diff options
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl')
-rw-r--r-- | thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl | 968 |
1 files changed, 968 insertions, 0 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl b/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl new file mode 100644 index 0000000000..a21a08c3b4 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl @@ -0,0 +1,968 @@ +/* +Copyright (c) 2013 Advanced Micro Devices, Inc. + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ +//Originally written by Erwin Coumans + +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" + +#pragma OPENCL EXTENSION cl_amd_printf : enable +#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable +#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable +#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable +#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable + + +#ifdef cl_ext_atomic_counters_32 +#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable +#else +#define counter32_t volatile global int* +#endif + +typedef unsigned int u32; +typedef unsigned short u16; +typedef unsigned char u8; + +#define GET_GROUP_IDX get_group_id(0) +#define GET_LOCAL_IDX get_local_id(0) +#define GET_GLOBAL_IDX get_global_id(0) +#define GET_GROUP_SIZE get_local_size(0) +#define GET_NUM_GROUPS get_num_groups(0) +#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) +#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) +#define AtomInc(x) atom_inc(&(x)) +#define AtomInc1(x, out) out = atom_inc(&(x)) +#define AppendInc(x, out) out = atomic_inc(x) +#define AtomAdd(x, value) atom_add(&(x), value) +#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) +#define AtomXhg(x, value) atom_xchg ( &(x), value ) + + +#define SELECT_UINT4( b, a, condition ) select( b,a,condition ) + +#define make_float4 (float4) +#define make_float2 (float2) +#define make_uint4 (uint4) +#define make_int4 (int4) +#define make_uint2 (uint2) +#define make_int2 (int2) + + +#define max2 max +#define min2 min + + +/////////////////////////////////////// +// Vector +/////////////////////////////////////// +__inline +float fastDiv(float numerator, float denominator) +{ + return native_divide(numerator, denominator); +// return numerator/denominator; +} + +__inline +float4 fastDiv4(float4 numerator, float4 denominator) +{ + return native_divide(numerator, denominator); +} + +__inline +float fastSqrtf(float f2) +{ + return native_sqrt(f2); +// return sqrt(f2); +} + +__inline +float fastRSqrt(float f2) +{ + return native_rsqrt(f2); +} + +__inline +float fastLength4(float4 v) +{ + return fast_length(v); +} + +__inline +float4 fastNormalize4(float4 v) +{ + return fast_normalize(v); +} + + +__inline +float sqrtf(float a) +{ +// return sqrt(a); + return native_sqrt(a); +} + +__inline +float4 cross3(float4 a1, float4 b1) +{ + + float4 a=make_float4(a1.xyz,0.f); + float4 b=make_float4(b1.xyz,0.f); + //float4 a=a1; + //float4 b=b1; + return cross(a,b); +} + +__inline +float dot3F4(float4 a, float4 b) +{ + float4 a1 = make_float4(a.xyz,0.f); + float4 b1 = make_float4(b.xyz,0.f); + return dot(a1, b1); +} + +__inline +float length3(const float4 a) +{ + return sqrtf(dot3F4(a,a)); +} + +__inline +float dot4(const float4 a, const float4 b) +{ + return dot( a, b ); +} + +// for height +__inline +float dot3w1(const float4 point, const float4 eqn) +{ + return dot3F4(point,eqn) + eqn.w; +} + +__inline +float4 normalize3(const float4 a) +{ + float4 n = make_float4(a.x, a.y, a.z, 0.f); + return fastNormalize4( n ); +// float length = sqrtf(dot3F4(a, a)); +// return 1.f/length * a; +} + +__inline +float4 normalize4(const float4 a) +{ + float length = sqrtf(dot4(a, a)); + return 1.f/length * a; +} + +__inline +float4 createEquation(const float4 a, const float4 b, const float4 c) +{ + float4 eqn; + float4 ab = b-a; + float4 ac = c-a; + eqn = normalize3( cross3(ab, ac) ); + eqn.w = -dot3F4(eqn,a); + return eqn; +} + +/////////////////////////////////////// +// Matrix3x3 +/////////////////////////////////////// + +typedef struct +{ + float4 m_row[3]; +}Matrix3x3; + +__inline +Matrix3x3 mtZero(); + +__inline +Matrix3x3 mtIdentity(); + +__inline +Matrix3x3 mtTranspose(Matrix3x3 m); + +__inline +Matrix3x3 mtMul(Matrix3x3 a, Matrix3x3 b); + +__inline +float4 mtMul1(Matrix3x3 a, float4 b); + +__inline +float4 mtMul3(float4 a, Matrix3x3 b); + +__inline +Matrix3x3 mtZero() +{ + Matrix3x3 m; + m.m_row[0] = (float4)(0.f); + m.m_row[1] = (float4)(0.f); + m.m_row[2] = (float4)(0.f); + return m; +} + +__inline +Matrix3x3 mtIdentity() +{ + Matrix3x3 m; + m.m_row[0] = (float4)(1,0,0,0); + m.m_row[1] = (float4)(0,1,0,0); + m.m_row[2] = (float4)(0,0,1,0); + return m; +} + +__inline +Matrix3x3 mtTranspose(Matrix3x3 m) +{ + Matrix3x3 out; + out.m_row[0] = (float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f); + out.m_row[1] = (float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f); + out.m_row[2] = (float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f); + return out; +} + +__inline +Matrix3x3 mtMul(Matrix3x3 a, Matrix3x3 b) +{ + Matrix3x3 transB; + transB = mtTranspose( b ); + Matrix3x3 ans; + // why this doesn't run when 0ing in the for{} + a.m_row[0].w = 0.f; + a.m_row[1].w = 0.f; + a.m_row[2].w = 0.f; + for(int i=0; i<3; i++) + { +// a.m_row[i].w = 0.f; + ans.m_row[i].x = dot3F4(a.m_row[i],transB.m_row[0]); + ans.m_row[i].y = dot3F4(a.m_row[i],transB.m_row[1]); + ans.m_row[i].z = dot3F4(a.m_row[i],transB.m_row[2]); + ans.m_row[i].w = 0.f; + } + return ans; +} + +__inline +float4 mtMul1(Matrix3x3 a, float4 b) +{ + float4 ans; + ans.x = dot3F4( a.m_row[0], b ); + ans.y = dot3F4( a.m_row[1], b ); + ans.z = dot3F4( a.m_row[2], b ); + ans.w = 0.f; + return ans; +} + +__inline +float4 mtMul3(float4 a, Matrix3x3 b) +{ + float4 colx = make_float4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0); + float4 coly = make_float4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0); + float4 colz = make_float4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0); + + float4 ans; + ans.x = dot3F4( a, colx ); + ans.y = dot3F4( a, coly ); + ans.z = dot3F4( a, colz ); + return ans; +} + +/////////////////////////////////////// +// Quaternion +/////////////////////////////////////// + +typedef float4 Quaternion; + +__inline +Quaternion qtMul(Quaternion a, Quaternion b); + +__inline +Quaternion qtNormalize(Quaternion in); + +__inline +float4 qtRotate(Quaternion q, float4 vec); + +__inline +Quaternion qtInvert(Quaternion q); + + + + + +__inline +Quaternion qtMul(Quaternion a, Quaternion b) +{ + Quaternion ans; + ans = cross3( a, b ); + ans += a.w*b+b.w*a; +// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); + ans.w = a.w*b.w - dot3F4(a, b); + return ans; +} + +__inline +Quaternion qtNormalize(Quaternion in) +{ + return fastNormalize4(in); +// in /= length( in ); +// return in; +} +__inline +float4 qtRotate(Quaternion q, float4 vec) +{ + Quaternion qInv = qtInvert( q ); + float4 vcpy = vec; + vcpy.w = 0.f; + float4 out = qtMul(qtMul(q,vcpy),qInv); + return out; +} + +__inline +Quaternion qtInvert(Quaternion q) +{ + return (Quaternion)(-q.xyz, q.w); +} + +__inline +float4 qtInvRotate(const Quaternion q, float4 vec) +{ + return qtRotate( qtInvert( q ), vec ); +} + + + + +#define WG_SIZE 64 + +typedef struct +{ + float4 m_pos; + Quaternion m_quat; + float4 m_linVel; + float4 m_angVel; + + u32 m_shapeIdx; + float m_invMass; + float m_restituitionCoeff; + float m_frictionCoeff; +} Body; + + + +typedef struct +{ + Matrix3x3 m_invInertia; + Matrix3x3 m_initInvInertia; +} Shape; + +typedef struct +{ + float4 m_linear; + float4 m_worldPos[4]; + float4 m_center; + float m_jacCoeffInv[4]; + float m_b[4]; + float m_appliedRambdaDt[4]; + + float m_fJacCoeffInv[2]; + float m_fAppliedRambdaDt[2]; + + u32 m_bodyA; + u32 m_bodyB; + int m_batchIdx; + u32 m_paddings; +} Constraint4; + + + + + + +__kernel void CountBodiesKernel(__global struct b3Contact4Data* manifoldPtr, __global unsigned int* bodyCount, __global int2* contactConstraintOffsets, int numContactManifolds, int fixedBodyIndex) +{ + int i = GET_GLOBAL_IDX; + + if( i < numContactManifolds) + { + int pa = manifoldPtr[i].m_bodyAPtrAndSignBit; + bool isFixedA = (pa <0) || (pa == fixedBodyIndex); + int bodyIndexA = abs(pa); + if (!isFixedA) + { + AtomInc1(bodyCount[bodyIndexA],contactConstraintOffsets[i].x); + } + barrier(CLK_GLOBAL_MEM_FENCE); + int pb = manifoldPtr[i].m_bodyBPtrAndSignBit; + bool isFixedB = (pb <0) || (pb == fixedBodyIndex); + int bodyIndexB = abs(pb); + if (!isFixedB) + { + AtomInc1(bodyCount[bodyIndexB],contactConstraintOffsets[i].y); + } + } +} + +__kernel void ClearVelocitiesKernel(__global float4* linearVelocities,__global float4* angularVelocities, int numSplitBodies) +{ + int i = GET_GLOBAL_IDX; + + if( i < numSplitBodies) + { + linearVelocities[i] = make_float4(0); + angularVelocities[i] = make_float4(0); + } +} + + +__kernel void AverageVelocitiesKernel(__global Body* gBodies,__global int* offsetSplitBodies,__global const unsigned int* bodyCount, +__global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, int numBodies) +{ + int i = GET_GLOBAL_IDX; + if (i<numBodies) + { + if (gBodies[i].m_invMass) + { + int bodyOffset = offsetSplitBodies[i]; + int count = bodyCount[i]; + float factor = 1.f/((float)count); + float4 averageLinVel = make_float4(0.f); + float4 averageAngVel = make_float4(0.f); + + for (int j=0;j<count;j++) + { + averageLinVel += deltaLinearVelocities[bodyOffset+j]*factor; + averageAngVel += deltaAngularVelocities[bodyOffset+j]*factor; + } + + for (int j=0;j<count;j++) + { + deltaLinearVelocities[bodyOffset+j] = averageLinVel; + deltaAngularVelocities[bodyOffset+j] = averageAngVel; + } + + }//bodies[i].m_invMass + }//i<numBodies +} + + + +void setLinearAndAngular( float4 n, float4 r0, float4 r1, float4* linear, float4* angular0, float4* angular1) +{ + *linear = make_float4(n.xyz,0.f); + *angular0 = cross3(r0, n); + *angular1 = -cross3(r1, n); +} + + +float calcRelVel( float4 l0, float4 l1, float4 a0, float4 a1, float4 linVel0, float4 angVel0, float4 linVel1, float4 angVel1 ) +{ + return dot3F4(l0, linVel0) + dot3F4(a0, angVel0) + dot3F4(l1, linVel1) + dot3F4(a1, angVel1); +} + + +float calcJacCoeff(const float4 linear0, const float4 linear1, const float4 angular0, const float4 angular1, + float invMass0, const Matrix3x3* invInertia0, float invMass1, const Matrix3x3* invInertia1, float countA, float countB) +{ + // linear0,1 are normlized + float jmj0 = invMass0;//dot3F4(linear0, linear0)*invMass0; + float jmj1 = dot3F4(mtMul3(angular0,*invInertia0), angular0); + float jmj2 = invMass1;//dot3F4(linear1, linear1)*invMass1; + float jmj3 = dot3F4(mtMul3(angular1,*invInertia1), angular1); + return -1.f/((jmj0+jmj1)*countA+(jmj2+jmj3)*countB); +} + + +void btPlaneSpace1 (float4 n, float4* p, float4* q); + void btPlaneSpace1 (float4 n, float4* p, float4* q) +{ + if (fabs(n.z) > 0.70710678f) { + // choose p in y-z plane + float a = n.y*n.y + n.z*n.z; + float k = 1.f/sqrt(a); + p[0].x = 0; + p[0].y = -n.z*k; + p[0].z = n.y*k; + // set q = n x p + q[0].x = a*k; + q[0].y = -n.x*p[0].z; + q[0].z = n.x*p[0].y; + } + else { + // choose p in x-y plane + float a = n.x*n.x + n.y*n.y; + float k = 1.f/sqrt(a); + p[0].x = -n.y*k; + p[0].y = n.x*k; + p[0].z = 0; + // set q = n x p + q[0].x = -n.z*p[0].y; + q[0].y = n.z*p[0].x; + q[0].z = a*k; + } +} + + + + + +void solveContact(__global Constraint4* cs, + float4 posA, float4* linVelA, float4* angVelA, float invMassA, Matrix3x3 invInertiaA, + float4 posB, float4* linVelB, float4* angVelB, float invMassB, Matrix3x3 invInertiaB, + float4* dLinVelA, float4* dAngVelA, float4* dLinVelB, float4* dAngVelB) +{ + float minRambdaDt = 0; + float maxRambdaDt = FLT_MAX; + + for(int ic=0; ic<4; ic++) + { + if( cs->m_jacCoeffInv[ic] == 0.f ) continue; + + float4 angular0, angular1, linear; + float4 r0 = cs->m_worldPos[ic] - posA; + float4 r1 = cs->m_worldPos[ic] - posB; + setLinearAndAngular( cs->m_linear, r0, r1, &linear, &angular0, &angular1 ); + + + + float rambdaDt = calcRelVel( cs->m_linear, -cs->m_linear, angular0, angular1, + *linVelA+*dLinVelA, *angVelA+*dAngVelA, *linVelB+*dLinVelB, *angVelB+*dAngVelB ) + cs->m_b[ic]; + rambdaDt *= cs->m_jacCoeffInv[ic]; + + + { + float prevSum = cs->m_appliedRambdaDt[ic]; + float updated = prevSum; + updated += rambdaDt; + updated = max2( updated, minRambdaDt ); + updated = min2( updated, maxRambdaDt ); + rambdaDt = updated - prevSum; + cs->m_appliedRambdaDt[ic] = updated; + } + + + float4 linImp0 = invMassA*linear*rambdaDt; + float4 linImp1 = invMassB*(-linear)*rambdaDt; + float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt; + float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt; + + + if (invMassA) + { + *dLinVelA += linImp0; + *dAngVelA += angImp0; + } + if (invMassB) + { + *dLinVelB += linImp1; + *dAngVelB += angImp1; + } + } +} + + +// solveContactConstraint( gBodies, gShapes, &gConstraints[i] ,contactConstraintOffsets,offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities); + + +void solveContactConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs, +__global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies, +__global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities) +{ + + //float frictionCoeff = ldsCs[0].m_linear.w; + int aIdx = ldsCs[0].m_bodyA; + int bIdx = ldsCs[0].m_bodyB; + + float4 posA = gBodies[aIdx].m_pos; + float4 linVelA = gBodies[aIdx].m_linVel; + float4 angVelA = gBodies[aIdx].m_angVel; + float invMassA = gBodies[aIdx].m_invMass; + Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia; + + float4 posB = gBodies[bIdx].m_pos; + float4 linVelB = gBodies[bIdx].m_linVel; + float4 angVelB = gBodies[bIdx].m_angVel; + float invMassB = gBodies[bIdx].m_invMass; + Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia; + + + float4 dLinVelA = make_float4(0,0,0,0); + float4 dAngVelA = make_float4(0,0,0,0); + float4 dLinVelB = make_float4(0,0,0,0); + float4 dAngVelB = make_float4(0,0,0,0); + + int bodyOffsetA = offsetSplitBodies[aIdx]; + int constraintOffsetA = contactConstraintOffsets[0].x; + int splitIndexA = bodyOffsetA+constraintOffsetA; + + if (invMassA) + { + dLinVelA = deltaLinearVelocities[splitIndexA]; + dAngVelA = deltaAngularVelocities[splitIndexA]; + } + + int bodyOffsetB = offsetSplitBodies[bIdx]; + int constraintOffsetB = contactConstraintOffsets[0].y; + int splitIndexB= bodyOffsetB+constraintOffsetB; + + if (invMassB) + { + dLinVelB = deltaLinearVelocities[splitIndexB]; + dAngVelB = deltaAngularVelocities[splitIndexB]; + } + + solveContact( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA, + posB, &linVelB, &angVelB, invMassB, invInertiaB ,&dLinVelA, &dAngVelA, &dLinVelB, &dAngVelB); + + if (invMassA) + { + deltaLinearVelocities[splitIndexA] = dLinVelA; + deltaAngularVelocities[splitIndexA] = dAngVelA; + } + if (invMassB) + { + deltaLinearVelocities[splitIndexB] = dLinVelB; + deltaAngularVelocities[splitIndexB] = dAngVelB; + } + +} + + +__kernel void SolveContactJacobiKernel(__global Constraint4* gConstraints, __global Body* gBodies, __global Shape* gShapes , +__global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies,__global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, +float deltaTime, float positionDrift, float positionConstraintCoeff, int fixedBodyIndex, int numManifolds +) +{ + int i = GET_GLOBAL_IDX; + if (i<numManifolds) + { + solveContactConstraint( gBodies, gShapes, &gConstraints[i] ,&contactConstraintOffsets[i],offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities); + } +} + + + + +void solveFrictionConstraint(__global Body* gBodies, __global Shape* gShapes, __global Constraint4* ldsCs, + __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies, + __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities) +{ + float frictionCoeff = 0.7f;//ldsCs[0].m_linear.w; + int aIdx = ldsCs[0].m_bodyA; + int bIdx = ldsCs[0].m_bodyB; + + + float4 posA = gBodies[aIdx].m_pos; + float4 linVelA = gBodies[aIdx].m_linVel; + float4 angVelA = gBodies[aIdx].m_angVel; + float invMassA = gBodies[aIdx].m_invMass; + Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia; + + float4 posB = gBodies[bIdx].m_pos; + float4 linVelB = gBodies[bIdx].m_linVel; + float4 angVelB = gBodies[bIdx].m_angVel; + float invMassB = gBodies[bIdx].m_invMass; + Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia; + + + float4 dLinVelA = make_float4(0,0,0,0); + float4 dAngVelA = make_float4(0,0,0,0); + float4 dLinVelB = make_float4(0,0,0,0); + float4 dAngVelB = make_float4(0,0,0,0); + + int bodyOffsetA = offsetSplitBodies[aIdx]; + int constraintOffsetA = contactConstraintOffsets[0].x; + int splitIndexA = bodyOffsetA+constraintOffsetA; + + if (invMassA) + { + dLinVelA = deltaLinearVelocities[splitIndexA]; + dAngVelA = deltaAngularVelocities[splitIndexA]; + } + + int bodyOffsetB = offsetSplitBodies[bIdx]; + int constraintOffsetB = contactConstraintOffsets[0].y; + int splitIndexB= bodyOffsetB+constraintOffsetB; + + if (invMassB) + { + dLinVelB = deltaLinearVelocities[splitIndexB]; + dAngVelB = deltaAngularVelocities[splitIndexB]; + } + + + + + { + float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX}; + float minRambdaDt[4] = {0.f,0.f,0.f,0.f}; + + float sum = 0; + for(int j=0; j<4; j++) + { + sum +=ldsCs[0].m_appliedRambdaDt[j]; + } + frictionCoeff = 0.7f; + for(int j=0; j<4; j++) + { + maxRambdaDt[j] = frictionCoeff*sum; + minRambdaDt[j] = -maxRambdaDt[j]; + } + + +// solveFriction( ldsCs, posA, &linVelA, &angVelA, invMassA, invInertiaA, +// posB, &linVelB, &angVelB, invMassB, invInertiaB, maxRambdaDt, minRambdaDt ); + + + { + + __global Constraint4* cs = ldsCs; + + if( cs->m_fJacCoeffInv[0] == 0 && cs->m_fJacCoeffInv[0] == 0 ) return; + const float4 center = cs->m_center; + + float4 n = -cs->m_linear; + + float4 tangent[2]; + btPlaneSpace1(n,&tangent[0],&tangent[1]); + float4 angular0, angular1, linear; + float4 r0 = center - posA; + float4 r1 = center - posB; + for(int i=0; i<2; i++) + { + setLinearAndAngular( tangent[i], r0, r1, &linear, &angular0, &angular1 ); + float rambdaDt = calcRelVel(linear, -linear, angular0, angular1, + linVelA+dLinVelA, angVelA+dAngVelA, linVelB+dLinVelB, angVelB+dAngVelB ); + rambdaDt *= cs->m_fJacCoeffInv[i]; + + { + float prevSum = cs->m_fAppliedRambdaDt[i]; + float updated = prevSum; + updated += rambdaDt; + updated = max2( updated, minRambdaDt[i] ); + updated = min2( updated, maxRambdaDt[i] ); + rambdaDt = updated - prevSum; + cs->m_fAppliedRambdaDt[i] = updated; + } + + float4 linImp0 = invMassA*linear*rambdaDt; + float4 linImp1 = invMassB*(-linear)*rambdaDt; + float4 angImp0 = mtMul1(invInertiaA, angular0)*rambdaDt; + float4 angImp1 = mtMul1(invInertiaB, angular1)*rambdaDt; + + dLinVelA += linImp0; + dAngVelA += angImp0; + dLinVelB += linImp1; + dAngVelB += angImp1; + } + { // angular damping for point constraint + float4 ab = normalize3( posB - posA ); + float4 ac = normalize3( center - posA ); + if( dot3F4( ab, ac ) > 0.95f || (invMassA == 0.f || invMassB == 0.f)) + { + float angNA = dot3F4( n, angVelA ); + float angNB = dot3F4( n, angVelB ); + + dAngVelA -= (angNA*0.1f)*n; + dAngVelB -= (angNB*0.1f)*n; + } + } + } + + + + } + + if (invMassA) + { + deltaLinearVelocities[splitIndexA] = dLinVelA; + deltaAngularVelocities[splitIndexA] = dAngVelA; + } + if (invMassB) + { + deltaLinearVelocities[splitIndexB] = dLinVelB; + deltaAngularVelocities[splitIndexB] = dAngVelB; + } + + +} + + +__kernel void SolveFrictionJacobiKernel(__global Constraint4* gConstraints, __global Body* gBodies, __global Shape* gShapes , + __global int2* contactConstraintOffsets,__global unsigned int* offsetSplitBodies, + __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, + float deltaTime, float positionDrift, float positionConstraintCoeff, int fixedBodyIndex, int numManifolds +) +{ + int i = GET_GLOBAL_IDX; + if (i<numManifolds) + { + solveFrictionConstraint( gBodies, gShapes, &gConstraints[i] ,&contactConstraintOffsets[i],offsetSplitBodies, deltaLinearVelocities, deltaAngularVelocities); + } +} + + +__kernel void UpdateBodyVelocitiesKernel(__global Body* gBodies,__global int* offsetSplitBodies,__global const unsigned int* bodyCount, + __global float4* deltaLinearVelocities, __global float4* deltaAngularVelocities, int numBodies) +{ + int i = GET_GLOBAL_IDX; + if (i<numBodies) + { + if (gBodies[i].m_invMass) + { + int bodyOffset = offsetSplitBodies[i]; + int count = bodyCount[i]; + if (count) + { + gBodies[i].m_linVel += deltaLinearVelocities[bodyOffset]; + gBodies[i].m_angVel += deltaAngularVelocities[bodyOffset]; + } + } + } +} + + + +void setConstraint4( const float4 posA, const float4 linVelA, const float4 angVelA, float invMassA, const Matrix3x3 invInertiaA, + const float4 posB, const float4 linVelB, const float4 angVelB, float invMassB, const Matrix3x3 invInertiaB, + __global struct b3Contact4Data* src, float dt, float positionDrift, float positionConstraintCoeff,float countA, float countB, + Constraint4* dstC ) +{ + dstC->m_bodyA = abs(src->m_bodyAPtrAndSignBit); + dstC->m_bodyB = abs(src->m_bodyBPtrAndSignBit); + + float dtInv = 1.f/dt; + for(int ic=0; ic<4; ic++) + { + dstC->m_appliedRambdaDt[ic] = 0.f; + } + dstC->m_fJacCoeffInv[0] = dstC->m_fJacCoeffInv[1] = 0.f; + + + dstC->m_linear = src->m_worldNormalOnB; + dstC->m_linear.w = 0.7f ;//src->getFrictionCoeff() ); + for(int ic=0; ic<4; ic++) + { + float4 r0 = src->m_worldPosB[ic] - posA; + float4 r1 = src->m_worldPosB[ic] - posB; + + if( ic >= src->m_worldNormalOnB.w )//npoints + { + dstC->m_jacCoeffInv[ic] = 0.f; + continue; + } + + float relVelN; + { + float4 linear, angular0, angular1; + setLinearAndAngular(src->m_worldNormalOnB, r0, r1, &linear, &angular0, &angular1); + + dstC->m_jacCoeffInv[ic] = calcJacCoeff(linear, -linear, angular0, angular1, + invMassA, &invInertiaA, invMassB, &invInertiaB , countA, countB); + + relVelN = calcRelVel(linear, -linear, angular0, angular1, + linVelA, angVelA, linVelB, angVelB); + + float e = 0.f;//src->getRestituitionCoeff(); + if( relVelN*relVelN < 0.004f ) e = 0.f; + + dstC->m_b[ic] = e*relVelN; + //float penetration = src->m_worldPosB[ic].w; + dstC->m_b[ic] += (src->m_worldPosB[ic].w + positionDrift)*positionConstraintCoeff*dtInv; + dstC->m_appliedRambdaDt[ic] = 0.f; + } + } + + if( src->m_worldNormalOnB.w > 0 )//npoints + { // prepare friction + float4 center = make_float4(0.f); + for(int i=0; i<src->m_worldNormalOnB.w; i++) + center += src->m_worldPosB[i]; + center /= (float)src->m_worldNormalOnB.w; + + float4 tangent[2]; + btPlaneSpace1(-src->m_worldNormalOnB,&tangent[0],&tangent[1]); + + float4 r[2]; + r[0] = center - posA; + r[1] = center - posB; + + for(int i=0; i<2; i++) + { + float4 linear, angular0, angular1; + setLinearAndAngular(tangent[i], r[0], r[1], &linear, &angular0, &angular1); + + dstC->m_fJacCoeffInv[i] = calcJacCoeff(linear, -linear, angular0, angular1, + invMassA, &invInertiaA, invMassB, &invInertiaB ,countA, countB); + dstC->m_fAppliedRambdaDt[i] = 0.f; + } + dstC->m_center = center; + } + + for(int i=0; i<4; i++) + { + if( i<src->m_worldNormalOnB.w ) + { + dstC->m_worldPos[i] = src->m_worldPosB[i]; + } + else + { + dstC->m_worldPos[i] = make_float4(0.f); + } + } +} + + +__kernel +__attribute__((reqd_work_group_size(WG_SIZE,1,1))) +void ContactToConstraintSplitKernel(__global const struct b3Contact4Data* gContact, __global const Body* gBodies, __global const Shape* gShapes, __global Constraint4* gConstraintOut, +__global const unsigned int* bodyCount, +int nContacts, +float dt, +float positionDrift, +float positionConstraintCoeff +) +{ + int gIdx = GET_GLOBAL_IDX; + + if( gIdx < nContacts ) + { + int aIdx = abs(gContact[gIdx].m_bodyAPtrAndSignBit); + int bIdx = abs(gContact[gIdx].m_bodyBPtrAndSignBit); + + float4 posA = gBodies[aIdx].m_pos; + float4 linVelA = gBodies[aIdx].m_linVel; + float4 angVelA = gBodies[aIdx].m_angVel; + float invMassA = gBodies[aIdx].m_invMass; + Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertia; + + float4 posB = gBodies[bIdx].m_pos; + float4 linVelB = gBodies[bIdx].m_linVel; + float4 angVelB = gBodies[bIdx].m_angVel; + float invMassB = gBodies[bIdx].m_invMass; + Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertia; + + Constraint4 cs; + + float countA = invMassA != 0.f ? (float)bodyCount[aIdx] : 1; + float countB = invMassB != 0.f ? (float)bodyCount[bIdx] : 1; + + setConstraint4( posA, linVelA, angVelA, invMassA, invInertiaA, posB, linVelB, angVelB, invMassB, invInertiaB, + &gContact[gIdx], dt, positionDrift, positionConstraintCoeff,countA,countB, + &cs ); + + cs.m_batchIdx = gContact[gIdx].m_batchIdx; + + gConstraintOut[gIdx] = cs; + } +}
\ No newline at end of file |