summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl')
-rw-r--r--thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl968
1 files changed, 968 insertions, 0 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl b/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl
new file mode 100644
index 0000000000..a21a08c3b4
--- /dev/null
+++ b/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl
@@ -0,0 +1,968 @@
+/*
+Copyright (c) 2013 Advanced Micro Devices, Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+//Originally written by Erwin Coumans
+
+#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h"
+
+#pragma OPENCL EXTENSION cl_amd_printf : enable
+#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
+#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
+#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable
+#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable
+
+
+#ifdef cl_ext_atomic_counters_32
+#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable
+#else
+#define counter32_t volatile global int*
+#endif
+
+typedef unsigned int u32;
+typedef unsigned short u16;
+typedef unsigned char u8;
+
+#define GET_GROUP_IDX get_group_id(0)
+#define GET_LOCAL_IDX get_local_id(0)
+#define GET_GLOBAL_IDX get_global_id(0)
+#define GET_GROUP_SIZE get_local_size(0)
+#define GET_NUM_GROUPS get_num_groups(0)
+#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)
+#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)
+#define AtomInc(x) atom_inc(&(x))
+#define AtomInc1(x, out) out = atom_inc(&(x))
+#define AppendInc(x, out) out = atomic_inc(x)
+#define AtomAdd(x, value) atom_add(&(x), value)
+#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )
+#define AtomXhg(x, value) atom_xchg ( &(x), value )
+
+
+#define SELECT_UINT4( b, a, condition ) select( b,a,condition )
+
+#define make_float4 (float4)
+#define make_float2 (float2)
+#define make_uint4 (uint4)
+#define make_int4 (int4)
+#define make_uint2 (uint2)
+#define make_int2 (int2)
+
+
+#define max2 max
+#define min2 min
+
+
+///////////////////////////////////////
+// Vector
+///////////////////////////////////////
+__inline
+float fastDiv(float numerator, float denominator)
+{
+ return native_divide(numerator, denominator);
+// return numerator/denominator;
+}
+
+__inline
+float4 fastDiv4(float4 numerator, float4 denominator)
+{
+ return native_divide(numerator, denominator);
+}
+
+__inline
+float fastSqrtf(float f2)
+{
+ return native_sqrt(f2);
+// return sqrt(f2);
+}
+
+__inline
+float fastRSqrt(float f2)
+{
+ return native_rsqrt(f2);
+}
+
+__inline
+float fastLength4(float4 v)
+{
+ return fast_length(v);
+}
+
+__inline
+float4 fastNormalize4(float4 v)
+{
+ return fast_normalize(v);
+}
+
+
+__inline
+float sqrtf(float a)
+{
+// return sqrt(a);
+ return native_sqrt(a);
+}
+
+__inline
+float4 cross3(float4 a1, float4 b1)
+{
+
+ float4 a=make_float4(a1.xyz,0.f);
+ float4 b=make_float4(b1.xyz,0.f);
+ //float4 a=a1;
+ //float4 b=b1;
+ return cross(a,b);
+}
+
+__inline
+float dot3F4(float4 a, float4 b)
+{
+ float4 a1 = make_float4(a.xyz,0.f);
+ float4 b1 = make_float4(b.xyz,0.f);
+ return dot(a1, b1);
+}
+
+__inline
+float length3(const float4 a)
+{
+ return sqrtf(dot3F4(a,a));
+}
+
+__inline
+float dot4(const float4 a, const float4 b)
+{
+ return dot( a, b );
+}
+
+// for height
+__inline
+float dot3w1(const float4 point, const float4 eqn)
+{
+ return dot3F4(point,eqn) + eqn.w;
+}
+
+__inline
+float4 normalize3(const float4 a)
+{
+ float4 n = make_float4(a.x, a.y, a.z, 0.f);
+ return fastNormalize4( n );
+// float length = sqrtf(dot3F4(a, a));
+// return 1.f/length * a;
+}
+
+__inline
+float4 normalize4(const float4 a)
+{
+ float length = sqrtf(dot4(a, a));
+ return 1.f/length * a;
+}
+
+__inline
+float4 createEquation(const float4 a, const float4 b, const float4 c)
+{
+ float4 eqn;
+ float4 ab = b-a;
+ float4 ac = c-a;
+ eqn = normalize3( cross3(ab, ac) );
+ eqn.w = -dot3F4(eqn,a);
+ return eqn;
+}
+
+///////////////////////////////////////
+// Matrix3x3
+///////////////////////////////////////
+
+typedef struct
+{
+ float4 m_row[3];
+}Matrix3x3;
+
+__inline
+Matrix3x3 mtZero();
+
+__inline
+Matrix3x3 mtIdentity();
+
+__inline
+Matrix3x3 mtTranspose(Matrix3x3 m);
+
+__inline
+Matrix3x3 mtMul(Matrix3x3 a, Matrix3x3 b);
+
+__inline
+float4 mtMul1(Matrix3x3 a, float4 b);
+
+__inline
+float4 mtMul3(float4 a, Matrix3x3 b);
+
+__inline
+Matrix3x3 mtZero()
+{
+ Matrix3x3 m;
+ m.m_row[0] = (float4)(0.f);
+ m.m_row[1] = (float4)(0.f);
+ m.m_row[2] = (float4)(0.f);
+ return m;
+}
+
+__inline
+Matrix3x3 mtIdentity()
+{
+ Matrix3x3 m;
+ m.m_row[0] = (float4)(1,0,0,0);
+ m.m_row[1] = (float4)(0,1,0,0);
+ m.m_row[2] = (float4)(0,0,1,0);
+ return m;
+}
+
+__inline
+Matrix3x3 mtTranspose(Matrix3x3 m)
+{
+ Matrix3x3 out;
+ out.m_row[0] = (float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);
+ out.m_row[1] = (float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);
+ out.m_row[2] = (float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);
+ return out;
+}
+
+__inline
+Matrix3x3 mtMul(Matrix3x3 a, Matrix3x3 b)
+{
+ Matrix3x3 transB;
+ transB = mtTranspose( b );
+ Matrix3x3 ans;
+ // why this doesn't run when 0ing in the for{}
+ a.m_row[0].w = 0.f;
+ a.m_row[1].w = 0.f;
+ a.m_row[2].w = 0.f;
+ for(int i=0; i<3; i++)
+ {
+// a.m_row[i].w = 0.f;
+ ans.m_row[i].x = dot3F4(a.m_row[i],transB.m_row[0]);
+ ans.m_row[i].y = dot3F4(a.m_row[i],transB.m_row[1]);
+ ans.m_row[i].z = dot3F4(a.m_row[i],transB.m_row[2]);
+ ans.m_row[i].w = 0.f;
+ }
+ return ans;
+}
+
+__inline
+float4 mtMul1(Matrix3x3 a, float4 b)
+{
+ float4 ans;
+ ans.x = dot3F4( a.m_row[0], b );
+ ans.y = dot3F4( a.m_row[1], b );
+ ans.z = dot3F4( a.m_row[2], b );
+ ans.w = 0.f;
+ return ans;
+}
+
+__inline
+float4 mtMul3(float4 a, Matrix3x3 b)
+{
+ float4 colx = make_float4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);
+ float4 coly = make_float4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);
+ float4 colz = make_float4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);
+
+ float4 ans;
+ ans.x = dot3F4( a, colx );
+ ans.y = dot3F4( a, coly );
+ ans.z = dot3F4( a, colz );
+ return ans;
+}
+
+///////////////////////////////////////
+// Quaternion
+///////////////////////////////////////
+
+typedef float4 Quaternion;
+
+__inline
+Quaternion qtMul(Quaternion a, Quaternion b);
+
+__inline
+Quaternion qtNormalize(Quaternion in);
+
+__inline
+float4 qtRotate(Quaternion q, float4 vec);
+
+__inline
+Quaternion qtInvert(Quaternion q);
+
+
+
+
+
+__inline
+Quaternion qtMul(Quaternion a, Quaternion b)
+{
+ Quaternion ans;
+ ans = cross3( a, b );
+ ans += a.w*b+b.w*a;
+// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);
+ ans.w = a.w*b.w - dot3F4(a, b);
+ return ans;
+}
+
+__inline
+Quaternion qtNormalize(Quaternion in)
+{
+ return fastNormalize4(in);
+// in /= length( in );
+// return in;
+}
+__inline
+float4 qtRotate(Quaternion q, float4 vec)
+{
+ Quaternion qInv = qtInvert( q );
+ float4 vcpy = vec;
+ vcpy.w = 0.f;
+ float4 out = qtMul(qtMul(q,vcpy),qInv);
+ return out;
+}
+
+__inline
+Quaternion qtInvert(Quaternion q)
+{
+ return (Quaternion)(-q.xyz, q.w);
+}
+
+__inline
+float4 qtInvRotate(const Quaternion q, float4 vec)
+{
+ return qtRotate( qtInvert( q ), vec );
+}
+
+
+
+
+#define WG_SIZE 64
+
+typedef struct
+{
+ float4 m_pos;
+ Quaternion m_quat;
+ float4 m_linVel;
+ float4 m_angVel;
+
+ u32 m_shapeIdx;
+ float m_invMass;
+ float m_restituitionCoeff;
+ float m_frictionCoeff;
+} Body;
+
+
+
+typedef struct
+{
+ Matrix3x3 m_invInertia;
+ Matrix3x3 m_initInvInertia;
+} Shape;
+
+typedef struct
+{
+ float4 m_linear;
+ float4 m_worldPos[4];
+ float4 m_center;
+ float m_jacCoeffInv[4];
+ float m_b[4];
+ float m_appliedRambdaDt[4];
+
+ float m_fJacCoeffInv[2];
+ float m_fAppliedRambdaDt[2];
+
+ u32 m_bodyA;
+ u32 m_bodyB;
+ int m_batchIdx;
+ u32 m_paddings;
+} Constraint4;
+
+
+
+
+
+
+__kernel void CountBodiesKernel(__global struct b3Contact4Data* manifoldPtr, __global unsigned int* bodyCount, __global int2* contactConstraintOffsets, int numContactManifolds, int fixedBodyIndex)
+{
+ int i = GET_GLOBAL_IDX;
+
+ if( i < numContactManifolds)
+ {
+ int pa = manifoldPtr[i].m_bodyAPtrAndSignBit;
+ bool isFixedA = (pa <0) || (pa == fixedBodyIndex);
+ int bodyIndexA = abs(pa);
+ if (!isFixedA)
+ {
+ AtomInc1(bodyCount[bodyIndexA],contactConstraintOffsets[i].x);
+ }
+ barrier(CLK_GLOBAL_MEM_FENCE);
+ int pb = manifoldPtr[i].m_bodyBPtrAndSignBit;
+ bool isFixedB = (pb <0) || (pb == fixedBodyIndex);
+ int bodyIndexB = abs(pb);
+ if (!isFixedB)
+ {
+ AtomInc1(bodyCount[bodyIndexB],contactConstraintOffsets[i].y);
+ }
+ }
+}
+
+__kernel void ClearVelocitiesKernel(__global float4* linearVelocities,__global float4* angularVelocities, int numSplitBodies)
+{
+ int i = GET_GLOBAL_IDX;
+
+ if( i < numSplitBodies)
+ {
+ linearVelocities[i] = make_float4(0);
+ angularVelocities[i] = make_float4(0);
+ }
+}
+
+
+__kernel void AverageVelocitiesKernel(__global Body* gBodies,__global int* offsetSplitBodies,__global const unsigned int* bodyCount,
+__global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, int numBodies)
+{
+ int i = GET_GLOBAL_IDX;
+ if (i<numBodies)
+ {
+ if (gBodies[i].m_invMass)
+ {
+ int bodyOffset = offsetSplitBodies[i];
+ int count = bodyCount[i];
+ float factor = 1.f/((float)count);
+ float4 averageLinVel = make_float4(0.f);
+ float4 averageAngVel = make_float4(0.f);
+
+ for (int j=0;j<count;j++)
+ {
+ averageLinVel += deltaLinearVelocities[bodyOffset+j]*factor;
+ averageAngVel += deltaAngularVelocities[bodyOffset+j]*factor;
+ }
+
+ for (int j=0;j<count;j++)
+ {
+ deltaLinearVelocities[bodyOffset+j] = averageLinVel;
+ deltaAngularVelocities[bodyOffset+j] = averageAngVel;
+ }
+
+ }//bodies[i].m_invMass
+ }//i<numBodies
+}
+
+
+
+void setLinearAndAngular( float4 n, float4 r0, float4 r1, float4* linear, float4* angular0, float4* angular1)
+{
+ *linear = make_float4(n.xyz,0.f);
+ *angular0 = cross3(r0, n);
+ *angular1 = -cross3(r1, n);
+}
+
+
+float calcRelVel( float4 l0, float4 l1, float4 a0, float4 a1, float4 linVel0, float4 angVel0, float4 linVel1, float4 angVel1 )
+{
+ return dot3F4(l0, linVel0) + dot3F4(a0, angVel0) + dot3F4(l1, linVel1) + dot3F4(a1, angVel1);
+}
+
+
+float calcJacCoeff(const float4 linear0, const float4 linear1, const float4 angular0, const float4 angular1,
+ float invMass0, const Matrix3x3* invInertia0, float invMass1, const Matrix3x3* invInertia1, float countA, float countB)
+{
+ // linear0,1 are normlized
+ float jmj0 = invMass0;//dot3F4(linear0, linear0)*invMass0;
+ float jmj1 = dot3F4(mtMul3(angular0,*invInertia0), angular0);
+ float jmj2 = invMass1;//dot3F4(linear1, linear1)*invMass1;
+ float jmj3 = dot3F4(mtMul3(angular1,*invInertia1), angular1);
+ return -1.f/((jmj0+jmj1)*countA+(jmj2+jmj3)*countB);
+}
+
+
+void btPlaneSpace1 (float4 n, float4* p, float4* q);
+ void btPlaneSpace1 (float4 n, float4* p, float4* q)
+{
+ if (fabs(n.z) > 0.70710678f) {
+ // choose p in y-z plane
+ float a = n.y*n.y + n.z*n.z;
+ float k = 1.f/sqrt(a);
+ p[0].x = 0;
+ p[0].y = -n.z*k;
+ p[0].z = n.y*k;
+ // set q = n x p
+ q[0].x = a*k;
+ q[0].y = -n.x*p[0].z;
+ q[0].z = n.x*p[0].y;
+ }
+ else {
+ // choose p in x-y plane
+ float a = n.x*n.x + n.y*n.y;
+ float k = 1.f/sqrt(a);
+ p[0].x = -n.y*k;
+ p[0].y = n.x*k;
+ p[0].z = 0;
+ // set q = n x p
+ q[0].x = -n.z*p[0].y;
+ q[0].y = n.z*p[0].x;
+ q[0].z = a*k;
+ }
+}
+
+
+
+
+
+void solveContact(__global Constraint4* cs,
+ float4 posA, float4* linVelA, float4* angVelA, float invMassA, Matrix3x3 invInertiaA,
+ float4 posB, float4* linVelB, float4* angVelB, float invMassB, Matrix3x3 invInertiaB,
+ float4* dLinVelA, float4* dAngVelA, float4* dLinVelB, float4* dAngVelB)
+{
+ float minRambdaDt = 0;
+ float maxRambdaDt = FLT_MAX;
+
+ for(int ic=0; ic<4; ic++)
+ {
+ if( cs->m_jacCoeffInv[ic] == 0.f ) continue;
+
+ float4 angular0, angular1, linear;
+ float4 r0 = cs->m_worldPos[ic] - posA;
+ float4 r1 = cs->m_worldPos[ic] - posB;
+ setLinearAndAngular( cs->m_linear, r0, r1, &linear, &angular0, &angular1 );
+
+
+
+ float rambdaDt = calcRelVel( cs->m_linear, -cs->m_linear, angular0, angular1,
+ *linVelA+*dLinVelA, *angVelA+*dAngVelA, *linVelB+*dLinVelB, *angVelB+*dAngVelB ) + cs->m_b[ic];
+ rambdaDt *= cs->m_jacCoeffInv[ic];
+
+
+ {
+ float prevSum = cs->m_appliedRambdaDt[ic];
+ float updated = prevSum;
+ updated += rambdaDt;
+ updated = max2( updated, minRambdaDt );
+ updated = min2( updated, maxRambdaDt );
+ rambdaDt = updated - prevSum;
+ cs->m_appliedRambdaDt[ic] = updated;
+ }
+
+
+ float4 linImp0 = invMassA*linear*rambdaDt;
+ float4 linImp1 = invMassB*(-linear)*rambdaDt;
+ float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt;
+ float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt;
+
+
+ if (invMassA)
+ {
+ *dLinVelA += linImp0;
+ *dAngVelA += angImp0;
+ }
+ if (invMassB)
+ {
+ *dLinVelB += linImp1;
+ *dAngVelB += angImp1;
+ }
+ }
+}
+
+
+// solveContactConstraint( gBodies, gShapes, &gConstraints[i] ,contactConstraintOffsets,offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities);
+
+
+void solveContactConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs,
+__global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies,
+__global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities)
+{
+
+ //float frictionCoeff = ldsCs[0].m_linear.w;
+ int aIdx = ldsCs[0].m_bodyA;
+ int bIdx = ldsCs[0].m_bodyB;
+
+ float4 posA = gBodies[aIdx].m_pos;
+ float4 linVelA = gBodies[aIdx].m_linVel;
+ float4 angVelA = gBodies[aIdx].m_angVel;
+ float invMassA = gBodies[aIdx].m_invMass;
+ Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia;
+
+ float4 posB = gBodies[bIdx].m_pos;
+ float4 linVelB = gBodies[bIdx].m_linVel;
+ float4 angVelB = gBodies[bIdx].m_angVel;
+ float invMassB = gBodies[bIdx].m_invMass;
+ Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia;
+
+
+ float4 dLinVelA = make_float4(0,0,0,0);
+ float4 dAngVelA = make_float4(0,0,0,0);
+ float4 dLinVelB = make_float4(0,0,0,0);
+ float4 dAngVelB = make_float4(0,0,0,0);
+
+ int bodyOffsetA = offsetSplitBodies[aIdx];
+ int constraintOffsetA = contactConstraintOffsets[0].x;
+ int splitIndexA = bodyOffsetA+constraintOffsetA;
+
+ if (invMassA)
+ {
+ dLinVelA = deltaLinearVelocities[splitIndexA];
+ dAngVelA = deltaAngularVelocities[splitIndexA];
+ }
+
+ int bodyOffsetB = offsetSplitBodies[bIdx];
+ int constraintOffsetB = contactConstraintOffsets[0].y;
+ int splitIndexB= bodyOffsetB+constraintOffsetB;
+
+ if (invMassB)
+ {
+ dLinVelB = deltaLinearVelocities[splitIndexB];
+ dAngVelB = deltaAngularVelocities[splitIndexB];
+ }
+
+ solveContact( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA,
+ posB, &linVelB, &angVelB, invMassB, invInertiaB ,&dLinVelA, &dAngVelA, &dLinVelB, &dAngVelB);
+
+ if (invMassA)
+ {
+ deltaLinearVelocities[splitIndexA] = dLinVelA;
+ deltaAngularVelocities[splitIndexA] = dAngVelA;
+ }
+ if (invMassB)
+ {
+ deltaLinearVelocities[splitIndexB] = dLinVelB;
+ deltaAngularVelocities[splitIndexB] = dAngVelB;
+ }
+
+}
+
+
+__kernel void SolveContactJacobiKernel(__global Constraint4* gConstraints, __global Body* gBodies, __global Shape* gShapes ,
+__global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies,__global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities,
+float deltaTime, float positionDrift, float positionConstraintCoeff, int fixedBodyIndex, int numManifolds
+)
+{
+ int i = GET_GLOBAL_IDX;
+ if (i<numManifolds)
+ {
+ solveContactConstraint( gBodies, gShapes, &gConstraints[i] ,&contactConstraintOffsets[i],offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities);
+ }
+}
+
+
+
+
+void solveFrictionConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs,
+ __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies,
+ __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities)
+{
+ float frictionCoeff = 0.7f;//ldsCs[0].m_linear.w;
+ int aIdx = ldsCs[0].m_bodyA;
+ int bIdx = ldsCs[0].m_bodyB;
+
+
+ float4 posA = gBodies[aIdx].m_pos;
+ float4 linVelA = gBodies[aIdx].m_linVel;
+ float4 angVelA = gBodies[aIdx].m_angVel;
+ float invMassA = gBodies[aIdx].m_invMass;
+ Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia;
+
+ float4 posB = gBodies[bIdx].m_pos;
+ float4 linVelB = gBodies[bIdx].m_linVel;
+ float4 angVelB = gBodies[bIdx].m_angVel;
+ float invMassB = gBodies[bIdx].m_invMass;
+ Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia;
+
+
+ float4 dLinVelA = make_float4(0,0,0,0);
+ float4 dAngVelA = make_float4(0,0,0,0);
+ float4 dLinVelB = make_float4(0,0,0,0);
+ float4 dAngVelB = make_float4(0,0,0,0);
+
+ int bodyOffsetA = offsetSplitBodies[aIdx];
+ int constraintOffsetA = contactConstraintOffsets[0].x;
+ int splitIndexA = bodyOffsetA+constraintOffsetA;
+
+ if (invMassA)
+ {
+ dLinVelA = deltaLinearVelocities[splitIndexA];
+ dAngVelA = deltaAngularVelocities[splitIndexA];
+ }
+
+ int bodyOffsetB = offsetSplitBodies[bIdx];
+ int constraintOffsetB = contactConstraintOffsets[0].y;
+ int splitIndexB= bodyOffsetB+constraintOffsetB;
+
+ if (invMassB)
+ {
+ dLinVelB = deltaLinearVelocities[splitIndexB];
+ dAngVelB = deltaAngularVelocities[splitIndexB];
+ }
+
+
+
+
+ {
+ float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
+ float minRambdaDt[4] = {0.f,0.f,0.f,0.f};
+
+ float sum = 0;
+ for(int j=0; j<4; j++)
+ {
+ sum +=ldsCs[0].m_appliedRambdaDt[j];
+ }
+ frictionCoeff = 0.7f;
+ for(int j=0; j<4; j++)
+ {
+ maxRambdaDt[j] = frictionCoeff*sum;
+ minRambdaDt[j] = -maxRambdaDt[j];
+ }
+
+
+// solveFriction( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA,
+// posB, &linVelB, &angVelB, invMassB, invInertiaB, maxRambdaDt, minRambdaDt );
+
+
+ {
+
+ __global Constraint4* cs = ldsCs;
+
+ if( cs->m_fJacCoeffInv[0] == 0 && cs->m_fJacCoeffInv[0] == 0 ) return;
+ const float4 center = cs->m_center;
+
+ float4 n = -cs->m_linear;
+
+ float4 tangent[2];
+ btPlaneSpace1(n,&tangent[0],&tangent[1]);
+ float4 angular0, angular1, linear;
+ float4 r0 = center - posA;
+ float4 r1 = center - posB;
+ for(int i=0; i<2; i++)
+ {
+ setLinearAndAngular( tangent[i], r0, r1, &linear, &angular0, &angular1 );
+ float rambdaDt = calcRelVel(linear, -linear, angular0, angular1,
+ linVelA+dLinVelA, angVelA+dAngVelA, linVelB+dLinVelB, angVelB+dAngVelB );
+ rambdaDt *= cs->m_fJacCoeffInv[i];
+
+ {
+ float prevSum = cs->m_fAppliedRambdaDt[i];
+ float updated = prevSum;
+ updated += rambdaDt;
+ updated = max2( updated, minRambdaDt[i] );
+ updated = min2( updated, maxRambdaDt[i] );
+ rambdaDt = updated - prevSum;
+ cs->m_fAppliedRambdaDt[i] = updated;
+ }
+
+ float4 linImp0 = invMassA*linear*rambdaDt;
+ float4 linImp1 = invMassB*(-linear)*rambdaDt;
+ float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt;
+ float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt;
+
+ dLinVelA += linImp0;
+ dAngVelA += angImp0;
+ dLinVelB += linImp1;
+ dAngVelB += angImp1;
+ }
+ { // angular damping for point constraint
+ float4 ab = normalize3( posB - posA );
+ float4 ac = normalize3( center - posA );
+ if( dot3F4( ab, ac ) > 0.95f || (invMassA == 0.f || invMassB == 0.f))
+ {
+ float angNA = dot3F4( n, angVelA );
+ float angNB = dot3F4( n, angVelB );
+
+ dAngVelA -= (angNA*0.1f)*n;
+ dAngVelB -= (angNB*0.1f)*n;
+ }
+ }
+ }
+
+
+
+ }
+
+ if (invMassA)
+ {
+ deltaLinearVelocities[splitIndexA] = dLinVelA;
+ deltaAngularVelocities[splitIndexA] = dAngVelA;
+ }
+ if (invMassB)
+ {
+ deltaLinearVelocities[splitIndexB] = dLinVelB;
+ deltaAngularVelocities[splitIndexB] = dAngVelB;
+ }
+
+
+}
+
+
+__kernel void SolveFrictionJacobiKernel(__global Constraint4* gConstraints, __global Body* gBodies, __global Shape* gShapes ,
+ __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies,
+ __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities,
+ float deltaTime, float positionDrift, float positionConstraintCoeff, int fixedBodyIndex, int numManifolds
+)
+{
+ int i = GET_GLOBAL_IDX;
+ if (i<numManifolds)
+ {
+ solveFrictionConstraint( gBodies, gShapes, &gConstraints[i] ,&contactConstraintOffsets[i],offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities);
+ }
+}
+
+
+__kernel void UpdateBodyVelocitiesKernel(__global Body* gBodies,__global int* offsetSplitBodies,__global const unsigned int* bodyCount,
+ __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, int numBodies)
+{
+ int i = GET_GLOBAL_IDX;
+ if (i<numBodies)
+ {
+ if (gBodies[i].m_invMass)
+ {
+ int bodyOffset = offsetSplitBodies[i];
+ int count = bodyCount[i];
+ if (count)
+ {
+ gBodies[i].m_linVel += deltaLinearVelocities[bodyOffset];
+ gBodies[i].m_angVel += deltaAngularVelocities[bodyOffset];
+ }
+ }
+ }
+}
+
+
+
+void setConstraint4( const float4 posA, const float4 linVelA, const float4 angVelA, float invMassA, const Matrix3x3 invInertiaA,
+ const float4 posB, const float4 linVelB, const float4 angVelB, float invMassB, const Matrix3x3 invInertiaB,
+ __global struct b3Contact4Data* src, float dt, float positionDrift, float positionConstraintCoeff,float countA, float countB,
+ Constraint4* dstC )
+{
+ dstC->m_bodyA = abs(src->m_bodyAPtrAndSignBit);
+ dstC->m_bodyB = abs(src->m_bodyBPtrAndSignBit);
+
+ float dtInv = 1.f/dt;
+ for(int ic=0; ic<4; ic++)
+ {
+ dstC->m_appliedRambdaDt[ic] = 0.f;
+ }
+ dstC->m_fJacCoeffInv[0] = dstC->m_fJacCoeffInv[1] = 0.f;
+
+
+ dstC->m_linear = src->m_worldNormalOnB;
+ dstC->m_linear.w = 0.7f ;//src->getFrictionCoeff() );
+ for(int ic=0; ic<4; ic++)
+ {
+ float4 r0 = src->m_worldPosB[ic] - posA;
+ float4 r1 = src->m_worldPosB[ic] - posB;
+
+ if( ic >= src->m_worldNormalOnB.w )//npoints
+ {
+ dstC->m_jacCoeffInv[ic] = 0.f;
+ continue;
+ }
+
+ float relVelN;
+ {
+ float4 linear, angular0, angular1;
+ setLinearAndAngular(src->m_worldNormalOnB, r0, r1, &linear, &angular0, &angular1);
+
+ dstC->m_jacCoeffInv[ic] = calcJacCoeff(linear, -linear, angular0, angular1,
+ invMassA, &invInertiaA, invMassB, &invInertiaB , countA, countB);
+
+ relVelN = calcRelVel(linear, -linear, angular0, angular1,
+ linVelA, angVelA, linVelB, angVelB);
+
+ float e = 0.f;//src->getRestituitionCoeff();
+ if( relVelN*relVelN < 0.004f ) e = 0.f;
+
+ dstC->m_b[ic] = e*relVelN;
+ //float penetration = src->m_worldPosB[ic].w;
+ dstC->m_b[ic] += (src->m_worldPosB[ic].w + positionDrift)*positionConstraintCoeff*dtInv;
+ dstC->m_appliedRambdaDt[ic] = 0.f;
+ }
+ }
+
+ if( src->m_worldNormalOnB.w > 0 )//npoints
+ { // prepare friction
+ float4 center = make_float4(0.f);
+ for(int i=0; i<src->m_worldNormalOnB.w; i++)
+ center += src->m_worldPosB[i];
+ center /= (float)src->m_worldNormalOnB.w;
+
+ float4 tangent[2];
+ btPlaneSpace1(-src->m_worldNormalOnB,&tangent[0],&tangent[1]);
+
+ float4 r[2];
+ r[0] = center - posA;
+ r[1] = center - posB;
+
+ for(int i=0; i<2; i++)
+ {
+ float4 linear, angular0, angular1;
+ setLinearAndAngular(tangent[i], r[0], r[1], &linear, &angular0, &angular1);
+
+ dstC->m_fJacCoeffInv[i] = calcJacCoeff(linear, -linear, angular0, angular1,
+ invMassA, &invInertiaA, invMassB, &invInertiaB ,countA, countB);
+ dstC->m_fAppliedRambdaDt[i] = 0.f;
+ }
+ dstC->m_center = center;
+ }
+
+ for(int i=0; i<4; i++)
+ {
+ if( i<src->m_worldNormalOnB.w )
+ {
+ dstC->m_worldPos[i] = src->m_worldPosB[i];
+ }
+ else
+ {
+ dstC->m_worldPos[i] = make_float4(0.f);
+ }
+ }
+}
+
+
+__kernel
+__attribute__((reqd_work_group_size(WG_SIZE,1,1)))
+void ContactToConstraintSplitKernel(__global const struct b3Contact4Data* gContact, __global const Body* gBodies, __global const Shape* gShapes, __global Constraint4* gConstraintOut,
+__global const unsigned int* bodyCount,
+int nContacts,
+float dt,
+float positionDrift,
+float positionConstraintCoeff
+)
+{
+ int gIdx = GET_GLOBAL_IDX;
+
+ if( gIdx < nContacts )
+ {
+ int aIdx = abs(gContact[gIdx].m_bodyAPtrAndSignBit);
+ int bIdx = abs(gContact[gIdx].m_bodyBPtrAndSignBit);
+
+ float4 posA = gBodies[aIdx].m_pos;
+ float4 linVelA = gBodies[aIdx].m_linVel;
+ float4 angVelA = gBodies[aIdx].m_angVel;
+ float invMassA = gBodies[aIdx].m_invMass;
+ Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia;
+
+ float4 posB = gBodies[bIdx].m_pos;
+ float4 linVelB = gBodies[bIdx].m_linVel;
+ float4 angVelB = gBodies[bIdx].m_angVel;
+ float invMassB = gBodies[bIdx].m_invMass;
+ Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia;
+
+ Constraint4 cs;
+
+ float countA = invMassA != 0.f ? (float)bodyCount[aIdx] : 1;
+ float countB = invMassB != 0.f ? (float)bodyCount[bIdx] : 1;
+
+ setConstraint4( posA, linVelA, angVelA, invMassA, invInertiaA, posB, linVelB, angVelB, invMassB, invInertiaB,
+ &gContact[gIdx], dt, positionDrift, positionConstraintCoeff,countA,countB,
+ &cs );
+
+ cs.m_batchIdx = gContact[gIdx].m_batchIdx;
+
+ gConstraintOut[gIdx] = cs;
+ }
+} \ No newline at end of file