summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/jointSolver.cl
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/jointSolver.cl')
-rw-r--r--thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/jointSolver.cl877
1 files changed, 877 insertions, 0 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/jointSolver.cl b/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/jointSolver.cl
new file mode 100644
index 0000000000..7f5dabe274
--- /dev/null
+++ b/thirdparty/bullet/Bullet3OpenCL/RigidBody/kernels/jointSolver.cl
@@ -0,0 +1,877 @@
+/*
+Copyright (c) 2013 Advanced Micro Devices, Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+//Originally written by Erwin Coumans
+
+#define B3_CONSTRAINT_FLAG_ENABLED 1
+
+#define B3_GPU_POINT2POINT_CONSTRAINT_TYPE 3
+#define B3_GPU_FIXED_CONSTRAINT_TYPE 4
+
+#define MOTIONCLAMP 100000 //unused, for debugging/safety in case constraint solver fails
+#define B3_INFINITY 1e30f
+
+#define mymake_float4 (float4)
+
+
+__inline float dot3F4(float4 a, float4 b)
+{
+ float4 a1 = mymake_float4(a.xyz,0.f);
+ float4 b1 = mymake_float4(b.xyz,0.f);
+ return dot(a1, b1);
+}
+
+
+typedef float4 Quaternion;
+
+
+typedef struct
+{
+ float4 m_row[3];
+}Matrix3x3;
+
+__inline
+float4 mtMul1(Matrix3x3 a, float4 b);
+
+__inline
+float4 mtMul3(float4 a, Matrix3x3 b);
+
+
+
+
+
+__inline
+float4 mtMul1(Matrix3x3 a, float4 b)
+{
+ float4 ans;
+ ans.x = dot3F4( a.m_row[0], b );
+ ans.y = dot3F4( a.m_row[1], b );
+ ans.z = dot3F4( a.m_row[2], b );
+ ans.w = 0.f;
+ return ans;
+}
+
+__inline
+float4 mtMul3(float4 a, Matrix3x3 b)
+{
+ float4 colx = mymake_float4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);
+ float4 coly = mymake_float4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);
+ float4 colz = mymake_float4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);
+
+ float4 ans;
+ ans.x = dot3F4( a, colx );
+ ans.y = dot3F4( a, coly );
+ ans.z = dot3F4( a, colz );
+ return ans;
+}
+
+
+
+typedef struct
+{
+ Matrix3x3 m_invInertiaWorld;
+ Matrix3x3 m_initInvInertia;
+} BodyInertia;
+
+
+typedef struct
+{
+ Matrix3x3 m_basis;//orientation
+ float4 m_origin;//transform
+}b3Transform;
+
+typedef struct
+{
+// b3Transform m_worldTransformUnused;
+ float4 m_deltaLinearVelocity;
+ float4 m_deltaAngularVelocity;
+ float4 m_angularFactor;
+ float4 m_linearFactor;
+ float4 m_invMass;
+ float4 m_pushVelocity;
+ float4 m_turnVelocity;
+ float4 m_linearVelocity;
+ float4 m_angularVelocity;
+
+ union
+ {
+ void* m_originalBody;
+ int m_originalBodyIndex;
+ };
+ int padding[3];
+
+} b3GpuSolverBody;
+
+typedef struct
+{
+ float4 m_pos;
+ Quaternion m_quat;
+ float4 m_linVel;
+ float4 m_angVel;
+
+ unsigned int m_shapeIdx;
+ float m_invMass;
+ float m_restituitionCoeff;
+ float m_frictionCoeff;
+} b3RigidBodyCL;
+
+typedef struct
+{
+
+ float4 m_relpos1CrossNormal;
+ float4 m_contactNormal;
+
+ float4 m_relpos2CrossNormal;
+ //float4 m_contactNormal2;//usually m_contactNormal2 == -m_contactNormal
+
+ float4 m_angularComponentA;
+ float4 m_angularComponentB;
+
+ float m_appliedPushImpulse;
+ float m_appliedImpulse;
+ int m_padding1;
+ int m_padding2;
+ float m_friction;
+ float m_jacDiagABInv;
+ float m_rhs;
+ float m_cfm;
+
+ float m_lowerLimit;
+ float m_upperLimit;
+ float m_rhsPenetration;
+ int m_originalConstraint;
+
+
+ int m_overrideNumSolverIterations;
+ int m_frictionIndex;
+ int m_solverBodyIdA;
+ int m_solverBodyIdB;
+
+} b3SolverConstraint;
+
+typedef struct
+{
+ int m_bodyAPtrAndSignBit;
+ int m_bodyBPtrAndSignBit;
+ int m_originalConstraintIndex;
+ int m_batchId;
+} b3BatchConstraint;
+
+
+
+
+
+
+typedef struct
+{
+ int m_constraintType;
+ int m_rbA;
+ int m_rbB;
+ float m_breakingImpulseThreshold;
+
+ float4 m_pivotInA;
+ float4 m_pivotInB;
+ Quaternion m_relTargetAB;
+
+ int m_flags;
+ int m_padding[3];
+} b3GpuGenericConstraint;
+
+
+/*b3Transform getWorldTransform(b3RigidBodyCL* rb)
+{
+ b3Transform newTrans;
+ newTrans.setOrigin(rb->m_pos);
+ newTrans.setRotation(rb->m_quat);
+ return newTrans;
+}*/
+
+
+
+
+__inline
+float4 cross3(float4 a, float4 b)
+{
+ return cross(a,b);
+}
+
+__inline
+float4 fastNormalize4(float4 v)
+{
+ v = mymake_float4(v.xyz,0.f);
+ return fast_normalize(v);
+}
+
+
+__inline
+Quaternion qtMul(Quaternion a, Quaternion b);
+
+__inline
+Quaternion qtNormalize(Quaternion in);
+
+__inline
+float4 qtRotate(Quaternion q, float4 vec);
+
+__inline
+Quaternion qtInvert(Quaternion q);
+
+
+
+
+__inline
+Quaternion qtMul(Quaternion a, Quaternion b)
+{
+ Quaternion ans;
+ ans = cross3( a, b );
+ ans += a.w*b+b.w*a;
+// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);
+ ans.w = a.w*b.w - dot3F4(a, b);
+ return ans;
+}
+
+__inline
+Quaternion qtNormalize(Quaternion in)
+{
+ return fastNormalize4(in);
+// in /= length( in );
+// return in;
+}
+__inline
+float4 qtRotate(Quaternion q, float4 vec)
+{
+ Quaternion qInv = qtInvert( q );
+ float4 vcpy = vec;
+ vcpy.w = 0.f;
+ float4 out = qtMul(qtMul(q,vcpy),qInv);
+ return out;
+}
+
+__inline
+Quaternion qtInvert(Quaternion q)
+{
+ return (Quaternion)(-q.xyz, q.w);
+}
+
+
+__inline void internalApplyImpulse(__global b3GpuSolverBody* body, float4 linearComponent, float4 angularComponent,float impulseMagnitude)
+{
+ body->m_deltaLinearVelocity += linearComponent*impulseMagnitude*body->m_linearFactor;
+ body->m_deltaAngularVelocity += angularComponent*(impulseMagnitude*body->m_angularFactor);
+}
+
+
+void resolveSingleConstraintRowGeneric(__global b3GpuSolverBody* body1, __global b3GpuSolverBody* body2, __global b3SolverConstraint* c)
+{
+ float deltaImpulse = c->m_rhs-c->m_appliedImpulse*c->m_cfm;
+ float deltaVel1Dotn = dot3F4(c->m_contactNormal,body1->m_deltaLinearVelocity) + dot3F4(c->m_relpos1CrossNormal,body1->m_deltaAngularVelocity);
+ float deltaVel2Dotn = -dot3F4(c->m_contactNormal,body2->m_deltaLinearVelocity) + dot3F4(c->m_relpos2CrossNormal,body2->m_deltaAngularVelocity);
+
+ deltaImpulse -= deltaVel1Dotn*c->m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn*c->m_jacDiagABInv;
+
+ float sum = c->m_appliedImpulse + deltaImpulse;
+ if (sum < c->m_lowerLimit)
+ {
+ deltaImpulse = c->m_lowerLimit-c->m_appliedImpulse;
+ c->m_appliedImpulse = c->m_lowerLimit;
+ }
+ else if (sum > c->m_upperLimit)
+ {
+ deltaImpulse = c->m_upperLimit-c->m_appliedImpulse;
+ c->m_appliedImpulse = c->m_upperLimit;
+ }
+ else
+ {
+ c->m_appliedImpulse = sum;
+ }
+
+ internalApplyImpulse(body1,c->m_contactNormal*body1->m_invMass,c->m_angularComponentA,deltaImpulse);
+ internalApplyImpulse(body2,-c->m_contactNormal*body2->m_invMass,c->m_angularComponentB,deltaImpulse);
+
+}
+
+__kernel void solveJointConstraintRows(__global b3GpuSolverBody* solverBodies,
+ __global b3BatchConstraint* batchConstraints,
+ __global b3SolverConstraint* rows,
+ __global unsigned int* numConstraintRowsInfo1,
+ __global unsigned int* rowOffsets,
+ __global b3GpuGenericConstraint* constraints,
+ int batchOffset,
+ int numConstraintsInBatch
+ )
+{
+ int b = get_global_id(0);
+ if (b>=numConstraintsInBatch)
+ return;
+
+ __global b3BatchConstraint* c = &batchConstraints[b+batchOffset];
+ int originalConstraintIndex = c->m_originalConstraintIndex;
+ if (constraints[originalConstraintIndex].m_flags&B3_CONSTRAINT_FLAG_ENABLED)
+ {
+ int numConstraintRows = numConstraintRowsInfo1[originalConstraintIndex];
+ int rowOffset = rowOffsets[originalConstraintIndex];
+ for (int jj=0;jj<numConstraintRows;jj++)
+ {
+ __global b3SolverConstraint* constraint = &rows[rowOffset+jj];
+ resolveSingleConstraintRowGeneric(&solverBodies[constraint->m_solverBodyIdA],&solverBodies[constraint->m_solverBodyIdB],constraint);
+ }
+ }
+};
+
+__kernel void initSolverBodies(__global b3GpuSolverBody* solverBodies,__global b3RigidBodyCL* bodiesCL, int numBodies)
+{
+ int i = get_global_id(0);
+ if (i>=numBodies)
+ return;
+
+ __global b3GpuSolverBody* solverBody = &solverBodies[i];
+ __global b3RigidBodyCL* bodyCL = &bodiesCL[i];
+
+ solverBody->m_deltaLinearVelocity = (float4)(0.f,0.f,0.f,0.f);
+ solverBody->m_deltaAngularVelocity = (float4)(0.f,0.f,0.f,0.f);
+ solverBody->m_pushVelocity = (float4)(0.f,0.f,0.f,0.f);
+ solverBody->m_pushVelocity = (float4)(0.f,0.f,0.f,0.f);
+ solverBody->m_invMass = (float4)(bodyCL->m_invMass,bodyCL->m_invMass,bodyCL->m_invMass,0.f);
+ solverBody->m_originalBodyIndex = i;
+ solverBody->m_angularFactor = (float4)(1,1,1,0);
+ solverBody->m_linearFactor = (float4) (1,1,1,0);
+ solverBody->m_linearVelocity = bodyCL->m_linVel;
+ solverBody->m_angularVelocity = bodyCL->m_angVel;
+}
+
+__kernel void breakViolatedConstraintsKernel(__global b3GpuGenericConstraint* constraints, __global unsigned int* numConstraintRows, __global unsigned int* rowOffsets, __global b3SolverConstraint* rows, int numConstraints)
+{
+ int cid = get_global_id(0);
+ if (cid>=numConstraints)
+ return;
+ int numRows = numConstraintRows[cid];
+ if (numRows)
+ {
+ for (int i=0;i<numRows;i++)
+ {
+ int rowIndex = rowOffsets[cid]+i;
+ float breakingThreshold = constraints[cid].m_breakingImpulseThreshold;
+ if (fabs(rows[rowIndex].m_appliedImpulse) >= breakingThreshold)
+ {
+ constraints[cid].m_flags =0;//&= ~B3_CONSTRAINT_FLAG_ENABLED;
+ }
+ }
+ }
+}
+
+
+
+__kernel void getInfo1Kernel(__global unsigned int* infos, __global b3GpuGenericConstraint* constraints, int numConstraints)
+{
+ int i = get_global_id(0);
+ if (i>=numConstraints)
+ return;
+
+ __global b3GpuGenericConstraint* constraint = &constraints[i];
+
+ switch (constraint->m_constraintType)
+ {
+ case B3_GPU_POINT2POINT_CONSTRAINT_TYPE:
+ {
+ infos[i] = 3;
+ break;
+ }
+ case B3_GPU_FIXED_CONSTRAINT_TYPE:
+ {
+ infos[i] = 6;
+ break;
+ }
+ default:
+ {
+ }
+ }
+}
+
+__kernel void initBatchConstraintsKernel(__global unsigned int* numConstraintRows, __global unsigned int* rowOffsets,
+ __global b3BatchConstraint* batchConstraints,
+ __global b3GpuGenericConstraint* constraints,
+ __global b3RigidBodyCL* bodies,
+ int numConstraints)
+{
+ int i = get_global_id(0);
+ if (i>=numConstraints)
+ return;
+
+ int rbA = constraints[i].m_rbA;
+ int rbB = constraints[i].m_rbB;
+
+ batchConstraints[i].m_bodyAPtrAndSignBit = bodies[rbA].m_invMass != 0.f ? rbA : -rbA;
+ batchConstraints[i].m_bodyBPtrAndSignBit = bodies[rbB].m_invMass != 0.f ? rbB : -rbB;
+ batchConstraints[i].m_batchId = -1;
+ batchConstraints[i].m_originalConstraintIndex = i;
+
+}
+
+
+
+
+typedef struct
+{
+ // integrator parameters: frames per second (1/stepsize), default error
+ // reduction parameter (0..1).
+ float fps,erp;
+
+ // for the first and second body, pointers to two (linear and angular)
+ // n*3 jacobian sub matrices, stored by rows. these matrices will have
+ // been initialized to 0 on entry. if the second body is zero then the
+ // J2xx pointers may be 0.
+ union
+ {
+ __global float4* m_J1linearAxisFloat4;
+ __global float* m_J1linearAxis;
+ };
+ union
+ {
+ __global float4* m_J1angularAxisFloat4;
+ __global float* m_J1angularAxis;
+
+ };
+ union
+ {
+ __global float4* m_J2linearAxisFloat4;
+ __global float* m_J2linearAxis;
+ };
+ union
+ {
+ __global float4* m_J2angularAxisFloat4;
+ __global float* m_J2angularAxis;
+ };
+ // elements to jump from one row to the next in J's
+ int rowskip;
+
+ // right hand sides of the equation J*v = c + cfm * lambda. cfm is the
+ // "constraint force mixing" vector. c is set to zero on entry, cfm is
+ // set to a constant value (typically very small or zero) value on entry.
+ __global float* m_constraintError;
+ __global float* cfm;
+
+ // lo and hi limits for variables (set to -/+ infinity on entry).
+ __global float* m_lowerLimit;
+ __global float* m_upperLimit;
+
+ // findex vector for variables. see the LCP solver interface for a
+ // description of what this does. this is set to -1 on entry.
+ // note that the returned indexes are relative to the first index of
+ // the constraint.
+ __global int *findex;
+ // number of solver iterations
+ int m_numIterations;
+
+ //damping of the velocity
+ float m_damping;
+} b3GpuConstraintInfo2;
+
+
+void getSkewSymmetricMatrix(float4 vecIn, __global float4* v0,__global float4* v1,__global float4* v2)
+{
+ *v0 = (float4)(0. ,-vecIn.z ,vecIn.y,0.f);
+ *v1 = (float4)(vecIn.z ,0. ,-vecIn.x,0.f);
+ *v2 = (float4)(-vecIn.y ,vecIn.x ,0.f,0.f);
+}
+
+
+void getInfo2Point2Point(__global b3GpuGenericConstraint* constraint,b3GpuConstraintInfo2* info,__global b3RigidBodyCL* bodies)
+{
+ float4 posA = bodies[constraint->m_rbA].m_pos;
+ Quaternion rotA = bodies[constraint->m_rbA].m_quat;
+
+ float4 posB = bodies[constraint->m_rbB].m_pos;
+ Quaternion rotB = bodies[constraint->m_rbB].m_quat;
+
+
+
+ // anchor points in global coordinates with respect to body PORs.
+
+ // set jacobian
+ info->m_J1linearAxis[0] = 1;
+ info->m_J1linearAxis[info->rowskip+1] = 1;
+ info->m_J1linearAxis[2*info->rowskip+2] = 1;
+
+ float4 a1 = qtRotate(rotA,constraint->m_pivotInA);
+
+ {
+ __global float4* angular0 = (__global float4*)(info->m_J1angularAxis);
+ __global float4* angular1 = (__global float4*)(info->m_J1angularAxis+info->rowskip);
+ __global float4* angular2 = (__global float4*)(info->m_J1angularAxis+2*info->rowskip);
+ float4 a1neg = -a1;
+ getSkewSymmetricMatrix(a1neg,angular0,angular1,angular2);
+ }
+ if (info->m_J2linearAxis)
+ {
+ info->m_J2linearAxis[0] = -1;
+ info->m_J2linearAxis[info->rowskip+1] = -1;
+ info->m_J2linearAxis[2*info->rowskip+2] = -1;
+ }
+
+ float4 a2 = qtRotate(rotB,constraint->m_pivotInB);
+
+ {
+ // float4 a2n = -a2;
+ __global float4* angular0 = (__global float4*)(info->m_J2angularAxis);
+ __global float4* angular1 = (__global float4*)(info->m_J2angularAxis+info->rowskip);
+ __global float4* angular2 = (__global float4*)(info->m_J2angularAxis+2*info->rowskip);
+ getSkewSymmetricMatrix(a2,angular0,angular1,angular2);
+ }
+
+ // set right hand side
+// float currERP = (m_flags & B3_P2P_FLAGS_ERP) ? m_erp : info->erp;
+ float currERP = info->erp;
+
+ float k = info->fps * currERP;
+ int j;
+ float4 result = a2 + posB - a1 - posA;
+ float* resultPtr = &result;
+
+ for (j=0; j<3; j++)
+ {
+ info->m_constraintError[j*info->rowskip] = k * (resultPtr[j]);
+ }
+}
+
+Quaternion nearest( Quaternion first, Quaternion qd)
+{
+ Quaternion diff,sum;
+ diff = first- qd;
+ sum = first + qd;
+
+ if( dot(diff,diff) < dot(sum,sum) )
+ return qd;
+ return (-qd);
+}
+
+float b3Acos(float x)
+{
+ if (x<-1)
+ x=-1;
+ if (x>1)
+ x=1;
+ return acos(x);
+}
+
+float getAngle(Quaternion orn)
+{
+ if (orn.w>=1.f)
+ orn.w=1.f;
+ float s = 2.f * b3Acos(orn.w);
+ return s;
+}
+
+void calculateDiffAxisAngleQuaternion( Quaternion orn0,Quaternion orn1a,float4* axis,float* angle)
+{
+ Quaternion orn1 = nearest(orn0,orn1a);
+
+ Quaternion dorn = qtMul(orn1,qtInvert(orn0));
+ *angle = getAngle(dorn);
+ *axis = (float4)(dorn.x,dorn.y,dorn.z,0.f);
+
+ //check for axis length
+ float len = dot3F4(*axis,*axis);
+ if (len < FLT_EPSILON*FLT_EPSILON)
+ *axis = (float4)(1,0,0,0);
+ else
+ *axis /= sqrt(len);
+}
+
+
+
+void getInfo2FixedOrientation(__global b3GpuGenericConstraint* constraint,b3GpuConstraintInfo2* info,__global b3RigidBodyCL* bodies, int start_row)
+{
+ Quaternion worldOrnA = bodies[constraint->m_rbA].m_quat;
+ Quaternion worldOrnB = bodies[constraint->m_rbB].m_quat;
+
+ int s = info->rowskip;
+ int start_index = start_row * s;
+
+ // 3 rows to make body rotations equal
+ info->m_J1angularAxis[start_index] = 1;
+ info->m_J1angularAxis[start_index + s + 1] = 1;
+ info->m_J1angularAxis[start_index + s*2+2] = 1;
+ if ( info->m_J2angularAxis)
+ {
+ info->m_J2angularAxis[start_index] = -1;
+ info->m_J2angularAxis[start_index + s+1] = -1;
+ info->m_J2angularAxis[start_index + s*2+2] = -1;
+ }
+
+ float currERP = info->erp;
+ float k = info->fps * currERP;
+ float4 diff;
+ float angle;
+ float4 qrelCur = qtMul(worldOrnA,qtInvert(worldOrnB));
+
+ calculateDiffAxisAngleQuaternion(constraint->m_relTargetAB,qrelCur,&diff,&angle);
+ diff*=-angle;
+
+ float* resultPtr = &diff;
+
+ for (int j=0; j<3; j++)
+ {
+ info->m_constraintError[(3+j)*info->rowskip] = k * resultPtr[j];
+ }
+
+
+}
+
+
+__kernel void writeBackVelocitiesKernel(__global b3RigidBodyCL* bodies,__global b3GpuSolverBody* solverBodies,int numBodies)
+{
+ int i = get_global_id(0);
+ if (i>=numBodies)
+ return;
+
+ if (bodies[i].m_invMass)
+ {
+// if (length(solverBodies[i].m_deltaLinearVelocity)<MOTIONCLAMP)
+ {
+ bodies[i].m_linVel += solverBodies[i].m_deltaLinearVelocity;
+ }
+// if (length(solverBodies[i].m_deltaAngularVelocity)<MOTIONCLAMP)
+ {
+ bodies[i].m_angVel += solverBodies[i].m_deltaAngularVelocity;
+ }
+ }
+}
+
+
+__kernel void getInfo2Kernel(__global b3SolverConstraint* solverConstraintRows,
+ __global unsigned int* infos,
+ __global unsigned int* constraintRowOffsets,
+ __global b3GpuGenericConstraint* constraints,
+ __global b3BatchConstraint* batchConstraints,
+ __global b3RigidBodyCL* bodies,
+ __global BodyInertia* inertias,
+ __global b3GpuSolverBody* solverBodies,
+ float timeStep,
+ float globalErp,
+ float globalCfm,
+ float globalDamping,
+ int globalNumIterations,
+ int numConstraints)
+{
+
+ int i = get_global_id(0);
+ if (i>=numConstraints)
+ return;
+
+ //for now, always initialize the batch info
+ int info1 = infos[i];
+
+ __global b3SolverConstraint* currentConstraintRow = &solverConstraintRows[constraintRowOffsets[i]];
+ __global b3GpuGenericConstraint* constraint = &constraints[i];
+
+ __global b3RigidBodyCL* rbA = &bodies[ constraint->m_rbA];
+ __global b3RigidBodyCL* rbB = &bodies[ constraint->m_rbB];
+
+ int solverBodyIdA = constraint->m_rbA;
+ int solverBodyIdB = constraint->m_rbB;
+
+ __global b3GpuSolverBody* bodyAPtr = &solverBodies[solverBodyIdA];
+ __global b3GpuSolverBody* bodyBPtr = &solverBodies[solverBodyIdB];
+
+
+ if (rbA->m_invMass)
+ {
+ batchConstraints[i].m_bodyAPtrAndSignBit = solverBodyIdA;
+ } else
+ {
+// if (!solverBodyIdA)
+// m_staticIdx = 0;
+ batchConstraints[i].m_bodyAPtrAndSignBit = -solverBodyIdA;
+ }
+
+ if (rbB->m_invMass)
+ {
+ batchConstraints[i].m_bodyBPtrAndSignBit = solverBodyIdB;
+ } else
+ {
+// if (!solverBodyIdB)
+// m_staticIdx = 0;
+ batchConstraints[i].m_bodyBPtrAndSignBit = -solverBodyIdB;
+ }
+
+ if (info1)
+ {
+ int overrideNumSolverIterations = 0;//constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations;
+// if (overrideNumSolverIterations>m_maxOverrideNumSolverIterations)
+ // m_maxOverrideNumSolverIterations = overrideNumSolverIterations;
+
+
+ int j;
+ for ( j=0;j<info1;j++)
+ {
+// memset(&currentConstraintRow[j],0,sizeof(b3SolverConstraint));
+ currentConstraintRow[j].m_angularComponentA = (float4)(0,0,0,0);
+ currentConstraintRow[j].m_angularComponentB = (float4)(0,0,0,0);
+ currentConstraintRow[j].m_appliedImpulse = 0.f;
+ currentConstraintRow[j].m_appliedPushImpulse = 0.f;
+ currentConstraintRow[j].m_cfm = 0.f;
+ currentConstraintRow[j].m_contactNormal = (float4)(0,0,0,0);
+ currentConstraintRow[j].m_friction = 0.f;
+ currentConstraintRow[j].m_frictionIndex = 0;
+ currentConstraintRow[j].m_jacDiagABInv = 0.f;
+ currentConstraintRow[j].m_lowerLimit = 0.f;
+ currentConstraintRow[j].m_upperLimit = 0.f;
+
+ currentConstraintRow[j].m_originalConstraint = i;
+ currentConstraintRow[j].m_overrideNumSolverIterations = 0;
+ currentConstraintRow[j].m_relpos1CrossNormal = (float4)(0,0,0,0);
+ currentConstraintRow[j].m_relpos2CrossNormal = (float4)(0,0,0,0);
+ currentConstraintRow[j].m_rhs = 0.f;
+ currentConstraintRow[j].m_rhsPenetration = 0.f;
+ currentConstraintRow[j].m_solverBodyIdA = 0;
+ currentConstraintRow[j].m_solverBodyIdB = 0;
+
+ currentConstraintRow[j].m_lowerLimit = -B3_INFINITY;
+ currentConstraintRow[j].m_upperLimit = B3_INFINITY;
+ currentConstraintRow[j].m_appliedImpulse = 0.f;
+ currentConstraintRow[j].m_appliedPushImpulse = 0.f;
+ currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA;
+ currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB;
+ currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations;
+ }
+
+ bodyAPtr->m_deltaLinearVelocity = (float4)(0,0,0,0);
+ bodyAPtr->m_deltaAngularVelocity = (float4)(0,0,0,0);
+ bodyAPtr->m_pushVelocity = (float4)(0,0,0,0);
+ bodyAPtr->m_turnVelocity = (float4)(0,0,0,0);
+ bodyBPtr->m_deltaLinearVelocity = (float4)(0,0,0,0);
+ bodyBPtr->m_deltaAngularVelocity = (float4)(0,0,0,0);
+ bodyBPtr->m_pushVelocity = (float4)(0,0,0,0);
+ bodyBPtr->m_turnVelocity = (float4)(0,0,0,0);
+
+ int rowskip = sizeof(b3SolverConstraint)/sizeof(float);//check this
+
+
+
+
+ b3GpuConstraintInfo2 info2;
+ info2.fps = 1.f/timeStep;
+ info2.erp = globalErp;
+ info2.m_J1linearAxisFloat4 = &currentConstraintRow->m_contactNormal;
+ info2.m_J1angularAxisFloat4 = &currentConstraintRow->m_relpos1CrossNormal;
+ info2.m_J2linearAxisFloat4 = 0;
+ info2.m_J2angularAxisFloat4 = &currentConstraintRow->m_relpos2CrossNormal;
+ info2.rowskip = sizeof(b3SolverConstraint)/sizeof(float);//check this
+
+ ///the size of b3SolverConstraint needs be a multiple of float
+// b3Assert(info2.rowskip*sizeof(float)== sizeof(b3SolverConstraint));
+ info2.m_constraintError = &currentConstraintRow->m_rhs;
+ currentConstraintRow->m_cfm = globalCfm;
+ info2.m_damping = globalDamping;
+ info2.cfm = &currentConstraintRow->m_cfm;
+ info2.m_lowerLimit = &currentConstraintRow->m_lowerLimit;
+ info2.m_upperLimit = &currentConstraintRow->m_upperLimit;
+ info2.m_numIterations = globalNumIterations;
+
+ switch (constraint->m_constraintType)
+ {
+ case B3_GPU_POINT2POINT_CONSTRAINT_TYPE:
+ {
+ getInfo2Point2Point(constraint,&info2,bodies);
+ break;
+ }
+ case B3_GPU_FIXED_CONSTRAINT_TYPE:
+ {
+ getInfo2Point2Point(constraint,&info2,bodies);
+
+ getInfo2FixedOrientation(constraint,&info2,bodies,3);
+
+ break;
+ }
+
+ default:
+ {
+ }
+ }
+
+ ///finalize the constraint setup
+ for ( j=0;j<info1;j++)
+ {
+ __global b3SolverConstraint* solverConstraint = &currentConstraintRow[j];
+
+ if (solverConstraint->m_upperLimit>=constraint->m_breakingImpulseThreshold)
+ {
+ solverConstraint->m_upperLimit = constraint->m_breakingImpulseThreshold;
+ }
+
+ if (solverConstraint->m_lowerLimit<=-constraint->m_breakingImpulseThreshold)
+ {
+ solverConstraint->m_lowerLimit = -constraint->m_breakingImpulseThreshold;
+ }
+
+// solverConstraint->m_originalContactPoint = constraint;
+
+ Matrix3x3 invInertiaWorldA= inertias[constraint->m_rbA].m_invInertiaWorld;
+ {
+
+ //float4 angularFactorA(1,1,1);
+ float4 ftorqueAxis1 = solverConstraint->m_relpos1CrossNormal;
+ solverConstraint->m_angularComponentA = mtMul1(invInertiaWorldA,ftorqueAxis1);//*angularFactorA;
+ }
+
+ Matrix3x3 invInertiaWorldB= inertias[constraint->m_rbB].m_invInertiaWorld;
+ {
+
+ float4 ftorqueAxis2 = solverConstraint->m_relpos2CrossNormal;
+ solverConstraint->m_angularComponentB = mtMul1(invInertiaWorldB,ftorqueAxis2);//*constraint->m_rbB.getAngularFactor();
+ }
+
+ {
+ //it is ok to use solverConstraint->m_contactNormal instead of -solverConstraint->m_contactNormal
+ //because it gets multiplied iMJlB
+ float4 iMJlA = solverConstraint->m_contactNormal*rbA->m_invMass;
+ float4 iMJaA = mtMul3(solverConstraint->m_relpos1CrossNormal,invInertiaWorldA);
+ float4 iMJlB = solverConstraint->m_contactNormal*rbB->m_invMass;//sign of normal?
+ float4 iMJaB = mtMul3(solverConstraint->m_relpos2CrossNormal,invInertiaWorldB);
+
+ float sum = dot3F4(iMJlA,solverConstraint->m_contactNormal);
+ sum += dot3F4(iMJaA,solverConstraint->m_relpos1CrossNormal);
+ sum += dot3F4(iMJlB,solverConstraint->m_contactNormal);
+ sum += dot3F4(iMJaB,solverConstraint->m_relpos2CrossNormal);
+ float fsum = fabs(sum);
+ if (fsum>FLT_EPSILON)
+ {
+ solverConstraint->m_jacDiagABInv = 1.f/sum;
+ } else
+ {
+ solverConstraint->m_jacDiagABInv = 0.f;
+ }
+ }
+
+
+ ///fix rhs
+ ///todo: add force/torque accelerators
+ {
+ float rel_vel;
+ float vel1Dotn = dot3F4(solverConstraint->m_contactNormal,rbA->m_linVel) + dot3F4(solverConstraint->m_relpos1CrossNormal,rbA->m_angVel);
+ float vel2Dotn = -dot3F4(solverConstraint->m_contactNormal,rbB->m_linVel) + dot3F4(solverConstraint->m_relpos2CrossNormal,rbB->m_angVel);
+
+ rel_vel = vel1Dotn+vel2Dotn;
+
+ float restitution = 0.f;
+ float positionalError = solverConstraint->m_rhs;//already filled in by getConstraintInfo2
+ float velocityError = restitution - rel_vel * info2.m_damping;
+ float penetrationImpulse = positionalError*solverConstraint->m_jacDiagABInv;
+ float velocityImpulse = velocityError *solverConstraint->m_jacDiagABInv;
+ solverConstraint->m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint->m_appliedImpulse = 0.f;
+
+ }
+ }
+ }
+}