diff options
Diffstat (limited to 'thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h')
-rw-r--r-- | thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h | 528 |
1 files changed, 231 insertions, 297 deletions
diff --git a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h index 323aa96dca..2ee35528fd 100644 --- a/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h +++ b/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h @@ -36,172 +36,158 @@ template <typename BP_FP_INT_TYPE> class btAxisSweep3Internal : public btBroadphaseInterface { protected: - - BP_FP_INT_TYPE m_bpHandleMask; - BP_FP_INT_TYPE m_handleSentinel; + BP_FP_INT_TYPE m_bpHandleMask; + BP_FP_INT_TYPE m_handleSentinel; public: - - BT_DECLARE_ALIGNED_ALLOCATOR(); + BT_DECLARE_ALIGNED_ALLOCATOR(); class Edge { public: - BP_FP_INT_TYPE m_pos; // low bit is min/max + BP_FP_INT_TYPE m_pos; // low bit is min/max BP_FP_INT_TYPE m_handle; - BP_FP_INT_TYPE IsMax() const {return static_cast<BP_FP_INT_TYPE>(m_pos & 1);} + BP_FP_INT_TYPE IsMax() const { return static_cast<BP_FP_INT_TYPE>(m_pos & 1); } }; public: - class Handle : public btBroadphaseProxy + class Handle : public btBroadphaseProxy { public: - BT_DECLARE_ALIGNED_ALLOCATOR(); - + BT_DECLARE_ALIGNED_ALLOCATOR(); + // indexes into the edge arrays - BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3]; // 6 * 2 = 12 -// BP_FP_INT_TYPE m_uniqueId; - btBroadphaseProxy* m_dbvtProxy;//for faster raycast + BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3]; // 6 * 2 = 12 + // BP_FP_INT_TYPE m_uniqueId; + btBroadphaseProxy* m_dbvtProxy; //for faster raycast //void* m_pOwner; this is now in btBroadphaseProxy.m_clientObject - - SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) {m_minEdges[0] = next;} - SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const {return m_minEdges[0];} - }; // 24 bytes + 24 for Edge structures = 44 bytes total per entry - + SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) { m_minEdges[0] = next; } + SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const { return m_minEdges[0]; } + }; // 24 bytes + 24 for Edge structures = 44 bytes total per entry + protected: - btVector3 m_worldAabbMin; // overall system bounds - btVector3 m_worldAabbMax; // overall system bounds + btVector3 m_worldAabbMin; // overall system bounds + btVector3 m_worldAabbMax; // overall system bounds + + btVector3 m_quantize; // scaling factor for quantization - btVector3 m_quantize; // scaling factor for quantization + BP_FP_INT_TYPE m_numHandles; // number of active handles + BP_FP_INT_TYPE m_maxHandles; // max number of handles + Handle* m_pHandles; // handles pool - BP_FP_INT_TYPE m_numHandles; // number of active handles - BP_FP_INT_TYPE m_maxHandles; // max number of handles - Handle* m_pHandles; // handles pool - - BP_FP_INT_TYPE m_firstFreeHandle; // free handles list + BP_FP_INT_TYPE m_firstFreeHandle; // free handles list - Edge* m_pEdges[3]; // edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries) + Edge* m_pEdges[3]; // edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries) void* m_pEdgesRawPtr[3]; btOverlappingPairCache* m_pairCache; ///btOverlappingPairCallback is an additional optional user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache. btOverlappingPairCallback* m_userPairCallback; - - bool m_ownsPairCache; - int m_invalidPair; + bool m_ownsPairCache; + + int m_invalidPair; ///additional dynamic aabb structure, used to accelerate ray cast queries. ///can be disabled using a optional argument in the constructor - btDbvtBroadphase* m_raycastAccelerator; - btOverlappingPairCache* m_nullPairCache; - + btDbvtBroadphase* m_raycastAccelerator; + btOverlappingPairCache* m_nullPairCache; // allocation/deallocation BP_FP_INT_TYPE allocHandle(); void freeHandle(BP_FP_INT_TYPE handle); - - bool testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1); + bool testOverlap2D(const Handle* pHandleA, const Handle* pHandleB, int axis0, int axis1); #ifdef DEBUG_BROADPHASE - void debugPrintAxis(int axis,bool checkCardinality=true); -#endif //DEBUG_BROADPHASE + void debugPrintAxis(int axis, bool checkCardinality = true); +#endif //DEBUG_BROADPHASE //Overlap* AddOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB); //void RemoveOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB); - - - void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps ); - void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps ); - void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps ); - void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps ); + void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps); + void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps); + void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps); + void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps); public: + btAxisSweep3Internal(const btVector3& worldAabbMin, const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false); - btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache=0,bool disableRaycastAccelerator = false); - - virtual ~btAxisSweep3Internal(); + virtual ~btAxisSweep3Internal(); BP_FP_INT_TYPE getNumHandles() const { return m_numHandles; } - virtual void calculateOverlappingPairs(btDispatcher* dispatcher); - - BP_FP_INT_TYPE addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher); - void removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher); - void updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher); - SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;} + virtual void calculateOverlappingPairs(btDispatcher* dispatcher); + + BP_FP_INT_TYPE addHandle(const btVector3& aabbMin, const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher); + void removeHandle(BP_FP_INT_TYPE handle, btDispatcher* dispatcher); + void updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher); + SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const { return m_pHandles + index; } virtual void resetPool(btDispatcher* dispatcher); - void processAllOverlappingPairs(btOverlapCallback* callback); + void processAllOverlappingPairs(btOverlapCallback* callback); //Broadphase Interface - virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr , int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher); - virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher); - virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher); - virtual void getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const; - - virtual void rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin=btVector3(0,0,0), const btVector3& aabbMax = btVector3(0,0,0)); - virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback); - - + virtual btBroadphaseProxy* createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher); + virtual void destroyProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher); + virtual void setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher); + virtual void getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const; + + virtual void rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin = btVector3(0, 0, 0), const btVector3& aabbMax = btVector3(0, 0, 0)); + virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback); + void quantize(BP_FP_INT_TYPE* out, const btVector3& point, int isMax) const; ///unQuantize should be conservative: aabbMin/aabbMax should be larger then 'getAabb' result - void unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const; - - bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1); + void unQuantize(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const; + + bool testAabbOverlap(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1); - btOverlappingPairCache* getOverlappingPairCache() + btOverlappingPairCache* getOverlappingPairCache() { return m_pairCache; } - const btOverlappingPairCache* getOverlappingPairCache() const + const btOverlappingPairCache* getOverlappingPairCache() const { return m_pairCache; } - void setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback) + void setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback) { m_userPairCallback = pairCallback; } - const btOverlappingPairCallback* getOverlappingPairUserCallback() const + const btOverlappingPairCallback* getOverlappingPairUserCallback() const { return m_userPairCallback; } ///getAabb returns the axis aligned bounding box in the 'global' coordinate frame ///will add some transform later - virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const + virtual void getBroadphaseAabb(btVector3& aabbMin, btVector3& aabbMax) const { aabbMin = m_worldAabbMin; aabbMax = m_worldAabbMax; } - virtual void printStats() + virtual void printStats() { -/* printf("btAxisSweep3.h\n"); + /* printf("btAxisSweep3.h\n"); printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles); printf("aabbMin=%f,%f,%f,aabbMax=%f,%f,%f\n",m_worldAabbMin.getX(),m_worldAabbMin.getY(),m_worldAabbMin.getZ(), m_worldAabbMax.getX(),m_worldAabbMax.getY(),m_worldAabbMax.getZ()); */ - } - }; //////////////////////////////////////////////////////////////////// - - - #ifdef DEBUG_BROADPHASE #include <stdio.h> @@ -209,75 +195,73 @@ template <typename BP_FP_INT_TYPE> void btAxisSweep3<BP_FP_INT_TYPE>::debugPrintAxis(int axis, bool checkCardinality) { int numEdges = m_pHandles[0].m_maxEdges[axis]; - printf("SAP Axis %d, numEdges=%d\n",axis,numEdges); + printf("SAP Axis %d, numEdges=%d\n", axis, numEdges); int i; - for (i=0;i<numEdges+1;i++) + for (i = 0; i < numEdges + 1; i++) { Edge* pEdge = m_pEdges[axis] + i; Handle* pHandlePrev = getHandle(pEdge->m_handle); - int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis]; + int handleIndex = pEdge->IsMax() ? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis]; char beginOrEnd; - beginOrEnd=pEdge->IsMax()?'E':'B'; - printf(" [%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex); + beginOrEnd = pEdge->IsMax() ? 'E' : 'B'; + printf(" [%c,h=%d,p=%x,i=%d]\n", beginOrEnd, pEdge->m_handle, pEdge->m_pos, handleIndex); } if (checkCardinality) - btAssert(numEdges == m_numHandles*2+1); + btAssert(numEdges == m_numHandles * 2 + 1); } -#endif //DEBUG_BROADPHASE +#endif //DEBUG_BROADPHASE template <typename BP_FP_INT_TYPE> -btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher) +btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy(const btVector3& aabbMin, const btVector3& aabbMax, int shapeType, void* userPtr, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher) { - (void)shapeType; - BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask,dispatcher); - - Handle* handle = getHandle(handleId); - - if (m_raycastAccelerator) - { - btBroadphaseProxy* rayProxy = m_raycastAccelerator->createProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask,dispatcher); - handle->m_dbvtProxy = rayProxy; - } - return handle; -} + (void)shapeType; + BP_FP_INT_TYPE handleId = addHandle(aabbMin, aabbMax, userPtr, collisionFilterGroup, collisionFilterMask, dispatcher); + Handle* handle = getHandle(handleId); + if (m_raycastAccelerator) + { + btBroadphaseProxy* rayProxy = m_raycastAccelerator->createProxy(aabbMin, aabbMax, shapeType, userPtr, collisionFilterGroup, collisionFilterMask, dispatcher); + handle->m_dbvtProxy = rayProxy; + } + return handle; +} template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher) +void btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy, btDispatcher* dispatcher) { Handle* handle = static_cast<Handle*>(proxy); if (m_raycastAccelerator) - m_raycastAccelerator->destroyProxy(handle->m_dbvtProxy,dispatcher); + m_raycastAccelerator->destroyProxy(handle->m_dbvtProxy, dispatcher); removeHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), dispatcher); } template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher) +void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher) { Handle* handle = static_cast<Handle*>(proxy); handle->m_aabbMin = aabbMin; handle->m_aabbMax = aabbMax; - updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax,dispatcher); + updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax, dispatcher); if (m_raycastAccelerator) - m_raycastAccelerator->setAabb(handle->m_dbvtProxy,aabbMin,aabbMax,dispatcher); - + m_raycastAccelerator->setAabb(handle->m_dbvtProxy, aabbMin, aabbMax, dispatcher); } template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback,const btVector3& aabbMin,const btVector3& aabbMax) +void btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom, const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin, const btVector3& aabbMax) { if (m_raycastAccelerator) { - m_raycastAccelerator->rayTest(rayFrom,rayTo,rayCallback,aabbMin,aabbMax); - } else + m_raycastAccelerator->rayTest(rayFrom, rayTo, rayCallback, aabbMin, aabbMax); + } + else { //choose axis? BP_FP_INT_TYPE axis = 0; //for each proxy - for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++) + for (BP_FP_INT_TYPE i = 1; i < m_numHandles * 2 + 1; i++) { if (m_pEdges[axis][i].IsMax()) { @@ -288,22 +272,23 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom,cons } template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback) +void btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback) { if (m_raycastAccelerator) { - m_raycastAccelerator->aabbTest(aabbMin,aabbMax,callback); - } else + m_raycastAccelerator->aabbTest(aabbMin, aabbMax, callback); + } + else { //choose axis? BP_FP_INT_TYPE axis = 0; //for each proxy - for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++) + for (BP_FP_INT_TYPE i = 1; i < m_numHandles * 2 + 1; i++) { if (m_pEdges[axis][i].IsMax()) { Handle* handle = getHandle(m_pEdges[axis][i].m_handle); - if (TestAabbAgainstAabb2(aabbMin,aabbMax,handle->m_aabbMin,handle->m_aabbMax)) + if (TestAabbAgainstAabb2(aabbMin, aabbMax, handle->m_aabbMin, handle->m_aabbMax)) { callback.process(handle); } @@ -312,66 +297,60 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, co } } - - template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const +void btAxisSweep3Internal<BP_FP_INT_TYPE>::getAabb(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const { Handle* pHandle = static_cast<Handle*>(proxy); aabbMin = pHandle->m_aabbMin; aabbMax = pHandle->m_aabbMax; } - template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const +void btAxisSweep3Internal<BP_FP_INT_TYPE>::unQuantize(btBroadphaseProxy* proxy, btVector3& aabbMin, btVector3& aabbMax) const { Handle* pHandle = static_cast<Handle*>(proxy); unsigned short vecInMin[3]; unsigned short vecInMax[3]; - vecInMin[0] = m_pEdges[0][pHandle->m_minEdges[0]].m_pos ; - vecInMax[0] = m_pEdges[0][pHandle->m_maxEdges[0]].m_pos +1 ; - vecInMin[1] = m_pEdges[1][pHandle->m_minEdges[1]].m_pos ; - vecInMax[1] = m_pEdges[1][pHandle->m_maxEdges[1]].m_pos +1 ; - vecInMin[2] = m_pEdges[2][pHandle->m_minEdges[2]].m_pos ; - vecInMax[2] = m_pEdges[2][pHandle->m_maxEdges[2]].m_pos +1 ; - - aabbMin.setValue((btScalar)(vecInMin[0]) / (m_quantize.getX()),(btScalar)(vecInMin[1]) / (m_quantize.getY()),(btScalar)(vecInMin[2]) / (m_quantize.getZ())); + vecInMin[0] = m_pEdges[0][pHandle->m_minEdges[0]].m_pos; + vecInMax[0] = m_pEdges[0][pHandle->m_maxEdges[0]].m_pos + 1; + vecInMin[1] = m_pEdges[1][pHandle->m_minEdges[1]].m_pos; + vecInMax[1] = m_pEdges[1][pHandle->m_maxEdges[1]].m_pos + 1; + vecInMin[2] = m_pEdges[2][pHandle->m_minEdges[2]].m_pos; + vecInMax[2] = m_pEdges[2][pHandle->m_maxEdges[2]].m_pos + 1; + + aabbMin.setValue((btScalar)(vecInMin[0]) / (m_quantize.getX()), (btScalar)(vecInMin[1]) / (m_quantize.getY()), (btScalar)(vecInMin[2]) / (m_quantize.getZ())); aabbMin += m_worldAabbMin; - - aabbMax.setValue((btScalar)(vecInMax[0]) / (m_quantize.getX()),(btScalar)(vecInMax[1]) / (m_quantize.getY()),(btScalar)(vecInMax[2]) / (m_quantize.getZ())); + + aabbMax.setValue((btScalar)(vecInMax[0]) / (m_quantize.getX()), (btScalar)(vecInMax[1]) / (m_quantize.getY()), (btScalar)(vecInMax[2]) / (m_quantize.getZ())); aabbMax += m_worldAabbMin; } - - - template <typename BP_FP_INT_TYPE> -btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel,BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache , bool disableRaycastAccelerator) -:m_bpHandleMask(handleMask), -m_handleSentinel(handleSentinel), -m_pairCache(pairCache), -m_userPairCallback(0), -m_ownsPairCache(false), -m_invalidPair(0), -m_raycastAccelerator(0) +btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btVector3& worldAabbMin, const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache, bool disableRaycastAccelerator) + : m_bpHandleMask(handleMask), + m_handleSentinel(handleSentinel), + m_pairCache(pairCache), + m_userPairCallback(0), + m_ownsPairCache(false), + m_invalidPair(0), + m_raycastAccelerator(0) { - BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles+1);//need to add one sentinel handle + BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles + 1); //need to add one sentinel handle if (!m_pairCache) { - void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16); - m_pairCache = new(ptr) btHashedOverlappingPairCache(); + void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache), 16); + m_pairCache = new (ptr) btHashedOverlappingPairCache(); m_ownsPairCache = true; } if (!disableRaycastAccelerator) { - m_nullPairCache = new (btAlignedAlloc(sizeof(btNullPairCache),16)) btNullPairCache(); - m_raycastAccelerator = new (btAlignedAlloc(sizeof(btDbvtBroadphase),16)) btDbvtBroadphase(m_nullPairCache);//m_pairCache); - m_raycastAccelerator->m_deferedcollide = true;//don't add/remove pairs + m_nullPairCache = new (btAlignedAlloc(sizeof(btNullPairCache), 16)) btNullPairCache(); + m_raycastAccelerator = new (btAlignedAlloc(sizeof(btDbvtBroadphase), 16)) btDbvtBroadphase(m_nullPairCache); //m_pairCache); + m_raycastAccelerator->m_deferedcollide = true; //don't add/remove pairs } //btAssert(bounds.HasVolume()); @@ -382,13 +361,13 @@ m_raycastAccelerator(0) btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin; - BP_FP_INT_TYPE maxInt = m_handleSentinel; + BP_FP_INT_TYPE maxInt = m_handleSentinel; - m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize; + m_quantize = btVector3(btScalar(maxInt), btScalar(maxInt), btScalar(maxInt)) / aabbSize; // allocate handles buffer, using btAlignedAlloc, and put all handles on free list m_pHandles = new Handle[maxHandles]; - + m_maxHandles = maxHandles; m_numHandles = 0; @@ -404,14 +383,14 @@ m_raycastAccelerator(0) // allocate edge buffers for (int i = 0; i < 3; i++) { - m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge)*maxHandles*2,16); - m_pEdges[i] = new(m_pEdgesRawPtr[i]) Edge[maxHandles * 2]; + m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge) * maxHandles * 2, 16); + m_pEdges[i] = new (m_pEdgesRawPtr[i]) Edge[maxHandles * 2]; } } //removed overlap management // make boundary sentinels - + m_pHandles[0].m_clientObject = 0; for (int axis = 0; axis < 3; axis++) @@ -425,10 +404,8 @@ m_raycastAccelerator(0) m_pEdges[axis][1].m_handle = 0; #ifdef DEBUG_BROADPHASE debugPrintAxis(axis); -#endif //DEBUG_BROADPHASE - +#endif //DEBUG_BROADPHASE } - } template <typename BP_FP_INT_TYPE> @@ -439,14 +416,14 @@ btAxisSweep3Internal<BP_FP_INT_TYPE>::~btAxisSweep3Internal() m_nullPairCache->~btOverlappingPairCache(); btAlignedFree(m_nullPairCache); m_raycastAccelerator->~btDbvtBroadphase(); - btAlignedFree (m_raycastAccelerator); + btAlignedFree(m_raycastAccelerator); } for (int i = 2; i >= 0; i--) { btAlignedFree(m_pEdgesRawPtr[i]); } - delete [] m_pHandles; + delete[] m_pHandles; if (m_ownsPairCache) { @@ -470,13 +447,12 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::quantize(BP_FP_INT_TYPE* out, const b out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & m_bpHandleMask) | isMax); #else btVector3 v = (point - m_worldAabbMin) * m_quantize; - out[0]=(v[0]<=0)?(BP_FP_INT_TYPE)isMax:(v[0]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[0]&m_bpHandleMask)|isMax); - out[1]=(v[1]<=0)?(BP_FP_INT_TYPE)isMax:(v[1]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[1]&m_bpHandleMask)|isMax); - out[2]=(v[2]<=0)?(BP_FP_INT_TYPE)isMax:(v[2]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[2]&m_bpHandleMask)|isMax); -#endif //OLD_CLAMPING_METHOD + out[0] = (v[0] <= 0) ? (BP_FP_INT_TYPE)isMax : (v[0] >= m_handleSentinel) ? (BP_FP_INT_TYPE)((m_handleSentinel & m_bpHandleMask) | isMax) : (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[0] & m_bpHandleMask) | isMax); + out[1] = (v[1] <= 0) ? (BP_FP_INT_TYPE)isMax : (v[1] >= m_handleSentinel) ? (BP_FP_INT_TYPE)((m_handleSentinel & m_bpHandleMask) | isMax) : (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[1] & m_bpHandleMask) | isMax); + out[2] = (v[2] <= 0) ? (BP_FP_INT_TYPE)isMax : (v[2] >= m_handleSentinel) ? (BP_FP_INT_TYPE)((m_handleSentinel & m_bpHandleMask) | isMax) : (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[2] & m_bpHandleMask) | isMax); +#endif //OLD_CLAMPING_METHOD } - template <typename BP_FP_INT_TYPE> BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::allocHandle() { @@ -500,9 +476,8 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::freeHandle(BP_FP_INT_TYPE handle) m_numHandles--; } - template <typename BP_FP_INT_TYPE> -BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher) +BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& aabbMin, const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask, btDispatcher* dispatcher) { // quantize the bounds BP_FP_INT_TYPE min[3], max[3]; @@ -511,10 +486,9 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& // allocate a handle BP_FP_INT_TYPE handle = allocHandle(); - Handle* pHandle = getHandle(handle); - + pHandle->m_uniqueId = static_cast<int>(handle); //pHandle->m_pOverlaps = 0; pHandle->m_clientObject = pOwner; @@ -524,11 +498,9 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& // compute current limit of edge arrays BP_FP_INT_TYPE limit = static_cast<BP_FP_INT_TYPE>(m_numHandles * 2); - // insert new edges just inside the max boundary edge for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++) { - m_pHandles[0].m_maxEdges[axis] += 2; m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1]; @@ -544,22 +516,19 @@ BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& } // now sort the new edges to their correct position - sortMinDown(0, pHandle->m_minEdges[0], dispatcher,false); - sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher,false); - sortMinDown(1, pHandle->m_minEdges[1], dispatcher,false); - sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher,false); - sortMinDown(2, pHandle->m_minEdges[2], dispatcher,true); - sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher,true); - + sortMinDown(0, pHandle->m_minEdges[0], dispatcher, false); + sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher, false); + sortMinDown(1, pHandle->m_minEdges[1], dispatcher, false); + sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher, false); + sortMinDown(2, pHandle->m_minEdges[2], dispatcher, true); + sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher, true); return handle; } - template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher) +void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle, btDispatcher* dispatcher) { - Handle* pHandle = getHandle(handle); //explicitly remove the pairs containing the proxy @@ -567,50 +536,43 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,bt ///@todo: compare performance if (!m_pairCache->hasDeferredRemoval()) { - m_pairCache->removeOverlappingPairsContainingProxy(pHandle,dispatcher); + m_pairCache->removeOverlappingPairsContainingProxy(pHandle, dispatcher); } // compute current limit of edge arrays int limit = static_cast<int>(m_numHandles * 2); - + int axis; - for (axis = 0;axis<3;axis++) + for (axis = 0; axis < 3; axis++) { m_pHandles[0].m_maxEdges[axis] -= 2; } // remove the edges by sorting them up to the end of the list - for ( axis = 0; axis < 3; axis++) + for (axis = 0; axis < 3; axis++) { Edge* pEdges = m_pEdges[axis]; BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis]; pEdges[max].m_pos = m_handleSentinel; - sortMaxUp(axis,max,dispatcher,false); - + sortMaxUp(axis, max, dispatcher, false); BP_FP_INT_TYPE i = pHandle->m_minEdges[axis]; pEdges[i].m_pos = m_handleSentinel; + sortMinUp(axis, i, dispatcher, false); - sortMinUp(axis,i,dispatcher,false); + pEdges[limit - 1].m_handle = 0; + pEdges[limit - 1].m_pos = m_handleSentinel; - pEdges[limit-1].m_handle = 0; - pEdges[limit-1].m_pos = m_handleSentinel; - #ifdef DEBUG_BROADPHASE - debugPrintAxis(axis,false); -#endif //DEBUG_BROADPHASE - - + debugPrintAxis(axis, false); +#endif //DEBUG_BROADPHASE } - // free the handle freeHandle(handle); - - } template <typename BP_FP_INT_TYPE> @@ -625,19 +587,16 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::resetPool(btDispatcher* /*dispatcher* m_pHandles[m_maxHandles - 1].SetNextFree(0); } } -} - +} //#include <stdio.h> template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher) +void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher) { - if (m_pairCache->hasDeferredRemoval()) { - - btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray(); + btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray(); //perform a sort, to find duplicates and to sort 'invalid' pairs to the end overlappingPairArray.quickSort(btBroadphasePairSortPredicate()); @@ -645,18 +604,15 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatche overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair); m_invalidPair = 0; - int i; btBroadphasePair previousPair; previousPair.m_pProxy0 = 0; previousPair.m_pProxy1 = 0; previousPair.m_algorithm = 0; - - - for (i=0;i<overlappingPairArray.size();i++) + + for (i = 0; i < overlappingPairArray.size(); i++) { - btBroadphasePair& pair = overlappingPairArray[i]; bool isDuplicate = (pair == previousPair); @@ -668,91 +624,90 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatche if (!isDuplicate) { ///important to use an AABB test that is consistent with the broadphase - bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1); + bool hasOverlap = testAabbOverlap(pair.m_pProxy0, pair.m_pProxy1); if (hasOverlap) { - needsRemoval = false;//callback->processOverlap(pair); - } else + needsRemoval = false; //callback->processOverlap(pair); + } + else { needsRemoval = true; } - } else + } + else { //remove duplicate needsRemoval = true; //should have no algorithm btAssert(!pair.m_algorithm); } - + if (needsRemoval) { - m_pairCache->cleanOverlappingPair(pair,dispatcher); + m_pairCache->cleanOverlappingPair(pair, dispatcher); - // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1); - // m_overlappingPairArray.pop_back(); + // m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1); + // m_overlappingPairArray.pop_back(); pair.m_pProxy0 = 0; pair.m_pProxy1 = 0; m_invalidPair++; - } - - } + } + } - ///if you don't like to skip the invalid pairs in the array, execute following code: - #define CLEAN_INVALID_PAIRS 1 - #ifdef CLEAN_INVALID_PAIRS +///if you don't like to skip the invalid pairs in the array, execute following code: +#define CLEAN_INVALID_PAIRS 1 +#ifdef CLEAN_INVALID_PAIRS //perform a sort, to sort 'invalid' pairs to the end overlappingPairArray.quickSort(btBroadphasePairSortPredicate()); overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair); m_invalidPair = 0; - #endif//CLEAN_INVALID_PAIRS - +#endif //CLEAN_INVALID_PAIRS + //printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size()); } - } - template <typename BP_FP_INT_TYPE> -bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) +bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) { const Handle* pHandleA = static_cast<Handle*>(proxy0); const Handle* pHandleB = static_cast<Handle*>(proxy1); - + //optimization 1: check the array index (memory address), instead of the m_pos for (int axis = 0; axis < 3; axis++) - { - if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] || - pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis]) - { - return false; - } - } + { + if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] || + pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis]) + { + return false; + } + } return true; } template <typename BP_FP_INT_TYPE> -bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1) +bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap2D(const Handle* pHandleA, const Handle* pHandleB, int axis0, int axis1) { //optimization 1: check the array index (memory address), instead of the m_pos - if (pHandleA->m_maxEdges[axis0] < pHandleB->m_minEdges[axis0] || + if (pHandleA->m_maxEdges[axis0] < pHandleB->m_minEdges[axis0] || pHandleB->m_maxEdges[axis0] < pHandleA->m_minEdges[axis0] || pHandleA->m_maxEdges[axis1] < pHandleB->m_minEdges[axis1] || - pHandleB->m_maxEdges[axis1] < pHandleA->m_minEdges[axis1]) - { - return false; - } + pHandleB->m_maxEdges[axis1] < pHandleA->m_minEdges[axis1]) + { + return false; + } return true; } template <typename BP_FP_INT_TYPE> -void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher) +void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* dispatcher) { -// btAssert(bounds.IsFinite()); + // btAssert(bounds.IsFinite()); //btAssert(bounds.HasVolume()); Handle* pHandle = getHandle(handle); @@ -776,34 +731,28 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, c // expand (only adds overlaps) if (dmin < 0) - sortMinDown(axis, emin,dispatcher,true); + sortMinDown(axis, emin, dispatcher, true); if (dmax > 0) - sortMaxUp(axis, emax,dispatcher,true); + sortMaxUp(axis, emax, dispatcher, true); // shrink (only removes overlaps) if (dmin > 0) - sortMinUp(axis, emin,dispatcher,true); + sortMinUp(axis, emin, dispatcher, true); if (dmax < 0) - sortMaxDown(axis, emax,dispatcher,true); + sortMaxDown(axis, emax, dispatcher, true); #ifdef DEBUG_BROADPHASE - debugPrintAxis(axis); -#endif //DEBUG_BROADPHASE + debugPrintAxis(axis); +#endif //DEBUG_BROADPHASE } - - } - - - // sorting a min edge downwards can only ever *add* overlaps template <typename BP_FP_INT_TYPE> void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps) { - Edge* pEdge = m_pEdges[axis] + edge; Edge* pPrev = pEdge - 1; Handle* pHandleEdge = getHandle(pEdge->m_handle); @@ -815,16 +764,15 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE if (pPrev->IsMax()) { // if previous edge is a maximum check the bounds and add an overlap if necessary - const int axis1 = (1 << axis) & 3; - const int axis2 = (1 << axis1) & 3; - if (updateOverlaps && testOverlap2D(pHandleEdge, pHandlePrev,axis1,axis2)) + const int axis1 = (1 << axis) & 3; + const int axis2 = (1 << axis1) & 3; + if (updateOverlaps && testOverlap2D(pHandleEdge, pHandlePrev, axis1, axis2)) { - m_pairCache->addOverlappingPair(pHandleEdge,pHandlePrev); + m_pairCache->addOverlappingPair(pHandleEdge, pHandlePrev); if (m_userPairCallback) - m_userPairCallback->addOverlappingPair(pHandleEdge,pHandlePrev); + m_userPairCallback->addOverlappingPair(pHandleEdge, pHandlePrev); //AddOverlap(pEdge->m_handle, pPrev->m_handle); - } // update edge reference in other handle @@ -847,8 +795,7 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE #ifdef DEBUG_BROADPHASE debugPrintAxis(axis); -#endif //DEBUG_BROADPHASE - +#endif //DEBUG_BROADPHASE } // sorting a min edge upwards can only ever *remove* overlaps @@ -867,25 +814,21 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE ed { Handle* handle0 = getHandle(pEdge->m_handle); Handle* handle1 = getHandle(pNext->m_handle); - const int axis1 = (1 << axis) & 3; - const int axis2 = (1 << axis1) & 3; - + const int axis1 = (1 << axis) & 3; + const int axis2 = (1 << axis1) & 3; + // if next edge is maximum remove any overlap between the two handles - if (updateOverlaps + if (updateOverlaps #ifdef USE_OVERLAP_TEST_ON_REMOVES - && testOverlap2D(handle0,handle1,axis1,axis2) -#endif //USE_OVERLAP_TEST_ON_REMOVES - ) + && testOverlap2D(handle0, handle1, axis1, axis2) +#endif //USE_OVERLAP_TEST_ON_REMOVES + ) { - - - m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher); + m_pairCache->removeOverlappingPair(handle0, handle1, dispatcher); if (m_userPairCallback) - m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher); - + m_userPairCallback->removeOverlappingPair(handle0, handle1, dispatcher); } - // update edge reference in other handle pHandleNext->m_maxEdges[axis]--; } @@ -903,15 +846,12 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE ed pEdge++; pNext++; } - - } // sorting a max edge downwards can only ever *remove* overlaps template <typename BP_FP_INT_TYPE> void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps) { - Edge* pEdge = m_pEdges[axis] + edge; Edge* pPrev = pEdge - 1; Handle* pHandleEdge = getHandle(pEdge->m_handle); @@ -925,28 +865,25 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE // if previous edge was a minimum remove any overlap between the two handles Handle* handle0 = getHandle(pEdge->m_handle); Handle* handle1 = getHandle(pPrev->m_handle); - const int axis1 = (1 << axis) & 3; - const int axis2 = (1 << axis1) & 3; + const int axis1 = (1 << axis) & 3; + const int axis2 = (1 << axis1) & 3; - if (updateOverlaps + if (updateOverlaps #ifdef USE_OVERLAP_TEST_ON_REMOVES - && testOverlap2D(handle0,handle1,axis1,axis2) -#endif //USE_OVERLAP_TEST_ON_REMOVES - ) + && testOverlap2D(handle0, handle1, axis1, axis2) +#endif //USE_OVERLAP_TEST_ON_REMOVES + ) { //this is done during the overlappingpairarray iteration/narrowphase collision - - m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher); + m_pairCache->removeOverlappingPair(handle0, handle1, dispatcher); if (m_userPairCallback) - m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher); - - - + m_userPairCallback->removeOverlappingPair(handle0, handle1, dispatcher); } // update edge reference in other handle - pHandlePrev->m_minEdges[axis]++;; + pHandlePrev->m_minEdges[axis]++; + ; } else pHandlePrev->m_maxEdges[axis]++; @@ -963,11 +900,9 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE pPrev--; } - #ifdef DEBUG_BROADPHASE debugPrintAxis(axis); -#endif //DEBUG_BROADPHASE - +#endif //DEBUG_BROADPHASE } // sorting a max edge upwards can only ever *add* overlaps @@ -982,19 +917,19 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE ed { Handle* pHandleNext = getHandle(pNext->m_handle); - const int axis1 = (1 << axis) & 3; - const int axis2 = (1 << axis1) & 3; + const int axis1 = (1 << axis) & 3; + const int axis2 = (1 << axis1) & 3; if (!pNext->IsMax()) { // if next edge is a minimum check the bounds and add an overlap if necessary - if (updateOverlaps && testOverlap2D(pHandleEdge, pHandleNext,axis1,axis2)) + if (updateOverlaps && testOverlap2D(pHandleEdge, pHandleNext, axis1, axis2)) { Handle* handle0 = getHandle(pEdge->m_handle); Handle* handle1 = getHandle(pNext->m_handle); - m_pairCache->addOverlappingPair(handle0,handle1); + m_pairCache->addOverlappingPair(handle0, handle1); if (m_userPairCallback) - m_userPairCallback->addOverlappingPair(handle0,handle1); + m_userPairCallback->addOverlappingPair(handle0, handle1); } // update edge reference in other handle @@ -1014,7 +949,6 @@ void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE ed pEdge++; pNext++; } - } #endif |