeInfoPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
- m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ;
+ m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0];
m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1];
m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2];
m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0];
@@ -1304,32 +1266,29 @@ void btQuantizedBvh::deSerializeDouble(struct btQuantizedBvhDoubleData& quantize
}
}
}
-
}
-
-
///fills the dataBuffer and returns the struct name (and 0 on failure)
-const char* btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer) const
+const char* btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer) const
{
btQuantizedBvhData* quantizedData = (btQuantizedBvhData*)dataBuffer;
-
+
m_bvhAabbMax.serialize(quantizedData->m_bvhAabbMax);
m_bvhAabbMin.serialize(quantizedData->m_bvhAabbMin);
m_bvhQuantization.serialize(quantizedData->m_bvhQuantization);
quantizedData->m_curNodeIndex = m_curNodeIndex;
quantizedData->m_useQuantization = m_useQuantization;
-
+
quantizedData->m_numContiguousLeafNodes = m_contiguousNodes.size();
- quantizedData->m_contiguousNodesPtr = (btOptimizedBvhNodeData*) (m_contiguousNodes.size() ? serializer->getUniquePointer((void*)&m_contiguousNodes[0]) : 0);
+ quantizedData->m_contiguousNodesPtr = (btOptimizedBvhNodeData*)(m_contiguousNodes.size() ? serializer->getUniquePointer((void*)&m_contiguousNodes[0]) : 0);
if (quantizedData->m_contiguousNodesPtr)
{
int sz = sizeof(btOptimizedBvhNodeData);
int numElem = m_contiguousNodes.size();
- btChunk* chunk = serializer->allocate(sz,numElem);
+ btChunk* chunk = serializer->allocate(sz, numElem);
btOptimizedBvhNodeData* memPtr = (btOptimizedBvhNodeData*)chunk->m_oldPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
m_contiguousNodes[i].m_aabbMaxOrg.serialize(memPtr->m_aabbMaxOrg);
m_contiguousNodes[i].m_aabbMinOrg.serialize(memPtr->m_aabbMinOrg);
@@ -1339,19 +1298,19 @@ const char* btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer
// Fill padding with zeros to appease msan.
memset(memPtr->m_pad, 0, sizeof(memPtr->m_pad));
}
- serializer->finalizeChunk(chunk,"btOptimizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_contiguousNodes[0]);
+ serializer->finalizeChunk(chunk, "btOptimizedBvhNodeData", BT_ARRAY_CODE, (void*)&m_contiguousNodes[0]);
}
quantizedData->m_numQuantizedContiguousNodes = m_quantizedContiguousNodes.size();
-// printf("quantizedData->m_numQuantizedContiguousNodes=%d\n",quantizedData->m_numQuantizedContiguousNodes);
- quantizedData->m_quantizedContiguousNodesPtr =(btQuantizedBvhNodeData*) (m_quantizedContiguousNodes.size() ? serializer->getUniquePointer((void*)&m_quantizedContiguousNodes[0]) : 0);
+ // printf("quantizedData->m_numQuantizedContiguousNodes=%d\n",quantizedData->m_numQuantizedContiguousNodes);
+ quantizedData->m_quantizedContiguousNodesPtr = (btQuantizedBvhNodeData*)(m_quantizedContiguousNodes.size() ? serializer->getUniquePointer((void*)&m_quantizedContiguousNodes[0]) : 0);
if (quantizedData->m_quantizedContiguousNodesPtr)
{
int sz = sizeof(btQuantizedBvhNodeData);
int numElem = m_quantizedContiguousNodes.size();
- btChunk* chunk = serializer->allocate(sz,numElem);
+ btChunk* chunk = serializer->allocate(sz, numElem);
btQuantizedBvhNodeData* memPtr = (btQuantizedBvhNodeData*)chunk->m_oldPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
memPtr->m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex;
memPtr->m_quantizedAabbMax[0] = m_quantizedContiguousNodes[i].m_quantizedAabbMax[0];
@@ -1361,20 +1320,20 @@ const char* btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer
memPtr->m_quantizedAabbMin[1] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[1];
memPtr->m_quantizedAabbMin[2] = m_quantizedContiguousNodes[i].m_quantizedAabbMin[2];
}
- serializer->finalizeChunk(chunk,"btQuantizedBvhNodeData",BT_ARRAY_CODE,(void*)&m_quantizedContiguousNodes[0]);
+ serializer->finalizeChunk(chunk, "btQuantizedBvhNodeData", BT_ARRAY_CODE, (void*)&m_quantizedContiguousNodes[0]);
}
quantizedData->m_traversalMode = int(m_traversalMode);
quantizedData->m_numSubtreeHeaders = m_SubtreeHeaders.size();
- quantizedData->m_subTreeInfoPtr = (btBvhSubtreeInfoData*) (m_SubtreeHeaders.size() ? serializer->getUniquePointer((void*)&m_SubtreeHeaders[0]) : 0);
+ quantizedData->m_subTreeInfoPtr = (btBvhSubtreeInfoData*)(m_SubtreeHeaders.size() ? serializer->getUniquePointer((void*)&m_SubtreeHeaders[0]) : 0);
if (quantizedData->m_subTreeInfoPtr)
{
int sz = sizeof(btBvhSubtreeInfoData);
int numElem = m_SubtreeHeaders.size();
- btChunk* chunk = serializer->allocate(sz,numElem);
+ btChunk* chunk = serializer->allocate(sz, numElem);
btBvhSubtreeInfoData* memPtr = (btBvhSubtreeInfoData*)chunk->m_oldPtr;
- for (int i=0;i<numElem;i++,memPtr++)
+ for (int i = 0; i < numElem; i++, memPtr++)
{
memPtr->m_quantizedAabbMax[0] = m_SubtreeHeaders[i].m_quantizedAabbMax[0];
memPtr->m_quantizedAabbMax[1] = m_SubtreeHeaders[i].m_quantizedAabbMax[1];
@@ -1386,12 +1345,7 @@ const char* btQuantizedBvh::serialize(void* dataBuffer, btSerializer* serializer
memPtr->m_rootNodeIndex = m_SubtreeHeaders[i].m_rootNodeIndex;
memPtr->m_subtreeSize = m_SubtreeHeaders[i].m_subtreeSize;
}
- serializer->finalizeChunk(chunk,"btBvhSubtreeInfoData",BT_ARRAY_CODE,(void*)&m_SubtreeHeaders[0]);
+ serializer->finalizeChunk(chunk, "btBvhSubtreeInfoData", BT_ARRAY_CODE, (void*)&m_SubtreeHeaders[0]);
}
return btQuantizedBvhDataName;
}
-
-
-
-
-
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.h
index 3dd5ac9bb6..1c47b9ccf2 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btQuantizedBvh.h
@@ -22,11 +22,11 @@ class btSerializer;
#ifdef DEBUG_CHECK_DEQUANTIZATION
#ifdef __SPU__
#define printf spu_printf
-#endif //__SPU__
+#endif //__SPU__
#include <stdio.h>
#include <stdlib.h>
-#endif //DEBUG_CHECK_DEQUANTIZATION
+#endif //DEBUG_CHECK_DEQUANTIZATION
#include "LinearMath/btVector3.h"
#include "LinearMath/btAlignedAllocator.h"
@@ -41,13 +41,10 @@ class btSerializer;
#define btQuantizedBvhDataName "btQuantizedBvhFloatData"
#endif
-
-
//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp
-
//Note: currently we have 16 bytes per quantized node
-#define MAX_SUBTREE_SIZE_IN_BYTES 2048
+#define MAX_SUBTREE_SIZE_IN_BYTES 2048
// 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one
// actually) triangles each (since the sign bit is reserved
@@ -55,15 +52,16 @@ class btSerializer;
///btQuantizedBvhNode is a compressed aabb node, 16 bytes.
///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
-ATTRIBUTE_ALIGNED16 (struct) btQuantizedBvhNode
+ATTRIBUTE_ALIGNED16(struct)
+btQuantizedBvhNode
{
BT_DECLARE_ALIGNED_ALLOCATOR();
//12 bytes
- unsigned short int m_quantizedAabbMin[3];
- unsigned short int m_quantizedAabbMax[3];
+ unsigned short int m_quantizedAabbMin[3];
+ unsigned short int m_quantizedAabbMax[3];
//4 bytes
- int m_escapeIndexOrTriangleIndex;
+ int m_escapeIndexOrTriangleIndex;
bool isLeafNode() const
{
@@ -75,68 +73,67 @@ ATTRIBUTE_ALIGNED16 (struct) btQuantizedBvhNode
btAssert(!isLeafNode());
return -m_escapeIndexOrTriangleIndex;
}
- int getTriangleIndex() const
+ int getTriangleIndex() const
{
btAssert(isLeafNode());
- unsigned int x=0;
- unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);
+ unsigned int x = 0;
+ unsigned int y = (~(x & 0)) << (31 - MAX_NUM_PARTS_IN_BITS);
// Get only the lower bits where the triangle index is stored
- return (m_escapeIndexOrTriangleIndex&~(y));
+ return (m_escapeIndexOrTriangleIndex & ~(y));
}
- int getPartId() const
+ int getPartId() const
{
btAssert(isLeafNode());
// Get only the highest bits where the part index is stored
- return (m_escapeIndexOrTriangleIndex>>(31-MAX_NUM_PARTS_IN_BITS));
+ return (m_escapeIndexOrTriangleIndex >> (31 - MAX_NUM_PARTS_IN_BITS));
}
-}
-;
+};
/// btOptimizedBvhNode contains both internal and leaf node information.
/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes.
-ATTRIBUTE_ALIGNED16 (struct) btOptimizedBvhNode
+ATTRIBUTE_ALIGNED16(struct)
+btOptimizedBvhNode
{
BT_DECLARE_ALIGNED_ALLOCATOR();
//32 bytes
- btVector3 m_aabbMinOrg;
- btVector3 m_aabbMaxOrg;
+ btVector3 m_aabbMinOrg;
+ btVector3 m_aabbMaxOrg;
//4
- int m_escapeIndex;
+ int m_escapeIndex;
//8
//for child nodes
- int m_subPart;
- int m_triangleIndex;
+ int m_subPart;
+ int m_triangleIndex;
-//pad the size to 64 bytes
- char m_padding[20];
+ //pad the size to 64 bytes
+ char m_padding[20];
};
-
///btBvhSubtreeInfo provides info to gather a subtree of limited size
-ATTRIBUTE_ALIGNED16(class) btBvhSubtreeInfo
+ATTRIBUTE_ALIGNED16(class)
+btBvhSubtreeInfo
{
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
//12 bytes
- unsigned short int m_quantizedAabbMin[3];
- unsigned short int m_quantizedAabbMax[3];
+ unsigned short int m_quantizedAabbMin[3];
+ unsigned short int m_quantizedAabbMax[3];
//4 bytes, points to the root of the subtree
- int m_rootNodeIndex;
+ int m_rootNodeIndex;
//4 bytes
- int m_subtreeSize;
- int m_padding[3];
+ int m_subtreeSize;
+ int m_padding[3];
btBvhSubtreeInfo()
{
//memset(&m_padding[0], 0, sizeof(m_padding));
}
-
- void setAabbFromQuantizeNode(const btQuantizedBvhNode& quantizedNode)
+ void setAabbFromQuantizeNode(const btQuantizedBvhNode& quantizedNode)
{
m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0];
m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1];
@@ -145,14 +142,12 @@ public:
m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1];
m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2];
}
-}
-;
-
+};
class btNodeOverlapCallback
{
public:
- virtual ~btNodeOverlapCallback() {};
+ virtual ~btNodeOverlapCallback(){};
virtual void processNode(int subPart, int triangleIndex) = 0;
};
@@ -160,18 +155,16 @@ public:
#include "LinearMath/btAlignedAllocator.h"
#include "LinearMath/btAlignedObjectArray.h"
-
-
///for code readability:
-typedef btAlignedObjectArray<btOptimizedBvhNode> NodeArray;
-typedef btAlignedObjectArray<btQuantizedBvhNode> QuantizedNodeArray;
-typedef btAlignedObjectArray<btBvhSubtreeInfo> BvhSubtreeInfoArray;
-
+typedef btAlignedObjectArray<btOptimizedBvhNode> NodeArray;
+typedef btAlignedObjectArray<btQuantizedBvhNode> QuantizedNodeArray;
+typedef btAlignedObjectArray<btBvhSubtreeInfo> BvhSubtreeInfoArray;
///The btQuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU.
///It is used by the btBvhTriangleMeshShape as midphase.
///It is recommended to use quantization for better performance and lower memory requirements.
-ATTRIBUTE_ALIGNED16(class) btQuantizedBvh
+ATTRIBUTE_ALIGNED16(class)
+btQuantizedBvh
{
public:
enum btTraversalMode
@@ -182,54 +175,47 @@ public:
};
protected:
+ btVector3 m_bvhAabbMin;
+ btVector3 m_bvhAabbMax;
+ btVector3 m_bvhQuantization;
+ int m_bulletVersion; //for serialization versioning. It could also be used to detect endianess.
- btVector3 m_bvhAabbMin;
- btVector3 m_bvhAabbMax;
- btVector3 m_bvhQuantization;
-
- int m_bulletVersion; //for serialization versioning. It could also be used to detect endianess.
-
- int m_curNodeIndex;
+ int m_curNodeIndex;
//quantization data
- bool m_useQuantization;
+ bool m_useQuantization;
+ NodeArray m_leafNodes;
+ NodeArray m_contiguousNodes;
+ QuantizedNodeArray m_quantizedLeafNodes;
+ QuantizedNodeArray m_quantizedContiguousNodes;
-
- NodeArray m_leafNodes;
- NodeArray m_contiguousNodes;
- QuantizedNodeArray m_quantizedLeafNodes;
- QuantizedNodeArray m_quantizedContiguousNodes;
-
- btTraversalMode m_traversalMode;
- BvhSubtreeInfoArray m_SubtreeHeaders;
+ btTraversalMode m_traversalMode;
+ BvhSubtreeInfoArray m_SubtreeHeaders;
//This is only used for serialization so we don't have to add serialization directly to btAlignedObjectArray
mutable int m_subtreeHeaderCount;
-
-
-
-
///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!)
///this might be refactored into a virtual, it is usually not calculated at run-time
- void setInternalNodeAabbMin(int nodeIndex, const btVector3& aabbMin)
+ void setInternalNodeAabbMin(int nodeIndex, const btVector3& aabbMin)
{
if (m_useQuantization)
{
- quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin,0);
- } else
+ quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0], aabbMin, 0);
+ }
+ else
{
m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin;
-
}
}
- void setInternalNodeAabbMax(int nodeIndex,const btVector3& aabbMax)
+ void setInternalNodeAabbMax(int nodeIndex, const btVector3& aabbMax)
{
if (m_useQuantization)
{
- quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax,1);
- } else
+ quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0], aabbMax, 1);
+ }
+ else
{
m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax;
}
@@ -243,115 +229,102 @@ protected:
}
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMinOrg;
-
}
btVector3 getAabbMax(int nodeIndex) const
{
if (m_useQuantization)
{
return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]);
- }
+ }
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMaxOrg;
-
}
-
- void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
+ void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
{
if (m_useQuantization)
{
m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex;
- }
+ }
else
{
m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex;
}
-
}
- void mergeInternalNodeAabb(int nodeIndex,const btVector3& newAabbMin,const btVector3& newAabbMax)
+ void mergeInternalNodeAabb(int nodeIndex, const btVector3& newAabbMin, const btVector3& newAabbMax)
{
if (m_useQuantization)
{
unsigned short int quantizedAabbMin[3];
unsigned short int quantizedAabbMax[3];
- quantize(quantizedAabbMin,newAabbMin,0);
- quantize(quantizedAabbMax,newAabbMax,1);
- for (int i=0;i<3;i++)
+ quantize(quantizedAabbMin, newAabbMin, 0);
+ quantize(quantizedAabbMax, newAabbMax, 1);
+ for (int i = 0; i < 3; i++)
{
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i];
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i];
-
}
- } else
+ }
+ else
{
//non-quantized
m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin);
- m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
+ m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
}
}
- void swapLeafNodes(int firstIndex,int secondIndex);
+ void swapLeafNodes(int firstIndex, int secondIndex);
- void assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex);
+ void assignInternalNodeFromLeafNode(int internalNode, int leafNodeIndex);
protected:
+ void buildTree(int startIndex, int endIndex);
-
+ int calcSplittingAxis(int startIndex, int endIndex);
- void buildTree (int startIndex,int endIndex);
+ int sortAndCalcSplittingIndex(int startIndex, int endIndex, int splitAxis);
- int calcSplittingAxis(int startIndex,int endIndex);
+ void walkStacklessTree(btNodeOverlapCallback * nodeCallback, const btVector3& aabbMin, const btVector3& aabbMax) const;
- int sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis);
-
- void walkStacklessTree(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
-
- void walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
- void walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const;
- void walkStacklessTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
+ void walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback * nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex, int endNodeIndex) const;
+ void walkStacklessQuantizedTree(btNodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax, int startNodeIndex, int endNodeIndex) const;
+ void walkStacklessTreeAgainstRay(btNodeOverlapCallback * nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex, int endNodeIndex) const;
///tree traversal designed for small-memory processors like PS3 SPU
- void walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
+ void walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
- void walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
+ void walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode, btNodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
- void walkRecursiveQuantizedTreeAgainstQuantizedTree(const btQuantizedBvhNode* treeNodeA,const btQuantizedBvhNode* treeNodeB,btNodeOverlapCallback* nodeCallback) const;
-
+ void walkRecursiveQuantizedTreeAgainstQuantizedTree(const btQuantizedBvhNode* treeNodeA, const btQuantizedBvhNode* treeNodeB, btNodeOverlapCallback* nodeCallback) const;
-
-
- void updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex);
+ void updateSubtreeHeaders(int leftChildNodexIndex, int rightChildNodexIndex);
public:
-
BT_DECLARE_ALIGNED_ALLOCATOR();
btQuantizedBvh();
virtual ~btQuantizedBvh();
-
///***************************************** expert/internal use only *************************
- void setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin=btScalar(1.0));
- QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; }
+ void setQuantizationValues(const btVector3& bvhAabbMin, const btVector3& bvhAabbMax, btScalar quantizationMargin = btScalar(1.0));
+ QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; }
///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized
- void buildInternal();
+ void buildInternal();
///***************************************** expert/internal use only *************************
- void reportAabbOverlappingNodex(btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const;
- void reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const;
- void reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const;
+ void reportAabbOverlappingNodex(btNodeOverlapCallback * nodeCallback, const btVector3& aabbMin, const btVector3& aabbMax) const;
+ void reportRayOverlappingNodex(btNodeOverlapCallback * nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const;
+ void reportBoxCastOverlappingNodex(btNodeOverlapCallback * nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax) const;
- SIMD_FORCE_INLINE void quantize(unsigned short* out, const btVector3& point,int isMax) const
+ SIMD_FORCE_INLINE void quantize(unsigned short* out, const btVector3& point, int isMax) const
{
-
btAssert(m_useQuantization);
btAssert(point.getX() <= m_bvhAabbMax.getX());
@@ -368,122 +341,114 @@ public:
///@todo: double-check this
if (isMax)
{
- out[0] = (unsigned short) (((unsigned short)(v.getX()+btScalar(1.)) | 1));
- out[1] = (unsigned short) (((unsigned short)(v.getY()+btScalar(1.)) | 1));
- out[2] = (unsigned short) (((unsigned short)(v.getZ()+btScalar(1.)) | 1));
- } else
+ out[0] = (unsigned short)(((unsigned short)(v.getX() + btScalar(1.)) | 1));
+ out[1] = (unsigned short)(((unsigned short)(v.getY() + btScalar(1.)) | 1));
+ out[2] = (unsigned short)(((unsigned short)(v.getZ() + btScalar(1.)) | 1));
+ }
+ else
{
- out[0] = (unsigned short) (((unsigned short)(v.getX()) & 0xfffe));
- out[1] = (unsigned short) (((unsigned short)(v.getY()) & 0xfffe));
- out[2] = (unsigned short) (((unsigned short)(v.getZ()) & 0xfffe));
+ out[0] = (unsigned short)(((unsigned short)(v.getX()) & 0xfffe));
+ out[1] = (unsigned short)(((unsigned short)(v.getY()) & 0xfffe));
+ out[2] = (unsigned short)(((unsigned short)(v.getZ()) & 0xfffe));
}
-
#ifdef DEBUG_CHECK_DEQUANTIZATION
btVector3 newPoint = unQuantize(out);
if (isMax)
{
if (newPoint.getX() < point.getX())
{
- printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
+ printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX());
}
if (newPoint.getY() < point.getY())
{
- printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
+ printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY());
}
if (newPoint.getZ() < point.getZ())
{
-
- printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
+ printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ());
}
- } else
+ }
+ else
{
if (newPoint.getX() > point.getX())
{
- printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
+ printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX());
}
if (newPoint.getY() > point.getY())
{
- printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
+ printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY());
}
if (newPoint.getZ() > point.getZ())
{
- printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
+ printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ());
}
}
-#endif //DEBUG_CHECK_DEQUANTIZATION
-
+#endif //DEBUG_CHECK_DEQUANTIZATION
}
-
- SIMD_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const btVector3& point2,int isMax) const
+ SIMD_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const btVector3& point2, int isMax) const
{
-
btAssert(m_useQuantization);
btVector3 clampedPoint(point2);
clampedPoint.setMax(m_bvhAabbMin);
clampedPoint.setMin(m_bvhAabbMax);
- quantize(out,clampedPoint,isMax);
-
+ quantize(out, clampedPoint, isMax);
}
-
- SIMD_FORCE_INLINE btVector3 unQuantize(const unsigned short* vecIn) const
+
+ SIMD_FORCE_INLINE btVector3 unQuantize(const unsigned short* vecIn) const
{
- btVector3 vecOut;
- vecOut.setValue(
+ btVector3 vecOut;
+ vecOut.setValue(
(btScalar)(vecIn[0]) / (m_bvhQuantization.getX()),
(btScalar)(vecIn[1]) / (m_bvhQuantization.getY()),
(btScalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
- vecOut += m_bvhAabbMin;
- return vecOut;
+ vecOut += m_bvhAabbMin;
+ return vecOut;
}
///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees.
- void setTraversalMode(btTraversalMode traversalMode)
+ void setTraversalMode(btTraversalMode traversalMode)
{
m_traversalMode = traversalMode;
}
-
- SIMD_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray()
- {
- return m_quantizedContiguousNodes;
+ SIMD_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray()
+ {
+ return m_quantizedContiguousNodes;
}
-
- SIMD_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray()
+ SIMD_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray()
{
return m_SubtreeHeaders;
}
-////////////////////////////////////////////////////////////////////
+ ////////////////////////////////////////////////////////////////////
/////Calculate space needed to store BVH for serialization
unsigned calculateSerializeBufferSize() const;
/// Data buffer MUST be 16 byte aligned
- virtual bool serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const;
+ virtual bool serialize(void* o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const;
///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
- static btQuantizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
+ static btQuantizedBvh* deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
static unsigned int getAlignmentSerializationPadding();
-//////////////////////////////////////////////////////////////////////
+ //////////////////////////////////////////////////////////////////////
-
- virtual int calculateSerializeBufferSizeNew() const;
+ virtual int calculateSerializeBufferSizeNew() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
- virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
-
- virtual void deSerializeFloat(struct btQuantizedBvhFloatData& quantizedBvhFloatData);
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
- virtual void deSerializeDouble(struct btQuantizedBvhDoubleData& quantizedBvhDoubleData);
+ virtual void deSerializeFloat(struct btQuantizedBvhFloatData & quantizedBvhFloatData);
+ virtual void deSerializeDouble(struct btQuantizedBvhDoubleData & quantizedBvhDoubleData);
-////////////////////////////////////////////////////////////////////
+ ////////////////////////////////////////////////////////////////////
SIMD_FORCE_INLINE bool isQuantized()
{
@@ -494,38 +459,37 @@ private:
// Special "copy" constructor that allows for in-place deserialization
// Prevents btVector3's default constructor from being called, but doesn't inialize much else
// ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need)
- btQuantizedBvh(btQuantizedBvh &other, bool ownsMemory);
-
-}
-;
-
+ btQuantizedBvh(btQuantizedBvh & other, bool ownsMemory);
+};
-struct btBvhSubtreeInfoData
+// clang-format off
+// parser needs * with the name
+struct btBvhSubtreeInfoData
{
- int m_rootNodeIndex;
- int m_subtreeSize;
+ int m_rootNodeIndex;
+ int m_subtreeSize;
unsigned short m_quantizedAabbMin[3];
unsigned short m_quantizedAabbMax[3];
};
struct btOptimizedBvhNodeFloatData
{
- btVector3FloatData m_aabbMinOrg;
- btVector3FloatData m_aabbMaxOrg;
- int m_escapeIndex;
- int m_subPart;
- int m_triangleIndex;
+ btVector3FloatData m_aabbMinOrg;
+ btVector3FloatData m_aabbMaxOrg;
+ int m_escapeIndex;
+ int m_subPart;
+ int m_triangleIndex;
char m_pad[4];
};
struct btOptimizedBvhNodeDoubleData
{
- btVector3DoubleData m_aabbMinOrg;
- btVector3DoubleData m_aabbMaxOrg;
- int m_escapeIndex;
- int m_subPart;
- int m_triangleIndex;
- char m_pad[4];
+ btVector3DoubleData m_aabbMinOrg;
+ btVector3DoubleData m_aabbMaxOrg;
+ int m_escapeIndex;
+ int m_subPart;
+ int m_triangleIndex;
+ char m_pad[4];
};
@@ -569,13 +533,11 @@ struct btQuantizedBvhDoubleData
int m_numSubtreeHeaders;
btBvhSubtreeInfoData *m_subTreeInfoPtr;
};
+// clang-format on
-
-SIMD_FORCE_INLINE int btQuantizedBvh::calculateSerializeBufferSizeNew() const
+SIMD_FORCE_INLINE int btQuantizedBvh::calculateSerializeBufferSizeNew() const
{
return sizeof(btQuantizedBvhData);
}
-
-
-#endif //BT_QUANTIZED_BVH_H
+#endif //BT_QUANTIZED_BVH_H
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp
index 5f89f960e8..166cf771fe 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp
@@ -24,50 +24,45 @@ subject to the following restrictions:
#include <new>
-void btSimpleBroadphase::validate()
+void btSimpleBroadphase::validate()
{
- for (int i=0;i<m_numHandles;i++)
+ for (int i = 0; i < m_numHandles; i++)
{
- for (int j=i+1;j<m_numHandles;j++)
+ for (int j = i + 1; j < m_numHandles; j++)
{
btAssert(&m_pHandles[i] != &m_pHandles[j]);
}
}
-
}
btSimpleBroadphase::btSimpleBroadphase(int maxProxies, btOverlappingPairCache* overlappingPairCache)
- :m_pairCache(overlappingPairCache),
- m_ownsPairCache(false),
- m_invalidPair(0)
+ : m_pairCache(overlappingPairCache),
+ m_ownsPairCache(false),
+ m_invalidPair(0)
{
-
if (!overlappingPairCache)
{
- void* mem = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16);
- m_pairCache = new (mem)btHashedOverlappingPairCache();
+ void* mem = btAlignedAlloc(sizeof(btHashedOverlappingPairCache), 16);
+ m_pairCache = new (mem) btHashedOverlappingPairCache();
m_ownsPairCache = true;
}
// allocate handles buffer and put all handles on free list
- m_pHandlesRawPtr = btAlignedAlloc(sizeof(btSimpleBroadphaseProxy)*maxProxies,16);
- m_pHandles = new(m_pHandlesRawPtr) btSimpleBroadphaseProxy[maxProxies];
+ m_pHandlesRawPtr = btAlignedAlloc(sizeof(btSimpleBroadphaseProxy) * maxProxies, 16);
+ m_pHandles = new (m_pHandlesRawPtr) btSimpleBroadphaseProxy[maxProxies];
m_maxHandles = maxProxies;
m_numHandles = 0;
m_firstFreeHandle = 0;
m_LastHandleIndex = -1;
-
{
for (int i = m_firstFreeHandle; i < maxProxies; i++)
{
m_pHandles[i].SetNextFree(i + 1);
- m_pHandles[i].m_uniqueId = i+2;//any UID will do, we just avoid too trivial values (0,1) for debugging purposes
+ m_pHandles[i].m_uniqueId = i + 2; //any UID will do, we just avoid too trivial values (0,1) for debugging purposes
}
m_pHandles[maxProxies - 1].SetNextFree(0);
-
}
-
}
btSimpleBroadphase::~btSimpleBroadphase()
@@ -81,26 +76,25 @@ btSimpleBroadphase::~btSimpleBroadphase()
}
}
-
-btBroadphaseProxy* btSimpleBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr , int collisionFilterGroup, int collisionFilterMask, btDispatcher* /*dispatcher*/)
+btBroadphaseProxy* btSimpleBroadphase::createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* /*dispatcher*/)
{
if (m_numHandles >= m_maxHandles)
{
btAssert(0);
- return 0; //should never happen, but don't let the game crash ;-)
+ return 0; //should never happen, but don't let the game crash ;-)
}
- btAssert(aabbMin[0]<= aabbMax[0] && aabbMin[1]<= aabbMax[1] && aabbMin[2]<= aabbMax[2]);
+ btAssert(aabbMin[0] <= aabbMax[0] && aabbMin[1] <= aabbMax[1] && aabbMin[2] <= aabbMax[2]);
int newHandleIndex = allocHandle();
- btSimpleBroadphaseProxy* proxy = new (&m_pHandles[newHandleIndex])btSimpleBroadphaseProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask);
+ btSimpleBroadphaseProxy* proxy = new (&m_pHandles[newHandleIndex]) btSimpleBroadphaseProxy(aabbMin, aabbMax, shapeType, userPtr, collisionFilterGroup, collisionFilterMask);
return proxy;
}
-class RemovingOverlapCallback : public btOverlapCallback
+class RemovingOverlapCallback : public btOverlapCallback
{
protected:
- virtual bool processOverlap(btBroadphasePair& pair)
+ virtual bool processOverlap(btBroadphasePair& pair)
{
(void)pair;
btAssert(0);
@@ -110,12 +104,13 @@ protected:
class RemovePairContainingProxy
{
+ btBroadphaseProxy* m_targetProxy;
- btBroadphaseProxy* m_targetProxy;
- public:
+public:
virtual ~RemovePairContainingProxy()
{
}
+
protected:
virtual bool processOverlap(btBroadphasePair& pair)
{
@@ -126,38 +121,36 @@ protected:
};
};
-void btSimpleBroadphase::destroyProxy(btBroadphaseProxy* proxyOrg,btDispatcher* dispatcher)
+void btSimpleBroadphase::destroyProxy(btBroadphaseProxy* proxyOrg, btDispatcher* dispatcher)
{
-
- btSimpleBroadphaseProxy* proxy0 = static_cast<btSimpleBroadphaseProxy*>(proxyOrg);
- freeHandle(proxy0);
+ btSimpleBroadphaseProxy* proxy0 = static_cast<btSimpleBroadphaseProxy*>(proxyOrg);
+ freeHandle(proxy0);
- m_pairCache->removeOverlappingPairsContainingProxy(proxyOrg,dispatcher);
+ m_pairCache->removeOverlappingPairsContainingProxy(proxyOrg, dispatcher);
- //validate();
-
+ //validate();
}
-void btSimpleBroadphase::getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
+void btSimpleBroadphase::getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const
{
const btSimpleBroadphaseProxy* sbp = getSimpleProxyFromProxy(proxy);
aabbMin = sbp->m_aabbMin;
aabbMax = sbp->m_aabbMax;
}
-void btSimpleBroadphase::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* /*dispatcher*/)
+void btSimpleBroadphase::setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* /*dispatcher*/)
{
btSimpleBroadphaseProxy* sbp = getSimpleProxyFromProxy(proxy);
sbp->m_aabbMin = aabbMin;
sbp->m_aabbMax = aabbMax;
}
-void btSimpleBroadphase::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin,const btVector3& aabbMax)
+void btSimpleBroadphase::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin, const btVector3& aabbMax)
{
- for (int i=0; i <= m_LastHandleIndex; i++)
+ for (int i = 0; i <= m_LastHandleIndex; i++)
{
btSimpleBroadphaseProxy* proxy = &m_pHandles[i];
- if(!proxy->m_clientObject)
+ if (!proxy->m_clientObject)
{
continue;
}
@@ -165,69 +158,59 @@ void btSimpleBroadphase::rayTest(const btVector3& rayFrom,const btVector3& rayTo
}
}
-
-void btSimpleBroadphase::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
+void btSimpleBroadphase::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
{
- for (int i=0; i <= m_LastHandleIndex; i++)
+ for (int i = 0; i <= m_LastHandleIndex; i++)
{
btSimpleBroadphaseProxy* proxy = &m_pHandles[i];
- if(!proxy->m_clientObject)
+ if (!proxy->m_clientObject)
{
continue;
}
- if (TestAabbAgainstAabb2(aabbMin,aabbMax,proxy->m_aabbMin,proxy->m_aabbMax))
+ if (TestAabbAgainstAabb2(aabbMin, aabbMax, proxy->m_aabbMin, proxy->m_aabbMax))
{
callback.process(proxy);
}
}
}
-
-
-
-
-
-
-bool btSimpleBroadphase::aabbOverlap(btSimpleBroadphaseProxy* proxy0,btSimpleBroadphaseProxy* proxy1)
+bool btSimpleBroadphase::aabbOverlap(btSimpleBroadphaseProxy* proxy0, btSimpleBroadphaseProxy* proxy1)
{
- return proxy0->m_aabbMin[0] <= proxy1->m_aabbMax[0] && proxy1->m_aabbMin[0] <= proxy0->m_aabbMax[0] &&
+ return proxy0->m_aabbMin[0] <= proxy1->m_aabbMax[0] && proxy1->m_aabbMin[0] <= proxy0->m_aabbMax[0] &&
proxy0->m_aabbMin[1] <= proxy1->m_aabbMax[1] && proxy1->m_aabbMin[1] <= proxy0->m_aabbMax[1] &&
proxy0->m_aabbMin[2] <= proxy1->m_aabbMax[2] && proxy1->m_aabbMin[2] <= proxy0->m_aabbMax[2];
-
}
-
-
//then remove non-overlapping ones
class CheckOverlapCallback : public btOverlapCallback
{
public:
virtual bool processOverlap(btBroadphasePair& pair)
{
- return (!btSimpleBroadphase::aabbOverlap(static_cast<btSimpleBroadphaseProxy*>(pair.m_pProxy0),static_cast<btSimpleBroadphaseProxy*>(pair.m_pProxy1)));
+ return (!btSimpleBroadphase::aabbOverlap(static_cast<btSimpleBroadphaseProxy*>(pair.m_pProxy0), static_cast<btSimpleBroadphaseProxy*>(pair.m_pProxy1)));
}
};
-void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
+void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
{
//first check for new overlapping pairs
- int i,j;
+ int i, j;
if (m_numHandles >= 0)
{
int new_largest_index = -1;
- for (i=0; i <= m_LastHandleIndex; i++)
+ for (i = 0; i <= m_LastHandleIndex; i++)
{
btSimpleBroadphaseProxy* proxy0 = &m_pHandles[i];
- if(!proxy0->m_clientObject)
+ if (!proxy0->m_clientObject)
{
continue;
}
new_largest_index = i;
- for (j=i+1; j <= m_LastHandleIndex; j++)
+ for (j = i + 1; j <= m_LastHandleIndex; j++)
{
btSimpleBroadphaseProxy* proxy1 = &m_pHandles[j];
btAssert(proxy0 != proxy1);
- if(!proxy1->m_clientObject)
+ if (!proxy1->m_clientObject)
{
continue;
}
@@ -235,19 +218,20 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
btSimpleBroadphaseProxy* p0 = getSimpleProxyFromProxy(proxy0);
btSimpleBroadphaseProxy* p1 = getSimpleProxyFromProxy(proxy1);
- if (aabbOverlap(p0,p1))
+ if (aabbOverlap(p0, p1))
{
- if ( !m_pairCache->findPair(proxy0,proxy1))
+ if (!m_pairCache->findPair(proxy0, proxy1))
{
- m_pairCache->addOverlappingPair(proxy0,proxy1);
+ m_pairCache->addOverlappingPair(proxy0, proxy1);
}
- } else
+ }
+ else
{
if (!m_pairCache->hasDeferredRemoval())
{
- if ( m_pairCache->findPair(proxy0,proxy1))
+ if (m_pairCache->findPair(proxy0, proxy1))
{
- m_pairCache->removeOverlappingPair(proxy0,proxy1,dispatcher);
+ m_pairCache->removeOverlappingPair(proxy0, proxy1, dispatcher);
}
}
}
@@ -258,8 +242,7 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
if (m_ownsPairCache && m_pairCache->hasDeferredRemoval())
{
-
- btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
+ btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
@@ -267,16 +250,13 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
-
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
-
- for (i=0;i<overlappingPairArray.size();i++)
+ for (i = 0; i < overlappingPairArray.size(); i++)
{
-
btBroadphasePair& pair = overlappingPairArray[i];
bool isDuplicate = (pair == previousPair);
@@ -287,16 +267,18 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
if (!isDuplicate)
{
- bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
+ bool hasOverlap = testAabbOverlap(pair.m_pProxy0, pair.m_pProxy1);
if (hasOverlap)
{
- needsRemoval = false;//callback->processOverlap(pair);
- } else
+ needsRemoval = false; //callback->processOverlap(pair);
+ }
+ else
{
needsRemoval = true;
}
- } else
+ }
+ else
{
//remove duplicate
needsRemoval = true;
@@ -306,7 +288,7 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
if (needsRemoval)
{
- m_pairCache->cleanOverlappingPair(pair,dispatcher);
+ m_pairCache->cleanOverlappingPair(pair, dispatcher);
// m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
// m_overlappingPairArray.pop_back();
@@ -314,7 +296,6 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
pair.m_pProxy1 = 0;
m_invalidPair++;
}
-
}
///if you don't like to skip the invalid pairs in the array, execute following code:
@@ -326,21 +307,19 @@ void btSimpleBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher)
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
-#endif//CLEAN_INVALID_PAIRS
-
+#endif //CLEAN_INVALID_PAIRS
}
}
}
-
-bool btSimpleBroadphase::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
+bool btSimpleBroadphase::testAabbOverlap(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1)
{
btSimpleBroadphaseProxy* p0 = getSimpleProxyFromProxy(proxy0);
btSimpleBroadphaseProxy* p1 = getSimpleProxyFromProxy(proxy1);
- return aabbOverlap(p0,p1);
+ return aabbOverlap(p0, p1);
}
-void btSimpleBroadphase::resetPool(btDispatcher* dispatcher)
+void btSimpleBroadphase::resetPool(btDispatcher* dispatcher)
{
//not yet
}
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h
index d7a18e400a..3e02fdc003 100644
--- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h
+++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btSimpleBroadphase.h
@@ -16,57 +16,47 @@ subject to the following restrictions:
#ifndef BT_SIMPLE_BROADPHASE_H
#define BT_SIMPLE_BROADPHASE_H
-
#include "btOverlappingPairCache.h"
-
struct btSimpleBroadphaseProxy : public btBroadphaseProxy
{
- int m_nextFree;
-
-// int m_handleId;
+ int m_nextFree;
-
- btSimpleBroadphaseProxy() {};
+ // int m_handleId;
- btSimpleBroadphaseProxy(const btVector3& minpt,const btVector3& maxpt,int shapeType,void* userPtr, int collisionFilterGroup, int collisionFilterMask)
- :btBroadphaseProxy(minpt,maxpt,userPtr,collisionFilterGroup,collisionFilterMask)
+ btSimpleBroadphaseProxy(){};
+
+ btSimpleBroadphaseProxy(const btVector3& minpt, const btVector3& maxpt, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask)
+ : btBroadphaseProxy(minpt, maxpt, userPtr, collisionFilterGroup, collisionFilterMask)
{
(void)shapeType;
}
-
-
- SIMD_FORCE_INLINE void SetNextFree(int next) {m_nextFree = next;}
- SIMD_FORCE_INLINE int GetNextFree() const {return m_nextFree;}
-
-
-
+ SIMD_FORCE_INLINE void SetNextFree(int next) { m_nextFree = next; }
+ SIMD_FORCE_INLINE int GetNextFree() const { return m_nextFree; }
};
///The SimpleBroadphase is just a unit-test for btAxisSweep3, bt32BitAxisSweep3, or btDbvtBroadphase, so use those classes instead.
///It is a brute force aabb culling broadphase based on O(n^2) aabb checks
class btSimpleBroadphase : public btBroadphaseInterface
{
-
protected:
+ int m_numHandles; // number of active handles
+ int m_maxHandles; // max number of handles
+ int m_LastHandleIndex;
- int m_numHandles; // number of active handles
- int m_maxHandles; // max number of handles
- int m_LastHandleIndex;
-
- btSimpleBroadphaseProxy* m_pHandles; // handles pool
+ btSimpleBroadphaseProxy* m_pHandles; // handles pool
void* m_pHandlesRawPtr;
- int m_firstFreeHandle; // free handles list
-
+ int m_firstFreeHandle; // free handles list
+
int allocHandle()
{
btAssert(m_numHandles < m_maxHandles);
int freeHandle = m_firstFreeHandle;
m_firstFreeHandle = m_pHandles[freeHandle].GetNextFree();
m_numHandles++;
- if(freeHandle > m_LastHandleIndex)
+ if (freeHandle > m_LastHandleIndex)
{
m_LastHandleIndex = freeHandle;
}
@@ -75,9 +65,9 @@ protected:
void freeHandle(btSimpleBroadphaseProxy* proxy)
{
- int handle = int(proxy-m_pHandles);
+ int handle = int(proxy - m_pHandles);
btAssert(handle >= 0 && handle < m_maxHandles);
- if(handle == m_LastHandleIndex)
+ if (handle == m_LastHandleIndex)
{
m_LastHandleIndex--;
}
@@ -89,20 +79,18 @@ protected:
m_numHandles--;
}
- btOverlappingPairCache* m_pairCache;
- bool m_ownsPairCache;
+ btOverlappingPairCache* m_pairCache;
+ bool m_ownsPairCache;
- int m_invalidPair;
+ int m_invalidPair;
-
-
- inline btSimpleBroadphaseProxy* getSimpleProxyFromProxy(btBroadphaseProxy* proxy)
+ inline btSimpleBroadphaseProxy* getSimpleProxyFromProxy(btBroadphaseProxy* proxy)
{
btSimpleBroadphaseProxy* proxy0 = static_cast<btSimpleBroadphaseProxy*>(proxy);
return proxy0;
}
- inline const btSimpleBroadphaseProxy* getSimpleProxyFromProxy(btBroadphaseProxy* proxy) const
+ inline const btSimpleBroadphaseProxy* getSimpleProxyFromProxy(btBroadphaseProxy* proxy) const
{
const btSimpleBroadphaseProxy* proxy0 = static_cast<const btSimpleBroadphaseProxy*>(proxy);
return proxy0;
@@ -111,61 +99,50 @@ protected:
///reset broadphase internal structures, to ensure determinism/reproducability
virtual void resetPool(btDispatcher* dispatcher);
-
- void validate();
+ void validate();
protected:
-
-
-
-
public:
- btSimpleBroadphase(int maxProxies=16384,btOverlappingPairCache* overlappingPairCache=0);
+ btSimpleBroadphase(int maxProxies = 16384, btOverlappingPairCache* overlappingPairCache = 0);
virtual ~btSimpleBroadphase();
+ static bool aabbOverlap(btSimpleBroadphaseProxy* proxy0, btSimpleBroadphaseProxy* proxy1);
- static bool aabbOverlap(btSimpleBroadphaseProxy* proxy0,btSimpleBroadphaseProxy* proxy1);
-
+ virtual btBroadphaseProxy* createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher);
- virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr , int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher);
+ virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
- virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
+ virtual void destroyProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher);
+ virtual void setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher);
+ virtual void getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const;
- virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
- virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax, btDispatcher* dispatcher);
- virtual void getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
+ virtual void rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin = btVector3(0, 0, 0), const btVector3& aabbMax = btVector3(0, 0, 0));
+ virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
- virtual void rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin=btVector3(0,0,0),const btVector3& aabbMax=btVector3(0,0,0));
- virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
-
- btOverlappingPairCache* getOverlappingPairCache()
+ btOverlappingPairCache* getOverlappingPairCache()
{
return m_pairCache;
}
- const btOverlappingPairCache* getOverlappingPairCache() const
+ const btOverlappingPairCache* getOverlappingPairCache() const
{
return m_pairCache;
}
- bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
-
+ bool testAabbOverlap(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1);
///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
///will add some transform later
- virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
+ virtual void getBroadphaseAabb(btVector3& aabbMin, btVector3& aabbMax) const
{
- aabbMin.setValue(-BT_LARGE_FLOAT,-BT_LARGE_FLOAT,-BT_LARGE_FLOAT);
- aabbMax.setValue(BT_LARGE_FLOAT,BT_LARGE_FLOAT,BT_LARGE_FLOAT);
+ aabbMin.setValue(-BT_LARGE_FLOAT, -BT_LARGE_FLOAT, -BT_LARGE_FLOAT);
+ aabbMax.setValue(BT_LARGE_FLOAT, BT_LARGE_FLOAT, BT_LARGE_FLOAT);
}
- virtual void printStats()
+ virtual void printStats()
{
-// printf("btSimpleBroadphase.h\n");
-// printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
+ // printf("btSimpleBroadphase.h\n");
+ // printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
}
};
-
-
-#endif //BT_SIMPLE_BROADPHASE_H
-
+#endif //BT_SIMPLE_BROADPHASE_H