diff options
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision')
34 files changed, 0 insertions, 25345 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3BvhInfo.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3BvhInfo.h deleted file mode 100644 index 27835bb747..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3BvhInfo.h +++ /dev/null @@ -1,17 +0,0 @@ -#ifndef B3_BVH_INFO_H -#define B3_BVH_INFO_H - -#include "Bullet3Common/b3Vector3.h" - -struct b3BvhInfo -{ - b3Vector3 m_aabbMin; - b3Vector3 m_aabbMax; - b3Vector3 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; -}; - -#endif //B3_BVH_INFO_H
\ No newline at end of file diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.cpp deleted file mode 100644 index 4db717f8c3..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.cpp +++ /dev/null @@ -1,253 +0,0 @@ - -#if 0 -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3ContactCache.h" -#include "Bullet3Common/b3Transform.h" - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" - -b3Scalar gContactBreakingThreshold = b3Scalar(0.02); - -///gContactCalcArea3Points will approximate the convex hull area using 3 points -///when setting it to false, it will use 4 points to compute the area: it is more accurate but slower -bool gContactCalcArea3Points = true; - - - - -static inline b3Scalar calcArea4Points(const b3Vector3 &p0,const b3Vector3 &p1,const b3Vector3 &p2,const b3Vector3 &p3) -{ - // It calculates possible 3 area constructed from random 4 points and returns the biggest one. - - b3Vector3 a[3],b[3]; - a[0] = p0 - p1; - a[1] = p0 - p2; - a[2] = p0 - p3; - b[0] = p2 - p3; - b[1] = p1 - p3; - b[2] = p1 - p2; - - //todo: Following 3 cross production can be easily optimized by SIMD. - b3Vector3 tmp0 = a[0].cross(b[0]); - b3Vector3 tmp1 = a[1].cross(b[1]); - b3Vector3 tmp2 = a[2].cross(b[2]); - - return b3Max(b3Max(tmp0.length2(),tmp1.length2()),tmp2.length2()); -} -#if 0 - -//using localPointA for all points -int b3ContactCache::sortCachedPoints(const b3Vector3& pt) -{ - //calculate 4 possible cases areas, and take biggest area - //also need to keep 'deepest' - - int maxPenetrationIndex = -1; -#define KEEP_DEEPEST_POINT 1 -#ifdef KEEP_DEEPEST_POINT - b3Scalar maxPenetration = pt.getDistance(); - for (int i=0;i<4;i++) - { - if (m_pointCache[i].getDistance() < maxPenetration) - { - maxPenetrationIndex = i; - maxPenetration = m_pointCache[i].getDistance(); - } - } -#endif //KEEP_DEEPEST_POINT - - b3Scalar res0(b3Scalar(0.)),res1(b3Scalar(0.)),res2(b3Scalar(0.)),res3(b3Scalar(0.)); - - if (gContactCalcArea3Points) - { - if (maxPenetrationIndex != 0) - { - b3Vector3 a0 = pt.m_localPointA-m_pointCache[1].m_localPointA; - b3Vector3 b0 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA; - b3Vector3 cross = a0.cross(b0); - res0 = cross.length2(); - } - if (maxPenetrationIndex != 1) - { - b3Vector3 a1 = pt.m_localPointA-m_pointCache[0].m_localPointA; - b3Vector3 b1 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA; - b3Vector3 cross = a1.cross(b1); - res1 = cross.length2(); - } - - if (maxPenetrationIndex != 2) - { - b3Vector3 a2 = pt.m_localPointA-m_pointCache[0].m_localPointA; - b3Vector3 b2 = m_pointCache[3].m_localPointA-m_pointCache[1].m_localPointA; - b3Vector3 cross = a2.cross(b2); - res2 = cross.length2(); - } - - if (maxPenetrationIndex != 3) - { - b3Vector3 a3 = pt.m_localPointA-m_pointCache[0].m_localPointA; - b3Vector3 b3 = m_pointCache[2].m_localPointA-m_pointCache[1].m_localPointA; - b3Vector3 cross = a3.cross(b3); - res3 = cross.length2(); - } - } - else - { - if(maxPenetrationIndex != 0) { - res0 = calcArea4Points(pt.m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[2].m_localPointA,m_pointCache[3].m_localPointA); - } - - if(maxPenetrationIndex != 1) { - res1 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[2].m_localPointA,m_pointCache[3].m_localPointA); - } - - if(maxPenetrationIndex != 2) { - res2 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[3].m_localPointA); - } - - if(maxPenetrationIndex != 3) { - res3 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[2].m_localPointA); - } - } - b3Vector4 maxvec(res0,res1,res2,res3); - int biggestarea = maxvec.closestAxis4(); - return biggestarea; - -} - - -int b3ContactCache::getCacheEntry(const b3Vector3& newPoint) const -{ - b3Scalar shortestDist = getContactBreakingThreshold() * getContactBreakingThreshold(); - int size = getNumContacts(); - int nearestPoint = -1; - for( int i = 0; i < size; i++ ) - { - const b3Vector3 &mp = m_pointCache[i]; - - b3Vector3 diffA = mp.m_localPointA- newPoint.m_localPointA; - const b3Scalar distToManiPoint = diffA.dot(diffA); - if( distToManiPoint < shortestDist ) - { - shortestDist = distToManiPoint; - nearestPoint = i; - } - } - return nearestPoint; -} - -int b3ContactCache::addManifoldPoint(const b3Vector3& newPoint) -{ - b3Assert(validContactDistance(newPoint)); - - int insertIndex = getNumContacts(); - if (insertIndex == MANIFOLD_CACHE_SIZE) - { -#if MANIFOLD_CACHE_SIZE >= 4 - //sort cache so best points come first, based on area - insertIndex = sortCachedPoints(newPoint); -#else - insertIndex = 0; -#endif - clearUserCache(m_pointCache[insertIndex]); - - } else - { - m_cachedPoints++; - - - } - if (insertIndex<0) - insertIndex=0; - - //b3Assert(m_pointCache[insertIndex].m_userPersistentData==0); - m_pointCache[insertIndex] = newPoint; - return insertIndex; -} - -#endif - -bool b3ContactCache::validContactDistance(const b3Vector3& pt) -{ - return pt.w <= gContactBreakingThreshold; -} - -void b3ContactCache::removeContactPoint(struct b3Contact4Data& newContactCache,int i) -{ - int numContacts = b3Contact4Data_getNumPoints(&newContactCache); - if (i!=(numContacts-1)) - { - b3Swap(newContactCache.m_localPosA[i],newContactCache.m_localPosA[numContacts-1]); - b3Swap(newContactCache.m_localPosB[i],newContactCache.m_localPosB[numContacts-1]); - b3Swap(newContactCache.m_worldPosB[i],newContactCache.m_worldPosB[numContacts-1]); - } - b3Contact4Data_setNumPoints(&newContactCache,numContacts-1); - -} - - -void b3ContactCache::refreshContactPoints(const b3Transform& trA,const b3Transform& trB, struct b3Contact4Data& contacts) -{ - - int numContacts = b3Contact4Data_getNumPoints(&contacts); - - - int i; - /// first refresh worldspace positions and distance - for (i=numContacts-1;i>=0;i--) - { - b3Vector3 worldPosA = trA( contacts.m_localPosA[i]); - b3Vector3 worldPosB = trB( contacts.m_localPosB[i]); - contacts.m_worldPosB[i] = worldPosB; - float distance = (worldPosA - worldPosB).dot(contacts.m_worldNormalOnB); - contacts.m_worldPosB[i].w = distance; - } - - /// then - b3Scalar distance2d; - b3Vector3 projectedDifference,projectedPoint; - for (i=numContacts-1;i>=0;i--) - { - b3Vector3 worldPosA = trA( contacts.m_localPosA[i]); - b3Vector3 worldPosB = trB( contacts.m_localPosB[i]); - b3Vector3&pt = contacts.m_worldPosB[i]; - //contact becomes invalid when signed distance exceeds margin (projected on contactnormal direction) - if (!validContactDistance(pt)) - { - removeContactPoint(contacts,i); - } else - { - //contact also becomes invalid when relative movement orthogonal to normal exceeds margin - projectedPoint = worldPosA - contacts.m_worldNormalOnB * contacts.m_worldPosB[i].w; - projectedDifference = contacts.m_worldPosB[i] - projectedPoint; - distance2d = projectedDifference.dot(projectedDifference); - if (distance2d > gContactBreakingThreshold*gContactBreakingThreshold ) - { - removeContactPoint(contacts,i); - } else - { - ////contact point processed callback - //if (gContactProcessedCallback) - // (*gContactProcessedCallback)(manifoldPoint,(void*)m_body0,(void*)m_body1); - } - } - } - - -} - -#endif diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h deleted file mode 100644 index a15fd0b2a9..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h +++ /dev/null @@ -1,62 +0,0 @@ - -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_CONTACT_CACHE_H -#define B3_CONTACT_CACHE_H - -#include "Bullet3Common/b3Vector3.h" -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Common/b3AlignedAllocator.h" - -///maximum contact breaking and merging threshold -extern b3Scalar gContactBreakingThreshold; - -#define MANIFOLD_CACHE_SIZE 4 - -///b3ContactCache is a contact point cache, it stays persistent as long as objects are overlapping in the broadphase. -///Those contact points are created by the collision narrow phase. -///The cache can be empty, or hold 1,2,3 or 4 points. Some collision algorithms (GJK) might only add one point at a time. -///updates/refreshes old contact points, and throw them away if necessary (distance becomes too large) -///reduces the cache to 4 points, when more then 4 points are added, using following rules: -///the contact point with deepest penetration is always kept, and it tries to maximuze the area covered by the points -///note that some pairs of objects might have more then one contact manifold. -B3_ATTRIBUTE_ALIGNED16(class) -b3ContactCache -{ - /// sort cached points so most isolated points come first - int sortCachedPoints(const b3Vector3& pt); - -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - int addManifoldPoint(const b3Vector3& newPoint); - - /*void replaceContactPoint(const b3Vector3& newPoint,int insertIndex) - { - b3Assert(validContactDistance(newPoint)); - m_pointCache[insertIndex] = newPoint; - } - */ - - static bool validContactDistance(const b3Vector3& pt); - - /// calculated new worldspace coordinates and depth, and reject points that exceed the collision margin - static void refreshContactPoints(const b3Transform& trA, const b3Transform& trB, struct b3Contact4Data& newContactCache); - - static void removeContactPoint(struct b3Contact4Data & newContactCache, int i); -}; - -#endif //B3_CONTACT_CACHE_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.cpp deleted file mode 100644 index 54a104c5c8..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.cpp +++ /dev/null @@ -1,4408 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -bool findSeparatingAxisOnGpu = true; -bool splitSearchSepAxisConcave = false; -bool splitSearchSepAxisConvex = true; -bool useMprGpu = true; //use mpr for edge-edge (+contact point) or sat. Needs testing on main OpenCL platforms, before enabling... -bool bvhTraversalKernelGPU = true; -bool findConcaveSeparatingAxisKernelGPU = true; -bool clipConcaveFacesAndFindContactsCPU = false; //false;//true; -bool clipConvexFacesAndFindContactsCPU = false; //false;//true; -bool reduceConcaveContactsOnGPU = true; //false; -bool reduceConvexContactsOnGPU = true; //false; -bool findConvexClippingFacesGPU = true; -bool useGjk = false; ///option for CPU/host testing, when findSeparatingAxisOnGpu = false -bool useGjkContacts = false; //////option for CPU/host testing when findSeparatingAxisOnGpu = false - -static int myframecount = 0; ///for testing - -///This file was written by Erwin Coumans -///Separating axis rest based on work from Pierre Terdiman, see -///And contact clipping based on work from Simon Hobbs - -//#define B3_DEBUG_SAT_FACE - -//#define CHECK_ON_HOST - -#ifdef CHECK_ON_HOST -//#define PERSISTENT_CONTACTS_HOST -#endif - -int b3g_actualSATPairTests = 0; - -#include "b3ConvexHullContact.h" -#include <string.h> //memcpy -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3MprPenetration.h" - -#include "Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h" -#include "Bullet3Geometry/b3AabbUtil.h" - -typedef b3AlignedObjectArray<b3Vector3> b3VertexArray; - -#include <float.h> //for FLT_MAX -#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h" -#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h" -//#include "AdlQuaternion.h" - -#include "kernels/satKernels.h" -#include "kernels/mprKernels.h" - -#include "kernels/satConcaveKernels.h" - -#include "kernels/satClipHullContacts.h" -#include "kernels/bvhTraversal.h" -#include "kernels/primitiveContacts.h" - -#include "Bullet3Geometry/b3AabbUtil.h" - -#define BT_NARROWPHASE_SAT_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl" -#define BT_NARROWPHASE_SAT_CONCAVE_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl" - -#define BT_NARROWPHASE_MPR_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl" - -#define BT_NARROWPHASE_CLIPHULL_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl" -#define BT_NARROWPHASE_BVH_TRAVERSAL_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl" -#define BT_NARROWPHASE_PRIMITIVE_CONTACT_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl" - -#ifndef __global -#define __global -#endif - -#ifndef __kernel -#define __kernel -#endif - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3BvhTraversal.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3FindConcaveSatAxis.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ClipFaces.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3NewContactReduction.h" - -#define dot3F4 b3Dot - -GpuSatCollision::GpuSatCollision(cl_context ctx, cl_device_id device, cl_command_queue q) - : m_context(ctx), - m_device(device), - m_queue(q), - - m_findSeparatingAxisKernel(0), - m_findSeparatingAxisVertexFaceKernel(0), - m_findSeparatingAxisEdgeEdgeKernel(0), - m_unitSphereDirections(m_context, m_queue), - - m_totalContactsOut(m_context, m_queue), - m_sepNormals(m_context, m_queue), - m_dmins(m_context, m_queue), - - m_hasSeparatingNormals(m_context, m_queue), - m_concaveSepNormals(m_context, m_queue), - m_concaveHasSeparatingNormals(m_context, m_queue), - m_numConcavePairsOut(m_context, m_queue), - - m_gpuCompoundPairs(m_context, m_queue), - - m_gpuCompoundSepNormals(m_context, m_queue), - m_gpuHasCompoundSepNormals(m_context, m_queue), - - m_numCompoundPairsOut(m_context, m_queue) -{ - m_totalContactsOut.push_back(0); - - cl_int errNum = 0; - - if (1) - { - const char* mprSrc = mprKernelsCL; - - const char* srcConcave = satConcaveKernelsCL; - char flags[1024] = {0}; - //#ifdef CL_PLATFORM_INTEL - // sprintf(flags,"-g -s \"%s\"","C:/develop/bullet3_experiments2/opencl/gpu_narrowphase/kernels/sat.cl"); - //#endif - m_mprPenetrationKernel = 0; - m_findSeparatingAxisUnitSphereKernel = 0; - - if (useMprGpu) - { - cl_program mprProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, mprSrc, &errNum, flags, BT_NARROWPHASE_MPR_PATH); - b3Assert(errNum == CL_SUCCESS); - - m_mprPenetrationKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, mprSrc, "mprPenetrationKernel", &errNum, mprProg); - b3Assert(m_mprPenetrationKernel); - b3Assert(errNum == CL_SUCCESS); - - m_findSeparatingAxisUnitSphereKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, mprSrc, "findSeparatingAxisUnitSphereKernel", &errNum, mprProg); - b3Assert(m_findSeparatingAxisUnitSphereKernel); - b3Assert(errNum == CL_SUCCESS); - - int numDirections = sizeof(unitSphere162) / sizeof(b3Vector3); - m_unitSphereDirections.resize(numDirections); - m_unitSphereDirections.copyFromHostPointer(unitSphere162, numDirections, 0, true); - } - - cl_program satProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, satKernelsCL, &errNum, flags, BT_NARROWPHASE_SAT_PATH); - b3Assert(errNum == CL_SUCCESS); - - cl_program satConcaveProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, srcConcave, &errNum, flags, BT_NARROWPHASE_SAT_CONCAVE_PATH); - b3Assert(errNum == CL_SUCCESS); - - m_findSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, satKernelsCL, "findSeparatingAxisKernel", &errNum, satProg); - b3Assert(m_findSeparatingAxisKernel); - b3Assert(errNum == CL_SUCCESS); - - m_findSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, satKernelsCL, "findSeparatingAxisVertexFaceKernel", &errNum, satProg); - b3Assert(m_findSeparatingAxisVertexFaceKernel); - - m_findSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, satKernelsCL, "findSeparatingAxisEdgeEdgeKernel", &errNum, satProg); - b3Assert(m_findSeparatingAxisVertexFaceKernel); - - m_findConcaveSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, satKernelsCL, "findConcaveSeparatingAxisKernel", &errNum, satProg); - b3Assert(m_findConcaveSeparatingAxisKernel); - b3Assert(errNum == CL_SUCCESS); - - m_findConcaveSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcConcave, "findConcaveSeparatingAxisVertexFaceKernel", &errNum, satConcaveProg); - b3Assert(m_findConcaveSeparatingAxisVertexFaceKernel); - b3Assert(errNum == CL_SUCCESS); - - m_findConcaveSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcConcave, "findConcaveSeparatingAxisEdgeEdgeKernel", &errNum, satConcaveProg); - b3Assert(m_findConcaveSeparatingAxisEdgeEdgeKernel); - b3Assert(errNum == CL_SUCCESS); - - m_findCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, satKernelsCL, "findCompoundPairsKernel", &errNum, satProg); - b3Assert(m_findCompoundPairsKernel); - b3Assert(errNum == CL_SUCCESS); - m_processCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, satKernelsCL, "processCompoundPairsKernel", &errNum, satProg); - b3Assert(m_processCompoundPairsKernel); - b3Assert(errNum == CL_SUCCESS); - } - - if (1) - { - const char* srcClip = satClipKernelsCL; - - char flags[1024] = {0}; - //#ifdef CL_PLATFORM_INTEL - // sprintf(flags,"-g -s \"%s\"","C:/develop/bullet3_experiments2/opencl/gpu_narrowphase/kernels/satClipHullContacts.cl"); - //#endif - - cl_program satClipContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, srcClip, &errNum, flags, BT_NARROWPHASE_CLIPHULL_PATH); - b3Assert(errNum == CL_SUCCESS); - - m_clipHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcClip, "clipHullHullKernel", &errNum, satClipContactsProg); - b3Assert(errNum == CL_SUCCESS); - - m_clipCompoundsHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcClip, "clipCompoundsHullHullKernel", &errNum, satClipContactsProg); - b3Assert(errNum == CL_SUCCESS); - - m_findClippingFacesKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcClip, "findClippingFacesKernel", &errNum, satClipContactsProg); - b3Assert(errNum == CL_SUCCESS); - - m_clipFacesAndFindContacts = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcClip, "clipFacesAndFindContactsKernel", &errNum, satClipContactsProg); - b3Assert(errNum == CL_SUCCESS); - - m_clipHullHullConcaveConvexKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcClip, "clipHullHullConcaveConvexKernel", &errNum, satClipContactsProg); - b3Assert(errNum == CL_SUCCESS); - - // m_extractManifoldAndAddContactKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, "extractManifoldAndAddContactKernel",&errNum,satClipContactsProg); - // b3Assert(errNum==CL_SUCCESS); - - m_newContactReductionKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcClip, - "newContactReductionKernel", &errNum, satClipContactsProg); - b3Assert(errNum == CL_SUCCESS); - } - else - { - m_clipHullHullKernel = 0; - m_clipCompoundsHullHullKernel = 0; - m_findClippingFacesKernel = 0; - m_newContactReductionKernel = 0; - m_clipFacesAndFindContacts = 0; - m_clipHullHullConcaveConvexKernel = 0; - // m_extractManifoldAndAddContactKernel = 0; - } - - if (1) - { - const char* srcBvh = bvhTraversalKernelCL; - cl_program bvhTraversalProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, srcBvh, &errNum, "", BT_NARROWPHASE_BVH_TRAVERSAL_PATH); - b3Assert(errNum == CL_SUCCESS); - - m_bvhTraversalKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, srcBvh, "bvhTraversalKernel", &errNum, bvhTraversalProg, ""); - b3Assert(errNum == CL_SUCCESS); - } - - { - const char* primitiveContactsSrc = primitiveContactsKernelsCL; - cl_program primitiveContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, primitiveContactsSrc, &errNum, "", BT_NARROWPHASE_PRIMITIVE_CONTACT_PATH); - b3Assert(errNum == CL_SUCCESS); - - m_primitiveContactsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, primitiveContactsSrc, "primitiveContactsKernel", &errNum, primitiveContactsProg, ""); - b3Assert(errNum == CL_SUCCESS); - - m_findConcaveSphereContactsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, primitiveContactsSrc, "findConcaveSphereContactsKernel", &errNum, primitiveContactsProg); - b3Assert(errNum == CL_SUCCESS); - b3Assert(m_findConcaveSphereContactsKernel); - - m_processCompoundPairsPrimitivesKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, primitiveContactsSrc, "processCompoundPairsPrimitivesKernel", &errNum, primitiveContactsProg, ""); - b3Assert(errNum == CL_SUCCESS); - b3Assert(m_processCompoundPairsPrimitivesKernel); - } -} - -GpuSatCollision::~GpuSatCollision() -{ - if (m_findSeparatingAxisVertexFaceKernel) - clReleaseKernel(m_findSeparatingAxisVertexFaceKernel); - - if (m_findSeparatingAxisEdgeEdgeKernel) - clReleaseKernel(m_findSeparatingAxisEdgeEdgeKernel); - - if (m_findSeparatingAxisUnitSphereKernel) - clReleaseKernel(m_findSeparatingAxisUnitSphereKernel); - - if (m_mprPenetrationKernel) - clReleaseKernel(m_mprPenetrationKernel); - - if (m_findSeparatingAxisKernel) - clReleaseKernel(m_findSeparatingAxisKernel); - - if (m_findConcaveSeparatingAxisVertexFaceKernel) - clReleaseKernel(m_findConcaveSeparatingAxisVertexFaceKernel); - - if (m_findConcaveSeparatingAxisEdgeEdgeKernel) - clReleaseKernel(m_findConcaveSeparatingAxisEdgeEdgeKernel); - - if (m_findConcaveSeparatingAxisKernel) - clReleaseKernel(m_findConcaveSeparatingAxisKernel); - - if (m_findCompoundPairsKernel) - clReleaseKernel(m_findCompoundPairsKernel); - - if (m_processCompoundPairsKernel) - clReleaseKernel(m_processCompoundPairsKernel); - - if (m_findClippingFacesKernel) - clReleaseKernel(m_findClippingFacesKernel); - - if (m_clipFacesAndFindContacts) - clReleaseKernel(m_clipFacesAndFindContacts); - if (m_newContactReductionKernel) - clReleaseKernel(m_newContactReductionKernel); - if (m_primitiveContactsKernel) - clReleaseKernel(m_primitiveContactsKernel); - - if (m_findConcaveSphereContactsKernel) - clReleaseKernel(m_findConcaveSphereContactsKernel); - - if (m_processCompoundPairsPrimitivesKernel) - clReleaseKernel(m_processCompoundPairsPrimitivesKernel); - - if (m_clipHullHullKernel) - clReleaseKernel(m_clipHullHullKernel); - if (m_clipCompoundsHullHullKernel) - clReleaseKernel(m_clipCompoundsHullHullKernel); - - if (m_clipHullHullConcaveConvexKernel) - clReleaseKernel(m_clipHullHullConcaveConvexKernel); - // if (m_extractManifoldAndAddContactKernel) - // clReleaseKernel(m_extractManifoldAndAddContactKernel); - - if (m_bvhTraversalKernel) - clReleaseKernel(m_bvhTraversalKernel); -} - -struct MyTriangleCallback : public b3NodeOverlapCallback -{ - int m_bodyIndexA; - int m_bodyIndexB; - - virtual void processNode(int subPart, int triangleIndex) - { - printf("bodyIndexA %d, bodyIndexB %d\n", m_bodyIndexA, m_bodyIndexB); - printf("triangleIndex %d\n", triangleIndex); - } -}; - -#define float4 b3Vector3 -#define make_float4(x, y, z, w) b3MakeVector3(x, y, z, w) - -float signedDistanceFromPointToPlane(const float4& point, const float4& planeEqn, float4* closestPointOnFace) -{ - float4 n = planeEqn; - n[3] = 0.f; - float dist = dot3F4(n, point) + planeEqn[3]; - *closestPointOnFace = point - dist * n; - return dist; -} - -#define cross3(a, b) (a.cross(b)) -b3Vector3 transform(const b3Vector3* v, const b3Vector3* pos, const b3Quaternion* orn) -{ - b3Transform tr; - tr.setIdentity(); - tr.setOrigin(*pos); - tr.setRotation(*orn); - b3Vector3 res = tr(*v); - return res; -} - -inline bool IsPointInPolygon(const float4& p, - const b3GpuFace* face, - const float4* baseVertex, - const int* convexIndices, - float4* out) -{ - float4 a; - float4 b; - float4 ab; - float4 ap; - float4 v; - - float4 plane = b3MakeVector3(face->m_plane.x, face->m_plane.y, face->m_plane.z, 0.f); - - if (face->m_numIndices < 2) - return false; - - float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices - 1]]; - b = v0; - - for (unsigned i = 0; i != face->m_numIndices; ++i) - { - a = b; - float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]]; - b = vi; - ab = b - a; - ap = p - a; - v = cross3(ab, plane); - - if (b3Dot(ap, v) > 0.f) - { - float ab_m2 = b3Dot(ab, ab); - float rt = ab_m2 != 0.f ? b3Dot(ab, ap) / ab_m2 : 0.f; - if (rt <= 0.f) - { - *out = a; - } - else if (rt >= 1.f) - { - *out = b; - } - else - { - float s = 1.f - rt; - out[0].x = s * a.x + rt * b.x; - out[0].y = s * a.y + rt * b.y; - out[0].z = s * a.z + rt * b.z; - } - return false; - } - } - return true; -} - -#define normalize3(a) (a.normalize()) - -int extractManifoldSequentialGlobal(const float4* p, int nPoints, const float4& nearNormal, b3Int4* contactIdx) -{ - if (nPoints == 0) - return 0; - - if (nPoints <= 4) - return nPoints; - - if (nPoints > 64) - nPoints = 64; - - float4 center = b3MakeVector3(0, 0, 0, 0); - { - for (int i = 0; i < nPoints; i++) - center += p[i]; - center /= (float)nPoints; - } - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3(nearNormal, aVector); - float4 v = cross3(nearNormal, u); - u = normalize3(u); - v = normalize3(v); - - //keep point with deepest penetration - float minW = FLT_MAX; - - int minIndex = -1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for (int ie = 0; ie < nPoints; ie++) - { - if (p[ie].w < minW) - { - minW = p[ie].w; - minIndex = ie; - } - float f; - float4 r = p[ie] - center; - f = dot3F4(u, r); - if (f < maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4(-u, r); - if (f < maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - f = dot3F4(v, r); - if (f < maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4(-v, r); - if (f < maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; -} - -#define MAX_VERTS 1024 - -inline void project(const b3ConvexPolyhedronData& hull, const float4& pos, const b3Quaternion& orn, const float4& dir, const b3AlignedObjectArray<b3Vector3>& vertices, b3Scalar& min, b3Scalar& max) -{ - min = FLT_MAX; - max = -FLT_MAX; - int numVerts = hull.m_numVertices; - - const float4 localDir = b3QuatRotate(orn.inverse(), dir); - - b3Scalar offset = dot3F4(pos, dir); - - for (int i = 0; i < numVerts; i++) - { - //b3Vector3 pt = trans * vertices[m_vertexOffset+i]; - //b3Scalar dp = pt.dot(dir); - //b3Vector3 vertex = vertices[hull.m_vertexOffset+i]; - b3Scalar dp = dot3F4((float4&)vertices[hull.m_vertexOffset + i], localDir); - //b3Assert(dp==dpL); - if (dp < min) min = dp; - if (dp > max) max = dp; - } - if (min > max) - { - b3Scalar tmp = min; - min = max; - max = tmp; - } - min += offset; - max += offset; -} - -static bool TestSepAxis(const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB, - const float4& posA, const b3Quaternion& ornA, - const float4& posB, const b3Quaternion& ornB, - const float4& sep_axis, const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB, b3Scalar& depth) -{ - b3Scalar Min0, Max0; - b3Scalar Min1, Max1; - project(hullA, posA, ornA, sep_axis, verticesA, Min0, Max0); - project(hullB, posB, ornB, sep_axis, verticesB, Min1, Max1); - - if (Max0 < Min1 || Max1 < Min0) - return false; - - b3Scalar d0 = Max0 - Min1; - assert(d0 >= 0.0f); - b3Scalar d1 = Max1 - Min0; - assert(d1 >= 0.0f); - depth = d0 < d1 ? d0 : d1; - return true; -} - -inline bool IsAlmostZero(const b3Vector3& v) -{ - if (fabsf(v.x) > 1e-6 || fabsf(v.y) > 1e-6 || fabsf(v.z) > 1e-6) return false; - return true; -} - -static bool findSeparatingAxis(const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB, - const float4& posA1, - const b3Quaternion& ornA, - const float4& posB1, - const b3Quaternion& ornB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA, - const b3AlignedObjectArray<b3GpuFace>& facesA, - const b3AlignedObjectArray<int>& indicesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB, - const b3AlignedObjectArray<b3GpuFace>& facesB, - const b3AlignedObjectArray<int>& indicesB, - - b3Vector3& sep) -{ - B3_PROFILE("findSeparatingAxis"); - - b3g_actualSATPairTests++; - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - //#ifdef TEST_INTERNAL_OBJECTS - float4 c0local = (float4&)hullA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = (float4&)hullB.m_localCenter; - float4 c1 = transform(&c1local, &posB, &ornB); - const float4 deltaC2 = c0 - c1; - //#endif - - b3Scalar dmin = FLT_MAX; - int curPlaneTests = 0; - - int numFacesA = hullA.m_numFaces; - // Test normals from hullA - for (int i = 0; i < numFacesA; i++) - { - const float4& normal = (float4&)facesA[hullA.m_faceOffset + i].m_plane; - float4 faceANormalWS = b3QuatRotate(ornA, normal); - - if (dot3F4(deltaC2, faceANormalWS) < 0) - faceANormalWS *= -1.f; - - curPlaneTests++; -#ifdef TEST_INTERNAL_OBJECTS - gExpectedNbTests++; - if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, faceANormalWS, hullA, hullB, dmin)) - continue; - gActualNbTests++; -#endif - - b3Scalar d; - if (!TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, faceANormalWS, verticesA, verticesB, d)) - return false; - - if (d < dmin) - { - dmin = d; - sep = (b3Vector3&)faceANormalWS; - } - } - - int numFacesB = hullB.m_numFaces; - // Test normals from hullB - for (int i = 0; i < numFacesB; i++) - { - float4 normal = (float4&)facesB[hullB.m_faceOffset + i].m_plane; - float4 WorldNormal = b3QuatRotate(ornB, normal); - - if (dot3F4(deltaC2, WorldNormal) < 0) - { - WorldNormal *= -1.f; - } - curPlaneTests++; -#ifdef TEST_INTERNAL_OBJECTS - gExpectedNbTests++; - if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, WorldNormal, hullA, hullB, dmin)) - continue; - gActualNbTests++; -#endif - - b3Scalar d; - if (!TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, WorldNormal, verticesA, verticesB, d)) - return false; - - if (d < dmin) - { - dmin = d; - sep = (b3Vector3&)WorldNormal; - } - } - - int curEdgeEdge = 0; - // Test edges - for (int e0 = 0; e0 < hullA.m_numUniqueEdges; e0++) - { - const float4& edge0 = (float4&)uniqueEdgesA[hullA.m_uniqueEdgesOffset + e0]; - float4 edge0World = b3QuatRotate(ornA, (float4&)edge0); - - for (int e1 = 0; e1 < hullB.m_numUniqueEdges; e1++) - { - const b3Vector3 edge1 = uniqueEdgesB[hullB.m_uniqueEdgesOffset + e1]; - float4 edge1World = b3QuatRotate(ornB, (float4&)edge1); - - float4 crossje = cross3(edge0World, edge1World); - - curEdgeEdge++; - if (!IsAlmostZero((b3Vector3&)crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(deltaC2, crossje) < 0) - crossje *= -1.f; - -#ifdef TEST_INTERNAL_OBJECTS - gExpectedNbTests++; - if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, Cross, hullA, hullB, dmin)) - continue; - gActualNbTests++; -#endif - - b3Scalar dist; - if (!TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, crossje, verticesA, verticesB, dist)) - return false; - - if (dist < dmin) - { - dmin = dist; - sep = (b3Vector3&)crossje; - } - } - } - } - - if ((dot3F4(-deltaC2, (float4&)sep)) > 0.0f) - sep = -sep; - - return true; -} - -bool findSeparatingAxisEdgeEdge(__global const b3ConvexPolyhedronData* hullA, __global const b3ConvexPolyhedronData* hullB, - const b3Float4& posA1, - const b3Quat& ornA, - const b3Float4& posB1, - const b3Quat& ornB, - const b3Float4& DeltaC2, - __global const b3AlignedObjectArray<float4>& vertices, - __global const b3AlignedObjectArray<float4>& uniqueEdges, - __global const b3AlignedObjectArray<b3GpuFace>& faces, - __global const b3AlignedObjectArray<int>& indices, - float4* sep, - float* dmin) -{ - // int i = get_global_id(0); - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - //int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for (int e0 = 0; e0 < hullA->m_numUniqueEdges; e0++) - { - const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset + e0]; - float4 edge0World = b3QuatRotate(ornA, edge0); - - for (int e1 = 0; e1 < hullB->m_numUniqueEdges; e1++) - { - const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset + e1]; - float4 edge1World = b3QuatRotate(ornB, edge1); - - float4 crossje = cross3(edge0World, edge1World); - - curEdgeEdge++; - if (!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2, crossje) < 0) - crossje *= -1.f; - - float dist; - bool result = true; - { - float Min0, Max0; - float Min1, Max1; - project(*hullA, posA, ornA, crossje, vertices, Min0, Max0); - project(*hullB, posB, ornB, crossje, vertices, Min1, Max1); - - if (Max0 < Min1 || Max1 < Min0) - result = false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0 < d1 ? d0 : d1; - result = true; - } - - if (dist < *dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - } - - if ((dot3F4(-DeltaC2, *sep)) > 0.0f) - { - *sep = -(*sep); - } - return true; -} - -__inline float4 lerp3(const float4& a, const float4& b, float t) -{ - return b3MakeVector3(a.x + (b.x - a.x) * t, - a.y + (b.y - a.y) * t, - a.z + (b.z - a.z) * t, - 0.f); -} - -// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut -int clipFace(const float4* pVtxIn, int numVertsIn, float4& planeNormalWS, float planeEqWS, float4* ppVtxOut) -{ - int ve; - float ds, de; - int numVertsOut = 0; - if (numVertsIn < 2) - return 0; - - float4 firstVertex = pVtxIn[numVertsIn - 1]; - float4 endVertex = pVtxIn[0]; - - ds = dot3F4(planeNormalWS, firstVertex) + planeEqWS; - - for (ve = 0; ve < numVertsIn; ve++) - { - endVertex = pVtxIn[ve]; - - de = dot3F4(planeNormalWS, endVertex) + planeEqWS; - - if (ds < 0) - { - if (de < 0) - { - // Start < 0, end < 0, so output endVertex - ppVtxOut[numVertsOut++] = endVertex; - } - else - { - // Start < 0, end >= 0, so output intersection - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex, (ds * 1.f / (ds - de))); - } - } - else - { - if (de < 0) - { - // Start >= 0, end < 0 so output intersection and end - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex, (ds * 1.f / (ds - de))); - ppVtxOut[numVertsOut++] = endVertex; - } - } - firstVertex = endVertex; - ds = de; - } - return numVertsOut; -} - -int clipFaceAgainstHull(const float4& separatingNormal, const b3ConvexPolyhedronData* hullA, - const float4& posA, const b3Quaternion& ornA, float4* worldVertsB1, int numWorldVertsB1, - float4* worldVertsB2, int capacityWorldVertsB2, - const float minDist, float maxDist, - const b3AlignedObjectArray<float4>& verticesA, const b3AlignedObjectArray<b3GpuFace>& facesA, const b3AlignedObjectArray<int>& indicesA, - //const float4* verticesB, const b3GpuFace* facesB, const int* indicesB, - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - - float4* pVtxIn = worldVertsB1; - float4* pVtxOut = worldVertsB2; - - int numVertsIn = numWorldVertsB1; - int numVertsOut = 0; - - int closestFaceA = -1; - { - float dmin = FLT_MAX; - for (int face = 0; face < hullA->m_numFaces; face++) - { - const float4 Normal = b3MakeVector3( - facesA[hullA->m_faceOffset + face].m_plane.x, - facesA[hullA->m_faceOffset + face].m_plane.y, - facesA[hullA->m_faceOffset + face].m_plane.z, 0.f); - const float4 faceANormalWS = b3QuatRotate(ornA, Normal); - - float d = dot3F4(faceANormalWS, separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - } - } - } - if (closestFaceA < 0) - return numContactsOut; - - b3GpuFace polyA = facesA[hullA->m_faceOffset + closestFaceA]; - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - // int numContacts = numWorldVertsB1; - int numVerticesA = polyA.m_numIndices; - for (int e0 = 0; e0 < numVerticesA; e0++) - { - const float4 a = verticesA[hullA->m_vertexOffset + indicesA[polyA.m_indexOffset + e0]]; - const float4 b = verticesA[hullA->m_vertexOffset + indicesA[polyA.m_indexOffset + ((e0 + 1) % numVerticesA)]]; - const float4 edge0 = a - b; - const float4 WorldEdge0 = b3QuatRotate(ornA, edge0); - float4 planeNormalA = make_float4(polyA.m_plane.x, polyA.m_plane.y, polyA.m_plane.z, 0.f); - float4 worldPlaneAnormal1 = b3QuatRotate(ornA, planeNormalA); - - float4 planeNormalWS1 = -cross3(WorldEdge0, worldPlaneAnormal1); - float4 worldA1 = transform(&a, &posA, &ornA); - float planeEqWS1 = -dot3F4(worldA1, planeNormalWS1); - - float4 planeNormalWS = planeNormalWS1; - float planeEqWS = planeEqWS1; - - //clip face - //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); - numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS, planeEqWS, pVtxOut); - - //btSwap(pVtxIn,pVtxOut); - float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsIn = numVertsOut; - numVertsOut = 0; - } - - // only keep points that are behind the witness face - { - float4 localPlaneNormal = make_float4(polyA.m_plane.x, polyA.m_plane.y, polyA.m_plane.z, 0.f); - float localPlaneEq = polyA.m_plane.w; - float4 planeNormalWS = b3QuatRotate(ornA, localPlaneNormal); - float planeEqWS = localPlaneEq - dot3F4(planeNormalWS, posA); - for (int i = 0; i < numVertsIn; i++) - { - float depth = dot3F4(planeNormalWS, pVtxIn[i]) + planeEqWS; - if (depth <= minDist) - { - depth = minDist; - } - if (numContactsOut < contactCapacity) - { - if (depth <= maxDist) - { - float4 pointInWorld = pVtxIn[i]; - //resultOut.addContactPoint(separatingNormal,point,depth); - contactsOut[numContactsOut++] = b3MakeVector3(pointInWorld.x, pointInWorld.y, pointInWorld.z, depth); - //printf("depth=%f\n",depth); - } - } - else - { - b3Error("exceeding contact capacity (%d,%df)\n", numContactsOut, contactCapacity); - } - } - } - - return numContactsOut; -} - -static int clipHullAgainstHull(const float4& separatingNormal, - const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB, - const float4& posA, const b3Quaternion& ornA, const float4& posB, const b3Quaternion& ornB, - float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, - const float minDist, float maxDist, - const b3AlignedObjectArray<float4>& verticesA, const b3AlignedObjectArray<b3GpuFace>& facesA, const b3AlignedObjectArray<int>& indicesA, - const b3AlignedObjectArray<float4>& verticesB, const b3AlignedObjectArray<b3GpuFace>& facesB, const b3AlignedObjectArray<int>& indicesB, - - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - int numWorldVertsB1 = 0; - - B3_PROFILE("clipHullAgainstHull"); - - // float curMaxDist=maxDist; - int closestFaceB = -1; - float dmax = -FLT_MAX; - - { - //B3_PROFILE("closestFaceB"); - if (hullB.m_numFaces != 1) - { - //printf("wtf\n"); - } - static bool once = true; - //printf("separatingNormal=%f,%f,%f\n",separatingNormal.x,separatingNormal.y,separatingNormal.z); - - for (int face = 0; face < hullB.m_numFaces; face++) - { -#ifdef BT_DEBUG_SAT_FACE - if (once) - printf("face %d\n", face); - const b3GpuFace* faceB = &facesB[hullB.m_faceOffset + face]; - if (once) - { - for (int i = 0; i < faceB->m_numIndices; i++) - { - float4 vert = verticesB[hullB.m_vertexOffset + indicesB[faceB->m_indexOffset + i]]; - printf("vert[%d] = %f,%f,%f\n", i, vert.x, vert.y, vert.z); - } - } -#endif //BT_DEBUG_SAT_FACE \ - //if (facesB[hullB.m_faceOffset+face].m_numIndices>2) - { - const float4 Normal = b3MakeVector3(facesB[hullB.m_faceOffset + face].m_plane.x, - facesB[hullB.m_faceOffset + face].m_plane.y, facesB[hullB.m_faceOffset + face].m_plane.z, 0.f); - const float4 WorldNormal = b3QuatRotate(ornB, Normal); -#ifdef BT_DEBUG_SAT_FACE - if (once) - printf("faceNormal = %f,%f,%f\n", Normal.x, Normal.y, Normal.z); -#endif - float d = dot3F4(WorldNormal, separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - once = false; - } - - b3Assert(closestFaceB >= 0); - { - //B3_PROFILE("worldVertsB1"); - const b3GpuFace& polyB = facesB[hullB.m_faceOffset + closestFaceB]; - const int numVertices = polyB.m_numIndices; - for (int e0 = 0; e0 < numVertices; e0++) - { - const float4& b = verticesB[hullB.m_vertexOffset + indicesB[polyB.m_indexOffset + e0]]; - worldVertsB1[numWorldVertsB1++] = transform(&b, &posB, &ornB); - } - } - - if (closestFaceB >= 0) - { - //B3_PROFILE("clipFaceAgainstHull"); - numContactsOut = clipFaceAgainstHull((float4&)separatingNormal, &hullA, - posA, ornA, - worldVertsB1, numWorldVertsB1, worldVertsB2, capacityWorldVerts, minDist, maxDist, - verticesA, facesA, indicesA, - contactsOut, contactCapacity); - } - - return numContactsOut; -} - -#define PARALLEL_SUM(v, n) \ - for (int j = 1; j < n; j++) v[0] += v[j]; -#define PARALLEL_DO(execution, n) \ - for (int ie = 0; ie < n; ie++) \ - { \ - execution; \ - } -#define REDUCE_MAX(v, n) \ - { \ - int i = 0; \ - for (int offset = 0; offset < n; offset++) v[i] = (v[i].y > v[i + offset].y) ? v[i] : v[i + offset]; \ - } -#define REDUCE_MIN(v, n) \ - { \ - int i = 0; \ - for (int offset = 0; offset < n; offset++) v[i] = (v[i].y < v[i + offset].y) ? v[i] : v[i + offset]; \ - } - -int extractManifold(const float4* p, int nPoints, const float4& nearNormal, b3Int4* contactIdx) -{ - if (nPoints == 0) - return 0; - - if (nPoints <= 4) - return nPoints; - - if (nPoints > 64) - nPoints = 64; - - float4 center = make_float4(0, 0, 0, 0); - { - for (int i = 0; i < nPoints; i++) - center += p[i]; - center /= (float)nPoints; - } - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3(nearNormal, aVector); - float4 v = cross3(nearNormal, u); - u = normalize3(u); - v = normalize3(v); - - //keep point with deepest penetration - float minW = FLT_MAX; - - int minIndex = -1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for (int ie = 0; ie < nPoints; ie++) - { - if (p[ie].w < minW) - { - minW = p[ie].w; - minIndex = ie; - } - float f; - float4 r = p[ie] - center; - f = dot3F4(u, r); - if (f < maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4(-u, r); - if (f < maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - f = dot3F4(v, r); - if (f < maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4(-v, r); - if (f < maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; -} - -int clipHullHullSingle( - int bodyIndexA, int bodyIndexB, - const float4& posA, - const b3Quaternion& ornA, - const float4& posB, - const b3Quaternion& ornB, - - int collidableIndexA, int collidableIndexB, - - const b3AlignedObjectArray<b3RigidBodyData>* bodyBuf, - b3AlignedObjectArray<b3Contact4>* globalContactOut, - int& nContacts, - - const b3AlignedObjectArray<b3ConvexPolyhedronData>& hostConvexDataA, - const b3AlignedObjectArray<b3ConvexPolyhedronData>& hostConvexDataB, - - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA, - const b3AlignedObjectArray<b3GpuFace>& facesA, - const b3AlignedObjectArray<int>& indicesA, - - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB, - const b3AlignedObjectArray<b3GpuFace>& facesB, - const b3AlignedObjectArray<int>& indicesB, - - const b3AlignedObjectArray<b3Collidable>& hostCollidablesA, - const b3AlignedObjectArray<b3Collidable>& hostCollidablesB, - const b3Vector3& sepNormalWorldSpace, - int maxContactCapacity) -{ - int contactIndex = -1; - b3ConvexPolyhedronData hullA, hullB; - - b3Collidable colA = hostCollidablesA[collidableIndexA]; - hullA = hostConvexDataA[colA.m_shapeIndex]; - //printf("numvertsA = %d\n",hullA.m_numVertices); - - b3Collidable colB = hostCollidablesB[collidableIndexB]; - hullB = hostConvexDataB[colB.m_shapeIndex]; - //printf("numvertsB = %d\n",hullB.m_numVertices); - - float4 contactsOut[MAX_VERTS]; - int localContactCapacity = MAX_VERTS; - -#ifdef _WIN32 - b3Assert(_finite(bodyBuf->at(bodyIndexA).m_pos.x)); - b3Assert(_finite(bodyBuf->at(bodyIndexB).m_pos.x)); -#endif - - { - float4 worldVertsB1[MAX_VERTS]; - float4 worldVertsB2[MAX_VERTS]; - int capacityWorldVerts = MAX_VERTS; - - float4 hostNormal = make_float4(sepNormalWorldSpace.x, sepNormalWorldSpace.y, sepNormalWorldSpace.z, 0.f); - int shapeA = hostCollidablesA[collidableIndexA].m_shapeIndex; - int shapeB = hostCollidablesB[collidableIndexB].m_shapeIndex; - - b3Scalar minDist = -1; - b3Scalar maxDist = 0.; - - b3Transform trA, trB; - { - //B3_PROFILE("transform computation"); - //trA.setIdentity(); - trA.setOrigin(b3MakeVector3(posA.x, posA.y, posA.z)); - trA.setRotation(b3Quaternion(ornA.x, ornA.y, ornA.z, ornA.w)); - - //trB.setIdentity(); - trB.setOrigin(b3MakeVector3(posB.x, posB.y, posB.z)); - trB.setRotation(b3Quaternion(ornB.x, ornB.y, ornB.z, ornB.w)); - } - - b3Quaternion trAorn = trA.getRotation(); - b3Quaternion trBorn = trB.getRotation(); - - int numContactsOut = clipHullAgainstHull(hostNormal, - hostConvexDataA.at(shapeA), - hostConvexDataB.at(shapeB), - (float4&)trA.getOrigin(), (b3Quaternion&)trAorn, - (float4&)trB.getOrigin(), (b3Quaternion&)trBorn, - worldVertsB1, worldVertsB2, capacityWorldVerts, - minDist, maxDist, - verticesA, facesA, indicesA, - verticesB, facesB, indicesB, - - contactsOut, localContactCapacity); - - if (numContactsOut > 0) - { - B3_PROFILE("overlap"); - - float4 normalOnSurfaceB = (float4&)hostNormal; - - b3Int4 contactIdx; - contactIdx.x = 0; - contactIdx.y = 1; - contactIdx.z = 2; - contactIdx.w = 3; - - int numPoints = 0; - - { - // B3_PROFILE("extractManifold"); - numPoints = extractManifold(contactsOut, numContactsOut, normalOnSurfaceB, &contactIdx); - } - - b3Assert(numPoints); - - if (nContacts < maxContactCapacity) - { - contactIndex = nContacts; - globalContactOut->expand(); - b3Contact4& contact = globalContactOut->at(nContacts); - contact.m_batchIdx = 0; //i; - contact.m_bodyAPtrAndSignBit = (bodyBuf->at(bodyIndexA).m_invMass == 0) ? -bodyIndexA : bodyIndexA; - contact.m_bodyBPtrAndSignBit = (bodyBuf->at(bodyIndexB).m_invMass == 0) ? -bodyIndexB : bodyIndexB; - - contact.m_frictionCoeffCmp = 45874; - contact.m_restituitionCoeffCmp = 0; - - // float distance = 0.f; - for (int p = 0; p < numPoints; p++) - { - contact.m_worldPosB[p] = contactsOut[contactIdx.s[p]]; //check if it is actually on B - contact.m_worldNormalOnB = normalOnSurfaceB; - } - //printf("bodyIndexA %d,bodyIndexB %d,normal=%f,%f,%f numPoints %d\n",bodyIndexA,bodyIndexB,normalOnSurfaceB.x,normalOnSurfaceB.y,normalOnSurfaceB.z,numPoints); - contact.m_worldNormalOnB.w = (b3Scalar)numPoints; - nContacts++; - } - else - { - b3Error("Error: exceeding contact capacity (%d/%d)\n", nContacts, maxContactCapacity); - } - } - } - return contactIndex; -} - -void computeContactPlaneConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3Vector3* convexVertices, - const int* convexIndices, - const b3GpuFace* faces, - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity) -{ - int shapeIndex = collidables[collidableIndexB].m_shapeIndex; - const b3ConvexPolyhedronData* hullB = &convexShapes[shapeIndex]; - - b3Vector3 posB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion ornB = rigidBodies[bodyIndexB].m_quat; - b3Vector3 posA = rigidBodies[bodyIndexA].m_pos; - b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat; - - // int numContactsOut = 0; - // int numWorldVertsB1= 0; - - b3Vector3 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - b3Vector3 planeNormal = b3MakeVector3(planeEq.x, planeEq.y, planeEq.z); - b3Vector3 planeNormalWorld = b3QuatRotate(ornA, planeNormal); - float planeConstant = planeEq.w; - b3Transform convexWorldTransform; - convexWorldTransform.setIdentity(); - convexWorldTransform.setOrigin(posB); - convexWorldTransform.setRotation(ornB); - b3Transform planeTransform; - planeTransform.setIdentity(); - planeTransform.setOrigin(posA); - planeTransform.setRotation(ornA); - - b3Transform planeInConvex; - planeInConvex = convexWorldTransform.inverse() * planeTransform; - b3Transform convexInPlane; - convexInPlane = planeTransform.inverse() * convexWorldTransform; - - b3Vector3 planeNormalInConvex = planeInConvex.getBasis() * -planeNormal; - float maxDot = -1e30; - int hitVertex = -1; - b3Vector3 hitVtx; - -#define MAX_PLANE_CONVEX_POINTS 64 - - b3Vector3 contactPoints[MAX_PLANE_CONVEX_POINTS]; - int numPoints = 0; - - b3Int4 contactIdx; - contactIdx.s[0] = 0; - contactIdx.s[1] = 1; - contactIdx.s[2] = 2; - contactIdx.s[3] = 3; - - for (int i = 0; i < hullB->m_numVertices; i++) - { - b3Vector3 vtx = convexVertices[hullB->m_vertexOffset + i]; - float curDot = vtx.dot(planeNormalInConvex); - - if (curDot > maxDot) - { - hitVertex = i; - maxDot = curDot; - hitVtx = vtx; - //make sure the deepest points is always included - if (numPoints == MAX_PLANE_CONVEX_POINTS) - numPoints--; - } - - if (numPoints < MAX_PLANE_CONVEX_POINTS) - { - b3Vector3 vtxWorld = convexWorldTransform * vtx; - b3Vector3 vtxInPlane = planeTransform.inverse() * vtxWorld; - float dist = planeNormal.dot(vtxInPlane) - planeConstant; - if (dist < 0.f) - { - vtxWorld.w = dist; - contactPoints[numPoints] = vtxWorld; - numPoints++; - } - } - } - - int numReducedPoints = 0; - - numReducedPoints = numPoints; - - if (numPoints > 4) - { - numReducedPoints = extractManifoldSequentialGlobal(contactPoints, numPoints, planeNormalInConvex, &contactIdx); - } - int dstIdx; - // dstIdx = nGlobalContactsOut++;//AppendInc( nGlobalContactsOut, dstIdx ); - - if (numReducedPoints > 0) - { - if (nGlobalContactsOut < maxContactCapacity) - { - dstIdx = nGlobalContactsOut; - nGlobalContactsOut++; - - b3Contact4* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -planeNormalWorld; - c->setFrictionCoeff(0.7); - c->setRestituitionCoeff(0.f); - - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass == 0 ? -bodyIndexA : bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass == 0 ? -bodyIndexB : bodyIndexB; - for (int i = 0; i < numReducedPoints; i++) - { - b3Vector3 pOnB1 = contactPoints[contactIdx.s[i]]; - c->m_worldPosB[i] = pOnB1; - } - c->m_worldNormalOnB.w = (b3Scalar)numReducedPoints; - } //if (dstIdx < numPairs) - } - - // printf("computeContactPlaneConvex\n"); -} - -B3_FORCE_INLINE b3Vector3 MyUnQuantize(const unsigned short* vecIn, const b3Vector3& quantization, const b3Vector3& bvhAabbMin) -{ - b3Vector3 vecOut; - vecOut.setValue( - (b3Scalar)(vecIn[0]) / (quantization.x), - (b3Scalar)(vecIn[1]) / (quantization.y), - (b3Scalar)(vecIn[2]) / (quantization.z)); - vecOut += bvhAabbMin; - return vecOut; -} - -void traverseTreeTree() -{ -} - -#include "Bullet3Common/shared/b3Mat3x3.h" - -int numAabbChecks = 0; -int maxNumAabbChecks = 0; -int maxDepth = 0; - -// work-in-progress -__kernel void findCompoundPairsKernel( - int pairIndex, - int bodyIndexA, - int bodyIndexB, - int collidableIndexA, - int collidableIndexB, - __global const b3RigidBodyData* rigidBodies, - __global const b3Collidable* collidables, - __global const b3ConvexPolyhedronData* convexShapes, - __global const b3AlignedObjectArray<b3Float4>& vertices, - __global const b3AlignedObjectArray<b3Aabb>& aabbsWorldSpace, - __global const b3AlignedObjectArray<b3Aabb>& aabbsLocalSpace, - __global const b3GpuChildShape* gpuChildShapes, - __global b3Int4* gpuCompoundPairsOut, - __global int* numCompoundPairsOut, - int maxNumCompoundPairsCapacity, - b3AlignedObjectArray<b3QuantizedBvhNode>& treeNodesCPU, - b3AlignedObjectArray<b3BvhSubtreeInfo>& subTreesCPU, - b3AlignedObjectArray<b3BvhInfo>& bvhInfoCPU) -{ - numAabbChecks = 0; - maxNumAabbChecks = 0; - // int i = pairIndex; - { - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass == 0) && (rigidBodies[bodyIndexB].m_invMass == 0)) - { - return; - } - - if ((collidables[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) && (collidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int bvhA = collidables[collidableIndexA].m_compoundBvhIndex; - int bvhB = collidables[collidableIndexB].m_compoundBvhIndex; - int numSubTreesA = bvhInfoCPU[bvhA].m_numSubTrees; - int subTreesOffsetA = bvhInfoCPU[bvhA].m_subTreeOffset; - int subTreesOffsetB = bvhInfoCPU[bvhB].m_subTreeOffset; - - int numSubTreesB = bvhInfoCPU[bvhB].m_numSubTrees; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - - b3Transform transA; - transA.setIdentity(); - transA.setOrigin(posA); - transA.setRotation(ornA); - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - b3Transform transB; - transB.setIdentity(); - transB.setOrigin(posB); - transB.setRotation(ornB); - - for (int p = 0; p < numSubTreesA; p++) - { - b3BvhSubtreeInfo subtreeA = subTreesCPU[subTreesOffsetA + p]; - //bvhInfoCPU[bvhA].m_quantization - b3Vector3 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin, bvhInfoCPU[bvhA].m_quantization, bvhInfoCPU[bvhA].m_aabbMin); - b3Vector3 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax, bvhInfoCPU[bvhA].m_quantization, bvhInfoCPU[bvhA].m_aabbMin); - - b3Vector3 aabbAMinOut, aabbAMaxOut; - float margin = 0.f; - b3TransformAabb2(treeAminLocal, treeAmaxLocal, margin, transA.getOrigin(), transA.getRotation(), &aabbAMinOut, &aabbAMaxOut); - - for (int q = 0; q < numSubTreesB; q++) - { - b3BvhSubtreeInfo subtreeB = subTreesCPU[subTreesOffsetB + q]; - - b3Vector3 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin, bvhInfoCPU[bvhB].m_quantization, bvhInfoCPU[bvhB].m_aabbMin); - b3Vector3 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax, bvhInfoCPU[bvhB].m_quantization, bvhInfoCPU[bvhB].m_aabbMin); - - b3Vector3 aabbBMinOut, aabbBMaxOut; - float margin = 0.f; - b3TransformAabb2(treeBminLocal, treeBmaxLocal, margin, transB.getOrigin(), transB.getRotation(), &aabbBMinOut, &aabbBMaxOut); - - numAabbChecks = 0; - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut, aabbAMaxOut, aabbBMinOut, aabbBMaxOut); - if (aabbOverlap) - { - int startNodeIndexA = subtreeA.m_rootNodeIndex + bvhInfoCPU[bvhA].m_nodeOffset; - // int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize; - - int startNodeIndexB = subtreeB.m_rootNodeIndex + bvhInfoCPU[bvhB].m_nodeOffset; - // int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize; - - b3AlignedObjectArray<b3Int2> nodeStack; - b3Int2 node0; - node0.x = startNodeIndexA; - node0.y = startNodeIndexB; - - int maxStackDepth = 1024; - nodeStack.resize(maxStackDepth); - int depth = 0; - nodeStack[depth++] = node0; - - do - { - if (depth > maxDepth) - { - maxDepth = depth; - printf("maxDepth=%d\n", maxDepth); - } - b3Int2 node = nodeStack[--depth]; - - b3Vector3 aMinLocal = MyUnQuantize(treeNodesCPU[node.x].m_quantizedAabbMin, bvhInfoCPU[bvhA].m_quantization, bvhInfoCPU[bvhA].m_aabbMin); - b3Vector3 aMaxLocal = MyUnQuantize(treeNodesCPU[node.x].m_quantizedAabbMax, bvhInfoCPU[bvhA].m_quantization, bvhInfoCPU[bvhA].m_aabbMin); - - b3Vector3 bMinLocal = MyUnQuantize(treeNodesCPU[node.y].m_quantizedAabbMin, bvhInfoCPU[bvhB].m_quantization, bvhInfoCPU[bvhB].m_aabbMin); - b3Vector3 bMaxLocal = MyUnQuantize(treeNodesCPU[node.y].m_quantizedAabbMax, bvhInfoCPU[bvhB].m_quantization, bvhInfoCPU[bvhB].m_aabbMin); - - float margin = 0.f; - b3Vector3 aabbAMinOut, aabbAMaxOut; - b3TransformAabb2(aMinLocal, aMaxLocal, margin, transA.getOrigin(), transA.getRotation(), &aabbAMinOut, &aabbAMaxOut); - - b3Vector3 aabbBMinOut, aabbBMaxOut; - b3TransformAabb2(bMinLocal, bMaxLocal, margin, transB.getOrigin(), transB.getRotation(), &aabbBMinOut, &aabbBMaxOut); - - numAabbChecks++; - bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut, aabbAMaxOut, aabbBMinOut, aabbBMaxOut); - if (nodeOverlap) - { - bool isLeafA = treeNodesCPU[node.x].isLeafNode(); - bool isLeafB = treeNodesCPU[node.y].isLeafNode(); - bool isInternalA = !isLeafA; - bool isInternalB = !isLeafB; - - //fail, even though it might hit two leaf nodes - if (depth + 4 > maxStackDepth && !(isLeafA && isLeafB)) - { - b3Error("Error: traversal exceeded maxStackDepth\n"); - continue; - } - - if (isInternalA) - { - int nodeAleftChild = node.x + 1; - bool isNodeALeftChildLeaf = treeNodesCPU[node.x + 1].isLeafNode(); - int nodeArightChild = isNodeALeftChildLeaf ? node.x + 2 : node.x + 1 + treeNodesCPU[node.x + 1].getEscapeIndex(); - - if (isInternalB) - { - int nodeBleftChild = node.y + 1; - bool isNodeBLeftChildLeaf = treeNodesCPU[node.y + 1].isLeafNode(); - int nodeBrightChild = isNodeBLeftChildLeaf ? node.y + 2 : node.y + 1 + treeNodesCPU[node.y + 1].getEscapeIndex(); - - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild); - } - else - { - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, node.y); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, node.y); - } - } - else - { - if (isInternalB) - { - int nodeBleftChild = node.y + 1; - bool isNodeBLeftChildLeaf = treeNodesCPU[node.y + 1].isLeafNode(); - int nodeBrightChild = isNodeBLeftChildLeaf ? node.y + 2 : node.y + 1 + treeNodesCPU[node.y + 1].getEscapeIndex(); - nodeStack[depth++] = b3MakeInt2(node.x, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(node.x, nodeBrightChild); - } - else - { - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx < maxNumCompoundPairsCapacity) - { - int childShapeIndexA = treeNodesCPU[node.x].getTriangleIndex(); - int childShapeIndexB = treeNodesCPU[node.y].getTriangleIndex(); - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA, bodyIndexB, childShapeIndexA, childShapeIndexB); - } - } - } - } - } while (depth); - maxNumAabbChecks = b3Max(numAabbChecks, maxNumAabbChecks); - } - } - } - - return; - } - - if ((collidables[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) || (collidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - if (collidables[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int numChildrenA = collidables[collidableIndexA].m_numChildShapes; - for (int c = 0; c < numChildrenA; c++) - { - int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex + c; - int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA, childPosA) + posA; - b3Quat newOrnA = b3QuatMul(ornA, childOrnA); - - b3Aabb aabbA = aabbsLocalSpace[childColIndexA]; - - b3Transform transA; - transA.setIdentity(); - transA.setOrigin(newPosA); - transA.setRotation(newOrnA); - b3Scalar margin = 0.0f; - - b3Vector3 aabbAMinOut, aabbAMaxOut; - - b3TransformAabb2((const b3Float4&)aabbA.m_min, (const b3Float4&)aabbA.m_max, margin, transA.getOrigin(), transA.getRotation(), &aabbAMinOut, &aabbAMaxOut); - - if (collidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b = 0; b < numChildrenB; b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex + b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB, &posB, &ornB); - b3Quat newOrnB = b3QuatMul(ornB, childOrnB); - - b3Aabb aabbB = aabbsLocalSpace[childColIndexB]; - - b3Transform transB; - transB.setIdentity(); - transB.setOrigin(newPosB); - transB.setRotation(newOrnB); - - b3Vector3 aabbBMinOut, aabbBMaxOut; - b3TransformAabb2((const b3Float4&)aabbB.m_min, (const b3Float4&)aabbB.m_max, margin, transB.getOrigin(), transB.getRotation(), &aabbBMinOut, &aabbBMaxOut); - - numAabbChecks++; - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut, aabbAMaxOut, aabbBMinOut, aabbBMaxOut); - if (aabbOverlap) - { - /* - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - b3Quat ornA = newOrnA; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - b3Quat ornB =newOrnB; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - */ - { // - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx < maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA, bodyIndexB, childShapeIndexA, childShapeIndexB); - } - } // - } //fi(1) - } //for (int b=0 - } //if (collidables[collidableIndexB]. - else //if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - if (1) - { - // int numFacesA = convexShapes[shapeIndexA].m_numFaces; - // float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - b3Quat ornA = newOrnA; - float4 c0; - c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 c1; - c1 = transform(&c1local, &posB, &ornB); - // const float4 DeltaC2 = c0 - c1; - - { - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx < maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA, bodyIndexB, childShapeIndexA, -1); - } //if (compoundPairIdx<maxNumCompoundPairsCapacity) - } // - } //fi (1) - } //if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - } //for (int b=0;b<numChildrenB;b++) - return; - } //if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - if ((collidables[collidableIndexA].m_shapeType != SHAPE_CONCAVE_TRIMESH) && (collidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b = 0; b < numChildrenB; b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex + b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = b3QuatRotate(ornB, childPosB) + posB; - b3Quat newOrnB = b3QuatMul(ornB, childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - ////////////////////////////////////// - - if (1) - { - // int numFacesA = convexShapes[shapeIndexA].m_numFaces; - // float dmin = FLT_MAX; - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0; - c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - b3Quat ornB = newOrnB; - float4 c1; - c1 = transform(&c1local, &posB, &ornB); - // const float4 DeltaC2 = c0 - c1; - { // - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx < maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA, bodyIndexB, -1, childShapeIndexB); - } //fi (compoundPairIdx<maxNumCompoundPairsCapacity) - } // - } //fi (1) - } //for (int b=0;b<numChildrenB;b++) - return; - } //if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - return; - } //fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - } //i<numPairs -} - -__kernel void processCompoundPairsKernel(__global const b3Int4* gpuCompoundPairs, - __global const b3RigidBodyData* rigidBodies, - __global const b3Collidable* collidables, - __global const b3ConvexPolyhedronData* convexShapes, - __global const b3AlignedObjectArray<b3Float4>& vertices, - __global const b3AlignedObjectArray<b3Float4>& uniqueEdges, - __global const b3AlignedObjectArray<b3GpuFace>& faces, - __global const b3AlignedObjectArray<int>& indices, - __global b3Aabb* aabbs, - __global const b3GpuChildShape* gpuChildShapes, - __global b3AlignedObjectArray<b3Float4>& gpuCompoundSepNormalsOut, - __global b3AlignedObjectArray<int>& gpuHasCompoundSepNormalsOut, - int numCompoundPairs, - int i) -{ - // int i = get_global_id(0); - if (i < numCompoundPairs) - { - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA, childPosA) + posA; - b3Quat newOrnA = b3QuatMul(ornA, childOrnA); - posA = newPosA; - ornA = newOrnA; - } - else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB >= 0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = b3QuatRotate(ornB, childPosB) + posB; - b3Quat newOrnB = b3QuatMul(ornB, childOrnB); - posB = newPosB; - ornB = newOrnB; - } - else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - gpuHasCompoundSepNormalsOut[i] = 0; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int shapeTypeA = collidables[collidableIndexA].m_shapeType; - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL)) - { - return; - } - - int hasSeparatingAxis = 5; - - // int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - posA.w = 0.f; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local, &posB, &ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = make_float4(1, 0, 0, 0); - // bool sepA = findSeparatingAxis( convexShapes[shapeIndexA], convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - bool sepA = findSeparatingAxis(convexShapes[shapeIndexA], convexShapes[shapeIndexB], posA, ornA, posB, ornB, vertices, uniqueEdges, faces, indices, vertices, uniqueEdges, faces, indices, sepNormal); //,&dmin); - - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } - else - { - bool sepB = findSeparatingAxis(convexShapes[shapeIndexB], convexShapes[shapeIndexA], posB, ornB, posA, ornA, vertices, uniqueEdges, faces, indices, vertices, uniqueEdges, faces, indices, sepNormal); //,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } - else //(!sepB) - { - bool sepEE = findSeparatingAxisEdgeEdge(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB], posA, ornA, posB, ornB, DeltaC2, vertices, uniqueEdges, faces, indices, &sepNormal, &dmin); - if (sepEE) - { - gpuCompoundSepNormalsOut[i] = sepNormal; //fastNormalize4(sepNormal); - gpuHasCompoundSepNormalsOut[i] = 1; - } //sepEE - } //(!sepB) - } //(!sepA) - } -} - -__kernel void clipCompoundsHullHullKernel(__global const b3Int4* gpuCompoundPairs, - __global const b3RigidBodyData* rigidBodies, - __global const b3Collidable* collidables, - __global const b3ConvexPolyhedronData* convexShapes, - __global const b3AlignedObjectArray<b3Float4>& vertices, - __global const b3AlignedObjectArray<b3Float4>& uniqueEdges, - __global const b3AlignedObjectArray<b3GpuFace>& faces, - __global const b3AlignedObjectArray<int>& indices, - __global const b3GpuChildShape* gpuChildShapes, - __global const b3AlignedObjectArray<b3Float4>& gpuCompoundSepNormalsOut, - __global const b3AlignedObjectArray<int>& gpuHasCompoundSepNormalsOut, - __global struct b3Contact4Data* globalContactsOut, - int* nGlobalContactsOut, - int numCompoundPairs, int maxContactCapacity, int i) -{ - // int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity = 64; - - float minDist = -1e30f; - float maxDist = 0.0f; - - if (i < numCompoundPairs) - { - if (gpuHasCompoundSepNormalsOut[i]) - { - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA, childPosA) + posA; - b3Quat newOrnA = b3QuatMul(ornA, childOrnA); - posA = newPosA; - ornA = newOrnA; - } - else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB >= 0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = b3QuatRotate(ornB, childPosB) + posB; - b3Quat newOrnB = b3QuatMul(ornB, childOrnB); - posB = newPosB; - ornB = newOrnB; - } - else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i], - convexShapes[shapeIndexA], convexShapes[shapeIndexB], - posA, ornA, - posB, ornB, - worldVertsB1, worldVertsB2, capacityWorldVerts, - minDist, maxDist, - vertices, faces, indices, - vertices, faces, indices, - localContactsOut, localContactCapacity); - - if (numLocalContactsOut > 0) - { - float4 normal = -gpuCompoundSepNormalsOut[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - b3Int4 contactIdx; // = {-1,-1,-1,-1}; - - contactIdx.s[0] = 0; - contactIdx.s[1] = 1; - contactIdx.s[2] = 2; - contactIdx.s[3] = 3; - - int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx); - - int dstIdx; - dstIdx = b3AtomicInc(nGlobalContactsOut); - if ((dstIdx + nReducedContacts) < maxContactCapacity) - { - __global struct b3Contact4Data* c = globalContactsOut + dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f * 0xffff); - c->m_frictionCoeffCmp = (0.7f * 0xffff); - c->m_batchIdx = pairIndex; - int bodyA = gpuCompoundPairs[pairIndex].x; - int bodyB = gpuCompoundPairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass == 0 ? -bodyA : bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass == 0 ? -bodyB : bodyB; - c->m_childIndexA = childShapeIndexA; - c->m_childIndexB = childShapeIndexB; - for (int i = 0; i < nReducedContacts; i++) - { - c->m_worldPosB[i] = pointsIn[contactIdx.s[i]]; - } - b3Contact4Data_setNumPoints(c, nReducedContacts); - } - - } // if (numContactsOut>0) - } // if (gpuHasCompoundSepNormalsOut[i]) - } // if (i<numCompoundPairs) -} - -void computeContactCompoundCompound(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3GpuChildShape* cpuChildShapes, - const b3AlignedObjectArray<b3Aabb>& hostAabbsWorldSpace, - const b3AlignedObjectArray<b3Aabb>& hostAabbsLocalSpace, - - const b3AlignedObjectArray<b3Vector3>& convexVertices, - const b3AlignedObjectArray<b3Vector3>& hostUniqueEdges, - const b3AlignedObjectArray<int>& convexIndices, - const b3AlignedObjectArray<b3GpuFace>& faces, - - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity, - b3AlignedObjectArray<b3QuantizedBvhNode>& treeNodesCPU, - b3AlignedObjectArray<b3BvhSubtreeInfo>& subTreesCPU, - b3AlignedObjectArray<b3BvhInfo>& bvhInfoCPU) -{ - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - b3Assert(shapeTypeB == SHAPE_COMPOUND_OF_CONVEX_HULLS); - - b3AlignedObjectArray<b3Int4> cpuCompoundPairsOut; - int numCompoundPairsOut = 0; - int maxNumCompoundPairsCapacity = 8192; //1024; - cpuCompoundPairsOut.resize(maxNumCompoundPairsCapacity); - - // work-in-progress - findCompoundPairsKernel( - pairIndex, - bodyIndexA, bodyIndexB, - collidableIndexA, collidableIndexB, - rigidBodies, - collidables, - convexShapes, - convexVertices, - hostAabbsWorldSpace, - hostAabbsLocalSpace, - cpuChildShapes, - &cpuCompoundPairsOut[0], - &numCompoundPairsOut, - maxNumCompoundPairsCapacity, - treeNodesCPU, - subTreesCPU, - bvhInfoCPU); - - printf("maxNumAabbChecks=%d\n", maxNumAabbChecks); - if (numCompoundPairsOut > maxNumCompoundPairsCapacity) - { - b3Error("numCompoundPairsOut exceeded maxNumCompoundPairsCapacity (%d)\n", maxNumCompoundPairsCapacity); - numCompoundPairsOut = maxNumCompoundPairsCapacity; - } - b3AlignedObjectArray<b3Float4> cpuCompoundSepNormalsOut; - b3AlignedObjectArray<int> cpuHasCompoundSepNormalsOut; - cpuCompoundSepNormalsOut.resize(numCompoundPairsOut); - cpuHasCompoundSepNormalsOut.resize(numCompoundPairsOut); - - for (int i = 0; i < numCompoundPairsOut; i++) - { - processCompoundPairsKernel(&cpuCompoundPairsOut[0], rigidBodies, collidables, convexShapes, convexVertices, hostUniqueEdges, faces, convexIndices, 0, cpuChildShapes, - cpuCompoundSepNormalsOut, cpuHasCompoundSepNormalsOut, numCompoundPairsOut, i); - } - - for (int i = 0; i < numCompoundPairsOut; i++) - { - clipCompoundsHullHullKernel(&cpuCompoundPairsOut[0], rigidBodies, collidables, convexShapes, convexVertices, hostUniqueEdges, faces, convexIndices, cpuChildShapes, - cpuCompoundSepNormalsOut, cpuHasCompoundSepNormalsOut, globalContactsOut, &nGlobalContactsOut, numCompoundPairsOut, maxContactCapacity, i); - } - /* - int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA,childPosA)+posA; - b3Quat newOrnA = b3QuatMul(ornA,childOrnA); - - int shapeIndexA = collidables[childColIndexA].m_shapeIndex; - - - bool foundSepAxis = findSeparatingAxis(hullA,hullB, - posA, - ornA, - posB, - ornB, - - convexVertices,uniqueEdges,faces,convexIndices, - convexVertices,uniqueEdges,faces,convexIndices, - - sepNormalWorldSpace - ); - */ - - /* - if (foundSepAxis) - { - - - contactIndex = clipHullHullSingle( - bodyIndexA, bodyIndexB, - posA,ornA, - posB,ornB, - collidableIndexA, collidableIndexB, - &rigidBodies, - &globalContactsOut, - nGlobalContactsOut, - - convexShapes, - convexShapes, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - collidables, - collidables, - sepNormalWorldSpace, - maxContactCapacity); - - } - */ - - // return contactIndex; - - /* - - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int c=0;c<numChildrenB;c++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+c; - int childColIndexB = cpuChildShapes[childShapeIndexB].m_shapeIndex; - - float4 rootPosB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion rootOrnB = rigidBodies[bodyIndexB].m_quat; - b3Vector3 childPosB = cpuChildShapes[childShapeIndexB].m_childPosition; - b3Quaternion childOrnB = cpuChildShapes[childShapeIndexB].m_childOrientation; - float4 posB = b3QuatRotate(rootOrnB,childPosB)+rootPosB; - b3Quaternion ornB = b3QuatMul(rootOrnB,childOrnB);//b3QuatMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - const b3ConvexPolyhedronData* hullB = &convexShapes[shapeIndexB]; - - } - */ -} - -void computeContactPlaneCompound(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3GpuChildShape* cpuChildShapes, - const b3Vector3* convexVertices, - const int* convexIndices, - const b3GpuFace* faces, - - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity) -{ - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - b3Assert(shapeTypeB == SHAPE_COMPOUND_OF_CONVEX_HULLS); - - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int c = 0; c < numChildrenB; c++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex + c; - int childColIndexB = cpuChildShapes[childShapeIndexB].m_shapeIndex; - - float4 rootPosB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion rootOrnB = rigidBodies[bodyIndexB].m_quat; - b3Vector3 childPosB = cpuChildShapes[childShapeIndexB].m_childPosition; - b3Quaternion childOrnB = cpuChildShapes[childShapeIndexB].m_childOrientation; - float4 posB = b3QuatRotate(rootOrnB, childPosB) + rootPosB; - b3Quaternion ornB = rootOrnB * childOrnB; //b3QuatMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - const b3ConvexPolyhedronData* hullB = &convexShapes[shapeIndexB]; - - b3Vector3 posA = rigidBodies[bodyIndexA].m_pos; - b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat; - - // int numContactsOut = 0; - // int numWorldVertsB1= 0; - - b3Vector3 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - b3Vector3 planeNormal = b3MakeVector3(planeEq.x, planeEq.y, planeEq.z); - b3Vector3 planeNormalWorld = b3QuatRotate(ornA, planeNormal); - float planeConstant = planeEq.w; - b3Transform convexWorldTransform; - convexWorldTransform.setIdentity(); - convexWorldTransform.setOrigin(posB); - convexWorldTransform.setRotation(ornB); - b3Transform planeTransform; - planeTransform.setIdentity(); - planeTransform.setOrigin(posA); - planeTransform.setRotation(ornA); - - b3Transform planeInConvex; - planeInConvex = convexWorldTransform.inverse() * planeTransform; - b3Transform convexInPlane; - convexInPlane = planeTransform.inverse() * convexWorldTransform; - - b3Vector3 planeNormalInConvex = planeInConvex.getBasis() * -planeNormal; - float maxDot = -1e30; - int hitVertex = -1; - b3Vector3 hitVtx; - -#define MAX_PLANE_CONVEX_POINTS 64 - - b3Vector3 contactPoints[MAX_PLANE_CONVEX_POINTS]; - int numPoints = 0; - - b3Int4 contactIdx; - contactIdx.s[0] = 0; - contactIdx.s[1] = 1; - contactIdx.s[2] = 2; - contactIdx.s[3] = 3; - - for (int i = 0; i < hullB->m_numVertices; i++) - { - b3Vector3 vtx = convexVertices[hullB->m_vertexOffset + i]; - float curDot = vtx.dot(planeNormalInConvex); - - if (curDot > maxDot) - { - hitVertex = i; - maxDot = curDot; - hitVtx = vtx; - //make sure the deepest points is always included - if (numPoints == MAX_PLANE_CONVEX_POINTS) - numPoints--; - } - - if (numPoints < MAX_PLANE_CONVEX_POINTS) - { - b3Vector3 vtxWorld = convexWorldTransform * vtx; - b3Vector3 vtxInPlane = planeTransform.inverse() * vtxWorld; - float dist = planeNormal.dot(vtxInPlane) - planeConstant; - if (dist < 0.f) - { - vtxWorld.w = dist; - contactPoints[numPoints] = vtxWorld; - numPoints++; - } - } - } - - int numReducedPoints = 0; - - numReducedPoints = numPoints; - - if (numPoints > 4) - { - numReducedPoints = extractManifoldSequentialGlobal(contactPoints, numPoints, planeNormalInConvex, &contactIdx); - } - int dstIdx; - // dstIdx = nGlobalContactsOut++;//AppendInc( nGlobalContactsOut, dstIdx ); - - if (numReducedPoints > 0) - { - if (nGlobalContactsOut < maxContactCapacity) - { - dstIdx = nGlobalContactsOut; - nGlobalContactsOut++; - - b3Contact4* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -planeNormalWorld; - c->setFrictionCoeff(0.7); - c->setRestituitionCoeff(0.f); - - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass == 0 ? -bodyIndexA : bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass == 0 ? -bodyIndexB : bodyIndexB; - for (int i = 0; i < numReducedPoints; i++) - { - b3Vector3 pOnB1 = contactPoints[contactIdx.s[i]]; - c->m_worldPosB[i] = pOnB1; - } - c->m_worldNormalOnB.w = (b3Scalar)numReducedPoints; - } //if (dstIdx < numPairs) - } - } -} - -void computeContactSphereConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3Vector3* convexVertices, - const int* convexIndices, - const b3GpuFace* faces, - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity) -{ - float radius = collidables[collidableIndexA].m_radius; - float4 spherePos1 = rigidBodies[bodyIndexA].m_pos; - b3Quaternion sphereOrn = rigidBodies[bodyIndexA].m_quat; - - float4 pos = rigidBodies[bodyIndexB].m_pos; - - b3Quaternion quat = rigidBodies[bodyIndexB].m_quat; - - b3Transform tr; - tr.setIdentity(); - tr.setOrigin(pos); - tr.setRotation(quat); - b3Transform trInv = tr.inverse(); - - float4 spherePos = trInv(spherePos1); - - int collidableIndex = rigidBodies[bodyIndexB].m_collidableIdx; - int shapeIndex = collidables[collidableIndex].m_shapeIndex; - int numFaces = convexShapes[shapeIndex].m_numFaces; - float4 closestPnt = b3MakeVector3(0, 0, 0, 0); - // float4 hitNormalWorld = b3MakeVector3(0, 0, 0, 0); - float minDist = -1000000.f; // TODO: What is the largest/smallest float? - bool bCollide = true; - int region = -1; - float4 localHitNormal; - for (int f = 0; f < numFaces; f++) - { - b3GpuFace face = faces[convexShapes[shapeIndex].m_faceOffset + f]; - float4 planeEqn; - float4 localPlaneNormal = b3MakeVector3(face.m_plane.x, face.m_plane.y, face.m_plane.z, 0.f); - float4 n1 = localPlaneNormal; //quatRotate(quat,localPlaneNormal); - planeEqn = n1; - planeEqn[3] = face.m_plane.w; - - float4 pntReturn; - float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn); - - if (dist > radius) - { - bCollide = false; - break; - } - - if (dist > 0) - { - //might hit an edge or vertex - b3Vector3 out; - - bool isInPoly = IsPointInPolygon(spherePos, - &face, - &convexVertices[convexShapes[shapeIndex].m_vertexOffset], - convexIndices, - &out); - if (isInPoly) - { - if (dist > minDist) - { - minDist = dist; - closestPnt = pntReturn; - localHitNormal = planeEqn; - region = 1; - } - } - else - { - b3Vector3 tmp = spherePos - out; - b3Scalar l2 = tmp.length2(); - if (l2 < radius * radius) - { - dist = b3Sqrt(l2); - if (dist > minDist) - { - minDist = dist; - closestPnt = out; - localHitNormal = tmp / dist; - region = 2; - } - } - else - { - bCollide = false; - break; - } - } - } - else - { - if (dist > minDist) - { - minDist = dist; - closestPnt = pntReturn; - localHitNormal = planeEqn; - region = 3; - } - } - } - static int numChecks = 0; - numChecks++; - - if (bCollide && minDist > -10000) - { - float4 normalOnSurfaceB1 = tr.getBasis() * localHitNormal; //-hitNormalWorld; - float4 pOnB1 = tr(closestPnt); - //printf("dist ,%f,",minDist); - float actualDepth = minDist - radius; - if (actualDepth < 0) - { - //printf("actualDepth = ,%f,", actualDepth); - //printf("normalOnSurfaceB1 = ,%f,%f,%f,", normalOnSurfaceB1.x,normalOnSurfaceB1.y,normalOnSurfaceB1.z); - //printf("region=,%d,\n", region); - pOnB1[3] = actualDepth; - - int dstIdx; - // dstIdx = nGlobalContactsOut++;//AppendInc( nGlobalContactsOut, dstIdx ); - - if (nGlobalContactsOut < maxContactCapacity) - { - dstIdx = nGlobalContactsOut; - nGlobalContactsOut++; - - b3Contact4* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = normalOnSurfaceB1; - c->setFrictionCoeff(0.7); - c->setRestituitionCoeff(0.f); - - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass == 0 ? -bodyIndexA : bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass == 0 ? -bodyIndexB : bodyIndexB; - c->m_worldPosB[0] = pOnB1; - int numPoints = 1; - c->m_worldNormalOnB.w = (b3Scalar)numPoints; - } //if (dstIdx < numPairs) - } - } //if (hasCollision) -} - -int computeContactConvexConvex2( - int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3AlignedObjectArray<b3RigidBodyData>& rigidBodies, - const b3AlignedObjectArray<b3Collidable>& collidables, - const b3AlignedObjectArray<b3ConvexPolyhedronData>& convexShapes, - const b3AlignedObjectArray<b3Vector3>& convexVertices, - const b3AlignedObjectArray<b3Vector3>& uniqueEdges, - const b3AlignedObjectArray<int>& convexIndices, - const b3AlignedObjectArray<b3GpuFace>& faces, - b3AlignedObjectArray<b3Contact4>& globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity, - const b3AlignedObjectArray<b3Contact4>& oldContacts) -{ - int contactIndex = -1; - b3Vector3 posA = rigidBodies[bodyIndexA].m_pos; - b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat; - b3Vector3 posB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion ornB = rigidBodies[bodyIndexB].m_quat; - - b3ConvexPolyhedronData hullA, hullB; - - b3Vector3 sepNormalWorldSpace; - - b3Collidable colA = collidables[collidableIndexA]; - hullA = convexShapes[colA.m_shapeIndex]; - //printf("numvertsA = %d\n",hullA.m_numVertices); - - b3Collidable colB = collidables[collidableIndexB]; - hullB = convexShapes[colB.m_shapeIndex]; - //printf("numvertsB = %d\n",hullB.m_numVertices); - - // int contactCapacity = MAX_VERTS; - //int numContactsOut=0; - -#ifdef _WIN32 - b3Assert(_finite(rigidBodies[bodyIndexA].m_pos.x)); - b3Assert(_finite(rigidBodies[bodyIndexB].m_pos.x)); -#endif - - bool foundSepAxis = findSeparatingAxis(hullA, hullB, - posA, - ornA, - posB, - ornB, - - convexVertices, uniqueEdges, faces, convexIndices, - convexVertices, uniqueEdges, faces, convexIndices, - - sepNormalWorldSpace); - - if (foundSepAxis) - { - contactIndex = clipHullHullSingle( - bodyIndexA, bodyIndexB, - posA, ornA, - posB, ornB, - collidableIndexA, collidableIndexB, - &rigidBodies, - &globalContactsOut, - nGlobalContactsOut, - - convexShapes, - convexShapes, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - collidables, - collidables, - sepNormalWorldSpace, - maxContactCapacity); - } - - return contactIndex; -} - -void GpuSatCollision::computeConvexConvexContactsGPUSAT(b3OpenCLArray<b3Int4>* pairs, int nPairs, - const b3OpenCLArray<b3RigidBodyData>* bodyBuf, - b3OpenCLArray<b3Contact4>* contactOut, int& nContacts, - const b3OpenCLArray<b3Contact4>* oldContacts, - int maxContactCapacity, - int compoundPairCapacity, - const b3OpenCLArray<b3ConvexPolyhedronData>& convexData, - const b3OpenCLArray<b3Vector3>& gpuVertices, - const b3OpenCLArray<b3Vector3>& gpuUniqueEdges, - const b3OpenCLArray<b3GpuFace>& gpuFaces, - const b3OpenCLArray<int>& gpuIndices, - const b3OpenCLArray<b3Collidable>& gpuCollidables, - const b3OpenCLArray<b3GpuChildShape>& gpuChildShapes, - - const b3OpenCLArray<b3Aabb>& clAabbsWorldSpace, - const b3OpenCLArray<b3Aabb>& clAabbsLocalSpace, - - b3OpenCLArray<b3Vector3>& worldVertsB1GPU, - b3OpenCLArray<b3Int4>& clippingFacesOutGPU, - b3OpenCLArray<b3Vector3>& worldNormalsAGPU, - b3OpenCLArray<b3Vector3>& worldVertsA1GPU, - b3OpenCLArray<b3Vector3>& worldVertsB2GPU, - b3AlignedObjectArray<class b3OptimizedBvh*>& bvhDataUnused, - b3OpenCLArray<b3QuantizedBvhNode>* treeNodesGPU, - b3OpenCLArray<b3BvhSubtreeInfo>* subTreesGPU, - b3OpenCLArray<b3BvhInfo>* bvhInfo, - - int numObjects, - int maxTriConvexPairCapacity, - b3OpenCLArray<b3Int4>& triangleConvexPairsOut, - int& numTriConvexPairsOut) -{ - myframecount++; - - if (!nPairs) - return; - -#ifdef CHECK_ON_HOST - - b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU; - treeNodesGPU->copyToHost(treeNodesCPU); - - b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU; - subTreesGPU->copyToHost(subTreesCPU); - - b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU; - bvhInfo->copyToHost(bvhInfoCPU); - - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - b3AlignedObjectArray<b3Aabb> hostAabbsLocalSpace; - clAabbsLocalSpace.copyToHost(hostAabbsLocalSpace); - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - b3AlignedObjectArray<b3Vector3> hostUniqueEdges; - gpuUniqueEdges.copyToHost(hostUniqueEdges); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - b3AlignedObjectArray<b3Int4> hostTriangleConvexPairs; - - b3AlignedObjectArray<b3Contact4> hostContacts; - if (nContacts) - { - contactOut->copyToHost(hostContacts); - } - - b3AlignedObjectArray<b3Contact4> oldHostContacts; - - if (oldContacts->size()) - { - oldContacts->copyToHost(oldHostContacts); - } - - hostContacts.resize(maxContactCapacity); - - for (int i = 0; i < nPairs; i++) - { - int bodyIndexA = hostPairs[i].x; - int bodyIndexB = hostPairs[i].y; - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - computeContactSphereConvex(i, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, &hostBodyBuf[0], - &hostCollidables[0], &hostConvexData[0], &hostVertices[0], &hostIndices[0], &hostFaces[0], &hostContacts[0], nContacts, maxContactCapacity); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - computeContactSphereConvex(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, &hostBodyBuf[0], - &hostCollidables[0], &hostConvexData[0], &hostVertices[0], &hostIndices[0], &hostFaces[0], &hostContacts[0], nContacts, maxContactCapacity); - //printf("convex-sphere\n"); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - computeContactPlaneConvex(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, &hostBodyBuf[0], - &hostCollidables[0], &hostConvexData[0], &hostVertices[0], &hostIndices[0], &hostFaces[0], &hostContacts[0], nContacts, maxContactCapacity); - // printf("convex-plane\n"); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - computeContactPlaneConvex(i, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, &hostBodyBuf[0], - &hostCollidables[0], &hostConvexData[0], &hostVertices[0], &hostIndices[0], &hostFaces[0], &hostContacts[0], nContacts, maxContactCapacity); - // printf("plane-convex\n"); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - computeContactCompoundCompound(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, &hostBodyBuf[0], - &hostCollidables[0], &hostConvexData[0], &cpuChildShapes[0], hostAabbsWorldSpace, hostAabbsLocalSpace, hostVertices, hostUniqueEdges, hostIndices, hostFaces, &hostContacts[0], - nContacts, maxContactCapacity, treeNodesCPU, subTreesCPU, bvhInfoCPU); - // printf("convex-plane\n"); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - computeContactPlaneCompound(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, &hostBodyBuf[0], - &hostCollidables[0], &hostConvexData[0], &cpuChildShapes[0], &hostVertices[0], &hostIndices[0], &hostFaces[0], &hostContacts[0], nContacts, maxContactCapacity); - // printf("convex-plane\n"); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - computeContactPlaneCompound(i, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, &hostBodyBuf[0], - &hostCollidables[0], &hostConvexData[0], &cpuChildShapes[0], &hostVertices[0], &hostIndices[0], &hostFaces[0], &hostContacts[0], nContacts, maxContactCapacity); - // printf("plane-convex\n"); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - //printf("hostPairs[i].z=%d\n",hostPairs[i].z); - int contactIndex = computeContactConvexConvex2(i, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, hostBodyBuf, hostCollidables, hostConvexData, hostVertices, hostUniqueEdges, hostIndices, hostFaces, hostContacts, nContacts, maxContactCapacity, oldHostContacts); - //int contactIndex = computeContactConvexConvex(hostPairs,i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf,hostCollidables,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity,oldHostContacts); - - if (contactIndex >= 0) - { - // printf("convex convex contactIndex = %d\n",contactIndex); - hostPairs[i].z = contactIndex; - } - // printf("plane-convex\n"); - } - } - - if (hostPairs.size()) - { - pairs->copyFromHost(hostPairs); - } - - hostContacts.resize(nContacts); - if (nContacts) - { - contactOut->copyFromHost(hostContacts); - } - else - { - contactOut->resize(0); - } - - m_totalContactsOut.copyFromHostPointer(&nContacts, 1, 0, true); - //printf("(HOST) nContacts = %d\n",nContacts); - -#else - - { - if (nPairs) - { - m_totalContactsOut.copyFromHostPointer(&nContacts, 1, 0, true); - - B3_PROFILE("primitiveContactsKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_primitiveContactsKernel, "m_primitiveContactsKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(nPairs); - launcher.setConst(maxContactCapacity); - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - } - } - -#endif //CHECK_ON_HOST - - B3_PROFILE("computeConvexConvexContactsGPUSAT"); - // printf("nContacts = %d\n",nContacts); - - m_sepNormals.resize(nPairs); - m_hasSeparatingNormals.resize(nPairs); - - int concaveCapacity = maxTriConvexPairCapacity; - m_concaveSepNormals.resize(concaveCapacity); - m_concaveHasSeparatingNormals.resize(concaveCapacity); - m_numConcavePairsOut.resize(0); - m_numConcavePairsOut.push_back(0); - - m_gpuCompoundPairs.resize(compoundPairCapacity); - - m_gpuCompoundSepNormals.resize(compoundPairCapacity); - - m_gpuHasCompoundSepNormals.resize(compoundPairCapacity); - - m_numCompoundPairsOut.resize(0); - m_numCompoundPairsOut.push_back(0); - - int numCompoundPairs = 0; - - int numConcavePairs = 0; - - { - clFinish(m_queue); - if (findSeparatingAxisOnGpu) - { - m_dmins.resize(nPairs); - if (splitSearchSepAxisConvex) - { - if (useMprGpu) - { - nContacts = m_totalContactsOut.at(0); - { - B3_PROFILE("mprPenetrationKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_mprPenetrationKernel, "mprPenetrationKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - - launcher.setConst(maxContactCapacity); - launcher.setConst(nPairs); - - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - /* - b3AlignedObjectArray<int>hostHasSepAxis; - m_hasSeparatingNormals.copyToHost(hostHasSepAxis); - b3AlignedObjectArray<b3Vector3>hostSepAxis; - m_sepNormals.copyToHost(hostSepAxis); - */ - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - // printf("nContacts (after mprPenetrationKernel) = %d\n",nContacts); - if (nContacts > maxContactCapacity) - { - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - } - } - - if (1) - { - if (1) - { - { - B3_PROFILE("findSeparatingAxisVertexFaceKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(m_dmins.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisVertexFaceKernel, "findSeparatingAxisVertexFaceKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(nPairs); - - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - } - - int numDirections = sizeof(unitSphere162) / sizeof(b3Vector3); - - { - B3_PROFILE("findSeparatingAxisEdgeEdgeKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(m_dmins.getBufferCL()), - b3BufferInfoCL(m_unitSphereDirections.getBufferCL(), true) - - }; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisEdgeEdgeKernel, "findSeparatingAxisEdgeEdgeKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(numDirections); - launcher.setConst(nPairs); - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - } - } - if (useMprGpu) - { - B3_PROFILE("findSeparatingAxisUnitSphereKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(m_unitSphereDirections.getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(m_dmins.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisUnitSphereKernel, "findSeparatingAxisUnitSphereKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - int numDirections = sizeof(unitSphere162) / sizeof(b3Vector3); - launcher.setConst(numDirections); - - launcher.setConst(nPairs); - - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - } - } - } - else - { - B3_PROFILE("findSeparatingAxisKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisKernel, "m_findSeparatingAxisKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(nPairs); - - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - } - } - else - { - B3_PROFILE("findSeparatingAxisKernel CPU"); - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexShapeData; - convexData.copyToHost(hostConvexShapeData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - b3AlignedObjectArray<int> hostHasSepAxis; - hostHasSepAxis.resize(nPairs); - b3AlignedObjectArray<b3Vector3> hostSepAxis; - hostSepAxis.resize(nPairs); - - b3AlignedObjectArray<b3Vector3> hostUniqueEdges; - gpuUniqueEdges.copyToHost(hostUniqueEdges); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - - b3AlignedObjectArray<b3Contact4> hostContacts; - if (nContacts) - { - contactOut->copyToHost(hostContacts); - } - hostContacts.resize(maxContactCapacity); - int nGlobalContactsOut = nContacts; - - for (int i = 0; i < nPairs; i++) - { - int bodyIndexA = hostPairs[i].x; - int bodyIndexB = hostPairs[i].y; - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - - int shapeIndexA = hostCollidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = hostCollidables[collidableIndexB].m_shapeIndex; - - hostHasSepAxis[i] = 0; - - //once the broadphase avoids static-static pairs, we can remove this test - if ((hostBodyBuf[bodyIndexA].m_invMass == 0) && (hostBodyBuf[bodyIndexB].m_invMass == 0)) - { - continue; - } - - if ((hostCollidables[collidableIndexA].m_shapeType != SHAPE_CONVEX_HULL) || (hostCollidables[collidableIndexB].m_shapeType != SHAPE_CONVEX_HULL)) - { - continue; - } - - float dmin = FLT_MAX; - - b3ConvexPolyhedronData* convexShapeA = &hostConvexShapeData[shapeIndexA]; - b3ConvexPolyhedronData* convexShapeB = &hostConvexShapeData[shapeIndexB]; - b3Vector3 posA = hostBodyBuf[bodyIndexA].m_pos; - b3Vector3 posB = hostBodyBuf[bodyIndexB].m_pos; - b3Quaternion ornA = hostBodyBuf[bodyIndexA].m_quat; - b3Quaternion ornB = hostBodyBuf[bodyIndexB].m_quat; - - if (useGjk) - { - //first approximate the separating axis, to 'fail-proof' GJK+EPA or MPR - { - b3Vector3 c0local = hostConvexShapeData[shapeIndexA].m_localCenter; - b3Vector3 c0 = b3TransformPoint(c0local, posA, ornA); - b3Vector3 c1local = hostConvexShapeData[shapeIndexB].m_localCenter; - b3Vector3 c1 = b3TransformPoint(c1local, posB, ornB); - b3Vector3 DeltaC2 = c0 - c1; - - b3Vector3 sepAxis; - - bool hasSepAxisA = b3FindSeparatingAxis(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - - if (hasSepAxisA) - { - bool hasSepAxisB = b3FindSeparatingAxis(convexShapeB, convexShapeA, posB, ornB, posA, ornA, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - if (hasSepAxisB) - { - bool hasEdgeEdge = b3FindSeparatingAxisEdgeEdge(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin, false); - - if (hasEdgeEdge) - { - hostHasSepAxis[i] = 1; - hostSepAxis[i] = sepAxis; - hostSepAxis[i].w = dmin; - } - } - } - } - - if (hostHasSepAxis[i]) - { - int pairIndex = i; - - bool useMpr = true; - if (useMpr) - { - int res = 0; - float depth = 0.f; - b3Vector3 sepAxis2 = b3MakeVector3(1, 0, 0); - b3Vector3 resultPointOnBWorld = b3MakeVector3(0, 0, 0); - - float depthOut; - b3Vector3 dirOut; - b3Vector3 posOut; - - //res = b3MprPenetration(bodyIndexA,bodyIndexB,hostBodyBuf,hostConvexShapeData,hostCollidables,hostVertices,&mprConfig,&depthOut,&dirOut,&posOut); - res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB, &hostBodyBuf[0], &hostConvexShapeData[0], &hostCollidables[0], &hostVertices[0], &hostSepAxis[0], &hostHasSepAxis[0], &depthOut, &dirOut, &posOut); - depth = depthOut; - sepAxis2 = b3MakeVector3(-dirOut.x, -dirOut.y, -dirOut.z); - resultPointOnBWorld = posOut; - //hostHasSepAxis[i] = 0; - - if (res == 0) - { - //add point? - //printf("depth = %f\n",depth); - //printf("normal = %f,%f,%f\n",dir.v[0],dir.v[1],dir.v[2]); - //qprintf("pos = %f,%f,%f\n",pos.v[0],pos.v[1],pos.v[2]); - - float dist = 0.f; - - const b3ConvexPolyhedronData& hullA = hostConvexShapeData[hostCollidables[hostBodyBuf[bodyIndexA].m_collidableIdx].m_shapeIndex]; - const b3ConvexPolyhedronData& hullB = hostConvexShapeData[hostCollidables[hostBodyBuf[bodyIndexB].m_collidableIdx].m_shapeIndex]; - - if (b3TestSepAxis(&hullA, &hullB, posA, ornA, posB, ornB, &sepAxis2, &hostVertices[0], &hostVertices[0], &dist)) - { - if (depth > dist) - { - float diff = depth - dist; - - static float maxdiff = 0.f; - if (maxdiff < diff) - { - maxdiff = diff; - printf("maxdiff = %20.10f\n", maxdiff); - } - } - } - if (depth > dmin) - { - b3Vector3 oldAxis = hostSepAxis[i]; - depth = dmin; - sepAxis2 = oldAxis; - } - - if (b3TestSepAxis(&hullA, &hullB, posA, ornA, posB, ornB, &sepAxis2, &hostVertices[0], &hostVertices[0], &dist)) - { - if (depth > dist) - { - float diff = depth - dist; - //printf("?diff = %f\n",diff ); - static float maxdiff = 0.f; - if (maxdiff < diff) - { - maxdiff = diff; - printf("maxdiff = %20.10f\n", maxdiff); - } - } - //this is used for SAT - //hostHasSepAxis[i] = 1; - //hostSepAxis[i] = sepAxis2; - - //add contact point - - //int contactIndex = nGlobalContactsOut; - b3Contact4& newContact = hostContacts.at(nGlobalContactsOut); - nGlobalContactsOut++; - newContact.m_batchIdx = 0; //i; - newContact.m_bodyAPtrAndSignBit = (hostBodyBuf.at(bodyIndexA).m_invMass == 0) ? -bodyIndexA : bodyIndexA; - newContact.m_bodyBPtrAndSignBit = (hostBodyBuf.at(bodyIndexB).m_invMass == 0) ? -bodyIndexB : bodyIndexB; - - newContact.m_frictionCoeffCmp = 45874; - newContact.m_restituitionCoeffCmp = 0; - - static float maxDepth = 0.f; - - if (depth > maxDepth) - { - maxDepth = depth; - printf("MPR maxdepth = %f\n", maxDepth); - } - - resultPointOnBWorld.w = -depth; - newContact.m_worldPosB[0] = resultPointOnBWorld; - //b3Vector3 resultPointOnAWorld = resultPointOnBWorld+depth*sepAxis2; - newContact.m_worldNormalOnB = sepAxis2; - newContact.m_worldNormalOnB.w = (b3Scalar)1; - } - else - { - printf("rejected\n"); - } - } - } - else - { - //int contactIndex = computeContactConvexConvex2( i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf, hostCollidables,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity,oldHostContacts); - b3AlignedObjectArray<b3Contact4> oldHostContacts; - int result; - result = computeContactConvexConvex2( //hostPairs, - pairIndex, - bodyIndexA, bodyIndexB, - collidableIndexA, collidableIndexB, - hostBodyBuf, - hostCollidables, - hostConvexShapeData, - hostVertices, - hostUniqueEdges, - hostIndices, - hostFaces, - hostContacts, - nGlobalContactsOut, - maxContactCapacity, - oldHostContacts - //hostHasSepAxis, - //hostSepAxis - - ); - } //mpr - } //hostHasSepAxis[i] = 1; - } - else - { - b3Vector3 c0local = hostConvexShapeData[shapeIndexA].m_localCenter; - b3Vector3 c0 = b3TransformPoint(c0local, posA, ornA); - b3Vector3 c1local = hostConvexShapeData[shapeIndexB].m_localCenter; - b3Vector3 c1 = b3TransformPoint(c1local, posB, ornB); - b3Vector3 DeltaC2 = c0 - c1; - - b3Vector3 sepAxis; - - bool hasSepAxisA = b3FindSeparatingAxis(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - - if (hasSepAxisA) - { - bool hasSepAxisB = b3FindSeparatingAxis(convexShapeB, convexShapeA, posB, ornB, posA, ornA, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - if (hasSepAxisB) - { - bool hasEdgeEdge = b3FindSeparatingAxisEdgeEdge(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin, true); - - if (hasEdgeEdge) - { - hostHasSepAxis[i] = 1; - hostSepAxis[i] = sepAxis; - } - } - } - } - } - - if (useGjkContacts) //nGlobalContactsOut>0) - { - //printf("nGlobalContactsOut=%d\n",nGlobalContactsOut); - nContacts = nGlobalContactsOut; - contactOut->copyFromHost(hostContacts); - - m_totalContactsOut.copyFromHostPointer(&nContacts, 1, 0, true); - } - - m_hasSeparatingNormals.copyFromHost(hostHasSepAxis); - m_sepNormals.copyFromHost(hostSepAxis); - - /* - //double-check results from GPU (comment-out the 'else' so both paths are executed - b3AlignedObjectArray<int> checkHasSepAxis; - m_hasSeparatingNormals.copyToHost(checkHasSepAxis); - static int frameCount = 0; - frameCount++; - for (int i=0;i<nPairs;i++) - { - if (hostHasSepAxis[i] != checkHasSepAxis[i]) - { - printf("at frameCount %d hostHasSepAxis[%d] = %d but checkHasSepAxis[i] = %d\n", - frameCount,i,hostHasSepAxis[i],checkHasSepAxis[i]); - } - } - //m_hasSeparatingNormals.copyFromHost(hostHasSepAxis); - // m_sepNormals.copyFromHost(hostSepAxis); - */ - } - - numCompoundPairs = m_numCompoundPairsOut.at(0); - bool useGpuFindCompoundPairs = true; - if (useGpuFindCompoundPairs) - { - B3_PROFILE("findCompoundPairsKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(clAabbsLocalSpace.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(m_gpuCompoundPairs.getBufferCL()), - b3BufferInfoCL(m_numCompoundPairsOut.getBufferCL()), - b3BufferInfoCL(subTreesGPU->getBufferCL()), - b3BufferInfoCL(treeNodesGPU->getBufferCL()), - b3BufferInfoCL(bvhInfo->getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findCompoundPairsKernel, "m_findCompoundPairsKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(nPairs); - launcher.setConst(compoundPairCapacity); - - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - - numCompoundPairs = m_numCompoundPairsOut.at(0); - //printf("numCompoundPairs =%d\n",numCompoundPairs ); - if (numCompoundPairs) - { - //printf("numCompoundPairs=%d\n",numCompoundPairs); - } - } - else - { - b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU; - treeNodesGPU->copyToHost(treeNodesCPU); - - b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU; - subTreesGPU->copyToHost(subTreesCPU); - - b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU; - bvhInfo->copyToHost(bvhInfoCPU); - - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - b3AlignedObjectArray<b3Aabb> hostAabbsLocalSpace; - clAabbsLocalSpace.copyToHost(hostAabbsLocalSpace); - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - b3AlignedObjectArray<b3Int4> cpuCompoundPairsOut; - cpuCompoundPairsOut.resize(compoundPairCapacity); - - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - for (int pairIndex = 0; pairIndex < nPairs; pairIndex++) - { - int bodyIndexA = hostPairs[pairIndex].x; - int bodyIndexB = hostPairs[pairIndex].y; - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - if (cpuChildShapes.size()) - { - findCompoundPairsKernel( - pairIndex, - bodyIndexA, - bodyIndexB, - collidableIndexA, - collidableIndexB, - &hostBodyBuf[0], - &hostCollidables[0], - &hostConvexData[0], - hostVertices, - hostAabbsWorldSpace, - hostAabbsLocalSpace, - &cpuChildShapes[0], - &cpuCompoundPairsOut[0], - &numCompoundPairs, - compoundPairCapacity, - treeNodesCPU, - subTreesCPU, - bvhInfoCPU); - } - } - - m_numCompoundPairsOut.copyFromHostPointer(&numCompoundPairs, 1, 0, true); - if (numCompoundPairs) - { - b3CompoundOverlappingPair* ptr = (b3CompoundOverlappingPair*)&cpuCompoundPairsOut[0]; - m_gpuCompoundPairs.copyFromHostPointer(ptr, numCompoundPairs, 0, true); - } - //cpuCompoundPairsOut - } - if (numCompoundPairs) - { - printf("numCompoundPairs=%d\n", numCompoundPairs); - } - - if (numCompoundPairs > compoundPairCapacity) - { - b3Error("Exceeded compound pair capacity (%d/%d)\n", numCompoundPairs, compoundPairCapacity); - numCompoundPairs = compoundPairCapacity; - } - - m_gpuCompoundPairs.resize(numCompoundPairs); - m_gpuHasCompoundSepNormals.resize(numCompoundPairs); - m_gpuCompoundSepNormals.resize(numCompoundPairs); - - if (numCompoundPairs) - { - B3_PROFILE("processCompoundPairsPrimitivesKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL(m_gpuCompoundPairs.getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_processCompoundPairsPrimitivesKernel, "m_processCompoundPairsPrimitivesKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(numCompoundPairs); - launcher.setConst(maxContactCapacity); - - int num = numCompoundPairs; - launcher.launch1D(num); - clFinish(m_queue); - nContacts = m_totalContactsOut.at(0); - //printf("nContacts (after processCompoundPairsPrimitivesKernel) = %d\n",nContacts); - if (nContacts > maxContactCapacity) - { - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - } - - if (numCompoundPairs) - { - B3_PROFILE("processCompoundPairsKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL(m_gpuCompoundPairs.getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(m_gpuCompoundSepNormals.getBufferCL()), - b3BufferInfoCL(m_gpuHasCompoundSepNormals.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_processCompoundPairsKernel, "m_processCompoundPairsKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(numCompoundPairs); - - int num = numCompoundPairs; - launcher.launch1D(num); - clFinish(m_queue); - } - - //printf("numConcave = %d\n",numConcave); - - // printf("hostNormals.size()=%d\n",hostNormals.size()); - //int numPairs = pairCount.at(0); - } - int vertexFaceCapacity = 64; - - { - //now perform the tree query on GPU - - if (treeNodesGPU->size() && treeNodesGPU->size()) - { - if (bvhTraversalKernelGPU) - { - B3_PROFILE("m_bvhTraversalKernel"); - - numConcavePairs = m_numConcavePairsOut.at(0); - - b3LauncherCL launcher(m_queue, m_bvhTraversalKernel, "m_bvhTraversalKernel"); - launcher.setBuffer(pairs->getBufferCL()); - launcher.setBuffer(bodyBuf->getBufferCL()); - launcher.setBuffer(gpuCollidables.getBufferCL()); - launcher.setBuffer(clAabbsWorldSpace.getBufferCL()); - launcher.setBuffer(triangleConvexPairsOut.getBufferCL()); - launcher.setBuffer(m_numConcavePairsOut.getBufferCL()); - launcher.setBuffer(subTreesGPU->getBufferCL()); - launcher.setBuffer(treeNodesGPU->getBufferCL()); - launcher.setBuffer(bvhInfo->getBufferCL()); - - launcher.setConst(nPairs); - launcher.setConst(maxTriConvexPairCapacity); - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - numConcavePairs = m_numConcavePairsOut.at(0); - } - else - { - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - //int maxTriConvexPairCapacity, - b3AlignedObjectArray<b3Int4> triangleConvexPairsOutHost; - triangleConvexPairsOutHost.resize(maxTriConvexPairCapacity); - - //int numTriConvexPairsOutHost=0; - numConcavePairs = 0; - //m_numConcavePairsOut - - b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU; - treeNodesGPU->copyToHost(treeNodesCPU); - b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU; - subTreesGPU->copyToHost(subTreesCPU); - b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU; - bvhInfo->copyToHost(bvhInfoCPU); - //compute it... - - volatile int hostNumConcavePairsOut = 0; - - // - for (int i = 0; i < nPairs; i++) - { - b3BvhTraversal(&hostPairs.at(0), - &hostBodyBuf.at(0), - &hostCollidables.at(0), - &hostAabbsWorldSpace.at(0), - &triangleConvexPairsOutHost.at(0), - &hostNumConcavePairsOut, - &subTreesCPU.at(0), - &treeNodesCPU.at(0), - &bvhInfoCPU.at(0), - nPairs, - maxTriConvexPairCapacity, - i); - } - numConcavePairs = hostNumConcavePairsOut; - - if (hostNumConcavePairsOut) - { - triangleConvexPairsOutHost.resize(hostNumConcavePairsOut); - triangleConvexPairsOut.copyFromHost(triangleConvexPairsOutHost); - } - // - - m_numConcavePairsOut.resize(0); - m_numConcavePairsOut.push_back(numConcavePairs); - } - - //printf("numConcavePairs=%d (max = %d\n",numConcavePairs,maxTriConvexPairCapacity); - - if (numConcavePairs > maxTriConvexPairCapacity) - { - static int exceeded_maxTriConvexPairCapacity_count = 0; - b3Error("Exceeded the maxTriConvexPairCapacity (found %d but max is %d, it happened %d times)\n", - numConcavePairs, maxTriConvexPairCapacity, exceeded_maxTriConvexPairCapacity_count++); - numConcavePairs = maxTriConvexPairCapacity; - } - triangleConvexPairsOut.resize(numConcavePairs); - - if (numConcavePairs) - { - clippingFacesOutGPU.resize(numConcavePairs); - worldNormalsAGPU.resize(numConcavePairs); - worldVertsA1GPU.resize(vertexFaceCapacity * (numConcavePairs)); - worldVertsB1GPU.resize(vertexFaceCapacity * (numConcavePairs)); - - if (findConcaveSeparatingAxisKernelGPU) - { - /* - m_concaveHasSeparatingNormals.copyFromHost(concaveHasSeparatingNormalsCPU); - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsA1GPU.copyFromHost(worldVertsA1CPU); - worldNormalsAGPU.copyFromHost(worldNormalsACPU); - worldVertsB1GPU.copyFromHost(worldVertsB1CPU); - */ - - //now perform a SAT test for each triangle-convex element (stored in triangleConvexPairsOut) - if (splitSearchSepAxisConcave) - { - //printf("numConcavePairs = %d\n",numConcavePairs); - m_dmins.resize(numConcavePairs); - { - B3_PROFILE("findConcaveSeparatingAxisVertexFaceKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(triangleConvexPairsOut.getBufferCL()), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL(m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL(m_dmins.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisVertexFaceKernel, "m_findConcaveSeparatingAxisVertexFaceKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(numConcavePairs); - - int num = numConcavePairs; - launcher.launch1D(num); - clFinish(m_queue); - } - // numConcavePairs = 0; - if (1) - { - B3_PROFILE("findConcaveSeparatingAxisEdgeEdgeKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(triangleConvexPairsOut.getBufferCL()), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL(m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL(m_dmins.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisEdgeEdgeKernel, "m_findConcaveSeparatingAxisEdgeEdgeKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(numConcavePairs); - - int num = numConcavePairs; - launcher.launch1D(num); - clFinish(m_queue); - } - - // numConcavePairs = 0; - } - else - { - B3_PROFILE("findConcaveSeparatingAxisKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(triangleConvexPairsOut.getBufferCL()), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL(m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisKernel, "m_findConcaveSeparatingAxisKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(numConcavePairs); - - int num = numConcavePairs; - launcher.launch1D(num); - clFinish(m_queue); - } - } - else - { - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - b3AlignedObjectArray<b3Vector3> worldVertsA1CPU; - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - b3AlignedObjectArray<int> concaveHasSeparatingNormalsCPU; - - b3AlignedObjectArray<b3Int4> triangleConvexPairsOutHost; - triangleConvexPairsOut.copyToHost(triangleConvexPairsOutHost); - //triangleConvexPairsOutHost.resize(maxTriConvexPairCapacity); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - b3AlignedObjectArray<b3Vector3> hostUniqueEdges; - gpuUniqueEdges.copyToHost(hostUniqueEdges); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - b3AlignedObjectArray<b3Vector3> concaveSepNormalsHost; - m_concaveSepNormals.copyToHost(concaveSepNormalsHost); - concaveHasSeparatingNormalsCPU.resize(concaveSepNormalsHost.size()); - - b3GpuChildShape* childShapePointerCPU = 0; - if (cpuChildShapes.size()) - childShapePointerCPU = &cpuChildShapes.at(0); - - clippingFacesOutCPU.resize(clippingFacesOutGPU.size()); - worldVertsA1CPU.resize(worldVertsA1GPU.size()); - worldNormalsACPU.resize(worldNormalsAGPU.size()); - worldVertsB1CPU.resize(worldVertsB1GPU.size()); - - for (int i = 0; i < numConcavePairs; i++) - { - b3FindConcaveSeparatingAxisKernel(&triangleConvexPairsOutHost.at(0), - &hostBodyBuf.at(0), - &hostCollidables.at(0), - &hostConvexData.at(0), &hostVertices.at(0), &hostUniqueEdges.at(0), - &hostFaces.at(0), &hostIndices.at(0), childShapePointerCPU, - &hostAabbsWorldSpace.at(0), - &concaveSepNormalsHost.at(0), - &clippingFacesOutCPU.at(0), - &worldVertsA1CPU.at(0), - &worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - &concaveHasSeparatingNormalsCPU.at(0), - vertexFaceCapacity, - numConcavePairs, i); - }; - - m_concaveSepNormals.copyFromHost(concaveSepNormalsHost); - m_concaveHasSeparatingNormals.copyFromHost(concaveHasSeparatingNormalsCPU); - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsA1GPU.copyFromHost(worldVertsA1CPU); - worldNormalsAGPU.copyFromHost(worldNormalsACPU); - worldVertsB1GPU.copyFromHost(worldVertsB1CPU); - } - // b3AlignedObjectArray<b3Vector3> cpuCompoundSepNormals; - // m_concaveSepNormals.copyToHost(cpuCompoundSepNormals); - // b3AlignedObjectArray<b3Int4> cpuConcavePairs; - // triangleConvexPairsOut.copyToHost(cpuConcavePairs); - } - } - } - - if (numConcavePairs) - { - if (numConcavePairs) - { - B3_PROFILE("findConcaveSphereContactsKernel"); - nContacts = m_totalContactsOut.at(0); - // printf("nContacts1 = %d\n",nContacts); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(triangleConvexPairsOut.getBufferCL()), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(clAabbsWorldSpace.getBufferCL(), true), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findConcaveSphereContactsKernel, "m_findConcaveSphereContactsKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - - launcher.setConst(numConcavePairs); - launcher.setConst(maxContactCapacity); - - int num = numConcavePairs; - launcher.launch1D(num); - clFinish(m_queue); - nContacts = m_totalContactsOut.at(0); - //printf("nContacts (after findConcaveSphereContactsKernel) = %d\n",nContacts); - - //printf("nContacts2 = %d\n",nContacts); - - if (nContacts >= maxContactCapacity) - { - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - } - } - -#ifdef __APPLE__ - bool contactClippingOnGpu = true; -#else - bool contactClippingOnGpu = true; -#endif - - if (contactClippingOnGpu) - { - m_totalContactsOut.copyFromHostPointer(&nContacts, 1, 0, true); - // printf("nContacts3 = %d\n",nContacts); - - //B3_PROFILE("clipHullHullKernel"); - - bool breakupConcaveConvexKernel = true; - -#ifdef __APPLE__ - //actually, some Apple OpenCL platform/device combinations work fine... - breakupConcaveConvexKernel = true; -#endif - //concave-convex contact clipping - if (numConcavePairs) - { - // printf("numConcavePairs = %d\n", numConcavePairs); - // nContacts = m_totalContactsOut.at(0); - // printf("nContacts before = %d\n", nContacts); - - if (breakupConcaveConvexKernel) - { - worldVertsB2GPU.resize(vertexFaceCapacity * numConcavePairs); - - //clipFacesAndFindContacts - - if (clipConcaveFacesAndFindContactsCPU) - { - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - b3AlignedObjectArray<b3Vector3> worldVertsA1CPU; - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - - clippingFacesOutGPU.copyToHost(clippingFacesOutCPU); - worldVertsA1GPU.copyToHost(worldVertsA1CPU); - worldNormalsAGPU.copyToHost(worldNormalsACPU); - worldVertsB1GPU.copyToHost(worldVertsB1CPU); - - b3AlignedObjectArray<int> concaveHasSeparatingNormalsCPU; - m_concaveHasSeparatingNormals.copyToHost(concaveHasSeparatingNormalsCPU); - - b3AlignedObjectArray<b3Vector3> concaveSepNormalsHost; - m_concaveSepNormals.copyToHost(concaveSepNormalsHost); - - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - worldVertsB2CPU.resize(worldVertsB2GPU.size()); - - for (int i = 0; i < numConcavePairs; i++) - { - clipFacesAndFindContactsKernel(&concaveSepNormalsHost.at(0), - &concaveHasSeparatingNormalsCPU.at(0), - &clippingFacesOutCPU.at(0), - &worldVertsA1CPU.at(0), - &worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - &worldVertsB2CPU.at(0), - vertexFaceCapacity, - i); - } - - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsB2GPU.copyFromHost(worldVertsB2CPU); - } - else - { - if (1) - { - B3_PROFILE("clipFacesAndFindContacts"); - //nContacts = m_totalContactsOut.at(0); - //int h = m_hasSeparatingNormals.at(0); - //int4 p = clippingFacesOutGPU.at(0); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL(m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL(worldVertsB2GPU.getBufferCL())}; - b3LauncherCL launcher(m_queue, m_clipFacesAndFindContacts, "m_clipFacesAndFindContacts"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - - launcher.setConst(numConcavePairs); - int debugMode = 0; - launcher.setConst(debugMode); - int num = numConcavePairs; - launcher.launch1D(num); - clFinish(m_queue); - //int bla = m_totalContactsOut.at(0); - } - } - //contactReduction - { - int newContactCapacity = nContacts + numConcavePairs; - contactOut->reserve(newContactCapacity); - if (reduceConcaveContactsOnGPU) - { - // printf("newReservation = %d\n",newReservation); - { - B3_PROFILE("newContactReductionKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL(triangleConvexPairsOut.getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL(m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB2GPU.getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_newContactReductionKernel, "m_newContactReductionKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(newContactCapacity); - launcher.setConst(numConcavePairs); - int num = numConcavePairs; - - launcher.launch1D(num); - } - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - - //printf("contactOut4 (after newContactReductionKernel) = %d\n",nContacts); - } - else - { - volatile int nGlobalContactsOut = nContacts; - b3AlignedObjectArray<b3Int4> triangleConvexPairsOutHost; - triangleConvexPairsOut.copyToHost(triangleConvexPairsOutHost); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - b3AlignedObjectArray<int> concaveHasSeparatingNormalsCPU; - m_concaveHasSeparatingNormals.copyToHost(concaveHasSeparatingNormalsCPU); - - b3AlignedObjectArray<b3Vector3> concaveSepNormalsHost; - m_concaveSepNormals.copyToHost(concaveSepNormalsHost); - - b3AlignedObjectArray<b3Contact4> hostContacts; - if (nContacts) - { - contactOut->copyToHost(hostContacts); - } - hostContacts.resize(newContactCapacity); - - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - - clippingFacesOutGPU.copyToHost(clippingFacesOutCPU); - worldVertsB2GPU.copyToHost(worldVertsB2CPU); - - for (int i = 0; i < numConcavePairs; i++) - { - b3NewContactReductionKernel(&triangleConvexPairsOutHost.at(0), - &hostBodyBuf.at(0), - &concaveSepNormalsHost.at(0), - &concaveHasSeparatingNormalsCPU.at(0), - &hostContacts.at(0), - &clippingFacesOutCPU.at(0), - &worldVertsB2CPU.at(0), - &nGlobalContactsOut, - vertexFaceCapacity, - newContactCapacity, - numConcavePairs, - i); - } - - nContacts = nGlobalContactsOut; - m_totalContactsOut.copyFromHostPointer(&nContacts, 1, 0, true); - // nContacts = m_totalContactsOut.at(0); - //contactOut->resize(nContacts); - hostContacts.resize(nContacts); - //printf("contactOut4 (after newContactReductionKernel) = %d\n",nContacts); - contactOut->copyFromHost(hostContacts); - } - } - //re-use? - } - else - { - B3_PROFILE("clipHullHullConcaveConvexKernel"); - nContacts = m_totalContactsOut.at(0); - int newContactCapacity = contactOut->capacity(); - - //printf("contactOut5 = %d\n",nContacts); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(triangleConvexPairsOut.getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - b3LauncherCL launcher(m_queue, m_clipHullHullConcaveConvexKernel, "m_clipHullHullConcaveConvexKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(newContactCapacity); - launcher.setConst(numConcavePairs); - int num = numConcavePairs; - launcher.launch1D(num); - clFinish(m_queue); - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - //printf("contactOut6 = %d\n",nContacts); - b3AlignedObjectArray<b3Contact4> cpuContacts; - contactOut->copyToHost(cpuContacts); - } - // printf("nContacts after = %d\n", nContacts); - } //numConcavePairs - - //convex-convex contact clipping - - bool breakupKernel = false; - -#ifdef __APPLE__ - breakupKernel = true; -#endif - -#ifdef CHECK_ON_HOST - bool computeConvexConvex = false; -#else - bool computeConvexConvex = true; -#endif //CHECK_ON_HOST - if (computeConvexConvex) - { - B3_PROFILE("clipHullHullKernel"); - if (breakupKernel) - { - worldVertsB1GPU.resize(vertexFaceCapacity * nPairs); - clippingFacesOutGPU.resize(nPairs); - worldNormalsAGPU.resize(nPairs); - worldVertsA1GPU.resize(vertexFaceCapacity * nPairs); - worldVertsB2GPU.resize(vertexFaceCapacity * nPairs); - - if (findConvexClippingFacesGPU) - { - B3_PROFILE("findClippingFacesKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_findClippingFacesKernel, "m_findClippingFacesKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(nPairs); - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - } - else - { - float minDist = -1e30f; - float maxDist = 0.02f; - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<int> hostHasSepNormals; - m_hasSeparatingNormals.copyToHost(hostHasSepNormals); - b3AlignedObjectArray<b3Vector3> cpuSepNormals; - m_sepNormals.copyToHost(cpuSepNormals); - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - //worldVertsB1GPU.resize(vertexFaceCapacity*nPairs); - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - worldVertsB1GPU.copyToHost(worldVertsB1CPU); - - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - clippingFacesOutGPU.copyToHost(clippingFacesOutCPU); - - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - worldNormalsACPU.resize(nPairs); - - b3AlignedObjectArray<b3Vector3> worldVertsA1CPU; - worldVertsA1CPU.resize(worldVertsA1GPU.size()); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - - for (int i = 0; i < nPairs; i++) - { - int bodyIndexA = hostPairs[i].x; - int bodyIndexB = hostPairs[i].y; - - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - - int shapeIndexA = hostCollidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = hostCollidables[collidableIndexB].m_shapeIndex; - - if (hostHasSepNormals[i]) - { - b3FindClippingFaces(cpuSepNormals[i], - &hostConvexData[shapeIndexA], - &hostConvexData[shapeIndexB], - hostBodyBuf[bodyIndexA].m_pos, hostBodyBuf[bodyIndexA].m_quat, - hostBodyBuf[bodyIndexB].m_pos, hostBodyBuf[bodyIndexB].m_quat, - &worldVertsA1CPU.at(0), &worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - vertexFaceCapacity, minDist, maxDist, - &hostVertices.at(0), &hostFaces.at(0), - &hostIndices.at(0), - &hostVertices.at(0), &hostFaces.at(0), - &hostIndices.at(0), &clippingFacesOutCPU.at(0), i); - } - } - - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsA1GPU.copyFromHost(worldVertsA1CPU); - worldNormalsAGPU.copyFromHost(worldNormalsACPU); - worldVertsB1GPU.copyFromHost(worldVertsB1CPU); - } - - ///clip face B against face A, reduce contacts and append them to a global contact array - if (1) - { - if (clipConvexFacesAndFindContactsCPU) - { - //b3AlignedObjectArray<b3Int4> hostPairs; - //pairs->copyToHost(hostPairs); - - b3AlignedObjectArray<b3Vector3> hostSepNormals; - m_sepNormals.copyToHost(hostSepNormals); - b3AlignedObjectArray<int> hostHasSepAxis; - m_hasSeparatingNormals.copyToHost(hostHasSepAxis); - - b3AlignedObjectArray<b3Int4> hostClippingFaces; - clippingFacesOutGPU.copyToHost(hostClippingFaces); - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - worldVertsB2CPU.resize(vertexFaceCapacity * nPairs); - - b3AlignedObjectArray<b3Vector3> worldVertsA1CPU; - worldVertsA1GPU.copyToHost(worldVertsA1CPU); - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - worldNormalsAGPU.copyToHost(worldNormalsACPU); - - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - worldVertsB1GPU.copyToHost(worldVertsB1CPU); - - /* - __global const b3Float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global b3Int4* clippingFacesOut, - __global b3Float4* worldVertsA1, - __global b3Float4* worldNormalsA1, - __global b3Float4* worldVertsB1, - __global b3Float4* worldVertsB2, - int vertexFaceCapacity, - int pairIndex - */ - for (int i = 0; i < nPairs; i++) - { - clipFacesAndFindContactsKernel( - &hostSepNormals.at(0), - &hostHasSepAxis.at(0), - &hostClippingFaces.at(0), - &worldVertsA1CPU.at(0), - &worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - &worldVertsB2CPU.at(0), - - vertexFaceCapacity, - i); - } - - clippingFacesOutGPU.copyFromHost(hostClippingFaces); - worldVertsB2GPU.copyFromHost(worldVertsB2CPU); - } - else - { - B3_PROFILE("clipFacesAndFindContacts"); - //nContacts = m_totalContactsOut.at(0); - //int h = m_hasSeparatingNormals.at(0); - //int4 p = clippingFacesOutGPU.at(0); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL(worldVertsB2GPU.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_clipFacesAndFindContacts, "m_clipFacesAndFindContacts"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - - launcher.setConst(nPairs); - int debugMode = 0; - launcher.setConst(debugMode); - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - } - - { - nContacts = m_totalContactsOut.at(0); - //printf("nContacts = %d\n",nContacts); - - int newContactCapacity = nContacts + nPairs; - contactOut->reserve(newContactCapacity); - - if (reduceConvexContactsOnGPU) - { - { - B3_PROFILE("newContactReductionKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB2GPU.getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - - b3LauncherCL launcher(m_queue, m_newContactReductionKernel, "m_newContactReductionKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(newContactCapacity); - launcher.setConst(nPairs); - int num = nPairs; - - launcher.launch1D(num); - } - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - } - else - { - volatile int nGlobalContactsOut = nContacts; - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - b3AlignedObjectArray<b3Vector3> hostSepNormals; - m_sepNormals.copyToHost(hostSepNormals); - b3AlignedObjectArray<int> hostHasSepAxis; - m_hasSeparatingNormals.copyToHost(hostHasSepAxis); - b3AlignedObjectArray<b3Contact4> hostContactsOut; - contactOut->copyToHost(hostContactsOut); - hostContactsOut.resize(newContactCapacity); - - b3AlignedObjectArray<b3Int4> hostClippingFaces; - clippingFacesOutGPU.copyToHost(hostClippingFaces); - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - worldVertsB2GPU.copyToHost(worldVertsB2CPU); - - for (int i = 0; i < nPairs; i++) - { - b3NewContactReductionKernel(&hostPairs.at(0), - &hostBodyBuf.at(0), - &hostSepNormals.at(0), - &hostHasSepAxis.at(0), - &hostContactsOut.at(0), - &hostClippingFaces.at(0), - &worldVertsB2CPU.at(0), - &nGlobalContactsOut, - vertexFaceCapacity, - newContactCapacity, - nPairs, - i); - } - - nContacts = nGlobalContactsOut; - m_totalContactsOut.copyFromHostPointer(&nContacts, 1, 0, true); - hostContactsOut.resize(nContacts); - //printf("contactOut4 (after newContactReductionKernel) = %d\n",nContacts); - contactOut->copyFromHost(hostContactsOut); - } - // b3Contact4 pt = contactOut->at(0); - // printf("nContacts = %d\n",nContacts); - } - } - } - else //breakupKernel - { - if (nPairs) - { - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(pairs->getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(m_sepNormals.getBufferCL()), - b3BufferInfoCL(m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - b3LauncherCL launcher(m_queue, m_clipHullHullKernel, "m_clipHullHullKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(nPairs); - launcher.setConst(maxContactCapacity); - - int num = nPairs; - launcher.launch1D(num); - clFinish(m_queue); - - nContacts = m_totalContactsOut.at(0); - if (nContacts >= maxContactCapacity) - { - b3Error("Exceeded contact capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - contactOut->resize(nContacts); - } - } - - int nCompoundsPairs = m_gpuCompoundPairs.size(); - - if (nCompoundsPairs) - { - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL(m_gpuCompoundPairs.getBufferCL(), true), - b3BufferInfoCL(bodyBuf->getBufferCL(), true), - b3BufferInfoCL(gpuCollidables.getBufferCL(), true), - b3BufferInfoCL(convexData.getBufferCL(), true), - b3BufferInfoCL(gpuVertices.getBufferCL(), true), - b3BufferInfoCL(gpuUniqueEdges.getBufferCL(), true), - b3BufferInfoCL(gpuFaces.getBufferCL(), true), - b3BufferInfoCL(gpuIndices.getBufferCL(), true), - b3BufferInfoCL(gpuChildShapes.getBufferCL(), true), - b3BufferInfoCL(m_gpuCompoundSepNormals.getBufferCL(), true), - b3BufferInfoCL(m_gpuHasCompoundSepNormals.getBufferCL(), true), - b3BufferInfoCL(contactOut->getBufferCL()), - b3BufferInfoCL(m_totalContactsOut.getBufferCL())}; - b3LauncherCL launcher(m_queue, m_clipCompoundsHullHullKernel, "m_clipCompoundsHullHullKernel"); - launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); - launcher.setConst(nCompoundsPairs); - launcher.setConst(maxContactCapacity); - - int num = nCompoundsPairs; - launcher.launch1D(num); - clFinish(m_queue); - - nContacts = m_totalContactsOut.at(0); - if (nContacts > maxContactCapacity) - { - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - contactOut->resize(nContacts); - } //if nCompoundsPairs - } - } //contactClippingOnGpu - - //printf("nContacts end = %d\n",nContacts); - - //printf("frameCount = %d\n",frameCount++); -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.h deleted file mode 100644 index 53e8c4ed4d..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.h +++ /dev/null @@ -1,106 +0,0 @@ - -#ifndef _CONVEX_HULL_CONTACT_H -#define _CONVEX_HULL_CONTACT_H - -#include "Bullet3OpenCL/ParallelPrimitives/b3OpenCLArray.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h" -#include "Bullet3Common/b3AlignedObjectArray.h" - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h" -#include "Bullet3Collision/NarrowPhaseCollision/b3Contact4.h" -#include "Bullet3Common/shared/b3Int2.h" -#include "Bullet3Common/shared/b3Int4.h" -#include "b3OptimizedBvh.h" -#include "b3BvhInfo.h" -#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" - -//#include "../../dynamics/basic_demo/Stubs/ChNarrowPhase.h" - -struct GpuSatCollision -{ - cl_context m_context; - cl_device_id m_device; - cl_command_queue m_queue; - cl_kernel m_findSeparatingAxisKernel; - cl_kernel m_mprPenetrationKernel; - cl_kernel m_findSeparatingAxisUnitSphereKernel; - - cl_kernel m_findSeparatingAxisVertexFaceKernel; - cl_kernel m_findSeparatingAxisEdgeEdgeKernel; - - cl_kernel m_findConcaveSeparatingAxisKernel; - cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel; - cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel; - - cl_kernel m_findCompoundPairsKernel; - cl_kernel m_processCompoundPairsKernel; - - cl_kernel m_clipHullHullKernel; - cl_kernel m_clipCompoundsHullHullKernel; - - cl_kernel m_clipFacesAndFindContacts; - cl_kernel m_findClippingFacesKernel; - - cl_kernel m_clipHullHullConcaveConvexKernel; - // cl_kernel m_extractManifoldAndAddContactKernel; - cl_kernel m_newContactReductionKernel; - - cl_kernel m_bvhTraversalKernel; - cl_kernel m_primitiveContactsKernel; - cl_kernel m_findConcaveSphereContactsKernel; - - cl_kernel m_processCompoundPairsPrimitivesKernel; - - b3OpenCLArray<b3Vector3> m_unitSphereDirections; - - b3OpenCLArray<int> m_totalContactsOut; - - b3OpenCLArray<b3Vector3> m_sepNormals; - b3OpenCLArray<float> m_dmins; - - b3OpenCLArray<int> m_hasSeparatingNormals; - b3OpenCLArray<b3Vector3> m_concaveSepNormals; - b3OpenCLArray<int> m_concaveHasSeparatingNormals; - b3OpenCLArray<int> m_numConcavePairsOut; - b3OpenCLArray<b3CompoundOverlappingPair> m_gpuCompoundPairs; - b3OpenCLArray<b3Vector3> m_gpuCompoundSepNormals; - b3OpenCLArray<int> m_gpuHasCompoundSepNormals; - b3OpenCLArray<int> m_numCompoundPairsOut; - - GpuSatCollision(cl_context ctx, cl_device_id device, cl_command_queue q); - virtual ~GpuSatCollision(); - - void computeConvexConvexContactsGPUSAT(b3OpenCLArray<b3Int4>* pairs, int nPairs, - const b3OpenCLArray<b3RigidBodyData>* bodyBuf, - b3OpenCLArray<b3Contact4>* contactOut, int& nContacts, - const b3OpenCLArray<b3Contact4>* oldContacts, - int maxContactCapacity, - int compoundPairCapacity, - const b3OpenCLArray<b3ConvexPolyhedronData>& hostConvexData, - const b3OpenCLArray<b3Vector3>& vertices, - const b3OpenCLArray<b3Vector3>& uniqueEdges, - const b3OpenCLArray<b3GpuFace>& faces, - const b3OpenCLArray<int>& indices, - const b3OpenCLArray<b3Collidable>& gpuCollidables, - const b3OpenCLArray<b3GpuChildShape>& gpuChildShapes, - - const b3OpenCLArray<b3Aabb>& clAabbsWorldSpace, - const b3OpenCLArray<b3Aabb>& clAabbsLocalSpace, - - b3OpenCLArray<b3Vector3>& worldVertsB1GPU, - b3OpenCLArray<b3Int4>& clippingFacesOutGPU, - b3OpenCLArray<b3Vector3>& worldNormalsAGPU, - b3OpenCLArray<b3Vector3>& worldVertsA1GPU, - b3OpenCLArray<b3Vector3>& worldVertsB2GPU, - b3AlignedObjectArray<class b3OptimizedBvh*>& bvhData, - b3OpenCLArray<b3QuantizedBvhNode>* treeNodesGPU, - b3OpenCLArray<b3BvhSubtreeInfo>* subTreesGPU, - b3OpenCLArray<b3BvhInfo>* bvhInfo, - int numObjects, - int maxTriConvexPairCapacity, - b3OpenCLArray<b3Int4>& triangleConvexPairs, - int& numTriConvexPairsOut); -}; - -#endif //_CONVEX_HULL_CONTACT_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexPolyhedronCL.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexPolyhedronCL.h deleted file mode 100644 index c4cf700076..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3ConvexPolyhedronCL.h +++ /dev/null @@ -1,7 +0,0 @@ -#ifndef CONVEX_POLYHEDRON_CL -#define CONVEX_POLYHEDRON_CL - -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" - -#endif //CONVEX_POLYHEDRON_CL diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.cpp deleted file mode 100644 index 974b246f03..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.cpp +++ /dev/null @@ -1,1062 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the -use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it -freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not -claim that you wrote the original software. If you use this software in a -product, an acknowledgment in the product documentation would be appreciated -but is not required. -2. Altered source versions must be plainly marked as such, and must not be -misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -/* -GJK-EPA collision solver by Nathanael Presson, 2008 -*/ - -#include "b3GjkEpa.h" - -#include "b3SupportMappings.h" - -namespace gjkepa2_impl2 -{ -// Config - -/* GJK */ -#define GJK_MAX_ITERATIONS 128 -#define GJK_ACCURACY ((b3Scalar)0.0001) -#define GJK_MIN_DISTANCE ((b3Scalar)0.0001) -#define GJK_DUPLICATED_EPS ((b3Scalar)0.0001) -#define GJK_SIMPLEX2_EPS ((b3Scalar)0.0) -#define GJK_SIMPLEX3_EPS ((b3Scalar)0.0) -#define GJK_SIMPLEX4_EPS ((b3Scalar)0.0) - -/* EPA */ -#define EPA_MAX_VERTICES 64 -#define EPA_MAX_FACES (EPA_MAX_VERTICES * 2) -#define EPA_MAX_ITERATIONS 255 -#define EPA_ACCURACY ((b3Scalar)0.0001) -#define EPA_FALLBACK (10 * EPA_ACCURACY) -#define EPA_PLANE_EPS ((b3Scalar)0.00001) -#define EPA_INSIDE_EPS ((b3Scalar)0.01) - -// Shorthands - -// MinkowskiDiff -struct b3MinkowskiDiff -{ - const b3ConvexPolyhedronData* m_shapes[2]; - - b3Matrix3x3 m_toshape1; - b3Transform m_toshape0; - - bool m_enableMargin; - - void EnableMargin(bool enable) - { - m_enableMargin = enable; - } - inline b3Vector3 Support0(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesA) const - { - if (m_enableMargin) - { - return localGetSupportVertexWithMargin(d, m_shapes[0], verticesA, 0.f); - } - else - { - return localGetSupportVertexWithoutMargin(d, m_shapes[0], verticesA); - } - } - inline b3Vector3 Support1(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesB) const - { - if (m_enableMargin) - { - return m_toshape0 * (localGetSupportVertexWithMargin(m_toshape1 * d, m_shapes[1], verticesB, 0.f)); - } - else - { - return m_toshape0 * (localGetSupportVertexWithoutMargin(m_toshape1 * d, m_shapes[1], verticesB)); - } - } - - inline b3Vector3 Support(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB) const - { - return (Support0(d, verticesA) - Support1(-d, verticesB)); - } - b3Vector3 Support(const b3Vector3& d, unsigned int index, const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB) const - { - if (index) - return (Support1(d, verticesA)); - else - return (Support0(d, verticesB)); - } -}; - -typedef b3MinkowskiDiff tShape; - -// GJK -struct b3GJK -{ - /* Types */ - struct sSV - { - b3Vector3 d, w; - }; - struct sSimplex - { - sSV* c[4]; - b3Scalar p[4]; - unsigned int rank; - }; - struct eStatus - { - enum _ - { - Valid, - Inside, - Failed - }; - }; - /* Fields */ - tShape m_shape; - const b3AlignedObjectArray<b3Vector3>& m_verticesA; - const b3AlignedObjectArray<b3Vector3>& m_verticesB; - b3Vector3 m_ray; - b3Scalar m_distance; - sSimplex m_simplices[2]; - sSV m_store[4]; - sSV* m_free[4]; - unsigned int m_nfree; - unsigned int m_current; - sSimplex* m_simplex; - eStatus::_ m_status; - /* Methods */ - b3GJK(const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB) - : m_verticesA(verticesA), m_verticesB(verticesB) - { - Initialize(); - } - void Initialize() - { - m_ray = b3MakeVector3(0, 0, 0); - m_nfree = 0; - m_status = eStatus::Failed; - m_current = 0; - m_distance = 0; - } - eStatus::_ Evaluate(const tShape& shapearg, const b3Vector3& guess) - { - unsigned int iterations = 0; - b3Scalar sqdist = 0; - b3Scalar alpha = 0; - b3Vector3 lastw[4]; - unsigned int clastw = 0; - /* Initialize solver */ - m_free[0] = &m_store[0]; - m_free[1] = &m_store[1]; - m_free[2] = &m_store[2]; - m_free[3] = &m_store[3]; - m_nfree = 4; - m_current = 0; - m_status = eStatus::Valid; - m_shape = shapearg; - m_distance = 0; - /* Initialize simplex */ - m_simplices[0].rank = 0; - m_ray = guess; - const b3Scalar sqrl = m_ray.length2(); - appendvertice(m_simplices[0], sqrl > 0 ? -m_ray : b3MakeVector3(1, 0, 0)); - m_simplices[0].p[0] = 1; - m_ray = m_simplices[0].c[0]->w; - sqdist = sqrl; - lastw[0] = - lastw[1] = - lastw[2] = - lastw[3] = m_ray; - /* Loop */ - do - { - const unsigned int next = 1 - m_current; - sSimplex& cs = m_simplices[m_current]; - sSimplex& ns = m_simplices[next]; - /* Check zero */ - const b3Scalar rl = m_ray.length(); - if (rl < GJK_MIN_DISTANCE) - { /* Touching or inside */ - m_status = eStatus::Inside; - break; - } - /* Append new vertice in -'v' direction */ - appendvertice(cs, -m_ray); - const b3Vector3& w = cs.c[cs.rank - 1]->w; - bool found = false; - for (unsigned int i = 0; i < 4; ++i) - { - if ((w - lastw[i]).length2() < GJK_DUPLICATED_EPS) - { - found = true; - break; - } - } - if (found) - { /* Return old simplex */ - removevertice(m_simplices[m_current]); - break; - } - else - { /* Update lastw */ - lastw[clastw = (clastw + 1) & 3] = w; - } - /* Check for termination */ - const b3Scalar omega = b3Dot(m_ray, w) / rl; - alpha = b3Max(omega, alpha); - if (((rl - alpha) - (GJK_ACCURACY * rl)) <= 0) - { /* Return old simplex */ - removevertice(m_simplices[m_current]); - break; - } - /* Reduce simplex */ - b3Scalar weights[4]; - unsigned int mask = 0; - switch (cs.rank) - { - case 2: - sqdist = projectorigin(cs.c[0]->w, - cs.c[1]->w, - weights, mask); - break; - case 3: - sqdist = projectorigin(cs.c[0]->w, - cs.c[1]->w, - cs.c[2]->w, - weights, mask); - break; - case 4: - sqdist = projectorigin(cs.c[0]->w, - cs.c[1]->w, - cs.c[2]->w, - cs.c[3]->w, - weights, mask); - break; - } - if (sqdist >= 0) - { /* Valid */ - ns.rank = 0; - m_ray = b3MakeVector3(0, 0, 0); - m_current = next; - for (unsigned int i = 0, ni = cs.rank; i < ni; ++i) - { - if (mask & (1 << i)) - { - ns.c[ns.rank] = cs.c[i]; - ns.p[ns.rank++] = weights[i]; - m_ray += cs.c[i]->w * weights[i]; - } - else - { - m_free[m_nfree++] = cs.c[i]; - } - } - if (mask == 15) m_status = eStatus::Inside; - } - else - { /* Return old simplex */ - removevertice(m_simplices[m_current]); - break; - } - m_status = ((++iterations) < GJK_MAX_ITERATIONS) ? m_status : eStatus::Failed; - } while (m_status == eStatus::Valid); - m_simplex = &m_simplices[m_current]; - switch (m_status) - { - case eStatus::Valid: - m_distance = m_ray.length(); - break; - case eStatus::Inside: - m_distance = 0; - break; - default: - { - } - } - return (m_status); - } - bool EncloseOrigin() - { - switch (m_simplex->rank) - { - case 1: - { - for (unsigned int i = 0; i < 3; ++i) - { - b3Vector3 axis = b3MakeVector3(0, 0, 0); - axis[i] = 1; - appendvertice(*m_simplex, axis); - if (EncloseOrigin()) return (true); - removevertice(*m_simplex); - appendvertice(*m_simplex, -axis); - if (EncloseOrigin()) return (true); - removevertice(*m_simplex); - } - } - break; - case 2: - { - const b3Vector3 d = m_simplex->c[1]->w - m_simplex->c[0]->w; - for (unsigned int i = 0; i < 3; ++i) - { - b3Vector3 axis = b3MakeVector3(0, 0, 0); - axis[i] = 1; - const b3Vector3 p = b3Cross(d, axis); - if (p.length2() > 0) - { - appendvertice(*m_simplex, p); - if (EncloseOrigin()) return (true); - removevertice(*m_simplex); - appendvertice(*m_simplex, -p); - if (EncloseOrigin()) return (true); - removevertice(*m_simplex); - } - } - } - break; - case 3: - { - const b3Vector3 n = b3Cross(m_simplex->c[1]->w - m_simplex->c[0]->w, - m_simplex->c[2]->w - m_simplex->c[0]->w); - if (n.length2() > 0) - { - appendvertice(*m_simplex, n); - if (EncloseOrigin()) return (true); - removevertice(*m_simplex); - appendvertice(*m_simplex, -n); - if (EncloseOrigin()) return (true); - removevertice(*m_simplex); - } - } - break; - case 4: - { - if (b3Fabs(det(m_simplex->c[0]->w - m_simplex->c[3]->w, - m_simplex->c[1]->w - m_simplex->c[3]->w, - m_simplex->c[2]->w - m_simplex->c[3]->w)) > 0) - return (true); - } - break; - } - return (false); - } - /* Internals */ - void getsupport(const b3Vector3& d, sSV& sv) const - { - sv.d = d / d.length(); - sv.w = m_shape.Support(sv.d, m_verticesA, m_verticesB); - } - void removevertice(sSimplex& simplex) - { - m_free[m_nfree++] = simplex.c[--simplex.rank]; - } - void appendvertice(sSimplex& simplex, const b3Vector3& v) - { - simplex.p[simplex.rank] = 0; - simplex.c[simplex.rank] = m_free[--m_nfree]; - getsupport(v, *simplex.c[simplex.rank++]); - } - static b3Scalar det(const b3Vector3& a, const b3Vector3& b, const b3Vector3& c) - { - return (a.y * b.z * c.x + a.z * b.x * c.y - - a.x * b.z * c.y - a.y * b.x * c.z + - a.x * b.y * c.z - a.z * b.y * c.x); - } - static b3Scalar projectorigin(const b3Vector3& a, - const b3Vector3& b, - b3Scalar* w, unsigned int& m) - { - const b3Vector3 d = b - a; - const b3Scalar l = d.length2(); - if (l > GJK_SIMPLEX2_EPS) - { - const b3Scalar t(l > 0 ? -b3Dot(a, d) / l : 0); - if (t >= 1) - { - w[0] = 0; - w[1] = 1; - m = 2; - return (b.length2()); - } - else if (t <= 0) - { - w[0] = 1; - w[1] = 0; - m = 1; - return (a.length2()); - } - else - { - w[0] = 1 - (w[1] = t); - m = 3; - return ((a + d * t).length2()); - } - } - return (-1); - } - static b3Scalar projectorigin(const b3Vector3& a, - const b3Vector3& b, - const b3Vector3& c, - b3Scalar* w, unsigned int& m) - { - static const unsigned int imd3[] = {1, 2, 0}; - const b3Vector3* vt[] = {&a, &b, &c}; - const b3Vector3 dl[] = {a - b, b - c, c - a}; - const b3Vector3 n = b3Cross(dl[0], dl[1]); - const b3Scalar l = n.length2(); - if (l > GJK_SIMPLEX3_EPS) - { - b3Scalar mindist = -1; - b3Scalar subw[2] = {0.f, 0.f}; - unsigned int subm(0); - for (unsigned int i = 0; i < 3; ++i) - { - if (b3Dot(*vt[i], b3Cross(dl[i], n)) > 0) - { - const unsigned int j = imd3[i]; - const b3Scalar subd(projectorigin(*vt[i], *vt[j], subw, subm)); - if ((mindist < 0) || (subd < mindist)) - { - mindist = subd; - m = static_cast<unsigned int>(((subm & 1) ? 1 << i : 0) + ((subm & 2) ? 1 << j : 0)); - w[i] = subw[0]; - w[j] = subw[1]; - w[imd3[j]] = 0; - } - } - } - if (mindist < 0) - { - const b3Scalar d = b3Dot(a, n); - const b3Scalar s = b3Sqrt(l); - const b3Vector3 p = n * (d / l); - mindist = p.length2(); - m = 7; - w[0] = (b3Cross(dl[1], b - p)).length() / s; - w[1] = (b3Cross(dl[2], c - p)).length() / s; - w[2] = 1 - (w[0] + w[1]); - } - return (mindist); - } - return (-1); - } - static b3Scalar projectorigin(const b3Vector3& a, - const b3Vector3& b, - const b3Vector3& c, - const b3Vector3& d, - b3Scalar* w, unsigned int& m) - { - static const unsigned int imd3[] = {1, 2, 0}; - const b3Vector3* vt[] = {&a, &b, &c, &d}; - const b3Vector3 dl[] = {a - d, b - d, c - d}; - const b3Scalar vl = det(dl[0], dl[1], dl[2]); - const bool ng = (vl * b3Dot(a, b3Cross(b - c, a - b))) <= 0; - if (ng && (b3Fabs(vl) > GJK_SIMPLEX4_EPS)) - { - b3Scalar mindist = -1; - b3Scalar subw[3] = {0.f, 0.f, 0.f}; - unsigned int subm(0); - for (unsigned int i = 0; i < 3; ++i) - { - const unsigned int j = imd3[i]; - const b3Scalar s = vl * b3Dot(d, b3Cross(dl[i], dl[j])); - if (s > 0) - { - const b3Scalar subd = projectorigin(*vt[i], *vt[j], d, subw, subm); - if ((mindist < 0) || (subd < mindist)) - { - mindist = subd; - m = static_cast<unsigned int>((subm & 1 ? 1 << i : 0) + - (subm & 2 ? 1 << j : 0) + - (subm & 4 ? 8 : 0)); - w[i] = subw[0]; - w[j] = subw[1]; - w[imd3[j]] = 0; - w[3] = subw[2]; - } - } - } - if (mindist < 0) - { - mindist = 0; - m = 15; - w[0] = det(c, b, d) / vl; - w[1] = det(a, c, d) / vl; - w[2] = det(b, a, d) / vl; - w[3] = 1 - (w[0] + w[1] + w[2]); - } - return (mindist); - } - return (-1); - } -}; - -// EPA -struct b3EPA -{ - /* Types */ - typedef b3GJK::sSV sSV; - struct sFace - { - b3Vector3 n; - b3Scalar d; - sSV* c[3]; - sFace* f[3]; - sFace* l[2]; - unsigned char e[3]; - unsigned char pass; - }; - struct sList - { - sFace* root; - unsigned int count; - sList() : root(0), count(0) {} - }; - struct sHorizon - { - sFace* cf; - sFace* ff; - unsigned int nf; - sHorizon() : cf(0), ff(0), nf(0) {} - }; - struct eStatus - { - enum _ - { - Valid, - Touching, - Degenerated, - NonConvex, - InvalidHull, - OutOfFaces, - OutOfVertices, - AccuraryReached, - FallBack, - Failed - }; - }; - /* Fields */ - eStatus::_ m_status; - b3GJK::sSimplex m_result; - b3Vector3 m_normal; - b3Scalar m_depth; - sSV m_sv_store[EPA_MAX_VERTICES]; - sFace m_fc_store[EPA_MAX_FACES]; - unsigned int m_nextsv; - sList m_hull; - sList m_stock; - /* Methods */ - b3EPA() - { - Initialize(); - } - - static inline void bind(sFace* fa, unsigned int ea, sFace* fb, unsigned int eb) - { - fa->e[ea] = (unsigned char)eb; - fa->f[ea] = fb; - fb->e[eb] = (unsigned char)ea; - fb->f[eb] = fa; - } - static inline void append(sList& list, sFace* face) - { - face->l[0] = 0; - face->l[1] = list.root; - if (list.root) list.root->l[0] = face; - list.root = face; - ++list.count; - } - static inline void remove(sList& list, sFace* face) - { - if (face->l[1]) face->l[1]->l[0] = face->l[0]; - if (face->l[0]) face->l[0]->l[1] = face->l[1]; - if (face == list.root) list.root = face->l[1]; - --list.count; - } - - void Initialize() - { - m_status = eStatus::Failed; - m_normal = b3MakeVector3(0, 0, 0); - m_depth = 0; - m_nextsv = 0; - for (unsigned int i = 0; i < EPA_MAX_FACES; ++i) - { - append(m_stock, &m_fc_store[EPA_MAX_FACES - i - 1]); - } - } - eStatus::_ Evaluate(b3GJK& gjk, const b3Vector3& guess) - { - b3GJK::sSimplex& simplex = *gjk.m_simplex; - if ((simplex.rank > 1) && gjk.EncloseOrigin()) - { - /* Clean up */ - while (m_hull.root) - { - sFace* f = m_hull.root; - remove(m_hull, f); - append(m_stock, f); - } - m_status = eStatus::Valid; - m_nextsv = 0; - /* Orient simplex */ - if (gjk.det(simplex.c[0]->w - simplex.c[3]->w, - simplex.c[1]->w - simplex.c[3]->w, - simplex.c[2]->w - simplex.c[3]->w) < 0) - { - b3Swap(simplex.c[0], simplex.c[1]); - b3Swap(simplex.p[0], simplex.p[1]); - } - /* Build initial hull */ - sFace* tetra[] = {newface(simplex.c[0], simplex.c[1], simplex.c[2], true), - newface(simplex.c[1], simplex.c[0], simplex.c[3], true), - newface(simplex.c[2], simplex.c[1], simplex.c[3], true), - newface(simplex.c[0], simplex.c[2], simplex.c[3], true)}; - if (m_hull.count == 4) - { - sFace* best = findbest(); - sFace outer = *best; - unsigned int pass = 0; - unsigned int iterations = 0; - bind(tetra[0], 0, tetra[1], 0); - bind(tetra[0], 1, tetra[2], 0); - bind(tetra[0], 2, tetra[3], 0); - bind(tetra[1], 1, tetra[3], 2); - bind(tetra[1], 2, tetra[2], 1); - bind(tetra[2], 2, tetra[3], 1); - m_status = eStatus::Valid; - for (; iterations < EPA_MAX_ITERATIONS; ++iterations) - { - if (m_nextsv < EPA_MAX_VERTICES) - { - sHorizon horizon; - sSV* w = &m_sv_store[m_nextsv++]; - bool valid = true; - best->pass = (unsigned char)(++pass); - gjk.getsupport(best->n, *w); - const b3Scalar wdist = b3Dot(best->n, w->w) - best->d; - if (wdist > EPA_ACCURACY) - { - for (unsigned int j = 0; (j < 3) && valid; ++j) - { - valid &= expand(pass, w, - best->f[j], best->e[j], - horizon); - } - if (valid && (horizon.nf >= 3)) - { - bind(horizon.cf, 1, horizon.ff, 2); - remove(m_hull, best); - append(m_stock, best); - best = findbest(); - outer = *best; - } - else - { - m_status = eStatus::Failed; - //m_status=eStatus::InvalidHull; - break; - } - } - else - { - m_status = eStatus::AccuraryReached; - break; - } - } - else - { - m_status = eStatus::OutOfVertices; - break; - } - } - const b3Vector3 projection = outer.n * outer.d; - m_normal = outer.n; - m_depth = outer.d; - m_result.rank = 3; - m_result.c[0] = outer.c[0]; - m_result.c[1] = outer.c[1]; - m_result.c[2] = outer.c[2]; - m_result.p[0] = b3Cross(outer.c[1]->w - projection, - outer.c[2]->w - projection) - .length(); - m_result.p[1] = b3Cross(outer.c[2]->w - projection, - outer.c[0]->w - projection) - .length(); - m_result.p[2] = b3Cross(outer.c[0]->w - projection, - outer.c[1]->w - projection) - .length(); - const b3Scalar sum = m_result.p[0] + m_result.p[1] + m_result.p[2]; - m_result.p[0] /= sum; - m_result.p[1] /= sum; - m_result.p[2] /= sum; - return (m_status); - } - } - /* Fallback */ - m_status = eStatus::FallBack; - m_normal = -guess; - const b3Scalar nl = m_normal.length(); - if (nl > 0) - m_normal = m_normal / nl; - else - m_normal = b3MakeVector3(1, 0, 0); - m_depth = 0; - m_result.rank = 1; - m_result.c[0] = simplex.c[0]; - m_result.p[0] = 1; - return (m_status); - } - bool getedgedist(sFace* face, sSV* a, sSV* b, b3Scalar& dist) - { - const b3Vector3 ba = b->w - a->w; - const b3Vector3 n_ab = b3Cross(ba, face->n); // Outward facing edge normal direction, on triangle plane - const b3Scalar a_dot_nab = b3Dot(a->w, n_ab); // Only care about the sign to determine inside/outside, so not normalization required - - if (a_dot_nab < 0) - { - // Outside of edge a->b - - const b3Scalar ba_l2 = ba.length2(); - const b3Scalar a_dot_ba = b3Dot(a->w, ba); - const b3Scalar b_dot_ba = b3Dot(b->w, ba); - - if (a_dot_ba > 0) - { - // Pick distance vertex a - dist = a->w.length(); - } - else if (b_dot_ba < 0) - { - // Pick distance vertex b - dist = b->w.length(); - } - else - { - // Pick distance to edge a->b - const b3Scalar a_dot_b = b3Dot(a->w, b->w); - dist = b3Sqrt(b3Max((a->w.length2() * b->w.length2() - a_dot_b * a_dot_b) / ba_l2, (b3Scalar)0)); - } - - return true; - } - - return false; - } - sFace* newface(sSV* a, sSV* b, sSV* c, bool forced) - { - if (m_stock.root) - { - sFace* face = m_stock.root; - remove(m_stock, face); - append(m_hull, face); - face->pass = 0; - face->c[0] = a; - face->c[1] = b; - face->c[2] = c; - face->n = b3Cross(b->w - a->w, c->w - a->w); - const b3Scalar l = face->n.length(); - const bool v = l > EPA_ACCURACY; - - if (v) - { - if (!(getedgedist(face, a, b, face->d) || - getedgedist(face, b, c, face->d) || - getedgedist(face, c, a, face->d))) - { - // Origin projects to the interior of the triangle - // Use distance to triangle plane - face->d = b3Dot(a->w, face->n) / l; - } - - face->n /= l; - if (forced || (face->d >= -EPA_PLANE_EPS)) - { - return face; - } - else - m_status = eStatus::NonConvex; - } - else - m_status = eStatus::Degenerated; - - remove(m_hull, face); - append(m_stock, face); - return 0; - } - m_status = m_stock.root ? eStatus::OutOfVertices : eStatus::OutOfFaces; - return 0; - } - sFace* findbest() - { - sFace* minf = m_hull.root; - b3Scalar mind = minf->d * minf->d; - for (sFace* f = minf->l[1]; f; f = f->l[1]) - { - const b3Scalar sqd = f->d * f->d; - if (sqd < mind) - { - minf = f; - mind = sqd; - } - } - return (minf); - } - bool expand(unsigned int pass, sSV* w, sFace* f, unsigned int e, sHorizon& horizon) - { - static const unsigned int i1m3[] = {1, 2, 0}; - static const unsigned int i2m3[] = {2, 0, 1}; - if (f->pass != pass) - { - const unsigned int e1 = i1m3[e]; - if ((b3Dot(f->n, w->w) - f->d) < -EPA_PLANE_EPS) - { - sFace* nf = newface(f->c[e1], f->c[e], w, false); - if (nf) - { - bind(nf, 0, f, e); - if (horizon.cf) - bind(horizon.cf, 1, nf, 2); - else - horizon.ff = nf; - horizon.cf = nf; - ++horizon.nf; - return (true); - } - } - else - { - const unsigned int e2 = i2m3[e]; - f->pass = (unsigned char)pass; - if (expand(pass, w, f->f[e1], f->e[e1], horizon) && - expand(pass, w, f->f[e2], f->e[e2], horizon)) - { - remove(m_hull, f); - append(m_stock, f); - return (true); - } - } - } - return (false); - } -}; - -// -static void Initialize(const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - b3GjkEpaSolver2::sResults& results, - tShape& shape, - bool withmargins) -{ - /* Results */ - results.witnesses[0] = - results.witnesses[1] = b3MakeVector3(0, 0, 0); - results.status = b3GjkEpaSolver2::sResults::Separated; - /* Shape */ - shape.m_shapes[0] = hullA; - shape.m_shapes[1] = hullB; - shape.m_toshape1 = transB.getBasis().transposeTimes(transA.getBasis()); - shape.m_toshape0 = transA.inverseTimes(transB); - shape.EnableMargin(withmargins); -} - -} // namespace gjkepa2_impl2 - -// -// Api -// - -using namespace gjkepa2_impl2; - -// -int b3GjkEpaSolver2::StackSizeRequirement() -{ - return (sizeof(b3GJK) + sizeof(b3EPA)); -} - -// -bool b3GjkEpaSolver2::Distance(const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results) -{ - tShape shape; - Initialize(transA, transB, hullA, hullB, verticesA, verticesB, results, shape, false); - b3GJK gjk(verticesA, verticesB); - b3GJK::eStatus::_ gjk_status = gjk.Evaluate(shape, guess); - if (gjk_status == b3GJK::eStatus::Valid) - { - b3Vector3 w0 = b3MakeVector3(0, 0, 0); - b3Vector3 w1 = b3MakeVector3(0, 0, 0); - for (unsigned int i = 0; i < gjk.m_simplex->rank; ++i) - { - const b3Scalar p = gjk.m_simplex->p[i]; - w0 += shape.Support(gjk.m_simplex->c[i]->d, 0, verticesA, verticesB) * p; - w1 += shape.Support(-gjk.m_simplex->c[i]->d, 1, verticesA, verticesB) * p; - } - results.witnesses[0] = transA * w0; - results.witnesses[1] = transA * w1; - results.normal = w0 - w1; - results.distance = results.normal.length(); - results.normal /= results.distance > GJK_MIN_DISTANCE ? results.distance : 1; - return (true); - } - else - { - results.status = gjk_status == b3GJK::eStatus::Inside ? sResults::Penetrating : sResults::GJK_Failed; - return (false); - } -} - -// -bool b3GjkEpaSolver2::Penetration(const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results, - bool usemargins) -{ - tShape shape; - Initialize(transA, transB, hullA, hullB, verticesA, verticesB, results, shape, usemargins); - b3GJK gjk(verticesA, verticesB); - b3GJK::eStatus::_ gjk_status = gjk.Evaluate(shape, guess); - switch (gjk_status) - { - case b3GJK::eStatus::Inside: - { - b3EPA epa; - b3EPA::eStatus::_ epa_status = epa.Evaluate(gjk, -guess); - if (epa_status != b3EPA::eStatus::Failed) - { - b3Vector3 w0 = b3MakeVector3(0, 0, 0); - for (unsigned int i = 0; i < epa.m_result.rank; ++i) - { - w0 += shape.Support(epa.m_result.c[i]->d, 0, verticesA, verticesB) * epa.m_result.p[i]; - } - results.status = sResults::Penetrating; - results.witnesses[0] = transA * w0; - results.witnesses[1] = transA * (w0 - epa.m_normal * epa.m_depth); - results.normal = -epa.m_normal; - results.distance = -epa.m_depth; - return (true); - } - else - results.status = sResults::EPA_Failed; - } - break; - case b3GJK::eStatus::Failed: - results.status = sResults::GJK_Failed; - break; - default: - { - } - } - return (false); -} - -#if 0 -// -b3Scalar b3GjkEpaSolver2::SignedDistance(const b3Vector3& position, - b3Scalar margin, - const b3Transform& transA, - const b3ConvexPolyhedronData& hullA, - const b3AlignedObjectArray<b3Vector3>& verticesA, - sResults& results) -{ - tShape shape; - btSphereShape shape1(margin); - b3Transform wtrs1(b3Quaternion(0,0,0,1),position); - Initialize(shape0,wtrs0,&shape1,wtrs1,results,shape,false); - GJK gjk; - GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,b3Vector3(1,1,1)); - if(gjk_status==GJK::eStatus::Valid) - { - b3Vector3 w0=b3Vector3(0,0,0); - b3Vector3 w1=b3Vector3(0,0,0); - for(unsigned int i=0;i<gjk.m_simplex->rank;++i) - { - const b3Scalar p=gjk.m_simplex->p[i]; - w0+=shape.Support( gjk.m_simplex->c[i]->d,0)*p; - w1+=shape.Support(-gjk.m_simplex->c[i]->d,1)*p; - } - results.witnesses[0] = wtrs0*w0; - results.witnesses[1] = wtrs0*w1; - const b3Vector3 delta= results.witnesses[1]- - results.witnesses[0]; - const b3Scalar margin= shape0->getMarginNonVirtual()+ - shape1.getMarginNonVirtual(); - const b3Scalar length= delta.length(); - results.normal = delta/length; - results.witnesses[0] += results.normal*margin; - return(length-margin); - } - else - { - if(gjk_status==GJK::eStatus::Inside) - { - if(Penetration(shape0,wtrs0,&shape1,wtrs1,gjk.m_ray,results)) - { - const b3Vector3 delta= results.witnesses[0]- - results.witnesses[1]; - const b3Scalar length= delta.length(); - if (length >= B3_EPSILON) - results.normal = delta/length; - return(-length); - } - } - } - return(B3_INFINITY); -} - -// -bool b3GjkEpaSolver2::SignedDistance(const btConvexShape* shape0, - const b3Transform& wtrs0, - const btConvexShape* shape1, - const b3Transform& wtrs1, - const b3Vector3& guess, - sResults& results) -{ - if(!Distance(shape0,wtrs0,shape1,wtrs1,guess,results)) - return(Penetration(shape0,wtrs0,shape1,wtrs1,guess,results,false)); - else - return(true); -} -#endif - -/* Symbols cleanup */ - -#undef GJK_MAX_ITERATIONS -#undef GJK_ACCURACY -#undef GJK_MIN_DISTANCE -#undef GJK_DUPLICATED_EPS -#undef GJK_SIMPLEX2_EPS -#undef GJK_SIMPLEX3_EPS -#undef GJK_SIMPLEX4_EPS - -#undef EPA_MAX_VERTICES -#undef EPA_MAX_FACES -#undef EPA_MAX_ITERATIONS -#undef EPA_ACCURACY -#undef EPA_FALLBACK -#undef EPA_PLANE_EPS -#undef EPA_INSIDE_EPS diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.h deleted file mode 100644 index 7db32c6309..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.h +++ /dev/null @@ -1,79 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the -use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it -freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not -claim that you wrote the original software. If you use this software in a -product, an acknowledgment in the product documentation would be appreciated -but is not required. -2. Altered source versions must be plainly marked as such, and must not be -misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -/* -GJK-EPA collision solver by Nathanael Presson, 2008 -*/ -#ifndef B3_GJK_EPA2_H -#define B3_GJK_EPA2_H - -#include "Bullet3Common/b3AlignedObjectArray.h" -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" - -///btGjkEpaSolver contributed under zlib by Nathanael Presson -struct b3GjkEpaSolver2 -{ - struct sResults - { - enum eStatus - { - Separated, /* Shapes doesnt penetrate */ - Penetrating, /* Shapes are penetrating */ - GJK_Failed, /* GJK phase fail, no big issue, shapes are probably just 'touching' */ - EPA_Failed /* EPA phase fail, bigger problem, need to save parameters, and debug */ - } status; - b3Vector3 witnesses[2]; - b3Vector3 normal; - b3Scalar distance; - }; - - static int StackSizeRequirement(); - - static bool Distance(const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results); - - static bool Penetration(const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results, - bool usemargins = true); -#if 0 -static b3Scalar SignedDistance( const b3Vector3& position, - b3Scalar margin, - const btConvexShape* shape, - const btTransform& wtrs, - sResults& results); - -static bool SignedDistance( const btConvexShape* shape0,const btTransform& wtrs0, - const btConvexShape* shape1,const btTransform& wtrs1, - const b3Vector3& guess, - sResults& results); -#endif -}; - -#endif //B3_GJK_EPA2_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.cpp deleted file mode 100644 index 4938fa17af..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.cpp +++ /dev/null @@ -1,363 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3OptimizedBvh.h" -#include "b3StridingMeshInterface.h" -#include "Bullet3Geometry/b3AabbUtil.h" - -b3OptimizedBvh::b3OptimizedBvh() -{ -} - -b3OptimizedBvh::~b3OptimizedBvh() -{ -} - -void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax) -{ - m_useQuantization = useQuantizedAabbCompression; - - // NodeArray triangleNodes; - - struct NodeTriangleCallback : public b3InternalTriangleIndexCallback - { - NodeArray& m_triangleNodes; - - NodeTriangleCallback& operator=(NodeTriangleCallback& other) - { - m_triangleNodes.copyFromArray(other.m_triangleNodes); - return *this; - } - - NodeTriangleCallback(NodeArray& triangleNodes) - : m_triangleNodes(triangleNodes) - { - } - - virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex) - { - b3OptimizedBvhNode node; - b3Vector3 aabbMin, aabbMax; - aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT)); - aabbMin.setMin(triangle[0]); - aabbMax.setMax(triangle[0]); - aabbMin.setMin(triangle[1]); - aabbMax.setMax(triangle[1]); - aabbMin.setMin(triangle[2]); - aabbMax.setMax(triangle[2]); - - //with quantization? - node.m_aabbMinOrg = aabbMin; - node.m_aabbMaxOrg = aabbMax; - - node.m_escapeIndex = -1; - - //for child nodes - node.m_subPart = partId; - node.m_triangleIndex = triangleIndex; - m_triangleNodes.push_back(node); - } - }; - struct QuantizedNodeTriangleCallback : public b3InternalTriangleIndexCallback - { - QuantizedNodeArray& m_triangleNodes; - const b3QuantizedBvh* m_optimizedTree; // for quantization - - QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other) - { - m_triangleNodes.copyFromArray(other.m_triangleNodes); - m_optimizedTree = other.m_optimizedTree; - return *this; - } - - QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes, const b3QuantizedBvh* tree) - : m_triangleNodes(triangleNodes), m_optimizedTree(tree) - { - } - - virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex) - { - // The partId and triangle index must fit in the same (positive) integer - b3Assert(partId < (1 << MAX_NUM_PARTS_IN_BITS)); - b3Assert(triangleIndex < (1 << (31 - MAX_NUM_PARTS_IN_BITS))); - //negative indices are reserved for escapeIndex - b3Assert(triangleIndex >= 0); - - b3QuantizedBvhNode node; - b3Vector3 aabbMin, aabbMax; - aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT)); - aabbMin.setMin(triangle[0]); - aabbMax.setMax(triangle[0]); - aabbMin.setMin(triangle[1]); - aabbMax.setMax(triangle[1]); - aabbMin.setMin(triangle[2]); - aabbMax.setMax(triangle[2]); - - //PCK: add these checks for zero dimensions of aabb - const b3Scalar MIN_AABB_DIMENSION = b3Scalar(0.002); - const b3Scalar MIN_AABB_HALF_DIMENSION = b3Scalar(0.001); - if (aabbMax.getX() - aabbMin.getX() < MIN_AABB_DIMENSION) - { - aabbMax.setX(aabbMax.getX() + MIN_AABB_HALF_DIMENSION); - aabbMin.setX(aabbMin.getX() - MIN_AABB_HALF_DIMENSION); - } - if (aabbMax.getY() - aabbMin.getY() < MIN_AABB_DIMENSION) - { - aabbMax.setY(aabbMax.getY() + MIN_AABB_HALF_DIMENSION); - aabbMin.setY(aabbMin.getY() - MIN_AABB_HALF_DIMENSION); - } - if (aabbMax.getZ() - aabbMin.getZ() < MIN_AABB_DIMENSION) - { - aabbMax.setZ(aabbMax.getZ() + MIN_AABB_HALF_DIMENSION); - aabbMin.setZ(aabbMin.getZ() - MIN_AABB_HALF_DIMENSION); - } - - m_optimizedTree->quantize(&node.m_quantizedAabbMin[0], aabbMin, 0); - m_optimizedTree->quantize(&node.m_quantizedAabbMax[0], aabbMax, 1); - - node.m_escapeIndexOrTriangleIndex = (partId << (31 - MAX_NUM_PARTS_IN_BITS)) | triangleIndex; - - m_triangleNodes.push_back(node); - } - }; - - int numLeafNodes = 0; - - if (m_useQuantization) - { - //initialize quantization values - setQuantizationValues(bvhAabbMin, bvhAabbMax); - - QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes, this); - - triangles->InternalProcessAllTriangles(&callback, m_bvhAabbMin, m_bvhAabbMax); - - //now we have an array of leafnodes in m_leafNodes - numLeafNodes = m_quantizedLeafNodes.size(); - - m_quantizedContiguousNodes.resize(2 * numLeafNodes); - } - else - { - NodeTriangleCallback callback(m_leafNodes); - - b3Vector3 aabbMin = b3MakeVector3(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT)); - b3Vector3 aabbMax = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT)); - - triangles->InternalProcessAllTriangles(&callback, aabbMin, aabbMax); - - //now we have an array of leafnodes in m_leafNodes - numLeafNodes = m_leafNodes.size(); - - m_contiguousNodes.resize(2 * numLeafNodes); - } - - m_curNodeIndex = 0; - - buildTree(0, numLeafNodes); - - ///if the entire tree is small then subtree size, we need to create a header info for the tree - if (m_useQuantization && !m_SubtreeHeaders.size()) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); - subtree.m_rootNodeIndex = 0; - subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); - } - - //PCK: update the copy of the size - m_subtreeHeaderCount = m_SubtreeHeaders.size(); - - //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary - m_quantizedLeafNodes.clear(); - m_leafNodes.clear(); -} - -void b3OptimizedBvh::refit(b3StridingMeshInterface* meshInterface, const b3Vector3& aabbMin, const b3Vector3& aabbMax) -{ - if (m_useQuantization) - { - setQuantizationValues(aabbMin, aabbMax); - - updateBvhNodes(meshInterface, 0, m_curNodeIndex, 0); - - ///now update all subtree headers - - int i; - for (i = 0; i < m_SubtreeHeaders.size(); i++) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]); - } - } - else - { - } -} - -void b3OptimizedBvh::refitPartial(b3StridingMeshInterface* meshInterface, const b3Vector3& aabbMin, const b3Vector3& aabbMax) -{ - //incrementally initialize quantization values - b3Assert(m_useQuantization); - - b3Assert(aabbMin.getX() > m_bvhAabbMin.getX()); - b3Assert(aabbMin.getY() > m_bvhAabbMin.getY()); - b3Assert(aabbMin.getZ() > m_bvhAabbMin.getZ()); - - b3Assert(aabbMax.getX() < m_bvhAabbMax.getX()); - b3Assert(aabbMax.getY() < m_bvhAabbMax.getY()); - b3Assert(aabbMax.getZ() < m_bvhAabbMax.getZ()); - - ///we should update all quantization values, using updateBvhNodes(meshInterface); - ///but we only update chunks that overlap the given aabb - - unsigned short quantizedQueryAabbMin[3]; - unsigned short quantizedQueryAabbMax[3]; - - quantize(&quantizedQueryAabbMin[0], aabbMin, 0); - quantize(&quantizedQueryAabbMax[0], aabbMax, 1); - - int i; - for (i = 0; i < this->m_SubtreeHeaders.size(); i++) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; - - //PCK: unsigned instead of bool - unsigned overlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, subtree.m_quantizedAabbMin, subtree.m_quantizedAabbMax); - if (overlap != 0) - { - updateBvhNodes(meshInterface, subtree.m_rootNodeIndex, subtree.m_rootNodeIndex + subtree.m_subtreeSize, i); - - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]); - } - } -} - -void b3OptimizedBvh::updateBvhNodes(b3StridingMeshInterface* meshInterface, int firstNode, int endNode, int index) -{ - (void)index; - - b3Assert(m_useQuantization); - - int curNodeSubPart = -1; - - //get access info to trianglemesh data - const unsigned char* vertexbase = 0; - int numverts = 0; - PHY_ScalarType type = PHY_INTEGER; - int stride = 0; - const unsigned char* indexbase = 0; - int indexstride = 0; - int numfaces = 0; - PHY_ScalarType indicestype = PHY_INTEGER; - - b3Vector3 triangleVerts[3]; - b3Vector3 aabbMin, aabbMax; - const b3Vector3& meshScaling = meshInterface->getScaling(); - - int i; - for (i = endNode - 1; i >= firstNode; i--) - { - b3QuantizedBvhNode& curNode = m_quantizedContiguousNodes[i]; - if (curNode.isLeafNode()) - { - //recalc aabb from triangle data - int nodeSubPart = curNode.getPartId(); - int nodeTriangleIndex = curNode.getTriangleIndex(); - if (nodeSubPart != curNodeSubPart) - { - if (curNodeSubPart >= 0) - meshInterface->unLockReadOnlyVertexBase(curNodeSubPart); - meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase, numverts, type, stride, &indexbase, indexstride, numfaces, indicestype, nodeSubPart); - - curNodeSubPart = nodeSubPart; - } - //triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts, - - unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride); - - for (int j = 2; j >= 0; j--) - { - int graphicsindex; - switch (indicestype) { - case PHY_INTEGER: graphicsindex = gfxbase[j]; break; - case PHY_SHORT: graphicsindex = ((unsigned short*)gfxbase)[j]; break; - case PHY_UCHAR: graphicsindex = ((unsigned char*)gfxbase)[j]; break; - default: b3Assert(0); - } - if (type == PHY_FLOAT) - { - float* graphicsbase = (float*)(vertexbase + graphicsindex * stride); - triangleVerts[j] = b3MakeVector3( - graphicsbase[0] * meshScaling.getX(), - graphicsbase[1] * meshScaling.getY(), - graphicsbase[2] * meshScaling.getZ()); - } - else - { - double* graphicsbase = (double*)(vertexbase + graphicsindex * stride); - triangleVerts[j] = b3MakeVector3(b3Scalar(graphicsbase[0] * meshScaling.getX()), b3Scalar(graphicsbase[1] * meshScaling.getY()), b3Scalar(graphicsbase[2] * meshScaling.getZ())); - } - } - - aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT)); - aabbMin.setMin(triangleVerts[0]); - aabbMax.setMax(triangleVerts[0]); - aabbMin.setMin(triangleVerts[1]); - aabbMax.setMax(triangleVerts[1]); - aabbMin.setMin(triangleVerts[2]); - aabbMax.setMax(triangleVerts[2]); - - quantize(&curNode.m_quantizedAabbMin[0], aabbMin, 0); - quantize(&curNode.m_quantizedAabbMax[0], aabbMax, 1); - } - else - { - //combine aabb from both children - - b3QuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i + 1]; - - b3QuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i + 2] : &m_quantizedContiguousNodes[i + 1 + leftChildNode->getEscapeIndex()]; - - { - for (int i = 0; i < 3; i++) - { - curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i]; - if (curNode.m_quantizedAabbMin[i] > rightChildNode->m_quantizedAabbMin[i]) - curNode.m_quantizedAabbMin[i] = rightChildNode->m_quantizedAabbMin[i]; - - curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i]; - if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i]) - curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i]; - } - } - } - } - - if (curNodeSubPart >= 0) - meshInterface->unLockReadOnlyVertexBase(curNodeSubPart); -} - -///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place' -b3OptimizedBvh* b3OptimizedBvh::deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) -{ - b3QuantizedBvh* bvh = b3QuantizedBvh::deSerializeInPlace(i_alignedDataBuffer, i_dataBufferSize, i_swapEndian); - - //we don't add additional data so just do a static upcast - return static_cast<b3OptimizedBvh*>(bvh); -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.h deleted file mode 100644 index 1286552939..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.h +++ /dev/null @@ -1,56 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -///Contains contributions from Disney Studio's - -#ifndef B3_OPTIMIZED_BVH_H -#define B3_OPTIMIZED_BVH_H - -#include "b3QuantizedBvh.h" - -class b3StridingMeshInterface; - -///The b3OptimizedBvh extends the b3QuantizedBvh to create AABB tree for triangle meshes, through the b3StridingMeshInterface. -B3_ATTRIBUTE_ALIGNED16(class) -b3OptimizedBvh : public b3QuantizedBvh -{ -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - -protected: -public: - b3OptimizedBvh(); - - virtual ~b3OptimizedBvh(); - - void build(b3StridingMeshInterface * triangles, bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax); - - void refit(b3StridingMeshInterface * triangles, const b3Vector3& aabbMin, const b3Vector3& aabbMax); - - void refitPartial(b3StridingMeshInterface * triangles, const b3Vector3& aabbMin, const b3Vector3& aabbMax); - - void updateBvhNodes(b3StridingMeshInterface * meshInterface, int firstNode, int endNode, int index); - - /// Data buffer MUST be 16 byte aligned - virtual bool serializeInPlace(void* o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const - { - return b3QuantizedBvh::serialize(o_alignedDataBuffer, i_dataBufferSize, i_swapEndian); - } - - ///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place' - static b3OptimizedBvh* deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian); -}; - -#endif //B3_OPTIMIZED_BVH_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.cpp deleted file mode 100644 index 9a448495f3..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.cpp +++ /dev/null @@ -1,1254 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3QuantizedBvh.h" - -#include "Bullet3Geometry/b3AabbUtil.h" - -#define RAYAABB2 - -b3QuantizedBvh::b3QuantizedBvh() : m_bulletVersion(B3_BULLET_VERSION), - m_useQuantization(false), - m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) - //m_traversalMode(TRAVERSAL_STACKLESS) - //m_traversalMode(TRAVERSAL_RECURSIVE) - , - m_subtreeHeaderCount(0) //PCK: add this line -{ - m_bvhAabbMin.setValue(-B3_INFINITY, -B3_INFINITY, -B3_INFINITY); - m_bvhAabbMax.setValue(B3_INFINITY, B3_INFINITY, B3_INFINITY); -} - -void b3QuantizedBvh::buildInternal() -{ - ///assumes that caller filled in the m_quantizedLeafNodes - m_useQuantization = true; - int numLeafNodes = 0; - - if (m_useQuantization) - { - //now we have an array of leafnodes in m_leafNodes - numLeafNodes = m_quantizedLeafNodes.size(); - - m_quantizedContiguousNodes.resize(2 * numLeafNodes); - } - - m_curNodeIndex = 0; - - buildTree(0, numLeafNodes); - - ///if the entire tree is small then subtree size, we need to create a header info for the tree - if (m_useQuantization && !m_SubtreeHeaders.size()) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); - subtree.m_rootNodeIndex = 0; - subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); - } - - //PCK: update the copy of the size - m_subtreeHeaderCount = m_SubtreeHeaders.size(); - - //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary - m_quantizedLeafNodes.clear(); - m_leafNodes.clear(); -} - -///just for debugging, to visualize the individual patches/subtrees -#ifdef DEBUG_PATCH_COLORS -b3Vector3 color[4] = - { - b3Vector3(1, 0, 0), - b3Vector3(0, 1, 0), - b3Vector3(0, 0, 1), - b3Vector3(0, 1, 1)}; -#endif //DEBUG_PATCH_COLORS - -void b3QuantizedBvh::setQuantizationValues(const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax, b3Scalar quantizationMargin) -{ - //enlarge the AABB to avoid division by zero when initializing the quantization values - b3Vector3 clampValue = b3MakeVector3(quantizationMargin, quantizationMargin, quantizationMargin); - m_bvhAabbMin = bvhAabbMin - clampValue; - m_bvhAabbMax = bvhAabbMax + clampValue; - b3Vector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; - m_bvhQuantization = b3MakeVector3(b3Scalar(65533.0), b3Scalar(65533.0), b3Scalar(65533.0)) / aabbSize; - m_useQuantization = true; -} - -b3QuantizedBvh::~b3QuantizedBvh() -{ -} - -#ifdef DEBUG_TREE_BUILDING -int gStackDepth = 0; -int gMaxStackDepth = 0; -#endif //DEBUG_TREE_BUILDING - -void b3QuantizedBvh::buildTree(int startIndex, int endIndex) -{ -#ifdef DEBUG_TREE_BUILDING - gStackDepth++; - if (gStackDepth > gMaxStackDepth) - gMaxStackDepth = gStackDepth; -#endif //DEBUG_TREE_BUILDING - - int splitAxis, splitIndex, i; - int numIndices = endIndex - startIndex; - int curIndex = m_curNodeIndex; - - b3Assert(numIndices > 0); - - if (numIndices == 1) - { -#ifdef DEBUG_TREE_BUILDING - gStackDepth--; -#endif //DEBUG_TREE_BUILDING - - assignInternalNodeFromLeafNode(m_curNodeIndex, startIndex); - - m_curNodeIndex++; - return; - } - //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. - - splitAxis = calcSplittingAxis(startIndex, endIndex); - - splitIndex = sortAndCalcSplittingIndex(startIndex, endIndex, splitAxis); - - int internalNodeIndex = m_curNodeIndex; - - //set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value. - //the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values - setInternalNodeAabbMin(m_curNodeIndex, m_bvhAabbMax); //can't use b3Vector3(B3_INFINITY,B3_INFINITY,B3_INFINITY)) because of quantization - setInternalNodeAabbMax(m_curNodeIndex, m_bvhAabbMin); //can't use b3Vector3(-B3_INFINITY,-B3_INFINITY,-B3_INFINITY)) because of quantization - - for (i = startIndex; i < endIndex; i++) - { - mergeInternalNodeAabb(m_curNodeIndex, getAabbMin(i), getAabbMax(i)); - } - - m_curNodeIndex++; - - //internalNode->m_escapeIndex; - - int leftChildNodexIndex = m_curNodeIndex; - - //build left child tree - buildTree(startIndex, splitIndex); - - int rightChildNodexIndex = m_curNodeIndex; - //build right child tree - buildTree(splitIndex, endIndex); - -#ifdef DEBUG_TREE_BUILDING - gStackDepth--; -#endif //DEBUG_TREE_BUILDING - - int escapeIndex = m_curNodeIndex - curIndex; - - if (m_useQuantization) - { - //escapeIndex is the number of nodes of this subtree - const int sizeQuantizedNode = sizeof(b3QuantizedBvhNode); - const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; - if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) - { - updateSubtreeHeaders(leftChildNodexIndex, rightChildNodexIndex); - } - } - else - { - } - - setInternalNodeEscapeIndex(internalNodeIndex, escapeIndex); -} - -void b3QuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex, int rightChildNodexIndex) -{ - b3Assert(m_useQuantization); - - b3QuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; - int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); - int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(b3QuantizedBvhNode)); - - b3QuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; - int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); - int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(b3QuantizedBvhNode)); - - if (leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(leftChildNode); - subtree.m_rootNodeIndex = leftChildNodexIndex; - subtree.m_subtreeSize = leftSubTreeSize; - } - - if (rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(rightChildNode); - subtree.m_rootNodeIndex = rightChildNodexIndex; - subtree.m_subtreeSize = rightSubTreeSize; - } - - //PCK: update the copy of the size - m_subtreeHeaderCount = m_SubtreeHeaders.size(); -} - -int b3QuantizedBvh::sortAndCalcSplittingIndex(int startIndex, int endIndex, int splitAxis) -{ - int i; - int splitIndex = startIndex; - int numIndices = endIndex - startIndex; - b3Scalar splitValue; - - b3Vector3 means = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - for (i = startIndex; i < endIndex; i++) - { - b3Vector3 center = b3Scalar(0.5) * (getAabbMax(i) + getAabbMin(i)); - means += center; - } - means *= (b3Scalar(1.) / (b3Scalar)numIndices); - - splitValue = means[splitAxis]; - - //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. - for (i = startIndex; i < endIndex; i++) - { - b3Vector3 center = b3Scalar(0.5) * (getAabbMax(i) + getAabbMin(i)); - if (center[splitAxis] > splitValue) - { - //swap - swapLeafNodes(i, splitIndex); - splitIndex++; - } - } - - //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex - //otherwise the tree-building might fail due to stack-overflows in certain cases. - //unbalanced1 is unsafe: it can cause stack overflows - //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); - - //unbalanced2 should work too: always use center (perfect balanced trees) - //bool unbalanced2 = true; - - //this should be safe too: - int rangeBalancedIndices = numIndices / 3; - bool unbalanced = ((splitIndex <= (startIndex + rangeBalancedIndices)) || (splitIndex >= (endIndex - 1 - rangeBalancedIndices))); - - if (unbalanced) - { - splitIndex = startIndex + (numIndices >> 1); - } - - bool unbal = (splitIndex == startIndex) || (splitIndex == (endIndex)); - (void)unbal; - b3Assert(!unbal); - - return splitIndex; -} - -int b3QuantizedBvh::calcSplittingAxis(int startIndex, int endIndex) -{ - int i; - - b3Vector3 means = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - b3Vector3 variance = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - int numIndices = endIndex - startIndex; - - for (i = startIndex; i < endIndex; i++) - { - b3Vector3 center = b3Scalar(0.5) * (getAabbMax(i) + getAabbMin(i)); - means += center; - } - means *= (b3Scalar(1.) / (b3Scalar)numIndices); - - for (i = startIndex; i < endIndex; i++) - { - b3Vector3 center = b3Scalar(0.5) * (getAabbMax(i) + getAabbMin(i)); - b3Vector3 diff2 = center - means; - diff2 = diff2 * diff2; - variance += diff2; - } - variance *= (b3Scalar(1.) / ((b3Scalar)numIndices - 1)); - - return variance.maxAxis(); -} - -void b3QuantizedBvh::reportAabbOverlappingNodex(b3NodeOverlapCallback* nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const -{ - //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) - - if (m_useQuantization) - { - ///quantize query AABB - unsigned short int quantizedQueryAabbMin[3]; - unsigned short int quantizedQueryAabbMax[3]; - quantizeWithClamp(quantizedQueryAabbMin, aabbMin, 0); - quantizeWithClamp(quantizedQueryAabbMax, aabbMax, 1); - - switch (m_traversalMode) - { - case TRAVERSAL_STACKLESS: - walkStacklessQuantizedTree(nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax, 0, m_curNodeIndex); - break; - case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: - walkStacklessQuantizedTreeCacheFriendly(nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax); - break; - case TRAVERSAL_RECURSIVE: - { - const b3QuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; - walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode, nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax); - } - break; - default: - //unsupported - b3Assert(0); - } - } - else - { - walkStacklessTree(nodeCallback, aabbMin, aabbMax); - } -} - -static int b3s_maxIterations = 0; - -void b3QuantizedBvh::walkStacklessTree(b3NodeOverlapCallback* nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const -{ - b3Assert(!m_useQuantization); - - const b3OptimizedBvhNode* rootNode = &m_contiguousNodes[0]; - int escapeIndex, curIndex = 0; - int walkIterations = 0; - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap; - - while (curIndex < m_curNodeIndex) - { - //catch bugs in tree data - b3Assert(walkIterations < m_curNodeIndex); - - walkIterations++; - aabbOverlap = b3TestAabbAgainstAabb2(aabbMin, aabbMax, rootNode->m_aabbMinOrg, rootNode->m_aabbMaxOrg); - isLeafNode = rootNode->m_escapeIndex == -1; - - //PCK: unsigned instead of bool - if (isLeafNode && (aabbOverlap != 0)) - { - nodeCallback->processNode(rootNode->m_subPart, rootNode->m_triangleIndex); - } - - //PCK: unsigned instead of bool - if ((aabbOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } - else - { - escapeIndex = rootNode->m_escapeIndex; - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; -} - -/* -///this was the original recursive traversal, before we optimized towards stackless traversal -void b3QuantizedBvh::walkTree(b3OptimizedBvhNode* rootNode,b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const -{ - bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); - if (aabbOverlap) - { - isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); - if (isLeafNode) - { - nodeCallback->processNode(rootNode); - } else - { - walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); - walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); - } - } - -} -*/ - -void b3QuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const b3QuantizedBvhNode* currentNode, b3NodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const -{ - b3Assert(m_useQuantization); - - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap; - - //PCK: unsigned instead of bool - aabbOverlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, currentNode->m_quantizedAabbMin, currentNode->m_quantizedAabbMax); - isLeafNode = currentNode->isLeafNode(); - - //PCK: unsigned instead of bool - if (aabbOverlap != 0) - { - if (isLeafNode) - { - nodeCallback->processNode(currentNode->getPartId(), currentNode->getTriangleIndex()); - } - else - { - //process left and right children - const b3QuantizedBvhNode* leftChildNode = currentNode + 1; - walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode, nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax); - - const b3QuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode + 1 : leftChildNode + leftChildNode->getEscapeIndex(); - walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode, nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax); - } - } -} - -void b3QuantizedBvh::walkStacklessTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const -{ - b3Assert(!m_useQuantization); - - const b3OptimizedBvhNode* rootNode = &m_contiguousNodes[0]; - int escapeIndex, curIndex = 0; - int walkIterations = 0; - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap = 0; - unsigned rayBoxOverlap = 0; - b3Scalar lambda_max = 1.0; - - /* Quick pruning by quantized box */ - b3Vector3 rayAabbMin = raySource; - b3Vector3 rayAabbMax = raySource; - rayAabbMin.setMin(rayTarget); - rayAabbMax.setMax(rayTarget); - - /* Add box cast extents to bounding box */ - rayAabbMin += aabbMin; - rayAabbMax += aabbMax; - -#ifdef RAYAABB2 - b3Vector3 rayDir = (rayTarget - raySource); - rayDir.normalize(); - lambda_max = rayDir.dot(rayTarget - raySource); - ///what about division by zero? --> just set rayDirection[i] to 1.0 - b3Vector3 rayDirectionInverse; - rayDirectionInverse[0] = rayDir[0] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[0]; - rayDirectionInverse[1] = rayDir[1] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[1]; - rayDirectionInverse[2] = rayDir[2] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[2]; - unsigned int sign[3] = {rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0}; -#endif - - b3Vector3 bounds[2]; - - while (curIndex < m_curNodeIndex) - { - b3Scalar param = 1.0; - //catch bugs in tree data - b3Assert(walkIterations < m_curNodeIndex); - - walkIterations++; - - bounds[0] = rootNode->m_aabbMinOrg; - bounds[1] = rootNode->m_aabbMaxOrg; - /* Add box cast extents */ - bounds[0] -= aabbMax; - bounds[1] -= aabbMin; - - aabbOverlap = b3TestAabbAgainstAabb2(rayAabbMin, rayAabbMax, rootNode->m_aabbMinOrg, rootNode->m_aabbMaxOrg); - //perhaps profile if it is worth doing the aabbOverlap test first - -#ifdef RAYAABB2 - ///careful with this check: need to check division by zero (above) and fix the unQuantize method - ///thanks Joerg/hiker for the reproduction case! - ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 - rayBoxOverlap = aabbOverlap ? b3RayAabb2(raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false; - -#else - b3Vector3 normal; - rayBoxOverlap = b3RayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); -#endif - - isLeafNode = rootNode->m_escapeIndex == -1; - - //PCK: unsigned instead of bool - if (isLeafNode && (rayBoxOverlap != 0)) - { - nodeCallback->processNode(rootNode->m_subPart, rootNode->m_triangleIndex); - } - - //PCK: unsigned instead of bool - if ((rayBoxOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } - else - { - escapeIndex = rootNode->m_escapeIndex; - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; -} - -void b3QuantizedBvh::walkStacklessQuantizedTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const -{ - b3Assert(m_useQuantization); - - int curIndex = startNodeIndex; - int walkIterations = 0; - int subTreeSize = endNodeIndex - startNodeIndex; - (void)subTreeSize; - - const b3QuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; - int escapeIndex; - - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned boxBoxOverlap = 0; - unsigned rayBoxOverlap = 0; - - b3Scalar lambda_max = 1.0; - -#ifdef RAYAABB2 - b3Vector3 rayDirection = (rayTarget - raySource); - rayDirection.normalize(); - lambda_max = rayDirection.dot(rayTarget - raySource); - ///what about division by zero? --> just set rayDirection[i] to 1.0 - rayDirection[0] = rayDirection[0] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDirection[0]; - rayDirection[1] = rayDirection[1] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDirection[1]; - rayDirection[2] = rayDirection[2] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDirection[2]; - unsigned int sign[3] = {rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; -#endif - - /* Quick pruning by quantized box */ - b3Vector3 rayAabbMin = raySource; - b3Vector3 rayAabbMax = raySource; - rayAabbMin.setMin(rayTarget); - rayAabbMax.setMax(rayTarget); - - /* Add box cast extents to bounding box */ - rayAabbMin += aabbMin; - rayAabbMax += aabbMax; - - unsigned short int quantizedQueryAabbMin[3]; - unsigned short int quantizedQueryAabbMax[3]; - quantizeWithClamp(quantizedQueryAabbMin, rayAabbMin, 0); - quantizeWithClamp(quantizedQueryAabbMax, rayAabbMax, 1); - - while (curIndex < endNodeIndex) - { -//#define VISUALLY_ANALYZE_BVH 1 -#ifdef VISUALLY_ANALYZE_BVH - //some code snippet to debugDraw aabb, to visually analyze bvh structure - static int drawPatch = 0; - //need some global access to a debugDrawer - extern b3IDebugDraw* debugDrawerPtr; - if (curIndex == drawPatch) - { - b3Vector3 aabbMin, aabbMax; - aabbMin = unQuantize(rootNode->m_quantizedAabbMin); - aabbMax = unQuantize(rootNode->m_quantizedAabbMax); - b3Vector3 color(1, 0, 0); - debugDrawerPtr->drawAabb(aabbMin, aabbMax, color); - } -#endif //VISUALLY_ANALYZE_BVH - - //catch bugs in tree data - b3Assert(walkIterations < subTreeSize); - - walkIterations++; - //PCK: unsigned instead of bool - // only interested if this is closer than any previous hit - b3Scalar param = 1.0; - rayBoxOverlap = 0; - boxBoxOverlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, rootNode->m_quantizedAabbMin, rootNode->m_quantizedAabbMax); - isLeafNode = rootNode->isLeafNode(); - if (boxBoxOverlap) - { - b3Vector3 bounds[2]; - bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); - bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); - /* Add box cast extents */ - bounds[0] -= aabbMax; - bounds[1] -= aabbMin; -#if 0 - b3Vector3 normal; - bool ra2 = b3RayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); - bool ra = b3RayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); - if (ra2 != ra) - { - printf("functions don't match\n"); - } -#endif -#ifdef RAYAABB2 - ///careful with this check: need to check division by zero (above) and fix the unQuantize method - ///thanks Joerg/hiker for the reproduction case! - ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 - - //B3_PROFILE("b3RayAabb2"); - rayBoxOverlap = b3RayAabb2(raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); - -#else - rayBoxOverlap = true; //b3RayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); -#endif - } - - if (isLeafNode && rayBoxOverlap) - { - nodeCallback->processNode(rootNode->getPartId(), rootNode->getTriangleIndex()); - } - - //PCK: unsigned instead of bool - if ((rayBoxOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } - else - { - escapeIndex = rootNode->getEscapeIndex(); - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; -} - -void b3QuantizedBvh::walkStacklessQuantizedTree(b3NodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax, int startNodeIndex, int endNodeIndex) const -{ - b3Assert(m_useQuantization); - - int curIndex = startNodeIndex; - int walkIterations = 0; - int subTreeSize = endNodeIndex - startNodeIndex; - (void)subTreeSize; - - const b3QuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; - int escapeIndex; - - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap; - - while (curIndex < endNodeIndex) - { -//#define VISUALLY_ANALYZE_BVH 1 -#ifdef VISUALLY_ANALYZE_BVH - //some code snippet to debugDraw aabb, to visually analyze bvh structure - static int drawPatch = 0; - //need some global access to a debugDrawer - extern b3IDebugDraw* debugDrawerPtr; - if (curIndex == drawPatch) - { - b3Vector3 aabbMin, aabbMax; - aabbMin = unQuantize(rootNode->m_quantizedAabbMin); - aabbMax = unQuantize(rootNode->m_quantizedAabbMax); - b3Vector3 color(1, 0, 0); - debugDrawerPtr->drawAabb(aabbMin, aabbMax, color); - } -#endif //VISUALLY_ANALYZE_BVH - - //catch bugs in tree data - b3Assert(walkIterations < subTreeSize); - - walkIterations++; - //PCK: unsigned instead of bool - aabbOverlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, rootNode->m_quantizedAabbMin, rootNode->m_quantizedAabbMax); - isLeafNode = rootNode->isLeafNode(); - - if (isLeafNode && aabbOverlap) - { - nodeCallback->processNode(rootNode->getPartId(), rootNode->getTriangleIndex()); - } - - //PCK: unsigned instead of bool - if ((aabbOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } - else - { - escapeIndex = rootNode->getEscapeIndex(); - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; -} - -//This traversal can be called from Playstation 3 SPU -void b3QuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(b3NodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const -{ - b3Assert(m_useQuantization); - - int i; - - for (i = 0; i < this->m_SubtreeHeaders.size(); i++) - { - const b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; - - //PCK: unsigned instead of bool - unsigned overlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, subtree.m_quantizedAabbMin, subtree.m_quantizedAabbMax); - if (overlap != 0) - { - walkStacklessQuantizedTree(nodeCallback, quantizedQueryAabbMin, quantizedQueryAabbMax, - subtree.m_rootNodeIndex, - subtree.m_rootNodeIndex + subtree.m_subtreeSize); - } - } -} - -void b3QuantizedBvh::reportRayOverlappingNodex(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget) const -{ - reportBoxCastOverlappingNodex(nodeCallback, raySource, rayTarget, b3MakeVector3(0, 0, 0), b3MakeVector3(0, 0, 0)); -} - -void b3QuantizedBvh::reportBoxCastOverlappingNodex(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const -{ - //always use stackless - - if (m_useQuantization) - { - walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); - } - else - { - walkStacklessTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); - } - /* - { - //recursive traversal - b3Vector3 qaabbMin = raySource; - b3Vector3 qaabbMax = raySource; - qaabbMin.setMin(rayTarget); - qaabbMax.setMax(rayTarget); - qaabbMin += aabbMin; - qaabbMax += aabbMax; - reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); - } - */ -} - -void b3QuantizedBvh::swapLeafNodes(int i, int splitIndex) -{ - if (m_useQuantization) - { - b3QuantizedBvhNode tmp = m_quantizedLeafNodes[i]; - m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; - m_quantizedLeafNodes[splitIndex] = tmp; - } - else - { - b3OptimizedBvhNode tmp = m_leafNodes[i]; - m_leafNodes[i] = m_leafNodes[splitIndex]; - m_leafNodes[splitIndex] = tmp; - } -} - -void b3QuantizedBvh::assignInternalNodeFromLeafNode(int internalNode, int leafNodeIndex) -{ - if (m_useQuantization) - { - m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; - } - else - { - m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; - } -} - -//PCK: include -#include <new> - -#if 0 -//PCK: consts -static const unsigned BVH_ALIGNMENT = 16; -static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; - -static const unsigned BVH_ALIGNMENT_BLOCKS = 2; -#endif - -unsigned int b3QuantizedBvh::getAlignmentSerializationPadding() -{ - // I changed this to 0 since the extra padding is not needed or used. - return 0; //BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; -} - -unsigned b3QuantizedBvh::calculateSerializeBufferSize() const -{ - unsigned baseSize = sizeof(b3QuantizedBvh) + getAlignmentSerializationPadding(); - baseSize += sizeof(b3BvhSubtreeInfo) * m_subtreeHeaderCount; - if (m_useQuantization) - { - return baseSize + m_curNodeIndex * sizeof(b3QuantizedBvhNode); - } - return baseSize + m_curNodeIndex * sizeof(b3OptimizedBvhNode); -} - -bool b3QuantizedBvh::serialize(void* o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const -{ - b3Assert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); - m_subtreeHeaderCount = m_SubtreeHeaders.size(); - - /* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) - { - ///check alignedment for buffer? - b3Assert(0); - return false; - } -*/ - - b3QuantizedBvh* targetBvh = (b3QuantizedBvh*)o_alignedDataBuffer; - - // construct the class so the virtual function table, etc will be set up - // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor - new (targetBvh) b3QuantizedBvh; - - if (i_swapEndian) - { - targetBvh->m_curNodeIndex = static_cast<int>(b3SwapEndian(m_curNodeIndex)); - - b3SwapVector3Endian(m_bvhAabbMin, targetBvh->m_bvhAabbMin); - b3SwapVector3Endian(m_bvhAabbMax, targetBvh->m_bvhAabbMax); - b3SwapVector3Endian(m_bvhQuantization, targetBvh->m_bvhQuantization); - - targetBvh->m_traversalMode = (b3TraversalMode)b3SwapEndian(m_traversalMode); - targetBvh->m_subtreeHeaderCount = static_cast<int>(b3SwapEndian(m_subtreeHeaderCount)); - } - else - { - targetBvh->m_curNodeIndex = m_curNodeIndex; - targetBvh->m_bvhAabbMin = m_bvhAabbMin; - targetBvh->m_bvhAabbMax = m_bvhAabbMax; - targetBvh->m_bvhQuantization = m_bvhQuantization; - targetBvh->m_traversalMode = m_traversalMode; - targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; - } - - targetBvh->m_useQuantization = m_useQuantization; - - unsigned char* nodeData = (unsigned char*)targetBvh; - nodeData += sizeof(b3QuantizedBvh); - - unsigned sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - int nodeCount = m_curNodeIndex; - - if (m_useQuantization) - { - targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); - } - } - else - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; - } - } - nodeData += sizeof(b3QuantizedBvhNode) * nodeCount; - - // this clears the pointer in the member variable it doesn't really do anything to the data - // it does call the destructor on the contained objects, but they are all classes with no destructor defined - // so the memory (which is not freed) is left alone - targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); - } - else - { - targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - b3SwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); - b3SwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); - - targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(b3SwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); - targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(b3SwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); - targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(b3SwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); - } - } - else - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; - targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; - - targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; - targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; - targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; - } - } - nodeData += sizeof(b3OptimizedBvhNode) * nodeCount; - - // this clears the pointer in the member variable it doesn't really do anything to the data - // it does call the destructor on the contained objects, but they are all classes with no destructor defined - // so the memory (which is not freed) is left alone - targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); - } - - sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - // Now serialize the subtree headers - targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); - if (i_swapEndian) - { - for (int i = 0; i < m_subtreeHeaderCount; i++) - { - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); - - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); - - targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(b3SwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); - targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(b3SwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); - } - } - else - { - for (int i = 0; i < m_subtreeHeaderCount; i++) - { - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); - - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); - - targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); - targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); - - // need to clear padding in destination buffer - targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; - targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; - targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; - } - } - nodeData += sizeof(b3BvhSubtreeInfo) * m_subtreeHeaderCount; - - // this clears the pointer in the member variable it doesn't really do anything to the data - // it does call the destructor on the contained objects, but they are all classes with no destructor defined - // so the memory (which is not freed) is left alone - targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); - - // this wipes the virtual function table pointer at the start of the buffer for the class - *((void**)o_alignedDataBuffer) = NULL; - - return true; -} - -b3QuantizedBvh* b3QuantizedBvh::deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) -{ - if (i_alignedDataBuffer == NULL) // || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) - { - return NULL; - } - b3QuantizedBvh* bvh = (b3QuantizedBvh*)i_alignedDataBuffer; - - if (i_swapEndian) - { - bvh->m_curNodeIndex = static_cast<int>(b3SwapEndian(bvh->m_curNodeIndex)); - - b3UnSwapVector3Endian(bvh->m_bvhAabbMin); - b3UnSwapVector3Endian(bvh->m_bvhAabbMax); - b3UnSwapVector3Endian(bvh->m_bvhQuantization); - - bvh->m_traversalMode = (b3TraversalMode)b3SwapEndian(bvh->m_traversalMode); - bvh->m_subtreeHeaderCount = static_cast<int>(b3SwapEndian(bvh->m_subtreeHeaderCount)); - } - - unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); - b3Assert(calculatedBufSize <= i_dataBufferSize); - - if (calculatedBufSize > i_dataBufferSize) - { - return NULL; - } - - unsigned char* nodeData = (unsigned char*)bvh; - nodeData += sizeof(b3QuantizedBvh); - - unsigned sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - int nodeCount = bvh->m_curNodeIndex; - - // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor - // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor - new (bvh) b3QuantizedBvh(*bvh, false); - - if (bvh->m_useQuantization) - { - bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); - - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); - - bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); - } - } - nodeData += sizeof(b3QuantizedBvhNode) * nodeCount; - } - else - { - bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - b3UnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); - b3UnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); - - bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(b3SwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); - bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(b3SwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); - bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(b3SwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); - } - } - nodeData += sizeof(b3OptimizedBvhNode) * nodeCount; - } - - sizeToAdd = 0; //(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - // Now serialize the subtree headers - bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); - if (i_swapEndian) - { - for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) - { - bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); - - bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); - - bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(b3SwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); - bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(b3SwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); - } - } - - return bvh; -} - -// Constructor that prevents b3Vector3's default constructor from being called -b3QuantizedBvh::b3QuantizedBvh(b3QuantizedBvh& self, bool /* ownsMemory */) : m_bvhAabbMin(self.m_bvhAabbMin), - m_bvhAabbMax(self.m_bvhAabbMax), - m_bvhQuantization(self.m_bvhQuantization), - m_bulletVersion(B3_BULLET_VERSION) -{ -} - -void b3QuantizedBvh::deSerializeFloat(struct b3QuantizedBvhFloatData& quantizedBvhFloatData) -{ - m_bvhAabbMax.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMax); - m_bvhAabbMin.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMin); - m_bvhQuantization.deSerializeFloat(quantizedBvhFloatData.m_bvhQuantization); - - m_curNodeIndex = quantizedBvhFloatData.m_curNodeIndex; - m_useQuantization = quantizedBvhFloatData.m_useQuantization != 0; - - { - int numElem = quantizedBvhFloatData.m_numContiguousLeafNodes; - m_contiguousNodes.resize(numElem); - - if (numElem) - { - b3OptimizedBvhNodeFloatData* memPtr = quantizedBvhFloatData.m_contiguousNodesPtr; - - for (int i = 0; i < numElem; i++, memPtr++) - { - m_contiguousNodes[i].m_aabbMaxOrg.deSerializeFloat(memPtr->m_aabbMaxOrg); - m_contiguousNodes[i].m_aabbMinOrg.deSerializeFloat(memPtr->m_aabbMinOrg); - m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; - m_contiguousNodes[i].m_subPart = memPtr->m_subPart; - m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; - } - } - } - - { - int numElem = quantizedBvhFloatData.m_numQuantizedContiguousNodes; - m_quantizedContiguousNodes.resize(numElem); - - if (numElem) - { - b3QuantizedBvhNodeData* memPtr = quantizedBvhFloatData.m_quantizedContiguousNodesPtr; - for (int i = 0; i < numElem; i++, memPtr++) - { - m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - } - } - } - - m_traversalMode = b3TraversalMode(quantizedBvhFloatData.m_traversalMode); - - { - int numElem = quantizedBvhFloatData.m_numSubtreeHeaders; - m_SubtreeHeaders.resize(numElem); - if (numElem) - { - b3BvhSubtreeInfoData* memPtr = quantizedBvhFloatData.m_subTreeInfoPtr; - for (int i = 0; i < numElem; i++, memPtr++) - { - m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; - m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; - m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; - } - } - } -} - -void b3QuantizedBvh::deSerializeDouble(struct b3QuantizedBvhDoubleData& quantizedBvhDoubleData) -{ - m_bvhAabbMax.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMax); - m_bvhAabbMin.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMin); - m_bvhQuantization.deSerializeDouble(quantizedBvhDoubleData.m_bvhQuantization); - - m_curNodeIndex = quantizedBvhDoubleData.m_curNodeIndex; - m_useQuantization = quantizedBvhDoubleData.m_useQuantization != 0; - - { - int numElem = quantizedBvhDoubleData.m_numContiguousLeafNodes; - m_contiguousNodes.resize(numElem); - - if (numElem) - { - b3OptimizedBvhNodeDoubleData* memPtr = quantizedBvhDoubleData.m_contiguousNodesPtr; - - for (int i = 0; i < numElem; i++, memPtr++) - { - m_contiguousNodes[i].m_aabbMaxOrg.deSerializeDouble(memPtr->m_aabbMaxOrg); - m_contiguousNodes[i].m_aabbMinOrg.deSerializeDouble(memPtr->m_aabbMinOrg); - m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; - m_contiguousNodes[i].m_subPart = memPtr->m_subPart; - m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; - } - } - } - - { - int numElem = quantizedBvhDoubleData.m_numQuantizedContiguousNodes; - m_quantizedContiguousNodes.resize(numElem); - - if (numElem) - { - b3QuantizedBvhNodeData* memPtr = quantizedBvhDoubleData.m_quantizedContiguousNodesPtr; - for (int i = 0; i < numElem; i++, memPtr++) - { - m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - } - } - } - - m_traversalMode = b3TraversalMode(quantizedBvhDoubleData.m_traversalMode); - - { - int numElem = quantizedBvhDoubleData.m_numSubtreeHeaders; - m_SubtreeHeaders.resize(numElem); - if (numElem) - { - b3BvhSubtreeInfoData* memPtr = quantizedBvhDoubleData.m_subTreeInfoPtr; - for (int i = 0; i < numElem; i++, memPtr++) - { - m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; - m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; - m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; - } - } - } -} - -///fills the dataBuffer and returns the struct name (and 0 on failure) -const char* b3QuantizedBvh::serialize(void* dataBuffer, b3Serializer* serializer) const -{ - b3Assert(0); - return 0; -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.h deleted file mode 100644 index 48b41abcad..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.h +++ /dev/null @@ -1,511 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_QUANTIZED_BVH_H -#define B3_QUANTIZED_BVH_H - -class b3Serializer; - -//#define DEBUG_CHECK_DEQUANTIZATION 1 -#ifdef DEBUG_CHECK_DEQUANTIZATION -#ifdef __SPU__ -#define printf spu_printf -#endif //__SPU__ - -#include <stdio.h> -#include <stdlib.h> -#endif //DEBUG_CHECK_DEQUANTIZATION - -#include "Bullet3Common/b3Vector3.h" -#include "Bullet3Common/b3AlignedAllocator.h" - -#ifdef B3_USE_DOUBLE_PRECISION -#define b3QuantizedBvhData b3QuantizedBvhDoubleData -#define b3OptimizedBvhNodeData b3OptimizedBvhNodeDoubleData -#define b3QuantizedBvhDataName "b3QuantizedBvhDoubleData" -#else -#define b3QuantizedBvhData b3QuantizedBvhFloatData -#define b3OptimizedBvhNodeData b3OptimizedBvhNodeFloatData -#define b3QuantizedBvhDataName "b3QuantizedBvhFloatData" -#endif - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3QuantizedBvhNodeData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3BvhSubtreeInfoData.h" - -//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp - -//Note: currently we have 16 bytes per quantized node -#define MAX_SUBTREE_SIZE_IN_BYTES 2048 - -// 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one -// actually) triangles each (since the sign bit is reserved -#define MAX_NUM_PARTS_IN_BITS 10 - -///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -B3_ATTRIBUTE_ALIGNED16(struct) -b3QuantizedBvhNode : public b3QuantizedBvhNodeData -{ - B3_DECLARE_ALIGNED_ALLOCATOR(); - - bool isLeafNode() const - { - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (m_escapeIndexOrTriangleIndex >= 0); - } - int getEscapeIndex() const - { - b3Assert(!isLeafNode()); - return -m_escapeIndexOrTriangleIndex; - } - int getTriangleIndex() const - { - b3Assert(isLeafNode()); - unsigned int x = 0; - unsigned int y = (~(x & 0)) << (31 - MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (m_escapeIndexOrTriangleIndex & ~(y)); - } - int getPartId() const - { - b3Assert(isLeafNode()); - // Get only the highest bits where the part index is stored - return (m_escapeIndexOrTriangleIndex >> (31 - MAX_NUM_PARTS_IN_BITS)); - } -}; - -/// b3OptimizedBvhNode contains both internal and leaf node information. -/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes. -B3_ATTRIBUTE_ALIGNED16(struct) -b3OptimizedBvhNode -{ - B3_DECLARE_ALIGNED_ALLOCATOR(); - - //32 bytes - b3Vector3 m_aabbMinOrg; - b3Vector3 m_aabbMaxOrg; - - //4 - int m_escapeIndex; - - //8 - //for child nodes - int m_subPart; - int m_triangleIndex; - - //pad the size to 64 bytes - char m_padding[20]; -}; - -///b3BvhSubtreeInfo provides info to gather a subtree of limited size -B3_ATTRIBUTE_ALIGNED16(class) -b3BvhSubtreeInfo : public b3BvhSubtreeInfoData -{ -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3BvhSubtreeInfo() - { - //memset(&m_padding[0], 0, sizeof(m_padding)); - } - - void setAabbFromQuantizeNode(const b3QuantizedBvhNode& quantizedNode) - { - m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0]; - m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1]; - m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2]; - m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0]; - m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1]; - m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2]; - } -}; - -class b3NodeOverlapCallback -{ -public: - virtual ~b3NodeOverlapCallback(){}; - - virtual void processNode(int subPart, int triangleIndex) = 0; -}; - -#include "Bullet3Common/b3AlignedAllocator.h" -#include "Bullet3Common/b3AlignedObjectArray.h" - -///for code readability: -typedef b3AlignedObjectArray<b3OptimizedBvhNode> NodeArray; -typedef b3AlignedObjectArray<b3QuantizedBvhNode> QuantizedNodeArray; -typedef b3AlignedObjectArray<b3BvhSubtreeInfo> BvhSubtreeInfoArray; - -///The b3QuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU. -///It is used by the b3BvhTriangleMeshShape as midphase -///It is recommended to use quantization for better performance and lower memory requirements. -B3_ATTRIBUTE_ALIGNED16(class) -b3QuantizedBvh -{ -public: - enum b3TraversalMode - { - TRAVERSAL_STACKLESS = 0, - TRAVERSAL_STACKLESS_CACHE_FRIENDLY, - TRAVERSAL_RECURSIVE - }; - - b3Vector3 m_bvhAabbMin; - b3Vector3 m_bvhAabbMax; - b3Vector3 m_bvhQuantization; - -protected: - int m_bulletVersion; //for serialization versioning. It could also be used to detect endianess. - - int m_curNodeIndex; - //quantization data - bool m_useQuantization; - - NodeArray m_leafNodes; - NodeArray m_contiguousNodes; - QuantizedNodeArray m_quantizedLeafNodes; - QuantizedNodeArray m_quantizedContiguousNodes; - - b3TraversalMode m_traversalMode; - BvhSubtreeInfoArray m_SubtreeHeaders; - - //This is only used for serialization so we don't have to add serialization directly to b3AlignedObjectArray - mutable int m_subtreeHeaderCount; - - ///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!) - ///this might be refactored into a virtual, it is usually not calculated at run-time - void setInternalNodeAabbMin(int nodeIndex, const b3Vector3& aabbMin) - { - if (m_useQuantization) - { - quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0], aabbMin, 0); - } - else - { - m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin; - } - } - void setInternalNodeAabbMax(int nodeIndex, const b3Vector3& aabbMax) - { - if (m_useQuantization) - { - quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0], aabbMax, 1); - } - else - { - m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax; - } - } - - b3Vector3 getAabbMin(int nodeIndex) const - { - if (m_useQuantization) - { - return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]); - } - //non-quantized - return m_leafNodes[nodeIndex].m_aabbMinOrg; - } - b3Vector3 getAabbMax(int nodeIndex) const - { - if (m_useQuantization) - { - return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]); - } - //non-quantized - return m_leafNodes[nodeIndex].m_aabbMaxOrg; - } - - void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex) - { - if (m_useQuantization) - { - m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex; - } - else - { - m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex; - } - } - - void mergeInternalNodeAabb(int nodeIndex, const b3Vector3& newAabbMin, const b3Vector3& newAabbMax) - { - if (m_useQuantization) - { - unsigned short int quantizedAabbMin[3]; - unsigned short int quantizedAabbMax[3]; - quantize(quantizedAabbMin, newAabbMin, 0); - quantize(quantizedAabbMax, newAabbMax, 1); - for (int i = 0; i < 3; i++) - { - if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i]) - m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i]; - - if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i]) - m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i]; - } - } - else - { - //non-quantized - m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin); - m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax); - } - } - - void swapLeafNodes(int firstIndex, int secondIndex); - - void assignInternalNodeFromLeafNode(int internalNode, int leafNodeIndex); - -protected: - void buildTree(int startIndex, int endIndex); - - int calcSplittingAxis(int startIndex, int endIndex); - - int sortAndCalcSplittingIndex(int startIndex, int endIndex, int splitAxis); - - void walkStacklessTree(b3NodeOverlapCallback * nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const; - - void walkStacklessQuantizedTreeAgainstRay(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const; - void walkStacklessQuantizedTree(b3NodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax, int startNodeIndex, int endNodeIndex) const; - void walkStacklessTreeAgainstRay(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const; - - ///tree traversal designed for small-memory processors like PS3 SPU - void walkStacklessQuantizedTreeCacheFriendly(b3NodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const; - - ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal - void walkRecursiveQuantizedTreeAgainstQueryAabb(const b3QuantizedBvhNode* currentNode, b3NodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const; - - ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal - void walkRecursiveQuantizedTreeAgainstQuantizedTree(const b3QuantizedBvhNode* treeNodeA, const b3QuantizedBvhNode* treeNodeB, b3NodeOverlapCallback* nodeCallback) const; - - void updateSubtreeHeaders(int leftChildNodexIndex, int rightChildNodexIndex); - -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3QuantizedBvh(); - - virtual ~b3QuantizedBvh(); - - ///***************************************** expert/internal use only ************************* - void setQuantizationValues(const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax, b3Scalar quantizationMargin = b3Scalar(1.0)); - QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; } - ///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized - void buildInternal(); - ///***************************************** expert/internal use only ************************* - - void reportAabbOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const; - void reportRayOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget) const; - void reportBoxCastOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const; - - B3_FORCE_INLINE void quantize(unsigned short* out, const b3Vector3& point, int isMax) const - { - b3Assert(m_useQuantization); - - b3Assert(point.getX() <= m_bvhAabbMax.getX()); - b3Assert(point.getY() <= m_bvhAabbMax.getY()); - b3Assert(point.getZ() <= m_bvhAabbMax.getZ()); - - b3Assert(point.getX() >= m_bvhAabbMin.getX()); - b3Assert(point.getY() >= m_bvhAabbMin.getY()); - b3Assert(point.getZ() >= m_bvhAabbMin.getZ()); - - b3Vector3 v = (point - m_bvhAabbMin) * m_bvhQuantization; - ///Make sure rounding is done in a way that unQuantize(quantizeWithClamp(...)) is conservative - ///end-points always set the first bit, so that they are sorted properly (so that neighbouring AABBs overlap properly) - ///@todo: double-check this - if (isMax) - { - out[0] = (unsigned short)(((unsigned short)(v.getX() + b3Scalar(1.)) | 1)); - out[1] = (unsigned short)(((unsigned short)(v.getY() + b3Scalar(1.)) | 1)); - out[2] = (unsigned short)(((unsigned short)(v.getZ() + b3Scalar(1.)) | 1)); - } - else - { - out[0] = (unsigned short)(((unsigned short)(v.getX()) & 0xfffe)); - out[1] = (unsigned short)(((unsigned short)(v.getY()) & 0xfffe)); - out[2] = (unsigned short)(((unsigned short)(v.getZ()) & 0xfffe)); - } - -#ifdef DEBUG_CHECK_DEQUANTIZATION - b3Vector3 newPoint = unQuantize(out); - if (isMax) - { - if (newPoint.getX() < point.getX()) - { - printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX()); - } - if (newPoint.getY() < point.getY()) - { - printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY()); - } - if (newPoint.getZ() < point.getZ()) - { - printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ()); - } - } - else - { - if (newPoint.getX() > point.getX()) - { - printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX()); - } - if (newPoint.getY() > point.getY()) - { - printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY()); - } - if (newPoint.getZ() > point.getZ()) - { - printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ()); - } - } -#endif //DEBUG_CHECK_DEQUANTIZATION - } - - B3_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const b3Vector3& point2, int isMax) const - { - b3Assert(m_useQuantization); - - b3Vector3 clampedPoint(point2); - clampedPoint.setMax(m_bvhAabbMin); - clampedPoint.setMin(m_bvhAabbMax); - - quantize(out, clampedPoint, isMax); - } - - B3_FORCE_INLINE b3Vector3 unQuantize(const unsigned short* vecIn) const - { - b3Vector3 vecOut; - vecOut.setValue( - (b3Scalar)(vecIn[0]) / (m_bvhQuantization.getX()), - (b3Scalar)(vecIn[1]) / (m_bvhQuantization.getY()), - (b3Scalar)(vecIn[2]) / (m_bvhQuantization.getZ())); - vecOut += m_bvhAabbMin; - return vecOut; - } - - ///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees. - void setTraversalMode(b3TraversalMode traversalMode) - { - m_traversalMode = traversalMode; - } - - B3_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray() - { - return m_quantizedContiguousNodes; - } - - B3_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray() - { - return m_SubtreeHeaders; - } - - //////////////////////////////////////////////////////////////////// - - /////Calculate space needed to store BVH for serialization - unsigned calculateSerializeBufferSize() const; - - /// Data buffer MUST be 16 byte aligned - virtual bool serialize(void* o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const; - - ///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place' - static b3QuantizedBvh* deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian); - - static unsigned int getAlignmentSerializationPadding(); - ////////////////////////////////////////////////////////////////////// - - virtual int calculateSerializeBufferSizeNew() const; - - ///fills the dataBuffer and returns the struct name (and 0 on failure) - virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const; - - virtual void deSerializeFloat(struct b3QuantizedBvhFloatData & quantizedBvhFloatData); - - virtual void deSerializeDouble(struct b3QuantizedBvhDoubleData & quantizedBvhDoubleData); - - //////////////////////////////////////////////////////////////////// - - B3_FORCE_INLINE bool isQuantized() - { - return m_useQuantization; - } - -private: - // Special "copy" constructor that allows for in-place deserialization - // Prevents b3Vector3's default constructor from being called, but doesn't inialize much else - // ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need) - b3QuantizedBvh(b3QuantizedBvh & other, bool ownsMemory); -}; - -struct b3OptimizedBvhNodeFloatData -{ - b3Vector3FloatData m_aabbMinOrg; - b3Vector3FloatData m_aabbMaxOrg; - int m_escapeIndex; - int m_subPart; - int m_triangleIndex; - char m_pad[4]; -}; - -struct b3OptimizedBvhNodeDoubleData -{ - b3Vector3DoubleData m_aabbMinOrg; - b3Vector3DoubleData m_aabbMaxOrg; - int m_escapeIndex; - int m_subPart; - int m_triangleIndex; - char m_pad[4]; -}; - -struct b3QuantizedBvhFloatData -{ - b3Vector3FloatData m_bvhAabbMin; - b3Vector3FloatData m_bvhAabbMax; - b3Vector3FloatData m_bvhQuantization; - int m_curNodeIndex; - int m_useQuantization; - int m_numContiguousLeafNodes; - int m_numQuantizedContiguousNodes; - b3OptimizedBvhNodeFloatData* m_contiguousNodesPtr; - b3QuantizedBvhNodeData* m_quantizedContiguousNodesPtr; - b3BvhSubtreeInfoData* m_subTreeInfoPtr; - int m_traversalMode; - int m_numSubtreeHeaders; -}; - -struct b3QuantizedBvhDoubleData -{ - b3Vector3DoubleData m_bvhAabbMin; - b3Vector3DoubleData m_bvhAabbMax; - b3Vector3DoubleData m_bvhQuantization; - int m_curNodeIndex; - int m_useQuantization; - int m_numContiguousLeafNodes; - int m_numQuantizedContiguousNodes; - b3OptimizedBvhNodeDoubleData* m_contiguousNodesPtr; - b3QuantizedBvhNodeData* m_quantizedContiguousNodesPtr; - - int m_traversalMode; - int m_numSubtreeHeaders; - b3BvhSubtreeInfoData* m_subTreeInfoPtr; -}; - -B3_FORCE_INLINE int b3QuantizedBvh::calculateSerializeBufferSizeNew() const -{ - return sizeof(b3QuantizedBvhData); -} - -#endif //B3_QUANTIZED_BVH_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.cpp deleted file mode 100644 index 6b0c941f23..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.cpp +++ /dev/null @@ -1,207 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3StridingMeshInterface.h" - -b3StridingMeshInterface::~b3StridingMeshInterface() -{ -} - -void b3StridingMeshInterface::InternalProcessAllTriangles(b3InternalTriangleIndexCallback* callback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const -{ - (void)aabbMin; - (void)aabbMax; - int numtotalphysicsverts = 0; - int part, graphicssubparts = getNumSubParts(); - const unsigned char* vertexbase; - const unsigned char* indexbase; - int indexstride; - PHY_ScalarType type; - PHY_ScalarType gfxindextype; - int stride, numverts, numtriangles; - int gfxindex; - b3Vector3 triangle[3]; - - b3Vector3 meshScaling = getScaling(); - - ///if the number of parts is big, the performance might drop due to the innerloop switch on indextype - for (part = 0; part < graphicssubparts; part++) - { - getLockedReadOnlyVertexIndexBase(&vertexbase, numverts, type, stride, &indexbase, indexstride, numtriangles, gfxindextype, part); - numtotalphysicsverts += numtriangles * 3; //upper bound - - ///unlike that developers want to pass in double-precision meshes in single-precision Bullet build - ///so disable this feature by default - ///see patch http://code.google.com/p/bullet/issues/detail?id=213 - - switch (type) - { - case PHY_FLOAT: - { - float* graphicsbase; - - switch (gfxindextype) - { - case PHY_INTEGER: - { - for (gfxindex = 0; gfxindex < numtriangles; gfxindex++) - { - unsigned int* tri_indices = (unsigned int*)(indexbase + gfxindex * indexstride); - graphicsbase = (float*)(vertexbase + tri_indices[0] * stride); - triangle[0].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (float*)(vertexbase + tri_indices[1] * stride); - triangle[1].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (float*)(vertexbase + tri_indices[2] * stride); - triangle[2].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle, part, gfxindex); - } - break; - } - case PHY_SHORT: - { - for (gfxindex = 0; gfxindex < numtriangles; gfxindex++) - { - unsigned short int* tri_indices = (unsigned short int*)(indexbase + gfxindex * indexstride); - graphicsbase = (float*)(vertexbase + tri_indices[0] * stride); - triangle[0].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (float*)(vertexbase + tri_indices[1] * stride); - triangle[1].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (float*)(vertexbase + tri_indices[2] * stride); - triangle[2].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle, part, gfxindex); - } - break; - } - case PHY_UCHAR: - { - for (gfxindex = 0; gfxindex < numtriangles; gfxindex++) - { - unsigned char* tri_indices = (unsigned char*)(indexbase + gfxindex * indexstride); - graphicsbase = (float*)(vertexbase + tri_indices[0] * stride); - triangle[0].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (float*)(vertexbase + tri_indices[1] * stride); - triangle[1].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (float*)(vertexbase + tri_indices[2] * stride); - triangle[2].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle, part, gfxindex); - } - break; - } - default: - b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT)); - } - break; - } - - case PHY_DOUBLE: - { - double* graphicsbase; - - switch (gfxindextype) - { - case PHY_INTEGER: - { - for (gfxindex = 0; gfxindex < numtriangles; gfxindex++) - { - unsigned int* tri_indices = (unsigned int*)(indexbase + gfxindex * indexstride); - graphicsbase = (double*)(vertexbase + tri_indices[0] * stride); - triangle[0].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (double*)(vertexbase + tri_indices[1] * stride); - triangle[1].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (double*)(vertexbase + tri_indices[2] * stride); - triangle[2].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle, part, gfxindex); - } - break; - } - case PHY_SHORT: - { - for (gfxindex = 0; gfxindex < numtriangles; gfxindex++) - { - unsigned short int* tri_indices = (unsigned short int*)(indexbase + gfxindex * indexstride); - graphicsbase = (double*)(vertexbase + tri_indices[0] * stride); - triangle[0].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (double*)(vertexbase + tri_indices[1] * stride); - triangle[1].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (double*)(vertexbase + tri_indices[2] * stride); - triangle[2].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle, part, gfxindex); - } - break; - } - case PHY_UCHAR: - { - for (gfxindex = 0; gfxindex < numtriangles; gfxindex++) - { - unsigned char* tri_indices = (unsigned char*)(indexbase + gfxindex * indexstride); - graphicsbase = (double*)(vertexbase + tri_indices[0] * stride); - triangle[0].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (double*)(vertexbase + tri_indices[1] * stride); - triangle[1].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - graphicsbase = (double*)(vertexbase + tri_indices[2] * stride); - triangle[2].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle, part, gfxindex); - } - break; - } - default: - b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT)); - } - break; - } - default: - b3Assert((type == PHY_FLOAT) || (type == PHY_DOUBLE)); - } - - unLockReadOnlyVertexBase(part); - } -} - -void b3StridingMeshInterface::calculateAabbBruteForce(b3Vector3& aabbMin, b3Vector3& aabbMax) -{ - struct AabbCalculationCallback : public b3InternalTriangleIndexCallback - { - b3Vector3 m_aabbMin; - b3Vector3 m_aabbMax; - - AabbCalculationCallback() - { - m_aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT)); - m_aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT)); - } - - virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex) - { - (void)partId; - (void)triangleIndex; - - m_aabbMin.setMin(triangle[0]); - m_aabbMax.setMax(triangle[0]); - m_aabbMin.setMin(triangle[1]); - m_aabbMax.setMax(triangle[1]); - m_aabbMin.setMin(triangle[2]); - m_aabbMax.setMax(triangle[2]); - } - }; - - //first calculate the total aabb for all triangles - AabbCalculationCallback aabbCallback; - aabbMin.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT)); - InternalProcessAllTriangles(&aabbCallback, aabbMin, aabbMax); - - aabbMin = aabbCallback.m_aabbMin; - aabbMax = aabbCallback.m_aabbMax; -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.h deleted file mode 100644 index 2b1e63be75..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.h +++ /dev/null @@ -1,158 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_STRIDING_MESHINTERFACE_H -#define B3_STRIDING_MESHINTERFACE_H - -#include "Bullet3Common/b3Vector3.h" -#include "b3TriangleCallback.h" -//#include "b3ConcaveShape.h" - -enum PHY_ScalarType -{ - PHY_FLOAT, - PHY_DOUBLE, - PHY_INTEGER, - PHY_SHORT, - PHY_FIXEDPOINT88, - PHY_UCHAR -}; - -/// The b3StridingMeshInterface is the interface class for high performance generic access to triangle meshes, used in combination with b3BvhTriangleMeshShape and some other collision shapes. -/// Using index striding of 3*sizeof(integer) it can use triangle arrays, using index striding of 1*sizeof(integer) it can handle triangle strips. -/// It allows for sharing graphics and collision meshes. Also it provides locking/unlocking of graphics meshes that are in gpu memory. -B3_ATTRIBUTE_ALIGNED16(class) -b3StridingMeshInterface -{ -protected: - b3Vector3 m_scaling; - -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3StridingMeshInterface() : m_scaling(b3MakeVector3(b3Scalar(1.), b3Scalar(1.), b3Scalar(1.))) - { - } - - virtual ~b3StridingMeshInterface(); - - virtual void InternalProcessAllTriangles(b3InternalTriangleIndexCallback * callback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const; - - ///brute force method to calculate aabb - void calculateAabbBruteForce(b3Vector3 & aabbMin, b3Vector3 & aabbMax); - - /// get read and write access to a subpart of a triangle mesh - /// this subpart has a continuous array of vertices and indices - /// in this way the mesh can be handled as chunks of memory with striding - /// very similar to OpenGL vertexarray support - /// make a call to unLockVertexBase when the read and write access is finished - virtual void getLockedVertexIndexBase(unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& stride, unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0) = 0; - - virtual void getLockedReadOnlyVertexIndexBase(const unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& stride, const unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0) const = 0; - - /// unLockVertexBase finishes the access to a subpart of the triangle mesh - /// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished - virtual void unLockVertexBase(int subpart) = 0; - - virtual void unLockReadOnlyVertexBase(int subpart) const = 0; - - /// getNumSubParts returns the number of separate subparts - /// each subpart has a continuous array of vertices and indices - virtual int getNumSubParts() const = 0; - - virtual void preallocateVertices(int numverts) = 0; - virtual void preallocateIndices(int numindices) = 0; - - virtual bool hasPremadeAabb() const { return false; } - virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax) const - { - (void)aabbMin; - (void)aabbMax; - } - virtual void getPremadeAabb(b3Vector3 * aabbMin, b3Vector3 * aabbMax) const - { - (void)aabbMin; - (void)aabbMax; - } - - const b3Vector3& getScaling() const - { - return m_scaling; - } - void setScaling(const b3Vector3& scaling) - { - m_scaling = scaling; - } - - virtual int calculateSerializeBufferSize() const; - - ///fills the dataBuffer and returns the struct name (and 0 on failure) - //virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const; -}; - -struct b3IntIndexData -{ - int m_value; -}; - -struct b3ShortIntIndexData -{ - short m_value; - char m_pad[2]; -}; - -struct b3ShortIntIndexTripletData -{ - short m_values[3]; - char m_pad[2]; -}; - -struct b3CharIndexTripletData -{ - unsigned char m_values[3]; - char m_pad; -}; - -///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 -struct b3MeshPartData -{ - b3Vector3FloatData* m_vertices3f; - b3Vector3DoubleData* m_vertices3d; - - b3IntIndexData* m_indices32; - b3ShortIntIndexTripletData* m_3indices16; - b3CharIndexTripletData* m_3indices8; - - b3ShortIntIndexData* m_indices16; //backwards compatibility - - int m_numTriangles; //length of m_indices = m_numTriangles - int m_numVertices; -}; - -///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 -struct b3StridingMeshInterfaceData -{ - b3MeshPartData* m_meshPartsPtr; - b3Vector3FloatData m_scaling; - int m_numMeshParts; - char m_padding[4]; -}; - -B3_FORCE_INLINE int b3StridingMeshInterface::calculateSerializeBufferSize() const -{ - return sizeof(b3StridingMeshInterfaceData); -} - -#endif //B3_STRIDING_MESHINTERFACE_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3SupportMappings.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3SupportMappings.h deleted file mode 100644 index 9ca1e22949..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3SupportMappings.h +++ /dev/null @@ -1,34 +0,0 @@ - -#ifndef B3_SUPPORT_MAPPINGS_H -#define B3_SUPPORT_MAPPINGS_H - -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Common/b3AlignedObjectArray.h" -#include "b3VectorFloat4.h" - -struct b3GjkPairDetector; - -inline b3Vector3 localGetSupportVertexWithMargin(const float4& supportVec, const struct b3ConvexPolyhedronData* hull, - const b3AlignedObjectArray<b3Vector3>& verticesA, b3Scalar margin) -{ - b3Vector3 supVec = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - b3Scalar maxDot = b3Scalar(-B3_LARGE_FLOAT); - - // Here we take advantage of dot(a, b*c) = dot(a*b, c). Note: This is true mathematically, but not numerically. - if (0 < hull->m_numVertices) - { - const b3Vector3 scaled = supportVec; - int index = (int)scaled.maxDot(&verticesA[hull->m_vertexOffset], hull->m_numVertices, maxDot); - return verticesA[hull->m_vertexOffset + index]; - } - - return supVec; -} - -inline b3Vector3 localGetSupportVertexWithoutMargin(const float4& supportVec, const struct b3ConvexPolyhedronData* hull, - const b3AlignedObjectArray<b3Vector3>& verticesA) -{ - return localGetSupportVertexWithMargin(supportVec, hull, verticesA, 0.f); -} - -#endif //B3_SUPPORT_MAPPINGS_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.cpp deleted file mode 100644 index 3908c6de89..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.cpp +++ /dev/null @@ -1,24 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3TriangleCallback.h" - -b3TriangleCallback::~b3TriangleCallback() -{ -} - -b3InternalTriangleIndexCallback::~b3InternalTriangleIndexCallback() -{ -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.h deleted file mode 100644 index a0fd3e7ac7..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.h +++ /dev/null @@ -1,37 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_TRIANGLE_CALLBACK_H -#define B3_TRIANGLE_CALLBACK_H - -#include "Bullet3Common/b3Vector3.h" - -///The b3TriangleCallback provides a callback for each overlapping triangle when calling processAllTriangles. -///This callback is called by processAllTriangles for all b3ConcaveShape derived class, such as b3BvhTriangleMeshShape, b3StaticPlaneShape and b3HeightfieldTerrainShape. -class b3TriangleCallback -{ -public: - virtual ~b3TriangleCallback(); - virtual void processTriangle(b3Vector3* triangle, int partId, int triangleIndex) = 0; -}; - -class b3InternalTriangleIndexCallback -{ -public: - virtual ~b3InternalTriangleIndexCallback(); - virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex) = 0; -}; - -#endif //B3_TRIANGLE_CALLBACK_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.cpp deleted file mode 100644 index 73faadbdd0..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.cpp +++ /dev/null @@ -1,90 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3TriangleIndexVertexArray.h" - -b3TriangleIndexVertexArray::b3TriangleIndexVertexArray(int numTriangles, int* triangleIndexBase, int triangleIndexStride, int numVertices, b3Scalar* vertexBase, int vertexStride) - : m_hasAabb(0) -{ - b3IndexedMesh mesh; - - mesh.m_numTriangles = numTriangles; - mesh.m_triangleIndexBase = (const unsigned char*)triangleIndexBase; - mesh.m_triangleIndexStride = triangleIndexStride; - mesh.m_numVertices = numVertices; - mesh.m_vertexBase = (const unsigned char*)vertexBase; - mesh.m_vertexStride = vertexStride; - - addIndexedMesh(mesh); -} - -b3TriangleIndexVertexArray::~b3TriangleIndexVertexArray() -{ -} - -void b3TriangleIndexVertexArray::getLockedVertexIndexBase(unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart) -{ - b3Assert(subpart < getNumSubParts()); - - b3IndexedMesh& mesh = m_indexedMeshes[subpart]; - - numverts = mesh.m_numVertices; - (*vertexbase) = (unsigned char*)mesh.m_vertexBase; - - type = mesh.m_vertexType; - - vertexStride = mesh.m_vertexStride; - - numfaces = mesh.m_numTriangles; - - (*indexbase) = (unsigned char*)mesh.m_triangleIndexBase; - indexstride = mesh.m_triangleIndexStride; - indicestype = mesh.m_indexType; -} - -void b3TriangleIndexVertexArray::getLockedReadOnlyVertexIndexBase(const unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, const unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart) const -{ - const b3IndexedMesh& mesh = m_indexedMeshes[subpart]; - - numverts = mesh.m_numVertices; - (*vertexbase) = (const unsigned char*)mesh.m_vertexBase; - - type = mesh.m_vertexType; - - vertexStride = mesh.m_vertexStride; - - numfaces = mesh.m_numTriangles; - (*indexbase) = (const unsigned char*)mesh.m_triangleIndexBase; - indexstride = mesh.m_triangleIndexStride; - indicestype = mesh.m_indexType; -} - -bool b3TriangleIndexVertexArray::hasPremadeAabb() const -{ - return (m_hasAabb == 1); -} - -void b3TriangleIndexVertexArray::setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax) const -{ - m_aabbMin = aabbMin; - m_aabbMax = aabbMax; - m_hasAabb = 1; // this is intentionally an int see notes in header -} - -void b3TriangleIndexVertexArray::getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax) const -{ - *aabbMin = m_aabbMin; - *aabbMax = m_aabbMax; -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.h deleted file mode 100644 index 57cbf03dc2..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.h +++ /dev/null @@ -1,128 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_TRIANGLE_INDEX_VERTEX_ARRAY_H -#define B3_TRIANGLE_INDEX_VERTEX_ARRAY_H - -#include "b3StridingMeshInterface.h" -#include "Bullet3Common/b3AlignedObjectArray.h" -#include "Bullet3Common/b3Scalar.h" - -///The b3IndexedMesh indexes a single vertex and index array. Multiple b3IndexedMesh objects can be passed into a b3TriangleIndexVertexArray using addIndexedMesh. -///Instead of the number of indices, we pass the number of triangles. -B3_ATTRIBUTE_ALIGNED16(struct) -b3IndexedMesh -{ - B3_DECLARE_ALIGNED_ALLOCATOR(); - - int m_numTriangles; - const unsigned char* m_triangleIndexBase; - // Size in byte of the indices for one triangle (3*sizeof(index_type) if the indices are tightly packed) - int m_triangleIndexStride; - int m_numVertices; - const unsigned char* m_vertexBase; - // Size of a vertex, in bytes - int m_vertexStride; - - // The index type is set when adding an indexed mesh to the - // b3TriangleIndexVertexArray, do not set it manually - PHY_ScalarType m_indexType; - - // The vertex type has a default type similar to Bullet's precision mode (float or double) - // but can be set manually if you for example run Bullet with double precision but have - // mesh data in single precision.. - PHY_ScalarType m_vertexType; - - b3IndexedMesh() - : m_indexType(PHY_INTEGER), -#ifdef B3_USE_DOUBLE_PRECISION - m_vertexType(PHY_DOUBLE) -#else // B3_USE_DOUBLE_PRECISION - m_vertexType(PHY_FLOAT) -#endif // B3_USE_DOUBLE_PRECISION - { - } -}; - -typedef b3AlignedObjectArray<b3IndexedMesh> IndexedMeshArray; - -///The b3TriangleIndexVertexArray allows to access multiple triangle meshes, by indexing into existing triangle/index arrays. -///Additional meshes can be added using addIndexedMesh -///No duplcate is made of the vertex/index data, it only indexes into external vertex/index arrays. -///So keep those arrays around during the lifetime of this b3TriangleIndexVertexArray. -B3_ATTRIBUTE_ALIGNED16(class) -b3TriangleIndexVertexArray : public b3StridingMeshInterface -{ -protected: - IndexedMeshArray m_indexedMeshes; - int m_pad[2]; - mutable int m_hasAabb; // using int instead of bool to maintain alignment - mutable b3Vector3 m_aabbMin; - mutable b3Vector3 m_aabbMax; - -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3TriangleIndexVertexArray() : m_hasAabb(0) - { - } - - virtual ~b3TriangleIndexVertexArray(); - - //just to be backwards compatible - b3TriangleIndexVertexArray(int numTriangles, int* triangleIndexBase, int triangleIndexStride, int numVertices, b3Scalar* vertexBase, int vertexStride); - - void addIndexedMesh(const b3IndexedMesh& mesh, PHY_ScalarType indexType = PHY_INTEGER) - { - m_indexedMeshes.push_back(mesh); - m_indexedMeshes[m_indexedMeshes.size() - 1].m_indexType = indexType; - } - - virtual void getLockedVertexIndexBase(unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0); - - virtual void getLockedReadOnlyVertexIndexBase(const unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, const unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0) const; - - /// unLockVertexBase finishes the access to a subpart of the triangle mesh - /// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished - virtual void unLockVertexBase(int subpart) { (void)subpart; } - - virtual void unLockReadOnlyVertexBase(int subpart) const { (void)subpart; } - - /// getNumSubParts returns the number of separate subparts - /// each subpart has a continuous array of vertices and indices - virtual int getNumSubParts() const - { - return (int)m_indexedMeshes.size(); - } - - IndexedMeshArray& getIndexedMeshArray() - { - return m_indexedMeshes; - } - - const IndexedMeshArray& getIndexedMeshArray() const - { - return m_indexedMeshes; - } - - virtual void preallocateVertices(int numverts) { (void)numverts; } - virtual void preallocateIndices(int numindices) { (void)numindices; } - - virtual bool hasPremadeAabb() const; - virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax) const; - virtual void getPremadeAabb(b3Vector3 * aabbMin, b3Vector3 * aabbMax) const; -}; - -#endif //B3_TRIANGLE_INDEX_VERTEX_ARRAY_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VectorFloat4.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VectorFloat4.h deleted file mode 100644 index 5cc4b5a626..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VectorFloat4.h +++ /dev/null @@ -1,10 +0,0 @@ -#ifndef B3_VECTOR_FLOAT4_H -#define B3_VECTOR_FLOAT4_H - -#include "Bullet3Common/b3Transform.h" - -//#define cross3(a,b) (a.cross(b)) -#define float4 b3Vector3 -//#define make_float4(x,y,z,w) b3Vector4(x,y,z,w) - -#endif //B3_VECTOR_FLOAT4_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp deleted file mode 100644 index 8b0a834efe..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp +++ /dev/null @@ -1,574 +0,0 @@ - -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. - - Elsevier CDROM license agreements grants nonexclusive license to use the software - for any purpose, commercial or non-commercial as long as the following credit is included - identifying the original source of the software: - - Parts of the source are "from the book Real-Time Collision Detection by - Christer Ericson, published by Morgan Kaufmann Publishers, - (c) 2005 Elsevier Inc." - -*/ - -#include "b3VoronoiSimplexSolver.h" - -#define VERTA 0 -#define VERTB 1 -#define VERTC 2 -#define VERTD 3 - -#define B3_CATCH_DEGENERATE_TETRAHEDRON 1 -void b3VoronoiSimplexSolver::removeVertex(int index) -{ - b3Assert(m_numVertices > 0); - m_numVertices--; - m_simplexVectorW[index] = m_simplexVectorW[m_numVertices]; - m_simplexPointsP[index] = m_simplexPointsP[m_numVertices]; - m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices]; -} - -void b3VoronoiSimplexSolver::reduceVertices(const b3UsageBitfield& usedVerts) -{ - if ((numVertices() >= 4) && (!usedVerts.usedVertexD)) - removeVertex(3); - - if ((numVertices() >= 3) && (!usedVerts.usedVertexC)) - removeVertex(2); - - if ((numVertices() >= 2) && (!usedVerts.usedVertexB)) - removeVertex(1); - - if ((numVertices() >= 1) && (!usedVerts.usedVertexA)) - removeVertex(0); -} - -//clear the simplex, remove all the vertices -void b3VoronoiSimplexSolver::reset() -{ - m_cachedValidClosest = false; - m_numVertices = 0; - m_needsUpdate = true; - m_lastW = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT)); - m_cachedBC.reset(); -} - -//add a vertex -void b3VoronoiSimplexSolver::addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q) -{ - m_lastW = w; - m_needsUpdate = true; - - m_simplexVectorW[m_numVertices] = w; - m_simplexPointsP[m_numVertices] = p; - m_simplexPointsQ[m_numVertices] = q; - - m_numVertices++; -} - -bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints() -{ - if (m_needsUpdate) - { - m_cachedBC.reset(); - - m_needsUpdate = false; - - switch (numVertices()) - { - case 0: - m_cachedValidClosest = false; - break; - case 1: - { - m_cachedP1 = m_simplexPointsP[0]; - m_cachedP2 = m_simplexPointsQ[0]; - m_cachedV = m_cachedP1 - m_cachedP2; //== m_simplexVectorW[0] - m_cachedBC.reset(); - m_cachedBC.setBarycentricCoordinates(b3Scalar(1.), b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - m_cachedValidClosest = m_cachedBC.isValid(); - break; - }; - case 2: - { - //closest point origin from line segment - const b3Vector3& from = m_simplexVectorW[0]; - const b3Vector3& to = m_simplexVectorW[1]; - b3Vector3 nearest; - - b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - b3Vector3 diff = p - from; - b3Vector3 v = to - from; - b3Scalar t = v.dot(diff); - - if (t > 0) - { - b3Scalar dotVV = v.dot(v); - if (t < dotVV) - { - t /= dotVV; - diff -= t * v; - m_cachedBC.m_usedVertices.usedVertexA = true; - m_cachedBC.m_usedVertices.usedVertexB = true; - } - else - { - t = 1; - diff -= v; - //reduce to 1 point - m_cachedBC.m_usedVertices.usedVertexB = true; - } - } - else - { - t = 0; - //reduce to 1 point - m_cachedBC.m_usedVertices.usedVertexA = true; - } - m_cachedBC.setBarycentricCoordinates(1 - t, t); - nearest = from + t * v; - - m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]); - m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]); - m_cachedV = m_cachedP1 - m_cachedP2; - - reduceVertices(m_cachedBC.m_usedVertices); - - m_cachedValidClosest = m_cachedBC.isValid(); - break; - } - case 3: - { - //closest point origin from triangle - b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - - const b3Vector3& a = m_simplexVectorW[0]; - const b3Vector3& b = m_simplexVectorW[1]; - const b3Vector3& c = m_simplexVectorW[2]; - - closestPtPointTriangle(p, a, b, c, m_cachedBC); - m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2]; - - m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2]; - - m_cachedV = m_cachedP1 - m_cachedP2; - - reduceVertices(m_cachedBC.m_usedVertices); - m_cachedValidClosest = m_cachedBC.isValid(); - - break; - } - case 4: - { - b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - - const b3Vector3& a = m_simplexVectorW[0]; - const b3Vector3& b = m_simplexVectorW[1]; - const b3Vector3& c = m_simplexVectorW[2]; - const b3Vector3& d = m_simplexVectorW[3]; - - bool hasSeparation = closestPtPointTetrahedron(p, a, b, c, d, m_cachedBC); - - if (hasSeparation) - { - m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] + - m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3]; - - m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] + - m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3]; - - m_cachedV = m_cachedP1 - m_cachedP2; - reduceVertices(m_cachedBC.m_usedVertices); - } - else - { - // printf("sub distance got penetration\n"); - - if (m_cachedBC.m_degenerate) - { - m_cachedValidClosest = false; - } - else - { - m_cachedValidClosest = true; - //degenerate case == false, penetration = true + zero - m_cachedV.setValue(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)); - } - break; - } - - m_cachedValidClosest = m_cachedBC.isValid(); - - //closest point origin from tetrahedron - break; - } - default: - { - m_cachedValidClosest = false; - } - }; - } - - return m_cachedValidClosest; -} - -//return/calculate the closest vertex -bool b3VoronoiSimplexSolver::closest(b3Vector3& v) -{ - bool succes = updateClosestVectorAndPoints(); - v = m_cachedV; - return succes; -} - -b3Scalar b3VoronoiSimplexSolver::maxVertex() -{ - int i, numverts = numVertices(); - b3Scalar maxV = b3Scalar(0.); - for (i = 0; i < numverts; i++) - { - b3Scalar curLen2 = m_simplexVectorW[i].length2(); - if (maxV < curLen2) - maxV = curLen2; - } - return maxV; -} - -//return the current simplex -int b3VoronoiSimplexSolver::getSimplex(b3Vector3* pBuf, b3Vector3* qBuf, b3Vector3* yBuf) const -{ - int i; - for (i = 0; i < numVertices(); i++) - { - yBuf[i] = m_simplexVectorW[i]; - pBuf[i] = m_simplexPointsP[i]; - qBuf[i] = m_simplexPointsQ[i]; - } - return numVertices(); -} - -bool b3VoronoiSimplexSolver::inSimplex(const b3Vector3& w) -{ - bool found = false; - int i, numverts = numVertices(); - //b3Scalar maxV = b3Scalar(0.); - - //w is in the current (reduced) simplex - for (i = 0; i < numverts; i++) - { -#ifdef BT_USE_EQUAL_VERTEX_THRESHOLD - if (m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold) -#else - if (m_simplexVectorW[i] == w) -#endif - found = true; - } - - //check in case lastW is already removed - if (w == m_lastW) - return true; - - return found; -} - -void b3VoronoiSimplexSolver::backup_closest(b3Vector3& v) -{ - v = m_cachedV; -} - -bool b3VoronoiSimplexSolver::emptySimplex() const -{ - return (numVertices() == 0); -} - -void b3VoronoiSimplexSolver::compute_points(b3Vector3& p1, b3Vector3& p2) -{ - updateClosestVectorAndPoints(); - p1 = m_cachedP1; - p2 = m_cachedP2; -} - -bool b3VoronoiSimplexSolver::closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, b3SubSimplexClosestResult& result) -{ - result.m_usedVertices.reset(); - - // Check if P in vertex region outside A - b3Vector3 ab = b - a; - b3Vector3 ac = c - a; - b3Vector3 ap = p - a; - b3Scalar d1 = ab.dot(ap); - b3Scalar d2 = ac.dot(ap); - if (d1 <= b3Scalar(0.0) && d2 <= b3Scalar(0.0)) - { - result.m_closestPointOnSimplex = a; - result.m_usedVertices.usedVertexA = true; - result.setBarycentricCoordinates(1, 0, 0); - return true; // a; // barycentric coordinates (1,0,0) - } - - // Check if P in vertex region outside B - b3Vector3 bp = p - b; - b3Scalar d3 = ab.dot(bp); - b3Scalar d4 = ac.dot(bp); - if (d3 >= b3Scalar(0.0) && d4 <= d3) - { - result.m_closestPointOnSimplex = b; - result.m_usedVertices.usedVertexB = true; - result.setBarycentricCoordinates(0, 1, 0); - - return true; // b; // barycentric coordinates (0,1,0) - } - // Check if P in edge region of AB, if so return projection of P onto AB - b3Scalar vc = d1 * d4 - d3 * d2; - if (vc <= b3Scalar(0.0) && d1 >= b3Scalar(0.0) && d3 <= b3Scalar(0.0)) - { - b3Scalar v = d1 / (d1 - d3); - result.m_closestPointOnSimplex = a + v * ab; - result.m_usedVertices.usedVertexA = true; - result.m_usedVertices.usedVertexB = true; - result.setBarycentricCoordinates(1 - v, v, 0); - return true; - //return a + v * ab; // barycentric coordinates (1-v,v,0) - } - - // Check if P in vertex region outside C - b3Vector3 cp = p - c; - b3Scalar d5 = ab.dot(cp); - b3Scalar d6 = ac.dot(cp); - if (d6 >= b3Scalar(0.0) && d5 <= d6) - { - result.m_closestPointOnSimplex = c; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(0, 0, 1); - return true; //c; // barycentric coordinates (0,0,1) - } - - // Check if P in edge region of AC, if so return projection of P onto AC - b3Scalar vb = d5 * d2 - d1 * d6; - if (vb <= b3Scalar(0.0) && d2 >= b3Scalar(0.0) && d6 <= b3Scalar(0.0)) - { - b3Scalar w = d2 / (d2 - d6); - result.m_closestPointOnSimplex = a + w * ac; - result.m_usedVertices.usedVertexA = true; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(1 - w, 0, w); - return true; - //return a + w * ac; // barycentric coordinates (1-w,0,w) - } - - // Check if P in edge region of BC, if so return projection of P onto BC - b3Scalar va = d3 * d6 - d5 * d4; - if (va <= b3Scalar(0.0) && (d4 - d3) >= b3Scalar(0.0) && (d5 - d6) >= b3Scalar(0.0)) - { - b3Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); - - result.m_closestPointOnSimplex = b + w * (c - b); - result.m_usedVertices.usedVertexB = true; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(0, 1 - w, w); - return true; - // return b + w * (c - b); // barycentric coordinates (0,1-w,w) - } - - // P inside face region. Compute Q through its barycentric coordinates (u,v,w) - b3Scalar denom = b3Scalar(1.0) / (va + vb + vc); - b3Scalar v = vb * denom; - b3Scalar w = vc * denom; - - result.m_closestPointOnSimplex = a + ab * v + ac * w; - result.m_usedVertices.usedVertexA = true; - result.m_usedVertices.usedVertexB = true; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(1 - v - w, v, w); - - return true; - // return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = b3Scalar(1.0) - v - w -} - -/// Test if point p and d lie on opposite sides of plane through abc -int b3VoronoiSimplexSolver::pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d) -{ - b3Vector3 normal = (b - a).cross(c - a); - - b3Scalar signp = (p - a).dot(normal); // [AP AB AC] - b3Scalar signd = (d - a).dot(normal); // [AD AB AC] - -#ifdef B3_CATCH_DEGENERATE_TETRAHEDRON -#ifdef BT_USE_DOUBLE_PRECISION - if (signd * signd < (b3Scalar(1e-8) * b3Scalar(1e-8))) - { - return -1; - } -#else - if (signd * signd < (b3Scalar(1e-4) * b3Scalar(1e-4))) - { - // printf("affine dependent/degenerate\n");// - return -1; - } -#endif - -#endif - // Points on opposite sides if expression signs are opposite - return signp * signd < b3Scalar(0.); -} - -bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult) -{ - b3SubSimplexClosestResult tempResult; - - // Start out assuming point inside all halfspaces, so closest to itself - finalResult.m_closestPointOnSimplex = p; - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = true; - finalResult.m_usedVertices.usedVertexB = true; - finalResult.m_usedVertices.usedVertexC = true; - finalResult.m_usedVertices.usedVertexD = true; - - int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d); - int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b); - int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c); - int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a); - - if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0) - { - finalResult.m_degenerate = true; - return false; - } - - if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC) - { - return false; - } - - b3Scalar bestSqDist = FLT_MAX; - // If point outside face abc then compute closest point on abc - if (pointOutsideABC) - { - closestPtPointTriangle(p, a, b, c, tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - - b3Scalar sqDist = (q - p).dot(q - p); - // Update best closest point if (squared) distance is less than current best - if (sqDist < bestSqDist) - { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - //convert result bitmask! - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; - finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB; - finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; - finalResult.setBarycentricCoordinates( - tempResult.m_barycentricCoords[VERTA], - tempResult.m_barycentricCoords[VERTB], - tempResult.m_barycentricCoords[VERTC], - 0); - } - } - - // Repeat test for face acd - if (pointOutsideACD) - { - closestPtPointTriangle(p, a, c, d, tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - //convert result bitmask! - - b3Scalar sqDist = (q - p).dot(q - p); - if (sqDist < bestSqDist) - { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; - - finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB; - finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC; - finalResult.setBarycentricCoordinates( - tempResult.m_barycentricCoords[VERTA], - 0, - tempResult.m_barycentricCoords[VERTB], - tempResult.m_barycentricCoords[VERTC]); - } - } - // Repeat test for face adb - - if (pointOutsideADB) - { - closestPtPointTriangle(p, a, d, b, tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - //convert result bitmask! - - b3Scalar sqDist = (q - p).dot(q - p); - if (sqDist < bestSqDist) - { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; - finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC; - - finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; - finalResult.setBarycentricCoordinates( - tempResult.m_barycentricCoords[VERTA], - tempResult.m_barycentricCoords[VERTC], - 0, - tempResult.m_barycentricCoords[VERTB]); - } - } - // Repeat test for face bdc - - if (pointOutsideBDC) - { - closestPtPointTriangle(p, b, d, c, tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - //convert result bitmask! - b3Scalar sqDist = (q - p).dot(q - p); - if (sqDist < bestSqDist) - { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - finalResult.m_usedVertices.reset(); - // - finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA; - finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; - finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; - - finalResult.setBarycentricCoordinates( - 0, - tempResult.m_barycentricCoords[VERTA], - tempResult.m_barycentricCoords[VERTC], - tempResult.m_barycentricCoords[VERTB]); - } - } - - //help! we ended up full ! - - if (finalResult.m_usedVertices.usedVertexA && - finalResult.m_usedVertices.usedVertexB && - finalResult.m_usedVertices.usedVertexC && - finalResult.m_usedVertices.usedVertexD) - { - return true; - } - - return true; -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.h deleted file mode 100644 index b40b169978..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.h +++ /dev/null @@ -1,164 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_VORONOI_SIMPLEX_SOLVER_H -#define B3_VORONOI_SIMPLEX_SOLVER_H - -#include "Bullet3Common/b3Vector3.h" - -#define VORONOI_SIMPLEX_MAX_VERTS 5 - -///disable next define, or use defaultCollisionConfiguration->getSimplexSolver()->setEqualVertexThreshold(0.f) to disable/configure -//#define BT_USE_EQUAL_VERTEX_THRESHOLD -#define VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD 0.0001f - -struct b3UsageBitfield -{ - b3UsageBitfield() - { - reset(); - } - - void reset() - { - usedVertexA = false; - usedVertexB = false; - usedVertexC = false; - usedVertexD = false; - } - unsigned short usedVertexA : 1; - unsigned short usedVertexB : 1; - unsigned short usedVertexC : 1; - unsigned short usedVertexD : 1; - unsigned short unused1 : 1; - unsigned short unused2 : 1; - unsigned short unused3 : 1; - unsigned short unused4 : 1; -}; - -struct b3SubSimplexClosestResult -{ - b3Vector3 m_closestPointOnSimplex; - //MASK for m_usedVertices - //stores the simplex vertex-usage, using the MASK, - // if m_usedVertices & MASK then the related vertex is used - b3UsageBitfield m_usedVertices; - b3Scalar m_barycentricCoords[4]; - bool m_degenerate; - - void reset() - { - m_degenerate = false; - setBarycentricCoordinates(); - m_usedVertices.reset(); - } - bool isValid() - { - bool valid = (m_barycentricCoords[0] >= b3Scalar(0.)) && - (m_barycentricCoords[1] >= b3Scalar(0.)) && - (m_barycentricCoords[2] >= b3Scalar(0.)) && - (m_barycentricCoords[3] >= b3Scalar(0.)); - - return valid; - } - void setBarycentricCoordinates(b3Scalar a = b3Scalar(0.), b3Scalar b = b3Scalar(0.), b3Scalar c = b3Scalar(0.), b3Scalar d = b3Scalar(0.)) - { - m_barycentricCoords[0] = a; - m_barycentricCoords[1] = b; - m_barycentricCoords[2] = c; - m_barycentricCoords[3] = d; - } -}; - -/// b3VoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points simplex to the origin. -/// Can be used with GJK, as an alternative to Johnson distance algorithm. - -B3_ATTRIBUTE_ALIGNED16(class) -b3VoronoiSimplexSolver -{ -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - int m_numVertices; - - b3Vector3 m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS]; - b3Vector3 m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS]; - b3Vector3 m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS]; - - b3Vector3 m_cachedP1; - b3Vector3 m_cachedP2; - b3Vector3 m_cachedV; - b3Vector3 m_lastW; - - b3Scalar m_equalVertexThreshold; - bool m_cachedValidClosest; - - b3SubSimplexClosestResult m_cachedBC; - - bool m_needsUpdate; - - void removeVertex(int index); - void reduceVertices(const b3UsageBitfield& usedVerts); - bool updateClosestVectorAndPoints(); - - bool closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult); - int pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d); - bool closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, b3SubSimplexClosestResult& result); - -public: - b3VoronoiSimplexSolver() - : m_equalVertexThreshold(VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD) - { - } - void reset(); - - void addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q); - - void setEqualVertexThreshold(b3Scalar threshold) - { - m_equalVertexThreshold = threshold; - } - - b3Scalar getEqualVertexThreshold() const - { - return m_equalVertexThreshold; - } - - bool closest(b3Vector3 & v); - - b3Scalar maxVertex(); - - bool fullSimplex() const - { - return (m_numVertices == 4); - } - - int getSimplex(b3Vector3 * pBuf, b3Vector3 * qBuf, b3Vector3 * yBuf) const; - - bool inSimplex(const b3Vector3& w); - - void backup_closest(b3Vector3 & v); - - bool emptySimplex() const; - - void compute_points(b3Vector3 & p1, b3Vector3 & p2); - - int numVertices() const - { - return m_numVertices; - } -}; - -#endif //B3_VORONOI_SIMPLEX_SOLVER_H diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl deleted file mode 100644 index faa413441c..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl +++ /dev/null @@ -1,283 +0,0 @@ -//keep this enum in sync with the CPU version (in btCollidable.h) -//written by Erwin Coumans - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_CONCAVE_TRIMESH 5 -#define TRIANGLE_NUM_CONVEX_FACES 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 -#define SHAPE_SPHERE 7 - -typedef unsigned int u32; - -#define MAX_NUM_PARTS_IN_BITS 10 - -///btQuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes - int m_escapeIndexOrTriangleIndex; -} btQuantizedBvhNode; - -typedef struct -{ - float4 m_aabbMin; - float4 m_aabbMax; - float4 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; - -} b3BvhInfo; - -int getTriangleIndex(const btQuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int isLeaf(const btQuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int getEscapeIndex(const btQuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes, points to the root of the subtree - int m_rootNodeIndex; - //4 bytes - int m_subtreeSize; - int m_padding[3]; -} btBvhSubtreeInfo; - -///keep this in sync with btCollidable.h -typedef struct -{ - int m_numChildShapes; - int blaat2; - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - - -int testQuantizedAabbAgainstQuantizedAabb( - const unsigned short int* aabbMin1, - const unsigned short int* aabbMax1, - const unsigned short int* aabbMin2, - const unsigned short int* aabbMax2) -{ - //int overlap = 1; - if (aabbMin1[0] > aabbMax2[0]) - return 0; - if (aabbMax1[0] < aabbMin2[0]) - return 0; - if (aabbMin1[1] > aabbMax2[1]) - return 0; - if (aabbMax1[1] < aabbMin2[1]) - return 0; - if (aabbMin1[2] > aabbMax2[2]) - return 0; - if (aabbMax1[2] < aabbMin2[2]) - return 0; - return 1; - //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap; - //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap; - //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap; - //return overlap; -} - - -void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization) -{ - float4 clampedPoint = max(point2,bvhAabbMin); - clampedPoint = min (clampedPoint, bvhAabbMax); - - float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization; - if (isMax) - { - out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1)); - out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1)); - out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1)); - } else - { - out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe)); - out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe)); - out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe)); - } - -} - - -// work-in-progress -__kernel void bvhTraversalKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global btAabbCL* aabbs, - __global int4* concavePairsOut, - __global volatile int* numConcavePairsOut, - __global const btBvhSubtreeInfo* subtreeHeadersRoot, - __global const btQuantizedBvhNode* quantizedNodesRoot, - __global const b3BvhInfo* bvhInfos, - int numPairs, - int maxNumConcavePairsCapacity) -{ - int id = get_global_id(0); - if (id>=numPairs) - return; - - int bodyIndexA = pairs[id].x; - int bodyIndexB = pairs[id].y; - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) - return; - - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - if (shapeTypeB!=SHAPE_CONVEX_HULL && - shapeTypeB!=SHAPE_SPHERE && - shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS - ) - return; - - b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes]; - - float4 bvhAabbMin = bvhInfo.m_aabbMin; - float4 bvhAabbMax = bvhInfo.m_aabbMax; - float4 bvhQuantization = bvhInfo.m_quantization; - int numSubtreeHeaders = bvhInfo.m_numSubTrees; - __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset]; - __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset]; - - - unsigned short int quantizedQueryAabbMin[3]; - unsigned short int quantizedQueryAabbMax[3]; - quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization); - quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization); - - for (int i=0;i<numSubtreeHeaders;i++) - { - btBvhSubtreeInfo subtree = subtreeHeaders[i]; - - int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); - if (overlap != 0) - { - int startNodeIndex = subtree.m_rootNodeIndex; - int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize; - int curIndex = startNodeIndex; - int escapeIndex; - int isLeafNode; - int aabbOverlap; - while (curIndex < endNodeIndex) - { - btQuantizedBvhNode rootNode = quantizedNodes[curIndex]; - aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax); - isLeafNode = isLeaf(&rootNode); - if (aabbOverlap) - { - if (isLeafNode) - { - int triangleIndex = getTriangleIndex(&rootNode); - if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - int pairIdx = atomic_add(numConcavePairsOut,numChildrenB); - for (int b=0;b<numChildrenB;b++) - { - if ((pairIdx+b)<maxNumConcavePairsCapacity) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB); - concavePairsOut[pairIdx+b] = newPair; - } - } - } else - { - int pairIdx = atomic_inc(numConcavePairsOut); - if (pairIdx<maxNumConcavePairsCapacity) - { - int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0); - concavePairsOut[pairIdx] = newPair; - } - } - } - curIndex++; - } else - { - if (isLeafNode) - { - curIndex++; - } else - { - escapeIndex = getEscapeIndex(&rootNode); - curIndex += escapeIndex; - } - } - } - } - } - -}
\ No newline at end of file diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h deleted file mode 100644 index f1df8a6970..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h +++ /dev/null @@ -1,257 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* bvhTraversalKernelCL = - "//keep this enum in sync with the CPU version (in btCollidable.h)\n" - "//written by Erwin Coumans\n" - "#define SHAPE_CONVEX_HULL 3\n" - "#define SHAPE_CONCAVE_TRIMESH 5\n" - "#define TRIANGLE_NUM_CONVEX_FACES 5\n" - "#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" - "#define SHAPE_SPHERE 7\n" - "typedef unsigned int u32;\n" - "#define MAX_NUM_PARTS_IN_BITS 10\n" - "///btQuantizedBvhNode is a compressed aabb node, 16 bytes.\n" - "///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" - "typedef struct\n" - "{\n" - " //12 bytes\n" - " unsigned short int m_quantizedAabbMin[3];\n" - " unsigned short int m_quantizedAabbMax[3];\n" - " //4 bytes\n" - " int m_escapeIndexOrTriangleIndex;\n" - "} btQuantizedBvhNode;\n" - "typedef struct\n" - "{\n" - " float4 m_aabbMin;\n" - " float4 m_aabbMax;\n" - " float4 m_quantization;\n" - " int m_numNodes;\n" - " int m_numSubTrees;\n" - " int m_nodeOffset;\n" - " int m_subTreeOffset;\n" - "} b3BvhInfo;\n" - "int getTriangleIndex(const btQuantizedBvhNode* rootNode)\n" - "{\n" - " unsigned int x=0;\n" - " unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" - " // Get only the lower bits where the triangle index is stored\n" - " return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" - "}\n" - "int isLeaf(const btQuantizedBvhNode* rootNode)\n" - "{\n" - " //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" - " return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" - "}\n" - " \n" - "int getEscapeIndex(const btQuantizedBvhNode* rootNode)\n" - "{\n" - " return -rootNode->m_escapeIndexOrTriangleIndex;\n" - "}\n" - "typedef struct\n" - "{\n" - " //12 bytes\n" - " unsigned short int m_quantizedAabbMin[3];\n" - " unsigned short int m_quantizedAabbMax[3];\n" - " //4 bytes, points to the root of the subtree\n" - " int m_rootNodeIndex;\n" - " //4 bytes\n" - " int m_subtreeSize;\n" - " int m_padding[3];\n" - "} btBvhSubtreeInfo;\n" - "///keep this in sync with btCollidable.h\n" - "typedef struct\n" - "{\n" - " int m_numChildShapes;\n" - " int blaat2;\n" - " int m_shapeType;\n" - " int m_shapeIndex;\n" - " \n" - "} btCollidableGpu;\n" - "typedef struct\n" - "{\n" - " float4 m_childPosition;\n" - " float4 m_childOrientation;\n" - " int m_shapeIndex;\n" - " int m_unused0;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "} btGpuChildShape;\n" - "typedef struct\n" - "{\n" - " float4 m_pos;\n" - " float4 m_quat;\n" - " float4 m_linVel;\n" - " float4 m_angVel;\n" - " u32 m_collidableIdx;\n" - " float m_invMass;\n" - " float m_restituitionCoeff;\n" - " float m_frictionCoeff;\n" - "} BodyData;\n" - "typedef struct \n" - "{\n" - " union\n" - " {\n" - " float4 m_min;\n" - " float m_minElems[4];\n" - " int m_minIndices[4];\n" - " };\n" - " union\n" - " {\n" - " float4 m_max;\n" - " float m_maxElems[4];\n" - " int m_maxIndices[4];\n" - " };\n" - "} btAabbCL;\n" - "int testQuantizedAabbAgainstQuantizedAabb(\n" - " const unsigned short int* aabbMin1,\n" - " const unsigned short int* aabbMax1,\n" - " const unsigned short int* aabbMin2,\n" - " const unsigned short int* aabbMax2)\n" - "{\n" - " //int overlap = 1;\n" - " if (aabbMin1[0] > aabbMax2[0])\n" - " return 0;\n" - " if (aabbMax1[0] < aabbMin2[0])\n" - " return 0;\n" - " if (aabbMin1[1] > aabbMax2[1])\n" - " return 0;\n" - " if (aabbMax1[1] < aabbMin2[1])\n" - " return 0;\n" - " if (aabbMin1[2] > aabbMax2[2])\n" - " return 0;\n" - " if (aabbMax1[2] < aabbMin2[2])\n" - " return 0;\n" - " return 1;\n" - " //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap;\n" - " //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap;\n" - " //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap;\n" - " //return overlap;\n" - "}\n" - "void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization)\n" - "{\n" - " float4 clampedPoint = max(point2,bvhAabbMin);\n" - " clampedPoint = min (clampedPoint, bvhAabbMax);\n" - " float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization;\n" - " if (isMax)\n" - " {\n" - " out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1));\n" - " out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1));\n" - " out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1));\n" - " } else\n" - " {\n" - " out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe));\n" - " out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe));\n" - " out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe));\n" - " }\n" - "}\n" - "// work-in-progress\n" - "__kernel void bvhTraversalKernel( __global const int4* pairs, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global btAabbCL* aabbs,\n" - " __global int4* concavePairsOut,\n" - " __global volatile int* numConcavePairsOut,\n" - " __global const btBvhSubtreeInfo* subtreeHeadersRoot,\n" - " __global const btQuantizedBvhNode* quantizedNodesRoot,\n" - " __global const b3BvhInfo* bvhInfos,\n" - " int numPairs,\n" - " int maxNumConcavePairsCapacity)\n" - "{\n" - " int id = get_global_id(0);\n" - " if (id>=numPairs)\n" - " return;\n" - " \n" - " int bodyIndexA = pairs[id].x;\n" - " int bodyIndexB = pairs[id].y;\n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " //once the broadphase avoids static-static pairs, we can remove this test\n" - " if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" - " {\n" - " return;\n" - " }\n" - " \n" - " if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH)\n" - " return;\n" - " int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" - " \n" - " if (shapeTypeB!=SHAPE_CONVEX_HULL &&\n" - " shapeTypeB!=SHAPE_SPHERE &&\n" - " shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS\n" - " )\n" - " return;\n" - " b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes];\n" - " float4 bvhAabbMin = bvhInfo.m_aabbMin;\n" - " float4 bvhAabbMax = bvhInfo.m_aabbMax;\n" - " float4 bvhQuantization = bvhInfo.m_quantization;\n" - " int numSubtreeHeaders = bvhInfo.m_numSubTrees;\n" - " __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset];\n" - " __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset];\n" - " \n" - " unsigned short int quantizedQueryAabbMin[3];\n" - " unsigned short int quantizedQueryAabbMax[3];\n" - " quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization);\n" - " quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization);\n" - " \n" - " for (int i=0;i<numSubtreeHeaders;i++)\n" - " {\n" - " btBvhSubtreeInfo subtree = subtreeHeaders[i];\n" - " \n" - " int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);\n" - " if (overlap != 0)\n" - " {\n" - " int startNodeIndex = subtree.m_rootNodeIndex;\n" - " int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize;\n" - " int curIndex = startNodeIndex;\n" - " int escapeIndex;\n" - " int isLeafNode;\n" - " int aabbOverlap;\n" - " while (curIndex < endNodeIndex)\n" - " {\n" - " btQuantizedBvhNode rootNode = quantizedNodes[curIndex];\n" - " aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax);\n" - " isLeafNode = isLeaf(&rootNode);\n" - " if (aabbOverlap)\n" - " {\n" - " if (isLeafNode)\n" - " {\n" - " int triangleIndex = getTriangleIndex(&rootNode);\n" - " if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" - " int pairIdx = atomic_add(numConcavePairsOut,numChildrenB);\n" - " for (int b=0;b<numChildrenB;b++)\n" - " {\n" - " if ((pairIdx+b)<maxNumConcavePairsCapacity)\n" - " {\n" - " int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" - " int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB);\n" - " concavePairsOut[pairIdx+b] = newPair;\n" - " }\n" - " }\n" - " } else\n" - " {\n" - " int pairIdx = atomic_inc(numConcavePairsOut);\n" - " if (pairIdx<maxNumConcavePairsCapacity)\n" - " {\n" - " int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0);\n" - " concavePairsOut[pairIdx] = newPair;\n" - " }\n" - " }\n" - " } \n" - " curIndex++;\n" - " } else\n" - " {\n" - " if (isLeafNode)\n" - " {\n" - " curIndex++;\n" - " } else\n" - " {\n" - " escapeIndex = getEscapeIndex(&rootNode);\n" - " curIndex += escapeIndex;\n" - " }\n" - " }\n" - " }\n" - " }\n" - " }\n" - "}\n"; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl deleted file mode 100644 index e754f4e1da..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl +++ /dev/null @@ -1,311 +0,0 @@ - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3MprPenetration.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" - -#define AppendInc(x, out) out = atomic_inc(x) -#define GET_NPOINTS(x) (x).m_worldNormalOnB.w -#ifdef cl_ext_atomic_counters_32 - #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable -#else - #define counter32_t volatile __global int* -#endif - - -__kernel void mprPenetrationKernel( __global int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global float4* separatingNormals, - __global int* hasSeparatingAxis, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int contactCapacity, - int numPairs) -{ - int i = get_global_id(0); - int pairIndex = i; - if (i<numPairs) - { - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) - { - return; - } - - float depthOut; - b3Float4 dirOut; - b3Float4 posOut; - - - int res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB,rigidBodies,convexShapes,collidables,vertices,separatingNormals,hasSeparatingAxis,&depthOut, &dirOut, &posOut); - - - - - - if (res==0) - { - //add a contact - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if (dstIdx<contactCapacity) - { - pairs[pairIndex].z = dstIdx; - __global struct b3Contact4Data* c = globalContactsOut + dstIdx; - c->m_worldNormalOnB = -dirOut;//normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - //for (int i=0;i<nContacts;i++) - posOut.w = -depthOut; - c->m_worldPosB[0] = posOut;//localPoints[contactIdx[i]]; - GET_NPOINTS(*c) = 1;//nContacts; - } - } - - } -} - -typedef float4 Quaternion; -#define make_float4 (float4) - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - - - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); -} -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - - -inline void project(__global const b3ConvexPolyhedronData_t* hull, const float4 pos, const float4 orn, -const float4* dir, __global const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - - -bool findSeparatingAxisUnitSphere( __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* unitSphereDirections, - int numUnitSphereDirections, - float4* sep, - float* dmin) -{ - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test unit sphere directions - for (int i=0;i<numUnitSphereDirections;i++) - { - - float4 crossje; - crossje = unitSphereDirections[i]; - - if (dot3F4(DeltaC2,crossje)>0) - crossje *= -1.f; - { - float dist; - bool result = true; - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -__kernel void findSeparatingAxisUnitSphereKernel( __global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* unitSphereDirections, - __global float4* separatingNormals, - __global int* hasSeparatingAxis, - __global float* dmins, - int numUnitSphereDirections, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = dmins[i]; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = separatingNormals[i]; - - int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges; - if (numEdgeEdgeDirections>numUnitSphereDirections) - { - bool sepEE = findSeparatingAxisUnitSphere( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,unitSphereDirections,numUnitSphereDirections,&sepNormal,&dmin); - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - } //if (hasSeparatingAxis[i]) - }//(i<numPairs) -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h deleted file mode 100644 index 74959a931c..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h +++ /dev/null @@ -1,1445 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* mprKernelsCL = - "/***\n" - " * ---------------------------------\n" - " * Copyright (c)2012 Daniel Fiser <danfis@danfis.cz>\n" - " *\n" - " * This file was ported from mpr.c file, part of libccd.\n" - " * The Minkoski Portal Refinement implementation was ported \n" - " * to OpenCL by Erwin Coumans for the Bullet 3 Physics library.\n" - " * at http://github.com/erwincoumans/bullet3\n" - " *\n" - " * Distributed under the OSI-approved BSD License (the \"License\");\n" - " * see <http://www.opensource.org/licenses/bsd-license.php>.\n" - " * This software is distributed WITHOUT ANY WARRANTY; without even the\n" - " * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n" - " * See the License for more information.\n" - " */\n" - "#ifndef B3_MPR_PENETRATION_H\n" - "#define B3_MPR_PENETRATION_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#define B3_PLATFORM_DEFINITIONS_H\n" - "struct MyTest\n" - "{\n" - " int bla;\n" - "};\n" - "#ifdef __cplusplus\n" - "#else\n" - "//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" - "#define B3_LARGE_FLOAT 1e18f\n" - "#define B3_INFINITY 1e18f\n" - "#define b3Assert(a)\n" - "#define b3ConstArray(a) __global const a*\n" - "#define b3AtomicInc atomic_inc\n" - "#define b3AtomicAdd atomic_add\n" - "#define b3Fabs fabs\n" - "#define b3Sqrt native_sqrt\n" - "#define b3Sin native_sin\n" - "#define b3Cos native_cos\n" - "#define B3_STATIC\n" - "#endif\n" - "#endif\n" - "#ifndef B3_FLOAT4_H\n" - "#define B3_FLOAT4_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif\n" - "#endif\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Float4;\n" - " #define b3Float4ConstArg const b3Float4\n" - " #define b3MakeFloat4 (float4)\n" - " float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return dot(a1, b1);\n" - " }\n" - " b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return cross(a1, b1);\n" - " }\n" - " #define b3MinFloat4 min\n" - " #define b3MaxFloat4 max\n" - " #define b3Normalized(a) normalize(a)\n" - "#endif \n" - " \n" - "inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" - "{\n" - " if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" - " return false;\n" - " return true;\n" - "}\n" - "inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" - "{\n" - " float maxDot = -B3_INFINITY;\n" - " int i = 0;\n" - " int ptIndex = -1;\n" - " for( i = 0; i < vecLen; i++ )\n" - " {\n" - " float dot = b3Dot3F4(vecArray[i],vec);\n" - " \n" - " if( dot > maxDot )\n" - " {\n" - " maxDot = dot;\n" - " ptIndex = i;\n" - " }\n" - " }\n" - " b3Assert(ptIndex>=0);\n" - " if (ptIndex<0)\n" - " {\n" - " ptIndex = 0;\n" - " }\n" - " *dotOut = maxDot;\n" - " return ptIndex;\n" - "}\n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_RIGIDBODY_DATA_H\n" - "#define B3_RIGIDBODY_DATA_H\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_QUAT_H\n" - "#define B3_QUAT_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif\n" - "#endif\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Quat;\n" - " #define b3QuatConstArg const b3Quat\n" - " \n" - " \n" - "inline float4 b3FastNormalize4(float4 v)\n" - "{\n" - " v = (float4)(v.xyz,0.f);\n" - " return fast_normalize(v);\n" - "}\n" - " \n" - "inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" - "inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" - "inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" - "{\n" - " b3Quat ans;\n" - " ans = b3Cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - b3Dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" - "{\n" - " b3Quat q;\n" - " q=in;\n" - " //return b3FastNormalize4(in);\n" - " float len = native_sqrt(dot(q, q));\n" - " if(len > 0.f)\n" - " {\n" - " q *= 1.f / len;\n" - " }\n" - " else\n" - " {\n" - " q.x = q.y = q.z = 0.f;\n" - " q.w = 1.f;\n" - " }\n" - " return q;\n" - "}\n" - "inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " b3Quat qInv = b3QuatInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " return b3QuatRotate( b3QuatInvert( q ), vec );\n" - "}\n" - "inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" - "{\n" - " return b3QuatRotate( orientation, point ) + (translation);\n" - "}\n" - " \n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "#ifndef B3_MAT3x3_H\n" - "#define B3_MAT3x3_H\n" - "#ifndef B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "typedef struct\n" - "{\n" - " b3Float4 m_row[3];\n" - "}b3Mat3x3;\n" - "#define b3Mat3x3ConstArg const b3Mat3x3\n" - "#define b3GetRow(m,row) (m.m_row[row])\n" - "inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" - "{\n" - " b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" - " b3Mat3x3 out;\n" - " out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" - " out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" - " out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" - " out.m_row[0].w = 0.f;\n" - " out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" - " out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" - " out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" - " out.m_row[1].w = 0.f;\n" - " out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" - " out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" - " out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" - " out.m_row[2].w = 0.f;\n" - " return out;\n" - "}\n" - "inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = fabs(matIn.m_row[0]);\n" - " out.m_row[1] = fabs(matIn.m_row[1]);\n" - " out.m_row[2] = fabs(matIn.m_row[2]);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtZero();\n" - "__inline\n" - "b3Mat3x3 mtIdentity();\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Mat3x3 mtZero()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(0.f);\n" - " m.m_row[1] = (b3Float4)(0.f);\n" - " m.m_row[2] = (b3Float4)(0.f);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtIdentity()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(1,0,0,0);\n" - " m.m_row[1] = (b3Float4)(0,1,0,0);\n" - " m.m_row[2] = (b3Float4)(0,0,1,0);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" - " out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" - " out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" - "{\n" - " b3Mat3x3 transB;\n" - " transB = mtTranspose( b );\n" - " b3Mat3x3 ans;\n" - " // why this doesn't run when 0ing in the for{}\n" - " a.m_row[0].w = 0.f;\n" - " a.m_row[1].w = 0.f;\n" - " a.m_row[2].w = 0.f;\n" - " for(int i=0; i<3; i++)\n" - " {\n" - "// a.m_row[i].w = 0.f;\n" - " ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" - " ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" - " ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" - " ans.m_row[i].w = 0.f;\n" - " }\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" - "{\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a.m_row[0], b );\n" - " ans.y = b3Dot3F4( a.m_row[1], b );\n" - " ans.z = b3Dot3F4( a.m_row[2], b );\n" - " ans.w = 0.f;\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" - "{\n" - " b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" - " b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" - " b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a, colx );\n" - " ans.y = b3Dot3F4( a, coly );\n" - " ans.z = b3Dot3F4( a, colz );\n" - " return ans;\n" - "}\n" - "#endif\n" - "#endif //B3_MAT3x3_H\n" - "typedef struct b3RigidBodyData b3RigidBodyData_t;\n" - "struct b3RigidBodyData\n" - "{\n" - " b3Float4 m_pos;\n" - " b3Quat m_quat;\n" - " b3Float4 m_linVel;\n" - " b3Float4 m_angVel;\n" - " int m_collidableIdx;\n" - " float m_invMass;\n" - " float m_restituitionCoeff;\n" - " float m_frictionCoeff;\n" - "};\n" - "typedef struct b3InertiaData b3InertiaData_t;\n" - "struct b3InertiaData\n" - "{\n" - " b3Mat3x3 m_invInertiaWorld;\n" - " b3Mat3x3 m_initInvInertia;\n" - "};\n" - "#endif //B3_RIGIDBODY_DATA_H\n" - " \n" - "#ifndef B3_CONVEX_POLYHEDRON_DATA_H\n" - "#define B3_CONVEX_POLYHEDRON_DATA_H\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "typedef struct b3GpuFace b3GpuFace_t;\n" - "struct b3GpuFace\n" - "{\n" - " b3Float4 m_plane;\n" - " int m_indexOffset;\n" - " int m_numIndices;\n" - " int m_unusedPadding1;\n" - " int m_unusedPadding2;\n" - "};\n" - "typedef struct b3ConvexPolyhedronData b3ConvexPolyhedronData_t;\n" - "struct b3ConvexPolyhedronData\n" - "{\n" - " b3Float4 m_localCenter;\n" - " b3Float4 m_extents;\n" - " b3Float4 mC;\n" - " b3Float4 mE;\n" - " float m_radius;\n" - " int m_faceOffset;\n" - " int m_numFaces;\n" - " int m_numVertices;\n" - " int m_vertexOffset;\n" - " int m_uniqueEdgesOffset;\n" - " int m_numUniqueEdges;\n" - " int m_unused;\n" - "};\n" - "#endif //B3_CONVEX_POLYHEDRON_DATA_H\n" - "#ifndef B3_COLLIDABLE_H\n" - "#define B3_COLLIDABLE_H\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "enum b3ShapeTypes\n" - "{\n" - " SHAPE_HEIGHT_FIELD=1,\n" - " SHAPE_CONVEX_HULL=3,\n" - " SHAPE_PLANE=4,\n" - " SHAPE_CONCAVE_TRIMESH=5,\n" - " SHAPE_COMPOUND_OF_CONVEX_HULLS=6,\n" - " SHAPE_SPHERE=7,\n" - " MAX_NUM_SHAPE_TYPES,\n" - "};\n" - "typedef struct b3Collidable b3Collidable_t;\n" - "struct b3Collidable\n" - "{\n" - " union {\n" - " int m_numChildShapes;\n" - " int m_bvhIndex;\n" - " };\n" - " union\n" - " {\n" - " float m_radius;\n" - " int m_compoundBvhIndex;\n" - " };\n" - " int m_shapeType;\n" - " int m_shapeIndex;\n" - "};\n" - "typedef struct b3GpuChildShape b3GpuChildShape_t;\n" - "struct b3GpuChildShape\n" - "{\n" - " b3Float4 m_childPosition;\n" - " b3Quat m_childOrientation;\n" - " int m_shapeIndex;\n" - " int m_unused0;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "};\n" - "struct b3CompoundOverlappingPair\n" - "{\n" - " int m_bodyIndexA;\n" - " int m_bodyIndexB;\n" - "// int m_pairType;\n" - " int m_childShapeIndexA;\n" - " int m_childShapeIndexB;\n" - "};\n" - "#endif //B3_COLLIDABLE_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#define B3_MPR_SQRT sqrt\n" - "#endif\n" - "#define B3_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y))\n" - "#define B3_MPR_FABS fabs\n" - "#define B3_MPR_TOLERANCE 1E-6f\n" - "#define B3_MPR_MAX_ITERATIONS 1000\n" - "struct _b3MprSupport_t \n" - "{\n" - " b3Float4 v; //!< Support point in minkowski sum\n" - " b3Float4 v1; //!< Support point in obj1\n" - " b3Float4 v2; //!< Support point in obj2\n" - "};\n" - "typedef struct _b3MprSupport_t b3MprSupport_t;\n" - "struct _b3MprSimplex_t \n" - "{\n" - " b3MprSupport_t ps[4];\n" - " int last; //!< index of last added point\n" - "};\n" - "typedef struct _b3MprSimplex_t b3MprSimplex_t;\n" - "inline b3MprSupport_t* b3MprSimplexPointW(b3MprSimplex_t *s, int idx)\n" - "{\n" - " return &s->ps[idx];\n" - "}\n" - "inline void b3MprSimplexSetSize(b3MprSimplex_t *s, int size)\n" - "{\n" - " s->last = size - 1;\n" - "}\n" - "inline int b3MprSimplexSize(const b3MprSimplex_t *s)\n" - "{\n" - " return s->last + 1;\n" - "}\n" - "inline const b3MprSupport_t* b3MprSimplexPoint(const b3MprSimplex_t* s, int idx)\n" - "{\n" - " // here is no check on boundaries\n" - " return &s->ps[idx];\n" - "}\n" - "inline void b3MprSupportCopy(b3MprSupport_t *d, const b3MprSupport_t *s)\n" - "{\n" - " *d = *s;\n" - "}\n" - "inline void b3MprSimplexSet(b3MprSimplex_t *s, size_t pos, const b3MprSupport_t *a)\n" - "{\n" - " b3MprSupportCopy(s->ps + pos, a);\n" - "}\n" - "inline void b3MprSimplexSwap(b3MprSimplex_t *s, size_t pos1, size_t pos2)\n" - "{\n" - " b3MprSupport_t supp;\n" - " b3MprSupportCopy(&supp, &s->ps[pos1]);\n" - " b3MprSupportCopy(&s->ps[pos1], &s->ps[pos2]);\n" - " b3MprSupportCopy(&s->ps[pos2], &supp);\n" - "}\n" - "inline int b3MprIsZero(float val)\n" - "{\n" - " return B3_MPR_FABS(val) < FLT_EPSILON;\n" - "}\n" - "inline int b3MprEq(float _a, float _b)\n" - "{\n" - " float ab;\n" - " float a, b;\n" - " ab = B3_MPR_FABS(_a - _b);\n" - " if (B3_MPR_FABS(ab) < FLT_EPSILON)\n" - " return 1;\n" - " a = B3_MPR_FABS(_a);\n" - " b = B3_MPR_FABS(_b);\n" - " if (b > a){\n" - " return ab < FLT_EPSILON * b;\n" - " }else{\n" - " return ab < FLT_EPSILON * a;\n" - " }\n" - "}\n" - "inline int b3MprVec3Eq(const b3Float4* a, const b3Float4 *b)\n" - "{\n" - " return b3MprEq((*a).x, (*b).x)\n" - " && b3MprEq((*a).y, (*b).y)\n" - " && b3MprEq((*a).z, (*b).z);\n" - "}\n" - "inline b3Float4 b3LocalGetSupportVertex(b3Float4ConstArg supportVec,__global const b3ConvexPolyhedronData_t* hull, b3ConstArray(b3Float4) verticesA)\n" - "{\n" - " b3Float4 supVec = b3MakeFloat4(0,0,0,0);\n" - " float maxDot = -B3_LARGE_FLOAT;\n" - " if( 0 < hull->m_numVertices )\n" - " {\n" - " const b3Float4 scaled = supportVec;\n" - " int index = b3MaxDot(scaled, &verticesA[hull->m_vertexOffset], hull->m_numVertices, &maxDot);\n" - " return verticesA[hull->m_vertexOffset+index];\n" - " }\n" - " return supVec;\n" - "}\n" - "B3_STATIC void b3MprConvexSupport(int pairIndex,int bodyIndex, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" - " b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" - " b3ConstArray(b3Collidable_t) cpuCollidables,\n" - " b3ConstArray(b3Float4) cpuVertices,\n" - " __global b3Float4* sepAxis,\n" - " const b3Float4* _dir, b3Float4* outp, int logme)\n" - "{\n" - " //dir is in worldspace, move to local space\n" - " \n" - " b3Float4 pos = cpuBodyBuf[bodyIndex].m_pos;\n" - " b3Quat orn = cpuBodyBuf[bodyIndex].m_quat;\n" - " \n" - " b3Float4 dir = b3MakeFloat4((*_dir).x,(*_dir).y,(*_dir).z,0.f);\n" - " \n" - " const b3Float4 localDir = b3QuatRotate(b3QuatInverse(orn),dir);\n" - " \n" - " //find local support vertex\n" - " int colIndex = cpuBodyBuf[bodyIndex].m_collidableIdx;\n" - " \n" - " b3Assert(cpuCollidables[colIndex].m_shapeType==SHAPE_CONVEX_HULL);\n" - " __global const b3ConvexPolyhedronData_t* hull = &cpuConvexData[cpuCollidables[colIndex].m_shapeIndex];\n" - " \n" - " b3Float4 pInA;\n" - " if (logme)\n" - " {\n" - " b3Float4 supVec = b3MakeFloat4(0,0,0,0);\n" - " float maxDot = -B3_LARGE_FLOAT;\n" - " if( 0 < hull->m_numVertices )\n" - " {\n" - " const b3Float4 scaled = localDir;\n" - " int index = b3MaxDot(scaled, &cpuVertices[hull->m_vertexOffset], hull->m_numVertices, &maxDot);\n" - " pInA = cpuVertices[hull->m_vertexOffset+index];\n" - " \n" - " }\n" - " } else\n" - " {\n" - " pInA = b3LocalGetSupportVertex(localDir,hull,cpuVertices);\n" - " }\n" - " //move vertex to world space\n" - " *outp = b3TransformPoint(pInA,pos,orn);\n" - " \n" - "}\n" - "inline void b3MprSupport(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" - " b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" - " b3ConstArray(b3Collidable_t) cpuCollidables,\n" - " b3ConstArray(b3Float4) cpuVertices,\n" - " __global b3Float4* sepAxis,\n" - " const b3Float4* _dir, b3MprSupport_t *supp)\n" - "{\n" - " b3Float4 dir;\n" - " dir = *_dir;\n" - " b3MprConvexSupport(pairIndex,bodyIndexA,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v1,0);\n" - " dir = *_dir*-1.f;\n" - " b3MprConvexSupport(pairIndex,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v2,0);\n" - " supp->v = supp->v1 - supp->v2;\n" - "}\n" - "inline void b3FindOrigin(int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3MprSupport_t *center)\n" - "{\n" - " center->v1 = cpuBodyBuf[bodyIndexA].m_pos;\n" - " center->v2 = cpuBodyBuf[bodyIndexB].m_pos;\n" - " center->v = center->v1 - center->v2;\n" - "}\n" - "inline void b3MprVec3Set(b3Float4 *v, float x, float y, float z)\n" - "{\n" - " (*v).x = x;\n" - " (*v).y = y;\n" - " (*v).z = z;\n" - " (*v).w = 0.f;\n" - "}\n" - "inline void b3MprVec3Add(b3Float4 *v, const b3Float4 *w)\n" - "{\n" - " (*v).x += (*w).x;\n" - " (*v).y += (*w).y;\n" - " (*v).z += (*w).z;\n" - "}\n" - "inline void b3MprVec3Copy(b3Float4 *v, const b3Float4 *w)\n" - "{\n" - " *v = *w;\n" - "}\n" - "inline void b3MprVec3Scale(b3Float4 *d, float k)\n" - "{\n" - " *d *= k;\n" - "}\n" - "inline float b3MprVec3Dot(const b3Float4 *a, const b3Float4 *b)\n" - "{\n" - " float dot;\n" - " dot = b3Dot3F4(*a,*b);\n" - " return dot;\n" - "}\n" - "inline float b3MprVec3Len2(const b3Float4 *v)\n" - "{\n" - " return b3MprVec3Dot(v, v);\n" - "}\n" - "inline void b3MprVec3Normalize(b3Float4 *d)\n" - "{\n" - " float k = 1.f / B3_MPR_SQRT(b3MprVec3Len2(d));\n" - " b3MprVec3Scale(d, k);\n" - "}\n" - "inline void b3MprVec3Cross(b3Float4 *d, const b3Float4 *a, const b3Float4 *b)\n" - "{\n" - " *d = b3Cross3(*a,*b);\n" - " \n" - "}\n" - "inline void b3MprVec3Sub2(b3Float4 *d, const b3Float4 *v, const b3Float4 *w)\n" - "{\n" - " *d = *v - *w;\n" - "}\n" - "inline void b3PortalDir(const b3MprSimplex_t *portal, b3Float4 *dir)\n" - "{\n" - " b3Float4 v2v1, v3v1;\n" - " b3MprVec3Sub2(&v2v1, &b3MprSimplexPoint(portal, 2)->v,\n" - " &b3MprSimplexPoint(portal, 1)->v);\n" - " b3MprVec3Sub2(&v3v1, &b3MprSimplexPoint(portal, 3)->v,\n" - " &b3MprSimplexPoint(portal, 1)->v);\n" - " b3MprVec3Cross(dir, &v2v1, &v3v1);\n" - " b3MprVec3Normalize(dir);\n" - "}\n" - "inline int portalEncapsulesOrigin(const b3MprSimplex_t *portal,\n" - " const b3Float4 *dir)\n" - "{\n" - " float dot;\n" - " dot = b3MprVec3Dot(dir, &b3MprSimplexPoint(portal, 1)->v);\n" - " return b3MprIsZero(dot) || dot > 0.f;\n" - "}\n" - "inline int portalReachTolerance(const b3MprSimplex_t *portal,\n" - " const b3MprSupport_t *v4,\n" - " const b3Float4 *dir)\n" - "{\n" - " float dv1, dv2, dv3, dv4;\n" - " float dot1, dot2, dot3;\n" - " // find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4}\n" - " dv1 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, dir);\n" - " dv2 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, dir);\n" - " dv3 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, dir);\n" - " dv4 = b3MprVec3Dot(&v4->v, dir);\n" - " dot1 = dv4 - dv1;\n" - " dot2 = dv4 - dv2;\n" - " dot3 = dv4 - dv3;\n" - " dot1 = B3_MPR_FMIN(dot1, dot2);\n" - " dot1 = B3_MPR_FMIN(dot1, dot3);\n" - " return b3MprEq(dot1, B3_MPR_TOLERANCE) || dot1 < B3_MPR_TOLERANCE;\n" - "}\n" - "inline int portalCanEncapsuleOrigin(const b3MprSimplex_t *portal, \n" - " const b3MprSupport_t *v4,\n" - " const b3Float4 *dir)\n" - "{\n" - " float dot;\n" - " dot = b3MprVec3Dot(&v4->v, dir);\n" - " return b3MprIsZero(dot) || dot > 0.f;\n" - "}\n" - "inline void b3ExpandPortal(b3MprSimplex_t *portal,\n" - " const b3MprSupport_t *v4)\n" - "{\n" - " float dot;\n" - " b3Float4 v4v0;\n" - " b3MprVec3Cross(&v4v0, &v4->v, &b3MprSimplexPoint(portal, 0)->v);\n" - " dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &v4v0);\n" - " if (dot > 0.f){\n" - " dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &v4v0);\n" - " if (dot > 0.f){\n" - " b3MprSimplexSet(portal, 1, v4);\n" - " }else{\n" - " b3MprSimplexSet(portal, 3, v4);\n" - " }\n" - " }else{\n" - " dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &v4v0);\n" - " if (dot > 0.f){\n" - " b3MprSimplexSet(portal, 2, v4);\n" - " }else{\n" - " b3MprSimplexSet(portal, 1, v4);\n" - " }\n" - " }\n" - "}\n" - "B3_STATIC int b3DiscoverPortal(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" - " b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" - " b3ConstArray(b3Collidable_t) cpuCollidables,\n" - " b3ConstArray(b3Float4) cpuVertices,\n" - " __global b3Float4* sepAxis,\n" - " __global int* hasSepAxis,\n" - " b3MprSimplex_t *portal)\n" - "{\n" - " b3Float4 dir, va, vb;\n" - " float dot;\n" - " int cont;\n" - " \n" - " \n" - " // vertex 0 is center of portal\n" - " b3FindOrigin(bodyIndexA,bodyIndexB,cpuBodyBuf, b3MprSimplexPointW(portal, 0));\n" - " // vertex 0 is center of portal\n" - " b3MprSimplexSetSize(portal, 1);\n" - " \n" - " b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" - " b3Float4* b3mpr_vec3_origin = &zero;\n" - " if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 0)->v, b3mpr_vec3_origin)){\n" - " // Portal's center lies on origin (0,0,0) => we know that objects\n" - " // intersect but we would need to know penetration info.\n" - " // So move center little bit...\n" - " b3MprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f);\n" - " b3MprVec3Add(&b3MprSimplexPointW(portal, 0)->v, &va);\n" - " }\n" - " // vertex 1 = support in direction of origin\n" - " b3MprVec3Copy(&dir, &b3MprSimplexPoint(portal, 0)->v);\n" - " b3MprVec3Scale(&dir, -1.f);\n" - " b3MprVec3Normalize(&dir);\n" - " b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 1));\n" - " b3MprSimplexSetSize(portal, 2);\n" - " // test if origin isn't outside of v1\n" - " dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &dir);\n" - " \n" - " if (b3MprIsZero(dot) || dot < 0.f)\n" - " return -1;\n" - " // vertex 2\n" - " b3MprVec3Cross(&dir, &b3MprSimplexPoint(portal, 0)->v,\n" - " &b3MprSimplexPoint(portal, 1)->v);\n" - " if (b3MprIsZero(b3MprVec3Len2(&dir))){\n" - " if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 1)->v, b3mpr_vec3_origin)){\n" - " // origin lies on v1\n" - " return 1;\n" - " }else{\n" - " // origin lies on v0-v1 segment\n" - " return 2;\n" - " }\n" - " }\n" - " b3MprVec3Normalize(&dir);\n" - " b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 2));\n" - " \n" - " dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &dir);\n" - " if (b3MprIsZero(dot) || dot < 0.f)\n" - " return -1;\n" - " b3MprSimplexSetSize(portal, 3);\n" - " // vertex 3 direction\n" - " b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,\n" - " &b3MprSimplexPoint(portal, 0)->v);\n" - " b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,\n" - " &b3MprSimplexPoint(portal, 0)->v);\n" - " b3MprVec3Cross(&dir, &va, &vb);\n" - " b3MprVec3Normalize(&dir);\n" - " // it is better to form portal faces to be oriented \"outside\" origin\n" - " dot = b3MprVec3Dot(&dir, &b3MprSimplexPoint(portal, 0)->v);\n" - " if (dot > 0.f){\n" - " b3MprSimplexSwap(portal, 1, 2);\n" - " b3MprVec3Scale(&dir, -1.f);\n" - " }\n" - " while (b3MprSimplexSize(portal) < 4){\n" - " b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 3));\n" - " \n" - " dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &dir);\n" - " if (b3MprIsZero(dot) || dot < 0.f)\n" - " return -1;\n" - " cont = 0;\n" - " // test if origin is outside (v1, v0, v3) - set v2 as v3 and\n" - " // continue\n" - " b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 1)->v,\n" - " &b3MprSimplexPoint(portal, 3)->v);\n" - " dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);\n" - " if (dot < 0.f && !b3MprIsZero(dot)){\n" - " b3MprSimplexSet(portal, 2, b3MprSimplexPoint(portal, 3));\n" - " cont = 1;\n" - " }\n" - " if (!cont){\n" - " // test if origin is outside (v3, v0, v2) - set v1 as v3 and\n" - " // continue\n" - " b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 3)->v,\n" - " &b3MprSimplexPoint(portal, 2)->v);\n" - " dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);\n" - " if (dot < 0.f && !b3MprIsZero(dot)){\n" - " b3MprSimplexSet(portal, 1, b3MprSimplexPoint(portal, 3));\n" - " cont = 1;\n" - " }\n" - " }\n" - " if (cont){\n" - " b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,\n" - " &b3MprSimplexPoint(portal, 0)->v);\n" - " b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,\n" - " &b3MprSimplexPoint(portal, 0)->v);\n" - " b3MprVec3Cross(&dir, &va, &vb);\n" - " b3MprVec3Normalize(&dir);\n" - " }else{\n" - " b3MprSimplexSetSize(portal, 4);\n" - " }\n" - " }\n" - " return 0;\n" - "}\n" - "B3_STATIC int b3RefinePortal(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" - " b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" - " b3ConstArray(b3Collidable_t) cpuCollidables,\n" - " b3ConstArray(b3Float4) cpuVertices,\n" - " __global b3Float4* sepAxis,\n" - " b3MprSimplex_t *portal)\n" - "{\n" - " b3Float4 dir;\n" - " b3MprSupport_t v4;\n" - " for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)\n" - " //while (1)\n" - " {\n" - " // compute direction outside the portal (from v0 throught v1,v2,v3\n" - " // face)\n" - " b3PortalDir(portal, &dir);\n" - " // test if origin is inside the portal\n" - " if (portalEncapsulesOrigin(portal, &dir))\n" - " return 0;\n" - " // get next support point\n" - " \n" - " b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);\n" - " // test if v4 can expand portal to contain origin and if portal\n" - " // expanding doesn't reach given tolerance\n" - " if (!portalCanEncapsuleOrigin(portal, &v4, &dir)\n" - " || portalReachTolerance(portal, &v4, &dir))\n" - " {\n" - " return -1;\n" - " }\n" - " // v1-v2-v3 triangle must be rearranged to face outside Minkowski\n" - " // difference (direction from v0).\n" - " b3ExpandPortal(portal, &v4);\n" - " }\n" - " return -1;\n" - "}\n" - "B3_STATIC void b3FindPos(const b3MprSimplex_t *portal, b3Float4 *pos)\n" - "{\n" - " b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" - " b3Float4* b3mpr_vec3_origin = &zero;\n" - " b3Float4 dir;\n" - " size_t i;\n" - " float b[4], sum, inv;\n" - " b3Float4 vec, p1, p2;\n" - " b3PortalDir(portal, &dir);\n" - " // use barycentric coordinates of tetrahedron to find origin\n" - " b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,\n" - " &b3MprSimplexPoint(portal, 2)->v);\n" - " b[0] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);\n" - " b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,\n" - " &b3MprSimplexPoint(portal, 2)->v);\n" - " b[1] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);\n" - " b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 0)->v,\n" - " &b3MprSimplexPoint(portal, 1)->v);\n" - " b[2] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);\n" - " b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,\n" - " &b3MprSimplexPoint(portal, 1)->v);\n" - " b[3] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);\n" - " sum = b[0] + b[1] + b[2] + b[3];\n" - " if (b3MprIsZero(sum) || sum < 0.f){\n" - " b[0] = 0.f;\n" - " b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,\n" - " &b3MprSimplexPoint(portal, 3)->v);\n" - " b[1] = b3MprVec3Dot(&vec, &dir);\n" - " b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,\n" - " &b3MprSimplexPoint(portal, 1)->v);\n" - " b[2] = b3MprVec3Dot(&vec, &dir);\n" - " b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,\n" - " &b3MprSimplexPoint(portal, 2)->v);\n" - " b[3] = b3MprVec3Dot(&vec, &dir);\n" - " sum = b[1] + b[2] + b[3];\n" - " }\n" - " inv = 1.f / sum;\n" - " b3MprVec3Copy(&p1, b3mpr_vec3_origin);\n" - " b3MprVec3Copy(&p2, b3mpr_vec3_origin);\n" - " for (i = 0; i < 4; i++){\n" - " b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v1);\n" - " b3MprVec3Scale(&vec, b[i]);\n" - " b3MprVec3Add(&p1, &vec);\n" - " b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v2);\n" - " b3MprVec3Scale(&vec, b[i]);\n" - " b3MprVec3Add(&p2, &vec);\n" - " }\n" - " b3MprVec3Scale(&p1, inv);\n" - " b3MprVec3Scale(&p2, inv);\n" - " b3MprVec3Copy(pos, &p1);\n" - " b3MprVec3Add(pos, &p2);\n" - " b3MprVec3Scale(pos, 0.5);\n" - "}\n" - "inline float b3MprVec3Dist2(const b3Float4 *a, const b3Float4 *b)\n" - "{\n" - " b3Float4 ab;\n" - " b3MprVec3Sub2(&ab, a, b);\n" - " return b3MprVec3Len2(&ab);\n" - "}\n" - "inline float _b3MprVec3PointSegmentDist2(const b3Float4 *P,\n" - " const b3Float4 *x0,\n" - " const b3Float4 *b,\n" - " b3Float4 *witness)\n" - "{\n" - " // The computation comes from solving equation of segment:\n" - " // S(t) = x0 + t.d\n" - " // where - x0 is initial point of segment\n" - " // - d is direction of segment from x0 (|d| > 0)\n" - " // - t belongs to <0, 1> interval\n" - " // \n" - " // Than, distance from a segment to some point P can be expressed:\n" - " // D(t) = |x0 + t.d - P|^2\n" - " // which is distance from any point on segment. Minimization\n" - " // of this function brings distance from P to segment.\n" - " // Minimization of D(t) leads to simple quadratic equation that's\n" - " // solving is straightforward.\n" - " //\n" - " // Bonus of this method is witness point for free.\n" - " float dist, t;\n" - " b3Float4 d, a;\n" - " // direction of segment\n" - " b3MprVec3Sub2(&d, b, x0);\n" - " // precompute vector from P to x0\n" - " b3MprVec3Sub2(&a, x0, P);\n" - " t = -1.f * b3MprVec3Dot(&a, &d);\n" - " t /= b3MprVec3Len2(&d);\n" - " if (t < 0.f || b3MprIsZero(t)){\n" - " dist = b3MprVec3Dist2(x0, P);\n" - " if (witness)\n" - " b3MprVec3Copy(witness, x0);\n" - " }else if (t > 1.f || b3MprEq(t, 1.f)){\n" - " dist = b3MprVec3Dist2(b, P);\n" - " if (witness)\n" - " b3MprVec3Copy(witness, b);\n" - " }else{\n" - " if (witness){\n" - " b3MprVec3Copy(witness, &d);\n" - " b3MprVec3Scale(witness, t);\n" - " b3MprVec3Add(witness, x0);\n" - " dist = b3MprVec3Dist2(witness, P);\n" - " }else{\n" - " // recycling variables\n" - " b3MprVec3Scale(&d, t);\n" - " b3MprVec3Add(&d, &a);\n" - " dist = b3MprVec3Len2(&d);\n" - " }\n" - " }\n" - " return dist;\n" - "}\n" - "inline float b3MprVec3PointTriDist2(const b3Float4 *P,\n" - " const b3Float4 *x0, const b3Float4 *B,\n" - " const b3Float4 *C,\n" - " b3Float4 *witness)\n" - "{\n" - " // Computation comes from analytic expression for triangle (x0, B, C)\n" - " // T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and\n" - " // Then equation for distance is:\n" - " // D(s, t) = | T(s, t) - P |^2\n" - " // This leads to minimization of quadratic function of two variables.\n" - " // The solution from is taken only if s is between 0 and 1, t is\n" - " // between 0 and 1 and t + s < 1, otherwise distance from segment is\n" - " // computed.\n" - " b3Float4 d1, d2, a;\n" - " float u, v, w, p, q, r;\n" - " float s, t, dist, dist2;\n" - " b3Float4 witness2;\n" - " b3MprVec3Sub2(&d1, B, x0);\n" - " b3MprVec3Sub2(&d2, C, x0);\n" - " b3MprVec3Sub2(&a, x0, P);\n" - " u = b3MprVec3Dot(&a, &a);\n" - " v = b3MprVec3Dot(&d1, &d1);\n" - " w = b3MprVec3Dot(&d2, &d2);\n" - " p = b3MprVec3Dot(&a, &d1);\n" - " q = b3MprVec3Dot(&a, &d2);\n" - " r = b3MprVec3Dot(&d1, &d2);\n" - " s = (q * r - w * p) / (w * v - r * r);\n" - " t = (-s * r - q) / w;\n" - " if ((b3MprIsZero(s) || s > 0.f)\n" - " && (b3MprEq(s, 1.f) || s < 1.f)\n" - " && (b3MprIsZero(t) || t > 0.f)\n" - " && (b3MprEq(t, 1.f) || t < 1.f)\n" - " && (b3MprEq(t + s, 1.f) || t + s < 1.f)){\n" - " if (witness){\n" - " b3MprVec3Scale(&d1, s);\n" - " b3MprVec3Scale(&d2, t);\n" - " b3MprVec3Copy(witness, x0);\n" - " b3MprVec3Add(witness, &d1);\n" - " b3MprVec3Add(witness, &d2);\n" - " dist = b3MprVec3Dist2(witness, P);\n" - " }else{\n" - " dist = s * s * v;\n" - " dist += t * t * w;\n" - " dist += 2.f * s * t * r;\n" - " dist += 2.f * s * p;\n" - " dist += 2.f * t * q;\n" - " dist += u;\n" - " }\n" - " }else{\n" - " dist = _b3MprVec3PointSegmentDist2(P, x0, B, witness);\n" - " dist2 = _b3MprVec3PointSegmentDist2(P, x0, C, &witness2);\n" - " if (dist2 < dist){\n" - " dist = dist2;\n" - " if (witness)\n" - " b3MprVec3Copy(witness, &witness2);\n" - " }\n" - " dist2 = _b3MprVec3PointSegmentDist2(P, B, C, &witness2);\n" - " if (dist2 < dist){\n" - " dist = dist2;\n" - " if (witness)\n" - " b3MprVec3Copy(witness, &witness2);\n" - " }\n" - " }\n" - " return dist;\n" - "}\n" - "B3_STATIC void b3FindPenetr(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" - " b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" - " b3ConstArray(b3Collidable_t) cpuCollidables,\n" - " b3ConstArray(b3Float4) cpuVertices,\n" - " __global b3Float4* sepAxis,\n" - " b3MprSimplex_t *portal,\n" - " float *depth, b3Float4 *pdir, b3Float4 *pos)\n" - "{\n" - " b3Float4 dir;\n" - " b3MprSupport_t v4;\n" - " unsigned long iterations;\n" - " b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" - " b3Float4* b3mpr_vec3_origin = &zero;\n" - " iterations = 1UL;\n" - " for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)\n" - " //while (1)\n" - " {\n" - " // compute portal direction and obtain next support point\n" - " b3PortalDir(portal, &dir);\n" - " \n" - " b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);\n" - " // reached tolerance -> find penetration info\n" - " if (portalReachTolerance(portal, &v4, &dir)\n" - " || iterations ==B3_MPR_MAX_ITERATIONS)\n" - " {\n" - " *depth = b3MprVec3PointTriDist2(b3mpr_vec3_origin,&b3MprSimplexPoint(portal, 1)->v,&b3MprSimplexPoint(portal, 2)->v,&b3MprSimplexPoint(portal, 3)->v,pdir);\n" - " *depth = B3_MPR_SQRT(*depth);\n" - " \n" - " if (b3MprIsZero((*pdir).x) && b3MprIsZero((*pdir).y) && b3MprIsZero((*pdir).z))\n" - " {\n" - " \n" - " *pdir = dir;\n" - " } \n" - " b3MprVec3Normalize(pdir);\n" - " \n" - " // barycentric coordinates:\n" - " b3FindPos(portal, pos);\n" - " return;\n" - " }\n" - " b3ExpandPortal(portal, &v4);\n" - " iterations++;\n" - " }\n" - "}\n" - "B3_STATIC void b3FindPenetrTouch(b3MprSimplex_t *portal,float *depth, b3Float4 *dir, b3Float4 *pos)\n" - "{\n" - " // Touching contact on portal's v1 - so depth is zero and direction\n" - " // is unimportant and pos can be guessed\n" - " *depth = 0.f;\n" - " b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" - " b3Float4* b3mpr_vec3_origin = &zero;\n" - " b3MprVec3Copy(dir, b3mpr_vec3_origin);\n" - " b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);\n" - " b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);\n" - " b3MprVec3Scale(pos, 0.5);\n" - "}\n" - "B3_STATIC void b3FindPenetrSegment(b3MprSimplex_t *portal,\n" - " float *depth, b3Float4 *dir, b3Float4 *pos)\n" - "{\n" - " \n" - " // Origin lies on v0-v1 segment.\n" - " // Depth is distance to v1, direction also and position must be\n" - " // computed\n" - " b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);\n" - " b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);\n" - " b3MprVec3Scale(pos, 0.5f);\n" - " \n" - " b3MprVec3Copy(dir, &b3MprSimplexPoint(portal, 1)->v);\n" - " *depth = B3_MPR_SQRT(b3MprVec3Len2(dir));\n" - " b3MprVec3Normalize(dir);\n" - "}\n" - "inline int b3MprPenetration(int pairIndex, int bodyIndexA, int bodyIndexB,\n" - " b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,\n" - " b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" - " b3ConstArray(b3Collidable_t) cpuCollidables,\n" - " b3ConstArray(b3Float4) cpuVertices,\n" - " __global b3Float4* sepAxis,\n" - " __global int* hasSepAxis,\n" - " float *depthOut, b3Float4* dirOut, b3Float4* posOut)\n" - "{\n" - " \n" - " b3MprSimplex_t portal;\n" - " \n" - "// if (!hasSepAxis[pairIndex])\n" - " // return -1;\n" - " \n" - " hasSepAxis[pairIndex] = 0;\n" - " int res;\n" - " // Phase 1: Portal discovery\n" - " res = b3DiscoverPortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,hasSepAxis, &portal);\n" - " \n" - " \n" - " //sepAxis[pairIndex] = *pdir;//or -dir?\n" - " switch (res)\n" - " {\n" - " case 0:\n" - " {\n" - " // Phase 2: Portal refinement\n" - " \n" - " res = b3RefinePortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal);\n" - " if (res < 0)\n" - " return -1;\n" - " // Phase 3. Penetration info\n" - " b3FindPenetr(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal, depthOut, dirOut, posOut);\n" - " hasSepAxis[pairIndex] = 1;\n" - " sepAxis[pairIndex] = -*dirOut;\n" - " break;\n" - " }\n" - " case 1:\n" - " {\n" - " // Touching contact on portal's v1.\n" - " b3FindPenetrTouch(&portal, depthOut, dirOut, posOut);\n" - " break;\n" - " }\n" - " case 2:\n" - " {\n" - " \n" - " b3FindPenetrSegment( &portal, depthOut, dirOut, posOut);\n" - " break;\n" - " }\n" - " default:\n" - " {\n" - " hasSepAxis[pairIndex]=0;\n" - " //if (res < 0)\n" - " //{\n" - " // Origin isn't inside portal - no collision.\n" - " return -1;\n" - " //}\n" - " }\n" - " };\n" - " \n" - " return 0;\n" - "};\n" - "#endif //B3_MPR_PENETRATION_H\n" - "#ifndef B3_CONTACT4DATA_H\n" - "#define B3_CONTACT4DATA_H\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "typedef struct b3Contact4Data b3Contact4Data_t;\n" - "struct b3Contact4Data\n" - "{\n" - " b3Float4 m_worldPosB[4];\n" - "// b3Float4 m_localPosA[4];\n" - "// b3Float4 m_localPosB[4];\n" - " b3Float4 m_worldNormalOnB; // w: m_nPoints\n" - " unsigned short m_restituitionCoeffCmp;\n" - " unsigned short m_frictionCoeffCmp;\n" - " int m_batchIdx;\n" - " int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" - " int m_bodyBPtrAndSignBit;\n" - " int m_childIndexA;\n" - " int m_childIndexB;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "};\n" - "inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" - "{\n" - " return (int)contact->m_worldNormalOnB.w;\n" - "};\n" - "inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" - "{\n" - " contact->m_worldNormalOnB.w = (float)numPoints;\n" - "};\n" - "#endif //B3_CONTACT4DATA_H\n" - "#define AppendInc(x, out) out = atomic_inc(x)\n" - "#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" - "#ifdef cl_ext_atomic_counters_32\n" - " #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" - "#else\n" - " #define counter32_t volatile __global int*\n" - "#endif\n" - "__kernel void mprPenetrationKernel( __global int4* pairs,\n" - " __global const b3RigidBodyData_t* rigidBodies, \n" - " __global const b3Collidable_t* collidables,\n" - " __global const b3ConvexPolyhedronData_t* convexShapes, \n" - " __global const float4* vertices,\n" - " __global float4* separatingNormals,\n" - " __global int* hasSeparatingAxis,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int contactCapacity,\n" - " int numPairs)\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " if (i<numPairs)\n" - " {\n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " \n" - " //once the broadphase avoids static-static pairs, we can remove this test\n" - " if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" - " {\n" - " return;\n" - " }\n" - " \n" - " if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" - " {\n" - " return;\n" - " }\n" - " float depthOut;\n" - " b3Float4 dirOut;\n" - " b3Float4 posOut;\n" - " int res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB,rigidBodies,convexShapes,collidables,vertices,separatingNormals,hasSeparatingAxis,&depthOut, &dirOut, &posOut);\n" - " \n" - " \n" - " \n" - " \n" - " if (res==0)\n" - " {\n" - " //add a contact\n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " if (dstIdx<contactCapacity)\n" - " {\n" - " pairs[pairIndex].z = dstIdx;\n" - " __global struct b3Contact4Data* c = globalContactsOut + dstIdx;\n" - " c->m_worldNormalOnB = -dirOut;//normal;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " int bodyA = pairs[pairIndex].x;\n" - " int bodyB = pairs[pairIndex].y;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " //for (int i=0;i<nContacts;i++)\n" - " posOut.w = -depthOut;\n" - " c->m_worldPosB[0] = posOut;//localPoints[contactIdx[i]];\n" - " GET_NPOINTS(*c) = 1;//nContacts;\n" - " }\n" - " }\n" - " }\n" - "}\n" - "typedef float4 Quaternion;\n" - "#define make_float4 (float4)\n" - "__inline\n" - "float dot3F4(float4 a, float4 b)\n" - "{\n" - " float4 a1 = make_float4(a.xyz,0.f);\n" - " float4 b1 = make_float4(b.xyz,0.f);\n" - " return dot(a1, b1);\n" - "}\n" - "__inline\n" - "float4 cross3(float4 a, float4 b)\n" - "{\n" - " return cross(a,b);\n" - "}\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b)\n" - "{\n" - " Quaternion ans;\n" - " ans = cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q)\n" - "{\n" - " return (Quaternion)(-q.xyz, q.w);\n" - "}\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec)\n" - "{\n" - " Quaternion qInv = qtInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = qtMul(qtMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "__inline\n" - "float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" - "{\n" - " return qtRotate( *orientation, *p ) + (*translation);\n" - "}\n" - "__inline\n" - "float4 qtInvRotate(const Quaternion q, float4 vec)\n" - "{\n" - " return qtRotate( qtInvert( q ), vec );\n" - "}\n" - "inline void project(__global const b3ConvexPolyhedronData_t* hull, const float4 pos, const float4 orn, \n" - "const float4* dir, __global const float4* vertices, float* min, float* max)\n" - "{\n" - " min[0] = FLT_MAX;\n" - " max[0] = -FLT_MAX;\n" - " int numVerts = hull->m_numVertices;\n" - " const float4 localDir = qtInvRotate(orn,*dir);\n" - " float offset = dot(pos,*dir);\n" - " for(int i=0;i<numVerts;i++)\n" - " {\n" - " float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" - " if(dp < min[0]) \n" - " min[0] = dp;\n" - " if(dp > max[0]) \n" - " max[0] = dp;\n" - " }\n" - " if(min[0]>max[0])\n" - " {\n" - " float tmp = min[0];\n" - " min[0] = max[0];\n" - " max[0] = tmp;\n" - " }\n" - " min[0] += offset;\n" - " max[0] += offset;\n" - "}\n" - "bool findSeparatingAxisUnitSphere( __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " __global const float4* vertices,\n" - " __global const float4* unitSphereDirections,\n" - " int numUnitSphereDirections,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " \n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " int curEdgeEdge = 0;\n" - " // Test unit sphere directions\n" - " for (int i=0;i<numUnitSphereDirections;i++)\n" - " {\n" - " float4 crossje;\n" - " crossje = unitSphereDirections[i]; \n" - " if (dot3F4(DeltaC2,crossje)>0)\n" - " crossje *= -1.f;\n" - " {\n" - " float dist;\n" - " bool result = true;\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" - " project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" - " \n" - " if(Max0<Min1 || Max1<Min0)\n" - " return false;\n" - " \n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " dist = d0<d1 ? d0:d1;\n" - " result = true;\n" - " \n" - " if(dist<*dmin)\n" - " {\n" - " *dmin = dist;\n" - " *sep = crossje;\n" - " }\n" - " }\n" - " }\n" - " \n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "__kernel void findSeparatingAxisUnitSphereKernel( __global const int4* pairs, \n" - " __global const b3RigidBodyData_t* rigidBodies, \n" - " __global const b3Collidable_t* collidables,\n" - " __global const b3ConvexPolyhedronData_t* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* unitSphereDirections,\n" - " __global float4* separatingNormals,\n" - " __global int* hasSeparatingAxis,\n" - " __global float* dmins,\n" - " int numUnitSphereDirections,\n" - " int numPairs\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " if (hasSeparatingAxis[i])\n" - " {\n" - " \n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " \n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " \n" - " float dmin = dmins[i];\n" - " \n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " float4 sepNormal = separatingNormals[i];\n" - " \n" - " int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;\n" - " if (numEdgeEdgeDirections>numUnitSphereDirections)\n" - " {\n" - " bool sepEE = findSeparatingAxisUnitSphere( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " vertices,unitSphereDirections,numUnitSphereDirections,&sepNormal,&dmin);\n" - " if (!sepEE)\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " } else\n" - " {\n" - " hasSeparatingAxis[i] = 1;\n" - " separatingNormals[i] = sepNormal;\n" - " }\n" - " }\n" - " } //if (hasSeparatingAxis[i])\n" - " }//(i<numPairs)\n" - "}\n"; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl deleted file mode 100644 index 9c9e920f13..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl +++ /dev/null @@ -1,1374 +0,0 @@ -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_PLANE 4 -#define SHAPE_CONCAVE_TRIMESH 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 -#define SHAPE_SPHERE 7 - - -#pragma OPENCL EXTENSION cl_amd_printf : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable - -#ifdef cl_ext_atomic_counters_32 -#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable -#else -#define counter32_t volatile __global int* -#endif - -#define GET_GROUP_IDX get_group_id(0) -#define GET_LOCAL_IDX get_local_id(0) -#define GET_GLOBAL_IDX get_global_id(0) -#define GET_GROUP_SIZE get_local_size(0) -#define GET_NUM_GROUPS get_num_groups(0) -#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) -#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) -#define AtomInc(x) atom_inc(&(x)) -#define AtomInc1(x, out) out = atom_inc(&(x)) -#define AppendInc(x, out) out = atomic_inc(x) -#define AtomAdd(x, value) atom_add(&(x), value) -#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) -#define AtomXhg(x, value) atom_xchg ( &(x), value ) - -#define max2 max -#define min2 min - -typedef unsigned int u32; - - - - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - -///keep this in sync with btCollidable.h -typedef struct -{ - int m_numChildShapes; - float m_radius; - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - -#define GET_NPOINTS(x) (x).m_worldNormalOnB.w - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - - -typedef struct -{ - float4 m_localCenter; - float4 m_extents; - float4 mC; - float4 mE; - - float m_radius; - int m_faceOffset; - int m_numFaces; - int m_numVertices; - - int m_vertexOffset; - int m_uniqueEdgesOffset; - int m_numUniqueEdges; - int m_unused; - -} ConvexPolyhedronCL; - -typedef struct -{ - float4 m_plane; - int m_indexOffset; - int m_numIndices; -} btGpuFace; - -#define SELECT_UINT4( b, a, condition ) select( b,a,condition ) - -#define make_float4 (float4) -#define make_float2 (float2) -#define make_uint4 (uint4) -#define make_int4 (int4) -#define make_uint2 (uint2) -#define make_int2 (int2) - - -__inline -float fastDiv(float numerator, float denominator) -{ - return native_divide(numerator, denominator); -// return numerator/denominator; -} - -__inline -float4 fastDiv4(float4 numerator, float4 denominator) -{ - return native_divide(numerator, denominator); -} - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); -} - -//#define dot3F4 dot - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - -void trInverse(float4 translationIn, Quaternion orientationIn, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtInvert(orientationIn); - *translationOut = qtRotate(*orientationOut, -translationIn); -} - -void trMul(float4 translationA, Quaternion orientationA, - float4 translationB, Quaternion orientationB, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtMul(orientationA,orientationB); - *translationOut = transform(&translationB,&translationA,&orientationA); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - - -__inline float4 lerp3(const float4 a,const float4 b, float t) -{ - return make_float4( a.x + (b.x - a.x) * t, - a.y + (b.y - a.y) * t, - a.z + (b.z - a.z) * t, - 0.f); -} - - -float signedDistanceFromPointToPlane(float4 point, float4 planeEqn, float4* closestPointOnFace) -{ - float4 n = (float4)(planeEqn.x, planeEqn.y, planeEqn.z, 0); - float dist = dot3F4(n, point) + planeEqn.w; - *closestPointOnFace = point - dist * n; - return dist; -} - - - -inline bool IsPointInPolygon(float4 p, - const btGpuFace* face, - __global const float4* baseVertex, - __global const int* convexIndices, - float4* out) -{ - float4 a; - float4 b; - float4 ab; - float4 ap; - float4 v; - - float4 plane = make_float4(face->m_plane.x,face->m_plane.y,face->m_plane.z,0.f); - - if (face->m_numIndices<2) - return false; - - - float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices-1]]; - - b = v0; - - for(unsigned i=0; i != face->m_numIndices; ++i) - { - a = b; - float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]]; - b = vi; - ab = b-a; - ap = p-a; - v = cross3(ab,plane); - - if (dot(ap, v) > 0.f) - { - float ab_m2 = dot(ab, ab); - float rt = ab_m2 != 0.f ? dot(ab, ap) / ab_m2 : 0.f; - if (rt <= 0.f) - { - *out = a; - } - else if (rt >= 1.f) - { - *out = b; - } - else - { - float s = 1.f - rt; - out[0].x = s * a.x + rt * b.x; - out[0].y = s * a.y + rt * b.y; - out[0].z = s * a.z + rt * b.z; - } - return false; - } - } - return true; -} - - - - -void computeContactSphereConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* convexVertices, - __global const int* convexIndices, - __global const btGpuFace* faces, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity, - float4 spherePos2, - float radius, - float4 pos, - float4 quat - ) -{ - - float4 invPos; - float4 invOrn; - - trInverse(pos,quat, &invPos,&invOrn); - - float4 spherePos = transform(&spherePos2,&invPos,&invOrn); - - int shapeIndex = collidables[collidableIndexB].m_shapeIndex; - int numFaces = convexShapes[shapeIndex].m_numFaces; - float4 closestPnt = (float4)(0, 0, 0, 0); - float4 hitNormalWorld = (float4)(0, 0, 0, 0); - float minDist = -1000000.f; - bool bCollide = true; - - for ( int f = 0; f < numFaces; f++ ) - { - btGpuFace face = faces[convexShapes[shapeIndex].m_faceOffset+f]; - - // set up a plane equation - float4 planeEqn; - float4 n1 = face.m_plane; - n1.w = 0.f; - planeEqn = n1; - planeEqn.w = face.m_plane.w; - - - // compute a signed distance from the vertex in cloth to the face of rigidbody. - float4 pntReturn; - float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn); - - // If the distance is positive, the plane is a separating plane. - if ( dist > radius ) - { - bCollide = false; - break; - } - - - if (dist>0) - { - //might hit an edge or vertex - float4 out; - float4 zeroPos = make_float4(0,0,0,0); - - bool isInPoly = IsPointInPolygon(spherePos, - &face, - &convexVertices[convexShapes[shapeIndex].m_vertexOffset], - convexIndices, - &out); - if (isInPoly) - { - if (dist>minDist) - { - minDist = dist; - closestPnt = pntReturn; - hitNormalWorld = planeEqn; - - } - } else - { - float4 tmp = spherePos-out; - float l2 = dot(tmp,tmp); - if (l2<radius*radius) - { - dist = sqrt(l2); - if (dist>minDist) - { - minDist = dist; - closestPnt = out; - hitNormalWorld = tmp/dist; - - } - - } else - { - bCollide = false; - break; - } - } - } else - { - if ( dist > minDist ) - { - minDist = dist; - closestPnt = pntReturn; - hitNormalWorld.xyz = planeEqn.xyz; - } - } - - } - - - - if (bCollide && minDist > -10000) - { - float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld); - float4 pOnB1 = transform(&closestPnt,&pos,&quat); - - float actualDepth = minDist-radius; - if (actualDepth<=0.f) - { - - - pOnB1.w = actualDepth; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - - if (1)//dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB1; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_worldPosB[0] = pOnB1; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - GET_NPOINTS(*c) = 1; - } - - } - }//if (hasCollision) - -} - - - -int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int4* contactIdx) -{ - if( nPoints == 0 ) - return 0; - - if (nPoints <=4) - return nPoints; - - - if (nPoints >64) - nPoints = 64; - - float4 center = make_float4(0.f); - { - - for (int i=0;i<nPoints;i++) - center += p[i]; - center /= (float)nPoints; - } - - - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - - //keep point with deepest penetration - float minW= FLT_MAX; - - int minIndex=-1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for(int ie = 0; ie<nPoints; ie++ ) - { - if (p[ie].w<minW) - { - minW = p[ie].w; - minIndex=ie; - } - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - if (f<maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4( -u, r ); - if (f<maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - - f = dot3F4( v, r ); - if (f<maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4( -v, r ); - if (f<maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; - -} - -#define MAX_PLANE_CONVEX_POINTS 64 - -int computeContactPlaneConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu*collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* convexVertices, - __global const int* convexIndices, - __global const btGpuFace* faces, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity, - float4 posB, - Quaternion ornB - ) -{ - int resultIndex=-1; - - int shapeIndex = collidables[collidableIndexB].m_shapeIndex; - __global const ConvexPolyhedronCL* hullB = &convexShapes[shapeIndex]; - - float4 posA; - posA = rigidBodies[bodyIndexA].m_pos; - Quaternion ornA; - ornA = rigidBodies[bodyIndexA].m_quat; - - int numContactsOut = 0; - int numWorldVertsB1= 0; - - float4 planeEq; - planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - float4 planeNormal = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f); - float4 planeNormalWorld; - planeNormalWorld = qtRotate(ornA,planeNormal); - float planeConstant = planeEq.w; - - float4 invPosA;Quaternion invOrnA; - float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1; - { - - trInverse(posA,ornA,&invPosA,&invOrnA); - trMul(invPosA,invOrnA,posB,ornB,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); - } - float4 invPosB;Quaternion invOrnB; - float4 planeInConvexPos1; Quaternion planeInConvexOrn1; - { - - trInverse(posB,ornB,&invPosB,&invOrnB); - trMul(invPosB,invOrnB,posA,ornA,&planeInConvexPos1,&planeInConvexOrn1); - } - - - float4 planeNormalInConvex = qtRotate(planeInConvexOrn1,-planeNormal); - float maxDot = -1e30; - int hitVertex=-1; - float4 hitVtx; - - - - float4 contactPoints[MAX_PLANE_CONVEX_POINTS]; - int numPoints = 0; - - int4 contactIdx; - contactIdx=make_int4(0,1,2,3); - - - for (int i=0;i<hullB->m_numVertices;i++) - { - float4 vtx = convexVertices[hullB->m_vertexOffset+i]; - float curDot = dot(vtx,planeNormalInConvex); - - - if (curDot>maxDot) - { - hitVertex=i; - maxDot=curDot; - hitVtx = vtx; - //make sure the deepest points is always included - if (numPoints==MAX_PLANE_CONVEX_POINTS) - numPoints--; - } - - if (numPoints<MAX_PLANE_CONVEX_POINTS) - { - float4 vtxWorld = transform(&vtx, &posB, &ornB); - float4 vtxInPlane = transform(&vtxWorld, &invPosA, &invOrnA);//oplaneTransform.inverse()*vtxWorld; - float dist = dot(planeNormal,vtxInPlane)-planeConstant; - if (dist<0.f) - { - vtxWorld.w = dist; - contactPoints[numPoints] = vtxWorld; - numPoints++; - } - } - - } - - int numReducedPoints = numPoints; - if (numPoints>4) - { - numReducedPoints = extractManifoldSequential( contactPoints, numPoints, planeNormalInConvex, &contactIdx); - } - - if (numReducedPoints>0) - { - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - resultIndex = dstIdx; - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -planeNormalWorld; - //c->setFrictionCoeff(0.7); - //c->setRestituitionCoeff(0.f); - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - switch (numReducedPoints) - { - case 4: - c->m_worldPosB[3] = contactPoints[contactIdx.w]; - case 3: - c->m_worldPosB[2] = contactPoints[contactIdx.z]; - case 2: - c->m_worldPosB[1] = contactPoints[contactIdx.y]; - case 1: - c->m_worldPosB[0] = contactPoints[contactIdx.x]; - default: - { - } - }; - - GET_NPOINTS(*c) = numReducedPoints; - }//if (dstIdx < numPairs) - } - - return resultIndex; -} - - -void computeContactPlaneSphere(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const btGpuFace* faces, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity) -{ - float4 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - float radius = collidables[collidableIndexB].m_radius; - float4 posA1 = rigidBodies[bodyIndexA].m_pos; - float4 ornA1 = rigidBodies[bodyIndexA].m_quat; - float4 posB1 = rigidBodies[bodyIndexB].m_pos; - float4 ornB1 = rigidBodies[bodyIndexB].m_quat; - - bool hasCollision = false; - float4 planeNormal1 = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f); - float planeConstant = planeEq.w; - float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1; - { - float4 invPosA;Quaternion invOrnA; - trInverse(posA1,ornA1,&invPosA,&invOrnA); - trMul(invPosA,invOrnA,posB1,ornB1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); - } - float4 planeInConvexPos1; Quaternion planeInConvexOrn1; - { - float4 invPosB;Quaternion invOrnB; - trInverse(posB1,ornB1,&invPosB,&invOrnB); - trMul(invPosB,invOrnB,posA1,ornA1,&planeInConvexPos1,&planeInConvexOrn1); - } - float4 vtx1 = qtRotate(planeInConvexOrn1,-planeNormal1)*radius; - float4 vtxInPlane1 = transform(&vtx1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); - float distance = dot3F4(planeNormal1,vtxInPlane1) - planeConstant; - hasCollision = distance < 0.f;//m_manifoldPtr->getContactBreakingThreshold(); - if (hasCollision) - { - float4 vtxInPlaneProjected1 = vtxInPlane1 - distance*planeNormal1; - float4 vtxInPlaneWorld1 = transform(&vtxInPlaneProjected1,&posA1,&ornA1); - float4 normalOnSurfaceB1 = qtRotate(ornA1,planeNormal1); - float4 pOnB1 = vtxInPlaneWorld1+normalOnSurfaceB1*distance; - pOnB1.w = distance; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB1; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_worldPosB[0] = pOnB1; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - GET_NPOINTS(*c) = 1; - }//if (dstIdx < numPairs) - }//if (hasCollision) -} - - -__kernel void primitiveContactsKernel( __global int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numPairs, int maxContactCapacity) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - - float4 posB; - posB = rigidBodies[bodyIndexB].m_pos; - Quaternion ornB; - ornB = rigidBodies[bodyIndexB].m_quat; - int contactIndex = computeContactPlaneConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, posB,ornB); - if (contactIndex>=0) - pairs[pairIndex].z = contactIndex; - - return; - } - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - collidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - - float4 posA; - posA = rigidBodies[bodyIndexA].m_pos; - Quaternion ornA; - ornA = rigidBodies[bodyIndexA].m_quat; - - - int contactIndex = computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA); - - if (contactIndex>=0) - pairs[pairIndex].z = contactIndex; - - return; - } - - if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - computeContactPlaneSphere(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity); - return; - } - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - - - computeContactPlaneSphere( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, - rigidBodies,collidables, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity); - - return; - } - - - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - - float4 spherePos = rigidBodies[bodyIndexA].m_pos; - float sphereRadius = collidables[collidableIndexA].m_radius; - float4 convexPos = rigidBodies[bodyIndexB].m_pos; - float4 convexOrn = rigidBodies[bodyIndexB].m_quat; - - computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - - return; - } - - if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - - float4 spherePos = rigidBodies[bodyIndexB].m_pos; - float sphereRadius = collidables[collidableIndexB].m_radius; - float4 convexPos = rigidBodies[bodyIndexA].m_pos; - float4 convexOrn = rigidBodies[bodyIndexA].m_quat; - - computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - return; - } - - - - - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - //sphere-sphere - float radiusA = collidables[collidableIndexA].m_radius; - float radiusB = collidables[collidableIndexB].m_radius; - float4 posA = rigidBodies[bodyIndexA].m_pos; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - float4 diff = posA-posB; - float len = length(diff); - - ///iff distance positive, don't generate a new contact - if ( len <= (radiusA+radiusB)) - { - ///distance (negative means penetration) - float dist = len - (radiusA+radiusB); - float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f); - if (len > 0.00001) - { - normalOnSurfaceB = diff / len; - } - float4 contactPosB = posB + normalOnSurfaceB*radiusB; - contactPosB.w = dist; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = normalOnSurfaceB; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_worldPosB[0] = contactPosB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - GET_NPOINTS(*c) = 1; - }//if (dstIdx < numPairs) - }//if ( len <= (radiusA+radiusB)) - - return; - }//SHAPE_SPHERE SHAPE_SPHERE - - }// if (i<numPairs) - -} - - -// work-in-progress -__kernel void processCompoundPairsPrimitivesKernel( __global const int4* gpuCompoundPairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global const btGpuChildShape* gpuChildShapes, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numCompoundPairs, int maxContactCapacity - ) -{ - - int i = get_global_id(0); - if (i<numCompoundPairs) - { - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int shapeTypeA = collidables[collidableIndexA].m_shapeType; - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - int pairIndex = i; - if ((shapeTypeA == SHAPE_PLANE) && (shapeTypeB==SHAPE_CONVEX_HULL)) - { - - computeContactPlaneConvex( pairIndex, bodyIndexA,bodyIndexB, collidableIndexA,collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posB,ornB); - return; - } - - if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB==SHAPE_PLANE)) - { - - computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA); - return; - } - - if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB == SHAPE_SPHERE)) - { - float4 spherePos = rigidBodies[bodyIndexB].m_pos; - float sphereRadius = collidables[collidableIndexB].m_radius; - float4 convexPos = posA; - float4 convexOrn = ornA; - - computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA , collidableIndexB,collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - - return; - } - - if ((shapeTypeA == SHAPE_SPHERE) && (shapeTypeB == SHAPE_CONVEX_HULL)) - { - - float4 spherePos = rigidBodies[bodyIndexA].m_pos; - float sphereRadius = collidables[collidableIndexA].m_radius; - float4 convexPos = posB; - float4 convexOrn = ornB; - - - computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - - return; - } - }// if (i<numCompoundPairs) -} - - -bool pointInTriangle(const float4* vertices, const float4* normal, float4 *p ) -{ - - const float4* p1 = &vertices[0]; - const float4* p2 = &vertices[1]; - const float4* p3 = &vertices[2]; - - float4 edge1; edge1 = (*p2 - *p1); - float4 edge2; edge2 = ( *p3 - *p2 ); - float4 edge3; edge3 = ( *p1 - *p3 ); - - - float4 p1_to_p; p1_to_p = ( *p - *p1 ); - float4 p2_to_p; p2_to_p = ( *p - *p2 ); - float4 p3_to_p; p3_to_p = ( *p - *p3 ); - - float4 edge1_normal; edge1_normal = ( cross(edge1,*normal)); - float4 edge2_normal; edge2_normal = ( cross(edge2,*normal)); - float4 edge3_normal; edge3_normal = ( cross(edge3,*normal)); - - - - float r1, r2, r3; - r1 = dot(edge1_normal,p1_to_p ); - r2 = dot(edge2_normal,p2_to_p ); - r3 = dot(edge3_normal,p3_to_p ); - - if ( r1 > 0 && r2 > 0 && r3 > 0 ) - return true; - if ( r1 <= 0 && r2 <= 0 && r3 <= 0 ) - return true; - return false; - -} - - -float segmentSqrDistance(float4 from, float4 to,float4 p, float4* nearest) -{ - float4 diff = p - from; - float4 v = to - from; - float t = dot(v,diff); - - if (t > 0) - { - float dotVV = dot(v,v); - if (t < dotVV) - { - t /= dotVV; - diff -= t*v; - } else - { - t = 1; - diff -= v; - } - } else - { - t = 0; - } - *nearest = from + t*v; - return dot(diff,diff); -} - - -void computeContactSphereTriangle(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - const float4* triangleVertices, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity, - float4 spherePos2, - float radius, - float4 pos, - float4 quat, - int faceIndex - ) -{ - - float4 invPos; - float4 invOrn; - - trInverse(pos,quat, &invPos,&invOrn); - float4 spherePos = transform(&spherePos2,&invPos,&invOrn); - int numFaces = 3; - float4 closestPnt = (float4)(0, 0, 0, 0); - float4 hitNormalWorld = (float4)(0, 0, 0, 0); - float minDist = -1000000.f; - bool bCollide = false; - - - ////////////////////////////////////// - - float4 sphereCenter; - sphereCenter = spherePos; - - const float4* vertices = triangleVertices; - float contactBreakingThreshold = 0.f;//todo? - float radiusWithThreshold = radius + contactBreakingThreshold; - float4 edge10; - edge10 = vertices[1]-vertices[0]; - edge10.w = 0.f;//is this needed? - float4 edge20; - edge20 = vertices[2]-vertices[0]; - edge20.w = 0.f;//is this needed? - float4 normal = cross3(edge10,edge20); - normal = normalize(normal); - float4 p1ToCenter; - p1ToCenter = sphereCenter - vertices[0]; - - float distanceFromPlane = dot(p1ToCenter,normal); - - if (distanceFromPlane < 0.f) - { - //triangle facing the other way - distanceFromPlane *= -1.f; - normal *= -1.f; - } - hitNormalWorld = normal; - - bool isInsideContactPlane = distanceFromPlane < radiusWithThreshold; - - // Check for contact / intersection - bool hasContact = false; - float4 contactPoint; - if (isInsideContactPlane) - { - - if (pointInTriangle(vertices,&normal, &sphereCenter)) - { - // Inside the contact wedge - touches a point on the shell plane - hasContact = true; - contactPoint = sphereCenter - normal*distanceFromPlane; - - } else { - // Could be inside one of the contact capsules - float contactCapsuleRadiusSqr = radiusWithThreshold*radiusWithThreshold; - float4 nearestOnEdge; - int numEdges = 3; - for (int i = 0; i < numEdges; i++) - { - float4 pa =vertices[i]; - float4 pb = vertices[(i+1)%3]; - - float distanceSqr = segmentSqrDistance(pa,pb,sphereCenter, &nearestOnEdge); - if (distanceSqr < contactCapsuleRadiusSqr) - { - // Yep, we're inside a capsule - hasContact = true; - contactPoint = nearestOnEdge; - - } - - } - } - } - - if (hasContact) - { - - closestPnt = contactPoint; - float4 contactToCenter = sphereCenter - contactPoint; - minDist = length(contactToCenter); - if (minDist>FLT_EPSILON) - { - hitNormalWorld = normalize(contactToCenter);//*(1./minDist); - bCollide = true; - } - - } - - - ///////////////////////////////////// - - if (bCollide && minDist > -10000) - { - - float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld); - float4 pOnB1 = transform(&closestPnt,&pos,&quat); - float actualDepth = minDist-radius; - - - if (actualDepth<=0.f) - { - pOnB1.w = actualDepth; - int dstIdx; - - - float lenSqr = dot3F4(normalOnSurfaceB1,normalOnSurfaceB1); - if (lenSqr>FLT_EPSILON) - { - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB1; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_worldPosB[0] = pOnB1; - - c->m_childIndexA = -1; - c->m_childIndexB = faceIndex; - - GET_NPOINTS(*c) = 1; - } - } - - } - }//if (hasCollision) - -} - - - -// work-in-progress -__kernel void findConcaveSphereContactsKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numConcavePairs, int maxContactCapacity - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - if (collidables[collidableIndexB].m_shapeType==SHAPE_SPHERE) - { - int f = concavePairs[i].z; - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - } - - float4 spherePos = rigidBodies[bodyIndexB].m_pos; - float sphereRadius = collidables[collidableIndexB].m_radius; - float4 convexPos = rigidBodies[bodyIndexA].m_pos; - float4 convexOrn = rigidBodies[bodyIndexA].m_quat; - - computeContactSphereTriangle(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, - rigidBodies,collidables, - verticesA, - globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn, f); - - return; - } -}
\ No newline at end of file diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h deleted file mode 100644 index b2e0a2dd47..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h +++ /dev/null @@ -1,1288 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* primitiveContactsKernelsCL = - "#ifndef B3_CONTACT4DATA_H\n" - "#define B3_CONTACT4DATA_H\n" - "#ifndef B3_FLOAT4_H\n" - "#define B3_FLOAT4_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#define B3_PLATFORM_DEFINITIONS_H\n" - "struct MyTest\n" - "{\n" - " int bla;\n" - "};\n" - "#ifdef __cplusplus\n" - "#else\n" - "//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" - "#define B3_LARGE_FLOAT 1e18f\n" - "#define B3_INFINITY 1e18f\n" - "#define b3Assert(a)\n" - "#define b3ConstArray(a) __global const a*\n" - "#define b3AtomicInc atomic_inc\n" - "#define b3AtomicAdd atomic_add\n" - "#define b3Fabs fabs\n" - "#define b3Sqrt native_sqrt\n" - "#define b3Sin native_sin\n" - "#define b3Cos native_cos\n" - "#define B3_STATIC\n" - "#endif\n" - "#endif\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Float4;\n" - " #define b3Float4ConstArg const b3Float4\n" - " #define b3MakeFloat4 (float4)\n" - " float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return dot(a1, b1);\n" - " }\n" - " b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return cross(a1, b1);\n" - " }\n" - " #define b3MinFloat4 min\n" - " #define b3MaxFloat4 max\n" - " #define b3Normalized(a) normalize(a)\n" - "#endif \n" - " \n" - "inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" - "{\n" - " if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" - " return false;\n" - " return true;\n" - "}\n" - "inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" - "{\n" - " float maxDot = -B3_INFINITY;\n" - " int i = 0;\n" - " int ptIndex = -1;\n" - " for( i = 0; i < vecLen; i++ )\n" - " {\n" - " float dot = b3Dot3F4(vecArray[i],vec);\n" - " \n" - " if( dot > maxDot )\n" - " {\n" - " maxDot = dot;\n" - " ptIndex = i;\n" - " }\n" - " }\n" - " b3Assert(ptIndex>=0);\n" - " if (ptIndex<0)\n" - " {\n" - " ptIndex = 0;\n" - " }\n" - " *dotOut = maxDot;\n" - " return ptIndex;\n" - "}\n" - "#endif //B3_FLOAT4_H\n" - "typedef struct b3Contact4Data b3Contact4Data_t;\n" - "struct b3Contact4Data\n" - "{\n" - " b3Float4 m_worldPosB[4];\n" - "// b3Float4 m_localPosA[4];\n" - "// b3Float4 m_localPosB[4];\n" - " b3Float4 m_worldNormalOnB; // w: m_nPoints\n" - " unsigned short m_restituitionCoeffCmp;\n" - " unsigned short m_frictionCoeffCmp;\n" - " int m_batchIdx;\n" - " int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" - " int m_bodyBPtrAndSignBit;\n" - " int m_childIndexA;\n" - " int m_childIndexB;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "};\n" - "inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" - "{\n" - " return (int)contact->m_worldNormalOnB.w;\n" - "};\n" - "inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" - "{\n" - " contact->m_worldNormalOnB.w = (float)numPoints;\n" - "};\n" - "#endif //B3_CONTACT4DATA_H\n" - "#define SHAPE_CONVEX_HULL 3\n" - "#define SHAPE_PLANE 4\n" - "#define SHAPE_CONCAVE_TRIMESH 5\n" - "#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" - "#define SHAPE_SPHERE 7\n" - "#pragma OPENCL EXTENSION cl_amd_printf : enable\n" - "#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n" - "#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n" - "#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable\n" - "#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable\n" - "#ifdef cl_ext_atomic_counters_32\n" - "#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" - "#else\n" - "#define counter32_t volatile __global int*\n" - "#endif\n" - "#define GET_GROUP_IDX get_group_id(0)\n" - "#define GET_LOCAL_IDX get_local_id(0)\n" - "#define GET_GLOBAL_IDX get_global_id(0)\n" - "#define GET_GROUP_SIZE get_local_size(0)\n" - "#define GET_NUM_GROUPS get_num_groups(0)\n" - "#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)\n" - "#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)\n" - "#define AtomInc(x) atom_inc(&(x))\n" - "#define AtomInc1(x, out) out = atom_inc(&(x))\n" - "#define AppendInc(x, out) out = atomic_inc(x)\n" - "#define AtomAdd(x, value) atom_add(&(x), value)\n" - "#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )\n" - "#define AtomXhg(x, value) atom_xchg ( &(x), value )\n" - "#define max2 max\n" - "#define min2 min\n" - "typedef unsigned int u32;\n" - "typedef struct \n" - "{\n" - " union\n" - " {\n" - " float4 m_min;\n" - " float m_minElems[4];\n" - " int m_minIndices[4];\n" - " };\n" - " union\n" - " {\n" - " float4 m_max;\n" - " float m_maxElems[4];\n" - " int m_maxIndices[4];\n" - " };\n" - "} btAabbCL;\n" - "///keep this in sync with btCollidable.h\n" - "typedef struct\n" - "{\n" - " int m_numChildShapes;\n" - " float m_radius;\n" - " int m_shapeType;\n" - " int m_shapeIndex;\n" - " \n" - "} btCollidableGpu;\n" - "typedef struct\n" - "{\n" - " float4 m_childPosition;\n" - " float4 m_childOrientation;\n" - " int m_shapeIndex;\n" - " int m_unused0;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "} btGpuChildShape;\n" - "#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" - "typedef struct\n" - "{\n" - " float4 m_pos;\n" - " float4 m_quat;\n" - " float4 m_linVel;\n" - " float4 m_angVel;\n" - " u32 m_collidableIdx; \n" - " float m_invMass;\n" - " float m_restituitionCoeff;\n" - " float m_frictionCoeff;\n" - "} BodyData;\n" - "typedef struct \n" - "{\n" - " float4 m_localCenter;\n" - " float4 m_extents;\n" - " float4 mC;\n" - " float4 mE;\n" - " \n" - " float m_radius;\n" - " int m_faceOffset;\n" - " int m_numFaces;\n" - " int m_numVertices;\n" - " \n" - " int m_vertexOffset;\n" - " int m_uniqueEdgesOffset;\n" - " int m_numUniqueEdges;\n" - " int m_unused;\n" - "} ConvexPolyhedronCL;\n" - "typedef struct\n" - "{\n" - " float4 m_plane;\n" - " int m_indexOffset;\n" - " int m_numIndices;\n" - "} btGpuFace;\n" - "#define SELECT_UINT4( b, a, condition ) select( b,a,condition )\n" - "#define make_float4 (float4)\n" - "#define make_float2 (float2)\n" - "#define make_uint4 (uint4)\n" - "#define make_int4 (int4)\n" - "#define make_uint2 (uint2)\n" - "#define make_int2 (int2)\n" - "__inline\n" - "float fastDiv(float numerator, float denominator)\n" - "{\n" - " return native_divide(numerator, denominator); \n" - "// return numerator/denominator; \n" - "}\n" - "__inline\n" - "float4 fastDiv4(float4 numerator, float4 denominator)\n" - "{\n" - " return native_divide(numerator, denominator); \n" - "}\n" - "__inline\n" - "float4 cross3(float4 a, float4 b)\n" - "{\n" - " return cross(a,b);\n" - "}\n" - "//#define dot3F4 dot\n" - "__inline\n" - "float dot3F4(float4 a, float4 b)\n" - "{\n" - " float4 a1 = make_float4(a.xyz,0.f);\n" - " float4 b1 = make_float4(b.xyz,0.f);\n" - " return dot(a1, b1);\n" - "}\n" - "__inline\n" - "float4 fastNormalize4(float4 v)\n" - "{\n" - " return fast_normalize(v);\n" - "}\n" - "///////////////////////////////////////\n" - "// Quaternion\n" - "///////////////////////////////////////\n" - "typedef float4 Quaternion;\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b);\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in);\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec);\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q);\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b)\n" - "{\n" - " Quaternion ans;\n" - " ans = cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in)\n" - "{\n" - " return fastNormalize4(in);\n" - "// in /= length( in );\n" - "// return in;\n" - "}\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec)\n" - "{\n" - " Quaternion qInv = qtInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = qtMul(qtMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q)\n" - "{\n" - " return (Quaternion)(-q.xyz, q.w);\n" - "}\n" - "__inline\n" - "float4 qtInvRotate(const Quaternion q, float4 vec)\n" - "{\n" - " return qtRotate( qtInvert( q ), vec );\n" - "}\n" - "__inline\n" - "float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" - "{\n" - " return qtRotate( *orientation, *p ) + (*translation);\n" - "}\n" - "void trInverse(float4 translationIn, Quaternion orientationIn,\n" - " float4* translationOut, Quaternion* orientationOut)\n" - "{\n" - " *orientationOut = qtInvert(orientationIn);\n" - " *translationOut = qtRotate(*orientationOut, -translationIn);\n" - "}\n" - "void trMul(float4 translationA, Quaternion orientationA,\n" - " float4 translationB, Quaternion orientationB,\n" - " float4* translationOut, Quaternion* orientationOut)\n" - "{\n" - " *orientationOut = qtMul(orientationA,orientationB);\n" - " *translationOut = transform(&translationB,&translationA,&orientationA);\n" - "}\n" - "__inline\n" - "float4 normalize3(const float4 a)\n" - "{\n" - " float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" - " return fastNormalize4( n );\n" - "}\n" - "__inline float4 lerp3(const float4 a,const float4 b, float t)\n" - "{\n" - " return make_float4( a.x + (b.x - a.x) * t,\n" - " a.y + (b.y - a.y) * t,\n" - " a.z + (b.z - a.z) * t,\n" - " 0.f);\n" - "}\n" - "float signedDistanceFromPointToPlane(float4 point, float4 planeEqn, float4* closestPointOnFace)\n" - "{\n" - " float4 n = (float4)(planeEqn.x, planeEqn.y, planeEqn.z, 0);\n" - " float dist = dot3F4(n, point) + planeEqn.w;\n" - " *closestPointOnFace = point - dist * n;\n" - " return dist;\n" - "}\n" - "inline bool IsPointInPolygon(float4 p, \n" - " const btGpuFace* face,\n" - " __global const float4* baseVertex,\n" - " __global const int* convexIndices,\n" - " float4* out)\n" - "{\n" - " float4 a;\n" - " float4 b;\n" - " float4 ab;\n" - " float4 ap;\n" - " float4 v;\n" - " float4 plane = make_float4(face->m_plane.x,face->m_plane.y,face->m_plane.z,0.f);\n" - " \n" - " if (face->m_numIndices<2)\n" - " return false;\n" - " \n" - " float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices-1]];\n" - " \n" - " b = v0;\n" - " for(unsigned i=0; i != face->m_numIndices; ++i)\n" - " {\n" - " a = b;\n" - " float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]];\n" - " b = vi;\n" - " ab = b-a;\n" - " ap = p-a;\n" - " v = cross3(ab,plane);\n" - " if (dot(ap, v) > 0.f)\n" - " {\n" - " float ab_m2 = dot(ab, ab);\n" - " float rt = ab_m2 != 0.f ? dot(ab, ap) / ab_m2 : 0.f;\n" - " if (rt <= 0.f)\n" - " {\n" - " *out = a;\n" - " }\n" - " else if (rt >= 1.f) \n" - " {\n" - " *out = b;\n" - " }\n" - " else\n" - " {\n" - " float s = 1.f - rt;\n" - " out[0].x = s * a.x + rt * b.x;\n" - " out[0].y = s * a.y + rt * b.y;\n" - " out[0].z = s * a.z + rt * b.z;\n" - " }\n" - " return false;\n" - " }\n" - " }\n" - " return true;\n" - "}\n" - "void computeContactSphereConvex(int pairIndex,\n" - " int bodyIndexA, int bodyIndexB, \n" - " int collidableIndexA, int collidableIndexB, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes,\n" - " __global const float4* convexVertices,\n" - " __global const int* convexIndices,\n" - " __global const btGpuFace* faces,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int maxContactCapacity,\n" - " float4 spherePos2,\n" - " float radius,\n" - " float4 pos,\n" - " float4 quat\n" - " )\n" - "{\n" - " float4 invPos;\n" - " float4 invOrn;\n" - " trInverse(pos,quat, &invPos,&invOrn);\n" - " float4 spherePos = transform(&spherePos2,&invPos,&invOrn);\n" - " int shapeIndex = collidables[collidableIndexB].m_shapeIndex;\n" - " int numFaces = convexShapes[shapeIndex].m_numFaces;\n" - " float4 closestPnt = (float4)(0, 0, 0, 0);\n" - " float4 hitNormalWorld = (float4)(0, 0, 0, 0);\n" - " float minDist = -1000000.f;\n" - " bool bCollide = true;\n" - " for ( int f = 0; f < numFaces; f++ )\n" - " {\n" - " btGpuFace face = faces[convexShapes[shapeIndex].m_faceOffset+f];\n" - " // set up a plane equation \n" - " float4 planeEqn;\n" - " float4 n1 = face.m_plane;\n" - " n1.w = 0.f;\n" - " planeEqn = n1;\n" - " planeEqn.w = face.m_plane.w;\n" - " \n" - " \n" - " // compute a signed distance from the vertex in cloth to the face of rigidbody.\n" - " float4 pntReturn;\n" - " float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn);\n" - " // If the distance is positive, the plane is a separating plane. \n" - " if ( dist > radius )\n" - " {\n" - " bCollide = false;\n" - " break;\n" - " }\n" - " if (dist>0)\n" - " {\n" - " //might hit an edge or vertex\n" - " float4 out;\n" - " float4 zeroPos = make_float4(0,0,0,0);\n" - " bool isInPoly = IsPointInPolygon(spherePos,\n" - " &face,\n" - " &convexVertices[convexShapes[shapeIndex].m_vertexOffset],\n" - " convexIndices,\n" - " &out);\n" - " if (isInPoly)\n" - " {\n" - " if (dist>minDist)\n" - " {\n" - " minDist = dist;\n" - " closestPnt = pntReturn;\n" - " hitNormalWorld = planeEqn;\n" - " \n" - " }\n" - " } else\n" - " {\n" - " float4 tmp = spherePos-out;\n" - " float l2 = dot(tmp,tmp);\n" - " if (l2<radius*radius)\n" - " {\n" - " dist = sqrt(l2);\n" - " if (dist>minDist)\n" - " {\n" - " minDist = dist;\n" - " closestPnt = out;\n" - " hitNormalWorld = tmp/dist;\n" - " \n" - " }\n" - " \n" - " } else\n" - " {\n" - " bCollide = false;\n" - " break;\n" - " }\n" - " }\n" - " } else\n" - " {\n" - " if ( dist > minDist )\n" - " {\n" - " minDist = dist;\n" - " closestPnt = pntReturn;\n" - " hitNormalWorld.xyz = planeEqn.xyz;\n" - " }\n" - " }\n" - " \n" - " }\n" - " \n" - " if (bCollide && minDist > -10000)\n" - " {\n" - " float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld);\n" - " float4 pOnB1 = transform(&closestPnt,&pos,&quat);\n" - " \n" - " float actualDepth = minDist-radius;\n" - " if (actualDepth<=0.f)\n" - " {\n" - " \n" - " pOnB1.w = actualDepth;\n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " \n" - " \n" - " if (1)//dstIdx < maxContactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" - " c->m_worldNormalOnB = -normalOnSurfaceB1;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" - " c->m_worldPosB[0] = pOnB1;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " GET_NPOINTS(*c) = 1;\n" - " } \n" - " }\n" - " }//if (hasCollision)\n" - "}\n" - " \n" - "int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)\n" - "{\n" - " if( nPoints == 0 )\n" - " return 0;\n" - " \n" - " if (nPoints <=4)\n" - " return nPoints;\n" - " \n" - " \n" - " if (nPoints >64)\n" - " nPoints = 64;\n" - " \n" - " float4 center = make_float4(0.f);\n" - " {\n" - " \n" - " for (int i=0;i<nPoints;i++)\n" - " center += p[i];\n" - " center /= (float)nPoints;\n" - " }\n" - " \n" - " \n" - " \n" - " // sample 4 directions\n" - " \n" - " float4 aVector = p[0] - center;\n" - " float4 u = cross3( nearNormal, aVector );\n" - " float4 v = cross3( nearNormal, u );\n" - " u = normalize3( u );\n" - " v = normalize3( v );\n" - " \n" - " \n" - " //keep point with deepest penetration\n" - " float minW= FLT_MAX;\n" - " \n" - " int minIndex=-1;\n" - " \n" - " float4 maxDots;\n" - " maxDots.x = FLT_MIN;\n" - " maxDots.y = FLT_MIN;\n" - " maxDots.z = FLT_MIN;\n" - " maxDots.w = FLT_MIN;\n" - " \n" - " // idx, distance\n" - " for(int ie = 0; ie<nPoints; ie++ )\n" - " {\n" - " if (p[ie].w<minW)\n" - " {\n" - " minW = p[ie].w;\n" - " minIndex=ie;\n" - " }\n" - " float f;\n" - " float4 r = p[ie]-center;\n" - " f = dot3F4( u, r );\n" - " if (f<maxDots.x)\n" - " {\n" - " maxDots.x = f;\n" - " contactIdx[0].x = ie;\n" - " }\n" - " \n" - " f = dot3F4( -u, r );\n" - " if (f<maxDots.y)\n" - " {\n" - " maxDots.y = f;\n" - " contactIdx[0].y = ie;\n" - " }\n" - " \n" - " \n" - " f = dot3F4( v, r );\n" - " if (f<maxDots.z)\n" - " {\n" - " maxDots.z = f;\n" - " contactIdx[0].z = ie;\n" - " }\n" - " \n" - " f = dot3F4( -v, r );\n" - " if (f<maxDots.w)\n" - " {\n" - " maxDots.w = f;\n" - " contactIdx[0].w = ie;\n" - " }\n" - " \n" - " }\n" - " \n" - " if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)\n" - " {\n" - " //replace the first contact with minimum (todo: replace contact with least penetration)\n" - " contactIdx[0].x = minIndex;\n" - " }\n" - " \n" - " return 4;\n" - " \n" - "}\n" - "#define MAX_PLANE_CONVEX_POINTS 64\n" - "int computeContactPlaneConvex(int pairIndex,\n" - " int bodyIndexA, int bodyIndexB, \n" - " int collidableIndexA, int collidableIndexB, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu*collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes,\n" - " __global const float4* convexVertices,\n" - " __global const int* convexIndices,\n" - " __global const btGpuFace* faces,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int maxContactCapacity,\n" - " float4 posB,\n" - " Quaternion ornB\n" - " )\n" - "{\n" - " int resultIndex=-1;\n" - " int shapeIndex = collidables[collidableIndexB].m_shapeIndex;\n" - " __global const ConvexPolyhedronCL* hullB = &convexShapes[shapeIndex];\n" - " \n" - " float4 posA;\n" - " posA = rigidBodies[bodyIndexA].m_pos;\n" - " Quaternion ornA;\n" - " ornA = rigidBodies[bodyIndexA].m_quat;\n" - " int numContactsOut = 0;\n" - " int numWorldVertsB1= 0;\n" - " float4 planeEq;\n" - " planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane;\n" - " float4 planeNormal = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f);\n" - " float4 planeNormalWorld;\n" - " planeNormalWorld = qtRotate(ornA,planeNormal);\n" - " float planeConstant = planeEq.w;\n" - " \n" - " float4 invPosA;Quaternion invOrnA;\n" - " float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1;\n" - " {\n" - " \n" - " trInverse(posA,ornA,&invPosA,&invOrnA);\n" - " trMul(invPosA,invOrnA,posB,ornB,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" - " }\n" - " float4 invPosB;Quaternion invOrnB;\n" - " float4 planeInConvexPos1; Quaternion planeInConvexOrn1;\n" - " {\n" - " \n" - " trInverse(posB,ornB,&invPosB,&invOrnB);\n" - " trMul(invPosB,invOrnB,posA,ornA,&planeInConvexPos1,&planeInConvexOrn1); \n" - " }\n" - " \n" - " float4 planeNormalInConvex = qtRotate(planeInConvexOrn1,-planeNormal);\n" - " float maxDot = -1e30;\n" - " int hitVertex=-1;\n" - " float4 hitVtx;\n" - " float4 contactPoints[MAX_PLANE_CONVEX_POINTS];\n" - " int numPoints = 0;\n" - " int4 contactIdx;\n" - " contactIdx=make_int4(0,1,2,3);\n" - " \n" - " \n" - " for (int i=0;i<hullB->m_numVertices;i++)\n" - " {\n" - " float4 vtx = convexVertices[hullB->m_vertexOffset+i];\n" - " float curDot = dot(vtx,planeNormalInConvex);\n" - " if (curDot>maxDot)\n" - " {\n" - " hitVertex=i;\n" - " maxDot=curDot;\n" - " hitVtx = vtx;\n" - " //make sure the deepest points is always included\n" - " if (numPoints==MAX_PLANE_CONVEX_POINTS)\n" - " numPoints--;\n" - " }\n" - " if (numPoints<MAX_PLANE_CONVEX_POINTS)\n" - " {\n" - " float4 vtxWorld = transform(&vtx, &posB, &ornB);\n" - " float4 vtxInPlane = transform(&vtxWorld, &invPosA, &invOrnA);//oplaneTransform.inverse()*vtxWorld;\n" - " float dist = dot(planeNormal,vtxInPlane)-planeConstant;\n" - " if (dist<0.f)\n" - " {\n" - " vtxWorld.w = dist;\n" - " contactPoints[numPoints] = vtxWorld;\n" - " numPoints++;\n" - " }\n" - " }\n" - " }\n" - " int numReducedPoints = numPoints;\n" - " if (numPoints>4)\n" - " {\n" - " numReducedPoints = extractManifoldSequential( contactPoints, numPoints, planeNormalInConvex, &contactIdx);\n" - " }\n" - " if (numReducedPoints>0)\n" - " {\n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " if (dstIdx < maxContactCapacity)\n" - " {\n" - " resultIndex = dstIdx;\n" - " __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" - " c->m_worldNormalOnB = -planeNormalWorld;\n" - " //c->setFrictionCoeff(0.7);\n" - " //c->setRestituitionCoeff(0.f);\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " switch (numReducedPoints)\n" - " {\n" - " case 4:\n" - " c->m_worldPosB[3] = contactPoints[contactIdx.w];\n" - " case 3:\n" - " c->m_worldPosB[2] = contactPoints[contactIdx.z];\n" - " case 2:\n" - " c->m_worldPosB[1] = contactPoints[contactIdx.y];\n" - " case 1:\n" - " c->m_worldPosB[0] = contactPoints[contactIdx.x];\n" - " default:\n" - " {\n" - " }\n" - " };\n" - " \n" - " GET_NPOINTS(*c) = numReducedPoints;\n" - " }//if (dstIdx < numPairs)\n" - " } \n" - " return resultIndex;\n" - "}\n" - "void computeContactPlaneSphere(int pairIndex,\n" - " int bodyIndexA, int bodyIndexB, \n" - " int collidableIndexA, int collidableIndexB, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const btGpuFace* faces,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int maxContactCapacity)\n" - "{\n" - " float4 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane;\n" - " float radius = collidables[collidableIndexB].m_radius;\n" - " float4 posA1 = rigidBodies[bodyIndexA].m_pos;\n" - " float4 ornA1 = rigidBodies[bodyIndexA].m_quat;\n" - " float4 posB1 = rigidBodies[bodyIndexB].m_pos;\n" - " float4 ornB1 = rigidBodies[bodyIndexB].m_quat;\n" - " \n" - " bool hasCollision = false;\n" - " float4 planeNormal1 = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f);\n" - " float planeConstant = planeEq.w;\n" - " float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1;\n" - " {\n" - " float4 invPosA;Quaternion invOrnA;\n" - " trInverse(posA1,ornA1,&invPosA,&invOrnA);\n" - " trMul(invPosA,invOrnA,posB1,ornB1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" - " }\n" - " float4 planeInConvexPos1; Quaternion planeInConvexOrn1;\n" - " {\n" - " float4 invPosB;Quaternion invOrnB;\n" - " trInverse(posB1,ornB1,&invPosB,&invOrnB);\n" - " trMul(invPosB,invOrnB,posA1,ornA1,&planeInConvexPos1,&planeInConvexOrn1); \n" - " }\n" - " float4 vtx1 = qtRotate(planeInConvexOrn1,-planeNormal1)*radius;\n" - " float4 vtxInPlane1 = transform(&vtx1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" - " float distance = dot3F4(planeNormal1,vtxInPlane1) - planeConstant;\n" - " hasCollision = distance < 0.f;//m_manifoldPtr->getContactBreakingThreshold();\n" - " if (hasCollision)\n" - " {\n" - " float4 vtxInPlaneProjected1 = vtxInPlane1 - distance*planeNormal1;\n" - " float4 vtxInPlaneWorld1 = transform(&vtxInPlaneProjected1,&posA1,&ornA1);\n" - " float4 normalOnSurfaceB1 = qtRotate(ornA1,planeNormal1);\n" - " float4 pOnB1 = vtxInPlaneWorld1+normalOnSurfaceB1*distance;\n" - " pOnB1.w = distance;\n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " \n" - " if (dstIdx < maxContactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" - " c->m_worldNormalOnB = -normalOnSurfaceB1;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" - " c->m_worldPosB[0] = pOnB1;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " GET_NPOINTS(*c) = 1;\n" - " }//if (dstIdx < numPairs)\n" - " }//if (hasCollision)\n" - "}\n" - "__kernel void primitiveContactsKernel( __global int4* pairs, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int numPairs, int maxContactCapacity)\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " float4 worldVertsB1[64];\n" - " float4 worldVertsB2[64];\n" - " int capacityWorldVerts = 64; \n" - " float4 localContactsOut[64];\n" - " int localContactCapacity=64;\n" - " \n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " if (i<numPairs)\n" - " {\n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)\n" - " {\n" - " float4 posB;\n" - " posB = rigidBodies[bodyIndexB].m_pos;\n" - " Quaternion ornB;\n" - " ornB = rigidBodies[bodyIndexB].m_quat;\n" - " int contactIndex = computeContactPlaneConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,\n" - " faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, posB,ornB);\n" - " if (contactIndex>=0)\n" - " pairs[pairIndex].z = contactIndex;\n" - " return;\n" - " }\n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_PLANE)\n" - " {\n" - " float4 posA;\n" - " posA = rigidBodies[bodyIndexA].m_pos;\n" - " Quaternion ornA;\n" - " ornA = rigidBodies[bodyIndexA].m_quat;\n" - " int contactIndex = computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,\n" - " faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA);\n" - " if (contactIndex>=0)\n" - " pairs[pairIndex].z = contactIndex;\n" - " return;\n" - " }\n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" - " {\n" - " computeContactPlaneSphere(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" - " rigidBodies,collidables,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity);\n" - " return;\n" - " }\n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_PLANE)\n" - " {\n" - " computeContactPlaneSphere( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" - " rigidBodies,collidables,\n" - " faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity);\n" - " return;\n" - " }\n" - " \n" - " \n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)\n" - " {\n" - " \n" - " float4 spherePos = rigidBodies[bodyIndexA].m_pos;\n" - " float sphereRadius = collidables[collidableIndexA].m_radius;\n" - " float4 convexPos = rigidBodies[bodyIndexB].m_pos;\n" - " float4 convexOrn = rigidBodies[bodyIndexB].m_quat;\n" - " computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" - " spherePos,sphereRadius,convexPos,convexOrn);\n" - " return;\n" - " }\n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" - " {\n" - " \n" - " float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" - " float sphereRadius = collidables[collidableIndexB].m_radius;\n" - " float4 convexPos = rigidBodies[bodyIndexA].m_pos;\n" - " float4 convexOrn = rigidBodies[bodyIndexA].m_quat;\n" - " computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" - " spherePos,sphereRadius,convexPos,convexOrn);\n" - " return;\n" - " }\n" - " \n" - " \n" - " \n" - " \n" - " \n" - " \n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" - " {\n" - " //sphere-sphere\n" - " float radiusA = collidables[collidableIndexA].m_radius;\n" - " float radiusB = collidables[collidableIndexB].m_radius;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " float4 diff = posA-posB;\n" - " float len = length(diff);\n" - " \n" - " ///iff distance positive, don't generate a new contact\n" - " if ( len <= (radiusA+radiusB))\n" - " {\n" - " ///distance (negative means penetration)\n" - " float dist = len - (radiusA+radiusB);\n" - " float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f);\n" - " if (len > 0.00001)\n" - " {\n" - " normalOnSurfaceB = diff / len;\n" - " }\n" - " float4 contactPosB = posB + normalOnSurfaceB*radiusB;\n" - " contactPosB.w = dist;\n" - " \n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " \n" - " if (dstIdx < maxContactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" - " c->m_worldNormalOnB = normalOnSurfaceB;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " int bodyA = pairs[pairIndex].x;\n" - " int bodyB = pairs[pairIndex].y;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" - " c->m_worldPosB[0] = contactPosB;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " GET_NPOINTS(*c) = 1;\n" - " }//if (dstIdx < numPairs)\n" - " }//if ( len <= (radiusA+radiusB))\n" - " return;\n" - " }//SHAPE_SPHERE SHAPE_SPHERE\n" - " }// if (i<numPairs)\n" - "}\n" - "// work-in-progress\n" - "__kernel void processCompoundPairsPrimitivesKernel( __global const int4* gpuCompoundPairs,\n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global btAabbCL* aabbs,\n" - " __global const btGpuChildShape* gpuChildShapes,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int numCompoundPairs, int maxContactCapacity\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " if (i<numCompoundPairs)\n" - " {\n" - " int bodyIndexA = gpuCompoundPairs[i].x;\n" - " int bodyIndexB = gpuCompoundPairs[i].y;\n" - " int childShapeIndexA = gpuCompoundPairs[i].z;\n" - " int childShapeIndexB = gpuCompoundPairs[i].w;\n" - " \n" - " int collidableIndexA = -1;\n" - " int collidableIndexB = -1;\n" - " \n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " \n" - " float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " \n" - " if (childShapeIndexA >= 0)\n" - " {\n" - " collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" - " float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" - " float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" - " float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" - " float4 newOrnA = qtMul(ornA,childOrnA);\n" - " posA = newPosA;\n" - " ornA = newOrnA;\n" - " } else\n" - " {\n" - " collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " }\n" - " \n" - " if (childShapeIndexB>=0)\n" - " {\n" - " collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " posB = newPosB;\n" - " ornB = newOrnB;\n" - " } else\n" - " {\n" - " collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" - " }\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " int shapeTypeA = collidables[collidableIndexA].m_shapeType;\n" - " int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" - " int pairIndex = i;\n" - " if ((shapeTypeA == SHAPE_PLANE) && (shapeTypeB==SHAPE_CONVEX_HULL))\n" - " {\n" - " computeContactPlaneConvex( pairIndex, bodyIndexA,bodyIndexB, collidableIndexA,collidableIndexB, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,\n" - " faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posB,ornB);\n" - " return;\n" - " }\n" - " if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB==SHAPE_PLANE))\n" - " {\n" - " computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,\n" - " faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA);\n" - " return;\n" - " }\n" - " if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB == SHAPE_SPHERE))\n" - " {\n" - " float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" - " float sphereRadius = collidables[collidableIndexB].m_radius;\n" - " float4 convexPos = posA;\n" - " float4 convexOrn = ornA;\n" - " \n" - " computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA , collidableIndexB,collidableIndexA, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" - " spherePos,sphereRadius,convexPos,convexOrn);\n" - " \n" - " return;\n" - " }\n" - " if ((shapeTypeA == SHAPE_SPHERE) && (shapeTypeB == SHAPE_CONVEX_HULL))\n" - " {\n" - " float4 spherePos = rigidBodies[bodyIndexA].m_pos;\n" - " float sphereRadius = collidables[collidableIndexA].m_radius;\n" - " float4 convexPos = posB;\n" - " float4 convexOrn = ornB;\n" - " \n" - " computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" - " rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" - " spherePos,sphereRadius,convexPos,convexOrn);\n" - " \n" - " return;\n" - " }\n" - " }// if (i<numCompoundPairs)\n" - "}\n" - "bool pointInTriangle(const float4* vertices, const float4* normal, float4 *p )\n" - "{\n" - " const float4* p1 = &vertices[0];\n" - " const float4* p2 = &vertices[1];\n" - " const float4* p3 = &vertices[2];\n" - " float4 edge1; edge1 = (*p2 - *p1);\n" - " float4 edge2; edge2 = ( *p3 - *p2 );\n" - " float4 edge3; edge3 = ( *p1 - *p3 );\n" - " \n" - " float4 p1_to_p; p1_to_p = ( *p - *p1 );\n" - " float4 p2_to_p; p2_to_p = ( *p - *p2 );\n" - " float4 p3_to_p; p3_to_p = ( *p - *p3 );\n" - " float4 edge1_normal; edge1_normal = ( cross(edge1,*normal));\n" - " float4 edge2_normal; edge2_normal = ( cross(edge2,*normal));\n" - " float4 edge3_normal; edge3_normal = ( cross(edge3,*normal));\n" - " \n" - " \n" - " float r1, r2, r3;\n" - " r1 = dot(edge1_normal,p1_to_p );\n" - " r2 = dot(edge2_normal,p2_to_p );\n" - " r3 = dot(edge3_normal,p3_to_p );\n" - " \n" - " if ( r1 > 0 && r2 > 0 && r3 > 0 )\n" - " return true;\n" - " if ( r1 <= 0 && r2 <= 0 && r3 <= 0 ) \n" - " return true;\n" - " return false;\n" - "}\n" - "float segmentSqrDistance(float4 from, float4 to,float4 p, float4* nearest) \n" - "{\n" - " float4 diff = p - from;\n" - " float4 v = to - from;\n" - " float t = dot(v,diff);\n" - " \n" - " if (t > 0) \n" - " {\n" - " float dotVV = dot(v,v);\n" - " if (t < dotVV) \n" - " {\n" - " t /= dotVV;\n" - " diff -= t*v;\n" - " } else \n" - " {\n" - " t = 1;\n" - " diff -= v;\n" - " }\n" - " } else\n" - " {\n" - " t = 0;\n" - " }\n" - " *nearest = from + t*v;\n" - " return dot(diff,diff); \n" - "}\n" - "void computeContactSphereTriangle(int pairIndex,\n" - " int bodyIndexA, int bodyIndexB,\n" - " int collidableIndexA, int collidableIndexB, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " const float4* triangleVertices,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int maxContactCapacity,\n" - " float4 spherePos2,\n" - " float radius,\n" - " float4 pos,\n" - " float4 quat,\n" - " int faceIndex\n" - " )\n" - "{\n" - " float4 invPos;\n" - " float4 invOrn;\n" - " trInverse(pos,quat, &invPos,&invOrn);\n" - " float4 spherePos = transform(&spherePos2,&invPos,&invOrn);\n" - " int numFaces = 3;\n" - " float4 closestPnt = (float4)(0, 0, 0, 0);\n" - " float4 hitNormalWorld = (float4)(0, 0, 0, 0);\n" - " float minDist = -1000000.f;\n" - " bool bCollide = false;\n" - " \n" - " //////////////////////////////////////\n" - " float4 sphereCenter;\n" - " sphereCenter = spherePos;\n" - " const float4* vertices = triangleVertices;\n" - " float contactBreakingThreshold = 0.f;//todo?\n" - " float radiusWithThreshold = radius + contactBreakingThreshold;\n" - " float4 edge10;\n" - " edge10 = vertices[1]-vertices[0];\n" - " edge10.w = 0.f;//is this needed?\n" - " float4 edge20;\n" - " edge20 = vertices[2]-vertices[0];\n" - " edge20.w = 0.f;//is this needed?\n" - " float4 normal = cross3(edge10,edge20);\n" - " normal = normalize(normal);\n" - " float4 p1ToCenter;\n" - " p1ToCenter = sphereCenter - vertices[0];\n" - " \n" - " float distanceFromPlane = dot(p1ToCenter,normal);\n" - " if (distanceFromPlane < 0.f)\n" - " {\n" - " //triangle facing the other way\n" - " distanceFromPlane *= -1.f;\n" - " normal *= -1.f;\n" - " }\n" - " hitNormalWorld = normal;\n" - " bool isInsideContactPlane = distanceFromPlane < radiusWithThreshold;\n" - " \n" - " // Check for contact / intersection\n" - " bool hasContact = false;\n" - " float4 contactPoint;\n" - " if (isInsideContactPlane) \n" - " {\n" - " \n" - " if (pointInTriangle(vertices,&normal, &sphereCenter)) \n" - " {\n" - " // Inside the contact wedge - touches a point on the shell plane\n" - " hasContact = true;\n" - " contactPoint = sphereCenter - normal*distanceFromPlane;\n" - " \n" - " } else {\n" - " // Could be inside one of the contact capsules\n" - " float contactCapsuleRadiusSqr = radiusWithThreshold*radiusWithThreshold;\n" - " float4 nearestOnEdge;\n" - " int numEdges = 3;\n" - " for (int i = 0; i < numEdges; i++) \n" - " {\n" - " float4 pa =vertices[i];\n" - " float4 pb = vertices[(i+1)%3];\n" - " float distanceSqr = segmentSqrDistance(pa,pb,sphereCenter, &nearestOnEdge);\n" - " if (distanceSqr < contactCapsuleRadiusSqr) \n" - " {\n" - " // Yep, we're inside a capsule\n" - " hasContact = true;\n" - " contactPoint = nearestOnEdge;\n" - " \n" - " }\n" - " \n" - " }\n" - " }\n" - " }\n" - " if (hasContact) \n" - " {\n" - " closestPnt = contactPoint;\n" - " float4 contactToCenter = sphereCenter - contactPoint;\n" - " minDist = length(contactToCenter);\n" - " if (minDist>FLT_EPSILON)\n" - " {\n" - " hitNormalWorld = normalize(contactToCenter);//*(1./minDist);\n" - " bCollide = true;\n" - " }\n" - " \n" - " }\n" - " /////////////////////////////////////\n" - " if (bCollide && minDist > -10000)\n" - " {\n" - " \n" - " float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld);\n" - " float4 pOnB1 = transform(&closestPnt,&pos,&quat);\n" - " float actualDepth = minDist-radius;\n" - " \n" - " if (actualDepth<=0.f)\n" - " {\n" - " pOnB1.w = actualDepth;\n" - " int dstIdx;\n" - " \n" - " float lenSqr = dot3F4(normalOnSurfaceB1,normalOnSurfaceB1);\n" - " if (lenSqr>FLT_EPSILON)\n" - " {\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " \n" - " if (dstIdx < maxContactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" - " c->m_worldNormalOnB = -normalOnSurfaceB1;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" - " c->m_worldPosB[0] = pOnB1;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = faceIndex;\n" - " GET_NPOINTS(*c) = 1;\n" - " } \n" - " }\n" - " }\n" - " }//if (hasCollision)\n" - "}\n" - "// work-in-progress\n" - "__kernel void findConcaveSphereContactsKernel( __global int4* concavePairs,\n" - " __global const BodyData* rigidBodies,\n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global btAabbCL* aabbs,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int numConcavePairs, int maxContactCapacity\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " if (i>=numConcavePairs)\n" - " return;\n" - " int pairIdx = i;\n" - " int bodyIndexA = concavePairs[i].x;\n" - " int bodyIndexB = concavePairs[i].y;\n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " if (collidables[collidableIndexB].m_shapeType==SHAPE_SPHERE)\n" - " {\n" - " int f = concavePairs[i].z;\n" - " btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" - " \n" - " float4 verticesA[3];\n" - " for (int i=0;i<3;i++)\n" - " {\n" - " int index = indices[face.m_indexOffset+i];\n" - " float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" - " verticesA[i] = vert;\n" - " }\n" - " float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" - " float sphereRadius = collidables[collidableIndexB].m_radius;\n" - " float4 convexPos = rigidBodies[bodyIndexA].m_pos;\n" - " float4 convexOrn = rigidBodies[bodyIndexA].m_quat;\n" - " computeContactSphereTriangle(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, \n" - " rigidBodies,collidables,\n" - " verticesA,\n" - " globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" - " spherePos,sphereRadius,convexPos,convexOrn, f);\n" - " return;\n" - " }\n" - "}\n"; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl deleted file mode 100644 index a6565fd6fa..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl +++ /dev/null @@ -1,2018 +0,0 @@ -//keep this enum in sync with the CPU version (in btCollidable.h) -//written by Erwin Coumans - - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_CONCAVE_TRIMESH 5 -#define TRIANGLE_NUM_CONVEX_FACES 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 - -#define B3_MAX_STACK_DEPTH 256 - - -typedef unsigned int u32; - -///keep this in sync with btCollidable.h -typedef struct -{ - union { - int m_numChildShapes; - int m_bvhIndex; - }; - union - { - float m_radius; - int m_compoundBvhIndex; - }; - - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -#define MAX_NUM_PARTS_IN_BITS 10 - -///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes - int m_escapeIndexOrTriangleIndex; -} b3QuantizedBvhNode; - -typedef struct -{ - float4 m_aabbMin; - float4 m_aabbMax; - float4 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; - -} b3BvhInfo; - - -int getTriangleIndex(const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int isLeafNode(const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int getEscapeIndex(const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - -int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - - -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes, points to the root of the subtree - int m_rootNodeIndex; - //4 bytes - int m_subtreeSize; - int m_padding[3]; -} b3BvhSubtreeInfo; - - - - - - - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - - -typedef struct -{ - float4 m_localCenter; - float4 m_extents; - float4 mC; - float4 mE; - - float m_radius; - int m_faceOffset; - int m_numFaces; - int m_numVertices; - - int m_vertexOffset; - int m_uniqueEdgesOffset; - int m_numUniqueEdges; - int m_unused; -} ConvexPolyhedronCL; - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - -#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" -#include "Bullet3Common/shared/b3Int2.h" - - - -typedef struct -{ - float4 m_plane; - int m_indexOffset; - int m_numIndices; -} btGpuFace; - -#define make_float4 (float4) - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); - - -// float4 a1 = make_float4(a.xyz,0.f); -// float4 b1 = make_float4(b.xyz,0.f); - -// return cross(a1,b1); - -//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f); - - // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f); - - //return c; -} - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - v = make_float4(v.xyz,0.f); - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - -inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, __global const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA,const float4 ornA, - const float4 posB,const float4 ornB, - float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth) -{ - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0); - project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - *depth = d0<d1 ? d0:d1; - return true; -} - - - - -inline bool IsAlmostZero(const float4 v) -{ - if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f) - return false; - return true; -} - - - -bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS*=-1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - -bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* verticesA, - __global const float4* uniqueEdgesA, - __global const btGpuFace* facesA, - __global const int* indicesA, - const float4* verticesB, - const float4* uniqueEdgesB, - const btGpuFace* facesB, - const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS *= -1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) - { - const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0]; - float4 edge0World = qtRotate(ornA,edge0); - - for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) - { - const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1]; - float4 edge1World = qtRotate(ornB,edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2,crossje)<0) - crossje *= -1.f; - - float dist; - bool result = true; - { - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - result = false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - } - - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - -inline bool TestSepAxis(__global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA,const float4 ornA, - const float4 posB,const float4 ornB, - float4* sep_axis, __global const float4* vertices,float* depth) -{ - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,sep_axis,vertices, &Min0, &Max0); - project(hullB,posB,ornB, sep_axis,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - *depth = d0<d1 ? d0:d1; - return true; -} - - -bool findSeparatingAxis( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = faces[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS*=-1.f; - - curPlaneTests++; - - float d; - if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, vertices,&d)) - return false; - - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - - return true; -} - - - - -bool findSeparatingAxisUnitSphere( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* unitSphereDirections, - int numUnitSphereDirections, - float4* sep, - float* dmin) -{ - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test unit sphere directions - for (int i=0;i<numUnitSphereDirections;i++) - { - - float4 crossje; - crossje = unitSphereDirections[i]; - - if (dot3F4(DeltaC2,crossje)>0) - crossje *= -1.f; - { - float dist; - bool result = true; - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - -bool findSeparatingAxisEdgeEdge( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) - { - const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0]; - float4 edge0World = qtRotate(ornA,edge0); - - for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) - { - const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1]; - float4 edge1World = qtRotate(ornB,edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2,crossje)<0) - crossje*=-1.f; - - float dist; - bool result = true; - { - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - } - - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - -// work-in-progress -__kernel void processCompoundPairsKernel( __global const int4* gpuCompoundPairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global const btGpuChildShape* gpuChildShapes, - __global volatile float4* gpuCompoundSepNormalsOut, - __global volatile int* gpuHasCompoundSepNormalsOut, - int numCompoundPairs - ) -{ - - int i = get_global_id(0); - if (i<numCompoundPairs) - { - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - gpuHasCompoundSepNormalsOut[i] = 0; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int shapeTypeA = collidables[collidableIndexA].m_shapeType; - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - - if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL)) - { - return; - } - - int hasSeparatingAxis = 5; - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - posA.w = 0.f; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = make_float4(1,0,0,0); - bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } else - { - bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,posA,ornA,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } else//(!sepB) - { - bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - if (sepEE) - { - gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal); - gpuHasCompoundSepNormalsOut[i] = 1; - }//sepEE - }//(!sepB) - }//(!sepA) - - - } - -} - - -inline b3Float4 MyUnQuantize(const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin) -{ - b3Float4 vecOut; - vecOut = b3MakeFloat4( - (float)(vecIn[0]) / (quantization.x), - (float)(vecIn[1]) / (quantization.y), - (float)(vecIn[2]) / (quantization.z), - 0.f); - - vecOut += bvhAabbMin; - return vecOut; -} - -inline b3Float4 MyUnQuantizeGlobal(__global const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin) -{ - b3Float4 vecOut; - vecOut = b3MakeFloat4( - (float)(vecIn[0]) / (quantization.x), - (float)(vecIn[1]) / (quantization.y), - (float)(vecIn[2]) / (quantization.z), - 0.f); - - vecOut += bvhAabbMin; - return vecOut; -} - - -// work-in-progress -__kernel void findCompoundPairsKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global b3Aabb_t* aabbLocalSpace, - __global const btGpuChildShape* gpuChildShapes, - __global volatile int4* gpuCompoundPairsOut, - __global volatile int* numCompoundPairsOut, - __global const b3BvhSubtreeInfo* subtrees, - __global const b3QuantizedBvhNode* quantizedNodes, - __global const b3BvhInfo* bvhInfos, - int numPairs, - int maxNumCompoundPairsCapacity - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int bvhA = collidables[collidableIndexA].m_compoundBvhIndex; - int bvhB = collidables[collidableIndexB].m_compoundBvhIndex; - int numSubTreesA = bvhInfos[bvhA].m_numSubTrees; - int subTreesOffsetA = bvhInfos[bvhA].m_subTreeOffset; - int subTreesOffsetB = bvhInfos[bvhB].m_subTreeOffset; - - - int numSubTreesB = bvhInfos[bvhB].m_numSubTrees; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - - for (int p=0;p<numSubTreesA;p++) - { - b3BvhSubtreeInfo subtreeA = subtrees[subTreesOffsetA+p]; - //bvhInfos[bvhA].m_quantization - b3Float4 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - b3Float4 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - - b3Float4 aabbAMinOut,aabbAMaxOut; - float margin=0.f; - b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut); - - for (int q=0;q<numSubTreesB;q++) - { - b3BvhSubtreeInfo subtreeB = subtrees[subTreesOffsetB+q]; - - b3Float4 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - b3Float4 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - - b3Float4 aabbBMinOut,aabbBMaxOut; - float margin=0.f; - b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut); - - - - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); - if (aabbOverlap) - { - - int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfos[bvhA].m_nodeOffset; - int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize; - - int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfos[bvhB].m_nodeOffset; - int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize; - - - b3Int2 nodeStack[B3_MAX_STACK_DEPTH]; - b3Int2 node0; - node0.x = startNodeIndexA; - node0.y = startNodeIndexB; - int maxStackDepth = B3_MAX_STACK_DEPTH; - int depth=0; - nodeStack[depth++]=node0; - - do - { - b3Int2 node = nodeStack[--depth]; - - b3Float4 aMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - b3Float4 aMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - - b3Float4 bMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - b3Float4 bMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - - float margin=0.f; - b3Float4 aabbAMinOut,aabbAMaxOut; - b3TransformAabb2(aMinLocal,aMaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut); - - b3Float4 aabbBMinOut,aabbBMaxOut; - b3TransformAabb2(bMinLocal,bMaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut); - - - bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); - if (nodeOverlap) - { - bool isLeafA = isLeafNodeGlobal(&quantizedNodes[node.x]); - bool isLeafB = isLeafNodeGlobal(&quantizedNodes[node.y]); - bool isInternalA = !isLeafA; - bool isInternalB = !isLeafB; - - //fail, even though it might hit two leaf nodes - if (depth+4>maxStackDepth && !(isLeafA && isLeafB)) - { - //printf("Error: traversal exceeded maxStackDepth"); - continue; - } - - if(isInternalA) - { - int nodeAleftChild = node.x+1; - bool isNodeALeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.x+1]); - int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + getEscapeIndexGlobal(&quantizedNodes[node.x+1]); - - if(isInternalB) - { - int nodeBleftChild = node.y+1; - bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]); - int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]); - - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild); - } - else - { - nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y); - nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y); - } - } - else - { - if(isInternalB) - { - int nodeBleftChild = node.y+1; - bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]); - int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]); - nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild); - } - else - { - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - int childShapeIndexA = getTriangleIndexGlobal(&quantizedNodes[node.x]); - int childShapeIndexB = getTriangleIndexGlobal(&quantizedNodes[node.y]); - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); - } - } - } - } - } while (depth); - } - } - } - - return; - } - - - - - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - - if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - - int numChildrenA = collidables[collidableIndexA].m_numChildShapes; - for (int c=0;c<numChildrenA;c++) - { - int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c; - int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - - int shapeIndexA = collidables[childColIndexA].m_shapeIndex; - b3Aabb_t aabbAlocal = aabbLocalSpace[shapeIndexA]; - float margin = 0.f; - - b3Float4 aabbAMinWS; - b3Float4 aabbAMaxWS; - - b3TransformAabb2(aabbAlocal.m_minVec,aabbAlocal.m_maxVec,margin, - newPosA, - newOrnA, - &aabbAMinWS,&aabbAMaxWS); - - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b=0;b<numChildrenB;b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - b3Aabb_t aabbBlocal = aabbLocalSpace[shapeIndexB]; - - b3Float4 aabbBMinWS; - b3Float4 aabbBMaxWS; - - b3TransformAabb2(aabbBlocal.m_minVec,aabbBlocal.m_maxVec,margin, - newPosB, - newOrnB, - &aabbBMinWS,&aabbBMaxWS); - - - - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinWS,aabbAMaxWS,aabbBMinWS,aabbBMaxWS); - if (aabbOverlap) - { - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = newOrnA; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =newOrnB; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - {// - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); - } - }// - }//fi(1) - } //for (int b=0 - }//if (collidables[collidableIndexB]. - else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - if (1) - { - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = newOrnA; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - { - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,-1); - }//if (compoundPairIdx<maxNumCompoundPairsCapacity) - }// - }//fi (1) - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - }//for (int b=0;b<numChildrenB;b++) - return; - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) - && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b=0;b<numChildrenB;b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = qtRotate(ornB,childPosB)+posB; - float4 newOrnB = qtMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - - ////////////////////////////////////// - - if (1) - { - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =newOrnB; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - {// - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,-1,childShapeIndexB); - }//fi (compoundPairIdx<maxNumCompoundPairsCapacity) - }// - }//fi (1) - }//for (int b=0;b<numChildrenB;b++) - return; - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - return; - }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - }//i<numPairs -} - -// work-in-progress -__kernel void findSeparatingAxisKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global volatile float4* separatingNormals, - __global volatile int* hasSeparatingAxis, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - hasSeparatingAxis[i] = 0; - return; - } - - - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) - { - hasSeparatingAxis[i] = 0; - return; - } - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH)) - { - hasSeparatingAxis[i] = 0; - return; - } - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = FLT_MAX; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal; - - bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - hasSeparatingAxis[i] = 4; - if (!sepA) - { - hasSeparatingAxis[i] = 0; - } else - { - bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - - if (!sepB) - { - hasSeparatingAxis[i] = 0; - } else - { - bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - } - - } - -} - - -__kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global volatile float4* separatingNormals, - __global volatile int* hasSeparatingAxis, - __global float* dmins, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - hasSeparatingAxis[i] = 0; - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) - { - return; - } - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = FLT_MAX; - - dmins[i] = dmin; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal; - - bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - hasSeparatingAxis[i] = 4; - if (!sepA) - { - hasSeparatingAxis[i] = 0; - } else - { - bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - - if (sepB) - { - dmins[i] = dmin; - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - - } - -} - - -__kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global float4* separatingNormals, - __global int* hasSeparatingAxis, - __global float* dmins, - __global const float4* unitSphereDirections, - int numUnitSphereDirections, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = dmins[i]; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = separatingNormals[i]; - - - - bool sepEE = false; - int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges; - if (numEdgeEdgeDirections<=numUnitSphereDirections) - { - sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - /* - ///else case is a separate kernel, to make Mac OSX OpenCL compiler happy - else - { - sepEE = findSeparatingAxisUnitSphere(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,unitSphereDirections,numUnitSphereDirections, - &sepNormal,&dmin); - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - */ - } //if (hasSeparatingAxis[i]) - }//(i<numPairs) -} - - - - - -inline int findClippingFaces(const float4 separatingNormal, - const ConvexPolyhedronCL* hullA, - __global const ConvexPolyhedronCL* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - const float minDist, float maxDist, - const float4* verticesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - __global int4* clippingFaces, int pairIndex) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=0; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, - facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB]; - int numVertices = polyB.m_numIndices; - if (numVertices>capacityWorldVerts) - numVertices = capacityWorldVerts; - - for(int e0=0;e0<numVertices;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; - worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - } - - int closestFaceA=0; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - facesA[hullA->m_faceOffset+face].m_plane.x, - facesA[hullA->m_faceOffset+face].m_plane.y, - facesA[hullA->m_faceOffset+face].m_plane.z, - 0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - worldNormalsA1[pairIndex] = faceANormalWS; - } - } - } - - int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices; - if (numVerticesA>capacityWorldVerts) - numVerticesA = capacityWorldVerts; - - for(int e0=0;e0<numVerticesA;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; - worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); - } - } - - clippingFaces[pairIndex].x = closestFaceA; - clippingFaces[pairIndex].y = closestFaceB; - clippingFaces[pairIndex].z = numVerticesA; - clippingFaces[pairIndex].w = numWorldVertsB1; - - - return numContactsOut; -} - - - - -// work-in-progress -__kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global const btGpuChildShape* gpuChildShapes, - __global btAabbCL* aabbs, - __global float4* concaveSeparatingNormalsOut, - __global int* concaveHasSeparatingNormals, - __global int4* clippingFacesOut, - __global float4* worldVertsA1GPU, - __global float4* worldNormalsAGPU, - __global float4* worldVertsB1GPU, - int vertexFaceCapacity, - int numConcavePairs - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - - concaveHasSeparatingNormals[i] = 0; - - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&& - collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - concavePairs[pairIdx].w = -1; - return; - } - - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - int numActualConcaveConvexTests = 0; - - int f = concavePairs[i].z; - - bool overlap = false; - - ConvexPolyhedronCL convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - float4 triMinAabb, triMaxAabb; - btAabbCL triAabb; - triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); - triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - - triAabb.m_min = min(triAabb.m_min,vert); - triAabb.m_max = max(triAabb.m_max,vert); - - } - - overlap = true; - overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; - overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; - overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; - - if (overlap) - { - float dmin = FLT_MAX; - int hasSeparatingAxis=5; - float4 sepAxis=make_float4(1,2,3,4); - - int localCC=0; - numActualConcaveConvexTests++; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - - - /////////////////// - ///compound shape support - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int compoundChild = concavePairs[pairIdx].w; - int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - } - ////////////////// - - float4 c0local = convexPolyhedronA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - - bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } else - { - bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA, - posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces,indices, - verticesA,uniqueEdgesA,facesA,indicesA, - &sepAxis,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } else - { - bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - - if (!sepEE) - { - hasSeparatingAxis = 0; - } else - { - hasSeparatingAxis = 1; - } - } - } - - if (hasSeparatingAxis) - { - sepAxis.w = dmin; - concaveSeparatingNormalsOut[pairIdx]=sepAxis; - concaveHasSeparatingNormals[i]=1; - - - float minDist = -1e30f; - float maxDist = 0.02f; - - - - findClippingFaces(sepAxis, - &convexPolyhedronA, - &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsA1GPU, - worldNormalsAGPU, - worldVertsB1GPU, - vertexFaceCapacity, - minDist, maxDist, - verticesA, - facesA, - indicesA, - vertices, - faces, - indices, - clippingFacesOut, pairIdx); - - - } else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - } - else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - - concavePairs[pairIdx].z = -1;//now z is used for existing/persistent contacts -} - - - diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl deleted file mode 100644 index f433971741..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl +++ /dev/null @@ -1,1888 +0,0 @@ - -#define TRIANGLE_NUM_CONVEX_FACES 5 - - - -#pragma OPENCL EXTENSION cl_amd_printf : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable - -#ifdef cl_ext_atomic_counters_32 -#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable -#else -#define counter32_t volatile __global int* -#endif - -#define GET_GROUP_IDX get_group_id(0) -#define GET_LOCAL_IDX get_local_id(0) -#define GET_GLOBAL_IDX get_global_id(0) -#define GET_GROUP_SIZE get_local_size(0) -#define GET_NUM_GROUPS get_num_groups(0) -#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) -#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) -#define AtomInc(x) atom_inc(&(x)) -#define AtomInc1(x, out) out = atom_inc(&(x)) -#define AppendInc(x, out) out = atomic_inc(x) -#define AtomAdd(x, value) atom_add(&(x), value) -#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) -#define AtomXhg(x, value) atom_xchg ( &(x), value ) - -#define max2 max -#define min2 min - -typedef unsigned int u32; - - - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h" - - - -#define GET_NPOINTS(x) (x).m_worldNormalOnB.w - - - -#define SELECT_UINT4( b, a, condition ) select( b,a,condition ) - -#define make_float4 (float4) -#define make_float2 (float2) -#define make_uint4 (uint4) -#define make_int4 (int4) -#define make_uint2 (uint2) -#define make_int2 (int2) - - -__inline -float fastDiv(float numerator, float denominator) -{ - return native_divide(numerator, denominator); -// return numerator/denominator; -} - -__inline -float4 fastDiv4(float4 numerator, float4 denominator) -{ - return native_divide(numerator, denominator); -} - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); -} - -//#define dot3F4 dot - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - - -__inline float4 lerp3(const float4 a,const float4 b, float t) -{ - return make_float4( a.x + (b.x - a.x) * t, - a.y + (b.y - a.y) * t, - a.z + (b.z - a.z) * t, - 0.f); -} - - - -// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut -int clipFaceGlobal(__global const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, __global float4* ppVtxOut) -{ - - int ve; - float ds, de; - int numVertsOut = 0; - //double-check next test - if (numVertsIn < 2) - return 0; - - float4 firstVertex=pVtxIn[numVertsIn-1]; - float4 endVertex = pVtxIn[0]; - - ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS; - - for (ve = 0; ve < numVertsIn; ve++) - { - endVertex=pVtxIn[ve]; - de = dot3F4(planeNormalWS,endVertex)+planeEqWS; - if (ds<0) - { - if (de<0) - { - // Start < 0, end < 0, so output endVertex - ppVtxOut[numVertsOut++] = endVertex; - } - else - { - // Start < 0, end >= 0, so output intersection - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - } - } - else - { - if (de<0) - { - // Start >= 0, end < 0 so output intersection and end - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - ppVtxOut[numVertsOut++] = endVertex; - } - } - firstVertex = endVertex; - ds = de; - } - return numVertsOut; -} - - - -// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut -int clipFace(const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, float4* ppVtxOut) -{ - - int ve; - float ds, de; - int numVertsOut = 0; -//double-check next test - if (numVertsIn < 2) - return 0; - - float4 firstVertex=pVtxIn[numVertsIn-1]; - float4 endVertex = pVtxIn[0]; - - ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS; - - for (ve = 0; ve < numVertsIn; ve++) - { - endVertex=pVtxIn[ve]; - - de = dot3F4(planeNormalWS,endVertex)+planeEqWS; - - if (ds<0) - { - if (de<0) - { - // Start < 0, end < 0, so output endVertex - ppVtxOut[numVertsOut++] = endVertex; - } - else - { - // Start < 0, end >= 0, so output intersection - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - } - } - else - { - if (de<0) - { - // Start >= 0, end < 0 so output intersection and end - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - ppVtxOut[numVertsOut++] = endVertex; - } - } - firstVertex = endVertex; - ds = de; - } - return numVertsOut; -} - - -int clipFaceAgainstHull(const float4 separatingNormal, __global const b3ConvexPolyhedronData_t* hullA, - const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1, - float4* worldVertsB2, int capacityWorldVertsB2, - const float minDist, float maxDist, - __global const float4* vertices, - __global const b3GpuFace_t* faces, - __global const int* indices, - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - - float4* pVtxIn = worldVertsB1; - float4* pVtxOut = worldVertsB2; - - int numVertsIn = numWorldVertsB1; - int numVertsOut = 0; - - int closestFaceA=-1; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - faces[hullA->m_faceOffset+face].m_plane.x, - faces[hullA->m_faceOffset+face].m_plane.y, - faces[hullA->m_faceOffset+face].m_plane.z,0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - } - } - } - if (closestFaceA<0) - return numContactsOut; - - b3GpuFace_t polyA = faces[hullA->m_faceOffset+closestFaceA]; - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - int numVerticesA = polyA.m_numIndices; - for(int e0=0;e0<numVerticesA;e0++) - { - const float4 a = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+e0]]; - const float4 b = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+((e0+1)%numVerticesA)]]; - const float4 edge0 = a - b; - const float4 WorldEdge0 = qtRotate(ornA,edge0); - float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA); - - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = transform(&a,&posA,&ornA); - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - - //clip face - //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); - numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut); - - //btSwap(pVtxIn,pVtxOut); - float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsIn = numVertsOut; - numVertsOut = 0; - } - - - // only keep points that are behind the witness face - { - float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float localPlaneEq = polyA.m_plane.w; - float4 planeNormalWS = qtRotate(ornA,localPlaneNormal); - float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA); - for (int i=0;i<numVertsIn;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - //resultOut.addContactPoint(separatingNormal,point,depth); - contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - } - - return numContactsOut; -} - - - -int clipFaceAgainstHullLocalA(const float4 separatingNormal, const b3ConvexPolyhedronData_t* hullA, - const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1, - float4* worldVertsB2, int capacityWorldVertsB2, - const float minDist, float maxDist, - const float4* verticesA, - const b3GpuFace_t* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const b3GpuFace_t* facesB, - __global const int* indicesB, - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - - float4* pVtxIn = worldVertsB1; - float4* pVtxOut = worldVertsB2; - - int numVertsIn = numWorldVertsB1; - int numVertsOut = 0; - - int closestFaceA=-1; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - facesA[hullA->m_faceOffset+face].m_plane.x, - facesA[hullA->m_faceOffset+face].m_plane.y, - facesA[hullA->m_faceOffset+face].m_plane.z,0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - } - } - } - if (closestFaceA<0) - return numContactsOut; - - b3GpuFace_t polyA = facesA[hullA->m_faceOffset+closestFaceA]; - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - int numVerticesA = polyA.m_numIndices; - for(int e0=0;e0<numVerticesA;e0++) - { - const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]]; - const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]]; - const float4 edge0 = a - b; - const float4 WorldEdge0 = qtRotate(ornA,edge0); - float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA); - - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = transform(&a,&posA,&ornA); - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - - //clip face - //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); - numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut); - - //btSwap(pVtxIn,pVtxOut); - float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsIn = numVertsOut; - numVertsOut = 0; - } - - - // only keep points that are behind the witness face - { - float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float localPlaneEq = polyA.m_plane.w; - float4 planeNormalWS = qtRotate(ornA,localPlaneNormal); - float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA); - for (int i=0;i<numVertsIn;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - //resultOut.addContactPoint(separatingNormal,point,depth); - contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - } - - return numContactsOut; -} - -int clipHullAgainstHull(const float4 separatingNormal, - __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, - const float minDist, float maxDist, - __global const float4* vertices, - __global const b3GpuFace_t* faces, - __global const int* indices, - float4* localContactsOut, - int localContactCapacity) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=-1; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, - faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB]; - const int numVertices = polyB.m_numIndices; - for(int e0=0;e0<numVertices;e0++) - { - const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]]; - worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - - if (closestFaceB>=0) - { - numContactsOut = clipFaceAgainstHull(separatingNormal, hullA, - posA,ornA, - worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,vertices, - faces, - indices,localContactsOut,localContactCapacity); - } - - return numContactsOut; -} - - -int clipHullAgainstHullLocalA(const float4 separatingNormal, - const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, - const float minDist, float maxDist, - const float4* verticesA, - const b3GpuFace_t* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const b3GpuFace_t* facesB, - __global const int* indicesB, - float4* localContactsOut, - int localContactCapacity) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=-1; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, - facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const b3GpuFace_t polyB = facesB[hullB->m_faceOffset+closestFaceB]; - const int numVertices = polyB.m_numIndices; - for(int e0=0;e0<numVertices;e0++) - { - const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; - worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - - if (closestFaceB>=0) - { - numContactsOut = clipFaceAgainstHullLocalA(separatingNormal, hullA, - posA,ornA, - worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist, - verticesA,facesA,indicesA, - verticesB,facesB,indicesB, - localContactsOut,localContactCapacity); - } - - return numContactsOut; -} - -#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j]; -#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;} -#define REDUCE_MAX(v, n) {int i=0;\ -for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; } -#define REDUCE_MIN(v, n) {int i=0;\ -for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; } - -int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx) -{ - if( nPoints == 0 ) - return 0; - - if (nPoints <=4) - return nPoints; - - - if (nPoints >64) - nPoints = 64; - - float4 center = make_float4(0.f); - { - - for (int i=0;i<nPoints;i++) - center += p[i]; - center /= (float)nPoints; - } - - - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - - //keep point with deepest penetration - float minW= FLT_MAX; - - int minIndex=-1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for(int ie = 0; ie<nPoints; ie++ ) - { - if (p[ie].w<minW) - { - minW = p[ie].w; - minIndex=ie; - } - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - if (f<maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4( -u, r ); - if (f<maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - - f = dot3F4( v, r ); - if (f<maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4( -v, r ); - if (f<maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; - -} - - -int extractManifoldSequentialGlobalFake(__global const float4* p, int nPoints, float4 nearNormal, int* contactIdx) -{ - contactIdx[0] = 0; - contactIdx[1] = 1; - contactIdx[2] = 2; - contactIdx[3] = 3; - - if( nPoints == 0 ) return 0; - - nPoints = min2( nPoints, 4 ); - return nPoints; - -} - - - -int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int* contactIdx) -{ - if( nPoints == 0 ) return 0; - - nPoints = min2( nPoints, 64 ); - - float4 center = make_float4(0.f); - { - float4 v[64]; - for (int i=0;i<nPoints;i++) - v[i] = p[i]; - //memcpy( v, p, nPoints*sizeof(float4) ); - PARALLEL_SUM( v, nPoints ); - center = v[0]/(float)nPoints; - } - - - - { // sample 4 directions - if( nPoints < 4 ) - { - for(int i=0; i<nPoints; i++) - contactIdx[i] = i; - return nPoints; - } - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - int idx[4]; - - float2 max00 = make_float2(0,FLT_MAX); - { - // idx, distance - { - { - int4 a[64]; - for(int ie = 0; ie<nPoints; ie++ ) - { - - - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - a[ie].x = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - - f = dot3F4( -u, r ); - a[ie].y = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - - f = dot3F4( v, r ); - a[ie].z = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - - f = dot3F4( -v, r ); - a[ie].w = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - } - - for(int ie=0; ie<nPoints; ie++) - { - a[0].x = (a[0].x > a[ie].x )? a[0].x: a[ie].x; - a[0].y = (a[0].y > a[ie].y )? a[0].y: a[ie].y; - a[0].z = (a[0].z > a[ie].z )? a[0].z: a[ie].z; - a[0].w = (a[0].w > a[ie].w )? a[0].w: a[ie].w; - } - - idx[0] = (int)a[0].x & 0xff; - idx[1] = (int)a[0].y & 0xff; - idx[2] = (int)a[0].z & 0xff; - idx[3] = (int)a[0].w & 0xff; - } - } - - { - float2 h[64]; - PARALLEL_DO( h[ie] = make_float2((float)ie, p[ie].w), nPoints ); - REDUCE_MIN( h, nPoints ); - max00 = h[0]; - } - } - - contactIdx[0] = idx[0]; - contactIdx[1] = idx[1]; - contactIdx[2] = idx[2]; - contactIdx[3] = idx[3]; - - - return 4; - } -} - - - -__kernel void extractManifoldAndAddContactKernel(__global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const float4* closestPointsWorld, - __global const float4* separatingNormalsWorld, - __global const int* contactCounts, - __global const int* contactOffsets, - __global struct b3Contact4Data* restrict contactsOut, - counter32_t nContactsOut, - int contactCapacity, - int numPairs, - int pairIndex - ) -{ - int idx = get_global_id(0); - - if (idx<numPairs) - { - float4 normal = separatingNormalsWorld[idx]; - int nPoints = contactCounts[idx]; - __global const float4* pointsIn = &closestPointsWorld[contactOffsets[idx]]; - float4 localPoints[64]; - for (int i=0;i<nPoints;i++) - { - localPoints[i] = pointsIn[i]; - } - - int contactIdx[4];// = {-1,-1,-1,-1}; - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nContacts = extractManifoldSequential(localPoints, nPoints, normal, contactIdx); - - int dstIdx; - AppendInc( nContactsOut, dstIdx ); - if (dstIdx<contactCapacity) - { - __global struct b3Contact4Data* c = contactsOut + dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = idx; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - for (int i=0;i<nContacts;i++) - { - c->m_worldPosB[i] = localPoints[contactIdx[i]]; - } - GET_NPOINTS(*c) = nContacts; - } - } -} - - -void trInverse(float4 translationIn, Quaternion orientationIn, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtInvert(orientationIn); - *translationOut = qtRotate(*orientationOut, -translationIn); -} - -void trMul(float4 translationA, Quaternion orientationA, - float4 translationB, Quaternion orientationB, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtMul(orientationA,orientationB); - *translationOut = transform(&translationB,&translationA,&orientationA); -} - - - - -__kernel void clipHullHullKernel( __global int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numPairs, - int contactCapacity) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - if (hasSeparatingAxis[i]) - { - - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - - - int numLocalContactsOut = clipHullAgainstHull(separatingNormals[i], - &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], - rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat, - rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - vertices,faces,indices, - localContactsOut,localContactCapacity); - - if (numLocalContactsOut>0) - { - float4 normal = -separatingNormals[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - int contactIdx[4];// = {-1,-1,-1,-1}; - - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); - - - int mprContactIndex = pairs[pairIndex].z; - - int dstIdx = mprContactIndex; - if (dstIdx<0) - { - AppendInc( nGlobalContactsOut, dstIdx ); - } - - if (dstIdx<contactCapacity) - { - pairs[pairIndex].z = dstIdx; - - __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - for (int i=0;i<nReducedContacts;i++) - { - //this condition means: overwrite contact point, unless at index i==0 we have a valid 'mpr' contact - if (i>0||(mprContactIndex<0)) - { - c->m_worldPosB[i] = pointsIn[contactIdx[i]]; - } - } - GET_NPOINTS(*c) = nReducedContacts; - } - - }// if (numContactsOut>0) - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - -} - - -__kernel void clipCompoundsHullHullKernel( __global const int4* gpuCompoundPairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const b3GpuChildShape_t* gpuChildShapes, - __global const float4* gpuCompoundSepNormalsOut, - __global const int* gpuHasCompoundSepNormalsOut, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numCompoundPairs, int maxContactCapacity) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numCompoundPairs) - { - - if (gpuHasCompoundSepNormalsOut[i]) - { - - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i], - &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - vertices,faces,indices, - localContactsOut,localContactCapacity); - - if (numLocalContactsOut>0) - { - float4 normal = -gpuCompoundSepNormalsOut[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - int contactIdx[4];// = {-1,-1,-1,-1}; - - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if ((dstIdx+nReducedContacts) < maxContactCapacity) - { - __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = gpuCompoundPairs[pairIndex].x; - int bodyB = gpuCompoundPairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA = childShapeIndexA; - c->m_childIndexB = childShapeIndexB; - for (int i=0;i<nReducedContacts;i++) - { - c->m_worldPosB[i] = pointsIn[contactIdx[i]]; - } - GET_NPOINTS(*c) = nReducedContacts; - } - - }// if (numContactsOut>0) - }// if (gpuHasCompoundSepNormalsOut[i]) - }// if (i<numCompoundPairs) - -} - - - -__kernel void sphereSphereCollisionKernel( __global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int contactCapacity, - int numPairs) -{ - - int i = get_global_id(0); - int pairIndex = i; - - if (i<numPairs) - { - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - //sphere-sphere - float radiusA = collidables[collidableIndexA].m_radius; - float radiusB = collidables[collidableIndexB].m_radius; - float4 posA = rigidBodies[bodyIndexA].m_pos; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - float4 diff = posA-posB; - float len = length(diff); - - ///iff distance positive, don't generate a new contact - if ( len <= (radiusA+radiusB)) - { - ///distance (negative means penetration) - float dist = len - (radiusA+radiusB); - float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f); - if (len > 0.00001) - { - normalOnSurfaceB = diff / len; - } - float4 contactPosB = posB + normalOnSurfaceB*radiusB; - contactPosB.w = dist; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if (dstIdx < contactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_worldPosB[0] = contactPosB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - GET_NPOINTS(*c) = 1; - }//if (dstIdx < numPairs) - }//if ( len <= (radiusA+radiusB)) - }//SHAPE_SPHERE SHAPE_SPHERE - }//if (i<numPairs) -} - -__kernel void clipHullHullConcaveConvexKernel( __global int4* concavePairsIn, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const b3GpuChildShape_t* gpuChildShapes, - __global const float4* separatingNormals, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int contactCapacity, - int numConcavePairs) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numConcavePairs) - { - //negative value means that the pair is invalid - if (concavePairsIn[i].w<0) - return; - - int bodyIndexA = concavePairsIn[i].x; - int bodyIndexB = concavePairsIn[i].y; - int f = concavePairsIn[i].z; - int childShapeIndexA = f; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - /////////////////////////////////////////////////////////////// - - - bool overlap = false; - - b3ConvexPolyhedronData_t convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - b3GpuFace_t face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - } - - float dmin = FLT_MAX; - - int localCC=0; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - b3GpuFace_t facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot3F4(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot3F4(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - float4 sepAxis = separatingNormals[i]; - - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - int childShapeIndexB =-1; - if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - /////////////////// - ///compound shape support - - childShapeIndexB = concavePairsIn[pairIndex].w; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - - } - - //////////////////////////////////////// - - - - int numLocalContactsOut = clipHullAgainstHullLocalA(sepAxis, - &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - &verticesA,&facesA,&indicesA, - vertices,faces,indices, - localContactsOut,localContactCapacity); - - if (numLocalContactsOut>0) - { - float4 normal = -separatingNormals[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - int contactIdx[4];// = {-1,-1,-1,-1}; - - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if (dstIdx<contactCapacity) - { - __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = concavePairsIn[pairIndex].x; - int bodyB = concavePairsIn[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA = childShapeIndexA; - c->m_childIndexB = childShapeIndexB; - for (int i=0;i<nReducedContacts;i++) - { - c->m_worldPosB[i] = pointsIn[contactIdx[i]]; - } - GET_NPOINTS(*c) = nReducedContacts; - } - - }// if (numContactsOut>0) - }// if (i<numPairs) -} - - - - - - -int findClippingFaces(const float4 separatingNormal, - __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - const float minDist, float maxDist, - __global const float4* vertices, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global int4* clippingFaces, int pairIndex) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=-1; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, - faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB]; - const int numVertices = polyB.m_numIndices; - for(int e0=0;e0<numVertices;e0++) - { - const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]]; - worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - - int closestFaceA=-1; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - faces[hullA->m_faceOffset+face].m_plane.x, - faces[hullA->m_faceOffset+face].m_plane.y, - faces[hullA->m_faceOffset+face].m_plane.z, - 0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - worldNormalsA1[pairIndex] = faceANormalWS; - } - } - } - - int numVerticesA = faces[hullA->m_faceOffset+closestFaceA].m_numIndices; - for(int e0=0;e0<numVerticesA;e0++) - { - const float4 a = vertices[hullA->m_vertexOffset+indices[faces[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; - worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); - } - - clippingFaces[pairIndex].x = closestFaceA; - clippingFaces[pairIndex].y = closestFaceB; - clippingFaces[pairIndex].z = numVerticesA; - clippingFaces[pairIndex].w = numWorldVertsB1; - - - return numContactsOut; -} - - - -int clipFaces(__global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - __global float4* worldVertsB2, - int capacityWorldVertsB2, - const float minDist, float maxDist, - __global int4* clippingFaces, - int pairIndex) -{ - int numContactsOut = 0; - - int closestFaceA = clippingFaces[pairIndex].x; - int closestFaceB = clippingFaces[pairIndex].y; - int numVertsInA = clippingFaces[pairIndex].z; - int numVertsInB = clippingFaces[pairIndex].w; - - int numVertsOut = 0; - - if (closestFaceA<0) - return numContactsOut; - - __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2]; - __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2]; - - - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - - for(int e0=0;e0<numVertsInA;e0++) - { - const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0]; - const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)]; - const float4 WorldEdge0 = aw - bw; - float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex]; - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = aw; - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut); - __global float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsInB = numVertsOut; - numVertsOut = 0; - } - - //float4 planeNormalWS = worldNormalsA1[pairIndex]; - //float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); - - - - /*for (int i=0;i<numVertsInB;i++) - { - pVtxOut[i] = pVtxIn[i]; - }*/ - - - - - //numVertsInB=0; - - float4 planeNormalWS = worldNormalsA1[pairIndex]; - float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); - - for (int i=0;i<numVertsInB;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - pVtxOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - - clippingFaces[pairIndex].w =numContactsOut; - - - return numContactsOut; - -} - - - - -__kernel void findClippingFacesKernel( __global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global int4* clippingFacesOut, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - int numPairs - ) -{ - - int i = get_global_id(0); - int pairIndex = i; - - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - - int numLocalContactsOut = findClippingFaces(separatingNormals[i], - &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], - rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat, - rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat, - worldVertsA1, - worldNormalsA1, - worldVertsB1,capacityWorldVerts, - minDist, maxDist, - vertices,faces,indices, - clippingFacesOut,i); - - - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - -} - - - - -__kernel void clipFacesAndFindContactsKernel( __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global int4* clippingFacesOut, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - __global float4* worldVertsB2, - int vertexFaceCapacity, - int numPairs, - int debugMode - ) -{ - int i = get_global_id(0); - int pairIndex = i; - - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - -// int bodyIndexA = pairs[i].x; - // int bodyIndexB = pairs[i].y; - - int numLocalContactsOut = 0; - - int capacityWorldVertsB2 = vertexFaceCapacity; - - __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2]; - __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2]; - - - { - __global int4* clippingFaces = clippingFacesOut; - - - int closestFaceA = clippingFaces[pairIndex].x; - int closestFaceB = clippingFaces[pairIndex].y; - int numVertsInA = clippingFaces[pairIndex].z; - int numVertsInB = clippingFaces[pairIndex].w; - - int numVertsOut = 0; - - if (closestFaceA>=0) - { - - - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - - for(int e0=0;e0<numVertsInA;e0++) - { - const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0]; - const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)]; - const float4 WorldEdge0 = aw - bw; - float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex]; - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = aw; - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut); - __global float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsInB = numVertsOut; - numVertsOut = 0; - } - - float4 planeNormalWS = worldNormalsA1[pairIndex]; - float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); - - for (int i=0;i<numVertsInB;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - pVtxOut[numLocalContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - - } - clippingFaces[pairIndex].w =numLocalContactsOut; - - - } - - for (int i=0;i<numLocalContactsOut;i++) - pVtxIn[i] = pVtxOut[i]; - - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - -} - - - - - -__kernel void newContactReductionKernel( __global int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global struct b3Contact4Data* globalContactsOut, - __global int4* clippingFaces, - __global float4* worldVertsB2, - volatile __global int* nGlobalContactsOut, - int vertexFaceCapacity, - int contactCapacity, - int numPairs - ) -{ - int i = get_global_id(0); - int pairIndex = i; - - int4 contactIdx; - contactIdx=make_int4(0,1,2,3); - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - - - - int nPoints = clippingFaces[pairIndex].w; - - if (nPoints>0) - { - - __global float4* pointsIn = &worldVertsB2[pairIndex*vertexFaceCapacity]; - float4 normal = -separatingNormals[i]; - - int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx); - - int mprContactIndex = pairs[pairIndex].z; - - int dstIdx = mprContactIndex; - - if (dstIdx<0) - { - AppendInc( nGlobalContactsOut, dstIdx ); - } -//#if 0 - - if (dstIdx < contactCapacity) - { - - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - - pairs[pairIndex].w = dstIdx; - - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA =-1; - c->m_childIndexB =-1; - - switch (nReducedContacts) - { - case 4: - c->m_worldPosB[3] = pointsIn[contactIdx.w]; - case 3: - c->m_worldPosB[2] = pointsIn[contactIdx.z]; - case 2: - c->m_worldPosB[1] = pointsIn[contactIdx.y]; - case 1: - if (mprContactIndex<0)//test - c->m_worldPosB[0] = pointsIn[contactIdx.x]; - default: - { - } - }; - - GET_NPOINTS(*c) = nReducedContacts; - - } - - -//#endif - - }// if (numContactsOut>0) - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - - - -} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h deleted file mode 100644 index 907809d8bd..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h +++ /dev/null @@ -1,2098 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* satClipKernelsCL = - "#define TRIANGLE_NUM_CONVEX_FACES 5\n" - "#pragma OPENCL EXTENSION cl_amd_printf : enable\n" - "#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n" - "#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n" - "#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable\n" - "#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable\n" - "#ifdef cl_ext_atomic_counters_32\n" - "#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" - "#else\n" - "#define counter32_t volatile __global int*\n" - "#endif\n" - "#define GET_GROUP_IDX get_group_id(0)\n" - "#define GET_LOCAL_IDX get_local_id(0)\n" - "#define GET_GLOBAL_IDX get_global_id(0)\n" - "#define GET_GROUP_SIZE get_local_size(0)\n" - "#define GET_NUM_GROUPS get_num_groups(0)\n" - "#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)\n" - "#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)\n" - "#define AtomInc(x) atom_inc(&(x))\n" - "#define AtomInc1(x, out) out = atom_inc(&(x))\n" - "#define AppendInc(x, out) out = atomic_inc(x)\n" - "#define AtomAdd(x, value) atom_add(&(x), value)\n" - "#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )\n" - "#define AtomXhg(x, value) atom_xchg ( &(x), value )\n" - "#define max2 max\n" - "#define min2 min\n" - "typedef unsigned int u32;\n" - "#ifndef B3_CONTACT4DATA_H\n" - "#define B3_CONTACT4DATA_H\n" - "#ifndef B3_FLOAT4_H\n" - "#define B3_FLOAT4_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#define B3_PLATFORM_DEFINITIONS_H\n" - "struct MyTest\n" - "{\n" - " int bla;\n" - "};\n" - "#ifdef __cplusplus\n" - "#else\n" - "//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" - "#define B3_LARGE_FLOAT 1e18f\n" - "#define B3_INFINITY 1e18f\n" - "#define b3Assert(a)\n" - "#define b3ConstArray(a) __global const a*\n" - "#define b3AtomicInc atomic_inc\n" - "#define b3AtomicAdd atomic_add\n" - "#define b3Fabs fabs\n" - "#define b3Sqrt native_sqrt\n" - "#define b3Sin native_sin\n" - "#define b3Cos native_cos\n" - "#define B3_STATIC\n" - "#endif\n" - "#endif\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Float4;\n" - " #define b3Float4ConstArg const b3Float4\n" - " #define b3MakeFloat4 (float4)\n" - " float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return dot(a1, b1);\n" - " }\n" - " b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return cross(a1, b1);\n" - " }\n" - " #define b3MinFloat4 min\n" - " #define b3MaxFloat4 max\n" - " #define b3Normalized(a) normalize(a)\n" - "#endif \n" - " \n" - "inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" - "{\n" - " if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" - " return false;\n" - " return true;\n" - "}\n" - "inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" - "{\n" - " float maxDot = -B3_INFINITY;\n" - " int i = 0;\n" - " int ptIndex = -1;\n" - " for( i = 0; i < vecLen; i++ )\n" - " {\n" - " float dot = b3Dot3F4(vecArray[i],vec);\n" - " \n" - " if( dot > maxDot )\n" - " {\n" - " maxDot = dot;\n" - " ptIndex = i;\n" - " }\n" - " }\n" - " b3Assert(ptIndex>=0);\n" - " if (ptIndex<0)\n" - " {\n" - " ptIndex = 0;\n" - " }\n" - " *dotOut = maxDot;\n" - " return ptIndex;\n" - "}\n" - "#endif //B3_FLOAT4_H\n" - "typedef struct b3Contact4Data b3Contact4Data_t;\n" - "struct b3Contact4Data\n" - "{\n" - " b3Float4 m_worldPosB[4];\n" - "// b3Float4 m_localPosA[4];\n" - "// b3Float4 m_localPosB[4];\n" - " b3Float4 m_worldNormalOnB; // w: m_nPoints\n" - " unsigned short m_restituitionCoeffCmp;\n" - " unsigned short m_frictionCoeffCmp;\n" - " int m_batchIdx;\n" - " int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" - " int m_bodyBPtrAndSignBit;\n" - " int m_childIndexA;\n" - " int m_childIndexB;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "};\n" - "inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" - "{\n" - " return (int)contact->m_worldNormalOnB.w;\n" - "};\n" - "inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" - "{\n" - " contact->m_worldNormalOnB.w = (float)numPoints;\n" - "};\n" - "#endif //B3_CONTACT4DATA_H\n" - "#ifndef B3_CONVEX_POLYHEDRON_DATA_H\n" - "#define B3_CONVEX_POLYHEDRON_DATA_H\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_QUAT_H\n" - "#define B3_QUAT_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif\n" - "#endif\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Quat;\n" - " #define b3QuatConstArg const b3Quat\n" - " \n" - " \n" - "inline float4 b3FastNormalize4(float4 v)\n" - "{\n" - " v = (float4)(v.xyz,0.f);\n" - " return fast_normalize(v);\n" - "}\n" - " \n" - "inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" - "inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" - "inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" - "{\n" - " b3Quat ans;\n" - " ans = b3Cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - b3Dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" - "{\n" - " b3Quat q;\n" - " q=in;\n" - " //return b3FastNormalize4(in);\n" - " float len = native_sqrt(dot(q, q));\n" - " if(len > 0.f)\n" - " {\n" - " q *= 1.f / len;\n" - " }\n" - " else\n" - " {\n" - " q.x = q.y = q.z = 0.f;\n" - " q.w = 1.f;\n" - " }\n" - " return q;\n" - "}\n" - "inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " b3Quat qInv = b3QuatInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " return b3QuatRotate( b3QuatInvert( q ), vec );\n" - "}\n" - "inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" - "{\n" - " return b3QuatRotate( orientation, point ) + (translation);\n" - "}\n" - " \n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "typedef struct b3GpuFace b3GpuFace_t;\n" - "struct b3GpuFace\n" - "{\n" - " b3Float4 m_plane;\n" - " int m_indexOffset;\n" - " int m_numIndices;\n" - " int m_unusedPadding1;\n" - " int m_unusedPadding2;\n" - "};\n" - "typedef struct b3ConvexPolyhedronData b3ConvexPolyhedronData_t;\n" - "struct b3ConvexPolyhedronData\n" - "{\n" - " b3Float4 m_localCenter;\n" - " b3Float4 m_extents;\n" - " b3Float4 mC;\n" - " b3Float4 mE;\n" - " float m_radius;\n" - " int m_faceOffset;\n" - " int m_numFaces;\n" - " int m_numVertices;\n" - " int m_vertexOffset;\n" - " int m_uniqueEdgesOffset;\n" - " int m_numUniqueEdges;\n" - " int m_unused;\n" - "};\n" - "#endif //B3_CONVEX_POLYHEDRON_DATA_H\n" - "#ifndef B3_COLLIDABLE_H\n" - "#define B3_COLLIDABLE_H\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "enum b3ShapeTypes\n" - "{\n" - " SHAPE_HEIGHT_FIELD=1,\n" - " SHAPE_CONVEX_HULL=3,\n" - " SHAPE_PLANE=4,\n" - " SHAPE_CONCAVE_TRIMESH=5,\n" - " SHAPE_COMPOUND_OF_CONVEX_HULLS=6,\n" - " SHAPE_SPHERE=7,\n" - " MAX_NUM_SHAPE_TYPES,\n" - "};\n" - "typedef struct b3Collidable b3Collidable_t;\n" - "struct b3Collidable\n" - "{\n" - " union {\n" - " int m_numChildShapes;\n" - " int m_bvhIndex;\n" - " };\n" - " union\n" - " {\n" - " float m_radius;\n" - " int m_compoundBvhIndex;\n" - " };\n" - " int m_shapeType;\n" - " int m_shapeIndex;\n" - "};\n" - "typedef struct b3GpuChildShape b3GpuChildShape_t;\n" - "struct b3GpuChildShape\n" - "{\n" - " b3Float4 m_childPosition;\n" - " b3Quat m_childOrientation;\n" - " int m_shapeIndex;\n" - " int m_unused0;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "};\n" - "struct b3CompoundOverlappingPair\n" - "{\n" - " int m_bodyIndexA;\n" - " int m_bodyIndexB;\n" - "// int m_pairType;\n" - " int m_childShapeIndexA;\n" - " int m_childShapeIndexB;\n" - "};\n" - "#endif //B3_COLLIDABLE_H\n" - "#ifndef B3_RIGIDBODY_DATA_H\n" - "#define B3_RIGIDBODY_DATA_H\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "#ifndef B3_MAT3x3_H\n" - "#define B3_MAT3x3_H\n" - "#ifndef B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "typedef struct\n" - "{\n" - " b3Float4 m_row[3];\n" - "}b3Mat3x3;\n" - "#define b3Mat3x3ConstArg const b3Mat3x3\n" - "#define b3GetRow(m,row) (m.m_row[row])\n" - "inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" - "{\n" - " b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" - " b3Mat3x3 out;\n" - " out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" - " out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" - " out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" - " out.m_row[0].w = 0.f;\n" - " out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" - " out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" - " out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" - " out.m_row[1].w = 0.f;\n" - " out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" - " out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" - " out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" - " out.m_row[2].w = 0.f;\n" - " return out;\n" - "}\n" - "inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = fabs(matIn.m_row[0]);\n" - " out.m_row[1] = fabs(matIn.m_row[1]);\n" - " out.m_row[2] = fabs(matIn.m_row[2]);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtZero();\n" - "__inline\n" - "b3Mat3x3 mtIdentity();\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Mat3x3 mtZero()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(0.f);\n" - " m.m_row[1] = (b3Float4)(0.f);\n" - " m.m_row[2] = (b3Float4)(0.f);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtIdentity()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(1,0,0,0);\n" - " m.m_row[1] = (b3Float4)(0,1,0,0);\n" - " m.m_row[2] = (b3Float4)(0,0,1,0);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" - " out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" - " out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" - "{\n" - " b3Mat3x3 transB;\n" - " transB = mtTranspose( b );\n" - " b3Mat3x3 ans;\n" - " // why this doesn't run when 0ing in the for{}\n" - " a.m_row[0].w = 0.f;\n" - " a.m_row[1].w = 0.f;\n" - " a.m_row[2].w = 0.f;\n" - " for(int i=0; i<3; i++)\n" - " {\n" - "// a.m_row[i].w = 0.f;\n" - " ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" - " ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" - " ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" - " ans.m_row[i].w = 0.f;\n" - " }\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" - "{\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a.m_row[0], b );\n" - " ans.y = b3Dot3F4( a.m_row[1], b );\n" - " ans.z = b3Dot3F4( a.m_row[2], b );\n" - " ans.w = 0.f;\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" - "{\n" - " b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" - " b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" - " b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a, colx );\n" - " ans.y = b3Dot3F4( a, coly );\n" - " ans.z = b3Dot3F4( a, colz );\n" - " return ans;\n" - "}\n" - "#endif\n" - "#endif //B3_MAT3x3_H\n" - "typedef struct b3RigidBodyData b3RigidBodyData_t;\n" - "struct b3RigidBodyData\n" - "{\n" - " b3Float4 m_pos;\n" - " b3Quat m_quat;\n" - " b3Float4 m_linVel;\n" - " b3Float4 m_angVel;\n" - " int m_collidableIdx;\n" - " float m_invMass;\n" - " float m_restituitionCoeff;\n" - " float m_frictionCoeff;\n" - "};\n" - "typedef struct b3InertiaData b3InertiaData_t;\n" - "struct b3InertiaData\n" - "{\n" - " b3Mat3x3 m_invInertiaWorld;\n" - " b3Mat3x3 m_initInvInertia;\n" - "};\n" - "#endif //B3_RIGIDBODY_DATA_H\n" - " \n" - "#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" - "#define SELECT_UINT4( b, a, condition ) select( b,a,condition )\n" - "#define make_float4 (float4)\n" - "#define make_float2 (float2)\n" - "#define make_uint4 (uint4)\n" - "#define make_int4 (int4)\n" - "#define make_uint2 (uint2)\n" - "#define make_int2 (int2)\n" - "__inline\n" - "float fastDiv(float numerator, float denominator)\n" - "{\n" - " return native_divide(numerator, denominator); \n" - "// return numerator/denominator; \n" - "}\n" - "__inline\n" - "float4 fastDiv4(float4 numerator, float4 denominator)\n" - "{\n" - " return native_divide(numerator, denominator); \n" - "}\n" - "__inline\n" - "float4 cross3(float4 a, float4 b)\n" - "{\n" - " return cross(a,b);\n" - "}\n" - "//#define dot3F4 dot\n" - "__inline\n" - "float dot3F4(float4 a, float4 b)\n" - "{\n" - " float4 a1 = make_float4(a.xyz,0.f);\n" - " float4 b1 = make_float4(b.xyz,0.f);\n" - " return dot(a1, b1);\n" - "}\n" - "__inline\n" - "float4 fastNormalize4(float4 v)\n" - "{\n" - " return fast_normalize(v);\n" - "}\n" - "///////////////////////////////////////\n" - "// Quaternion\n" - "///////////////////////////////////////\n" - "typedef float4 Quaternion;\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b);\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in);\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec);\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q);\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b)\n" - "{\n" - " Quaternion ans;\n" - " ans = cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in)\n" - "{\n" - " return fastNormalize4(in);\n" - "// in /= length( in );\n" - "// return in;\n" - "}\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec)\n" - "{\n" - " Quaternion qInv = qtInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = qtMul(qtMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q)\n" - "{\n" - " return (Quaternion)(-q.xyz, q.w);\n" - "}\n" - "__inline\n" - "float4 qtInvRotate(const Quaternion q, float4 vec)\n" - "{\n" - " return qtRotate( qtInvert( q ), vec );\n" - "}\n" - "__inline\n" - "float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" - "{\n" - " return qtRotate( *orientation, *p ) + (*translation);\n" - "}\n" - "__inline\n" - "float4 normalize3(const float4 a)\n" - "{\n" - " float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" - " return fastNormalize4( n );\n" - "}\n" - "__inline float4 lerp3(const float4 a,const float4 b, float t)\n" - "{\n" - " return make_float4( a.x + (b.x - a.x) * t,\n" - " a.y + (b.y - a.y) * t,\n" - " a.z + (b.z - a.z) * t,\n" - " 0.f);\n" - "}\n" - "// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut\n" - "int clipFaceGlobal(__global const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, __global float4* ppVtxOut)\n" - "{\n" - " \n" - " int ve;\n" - " float ds, de;\n" - " int numVertsOut = 0;\n" - " //double-check next test\n" - " if (numVertsIn < 2)\n" - " return 0;\n" - " \n" - " float4 firstVertex=pVtxIn[numVertsIn-1];\n" - " float4 endVertex = pVtxIn[0];\n" - " \n" - " ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;\n" - " \n" - " for (ve = 0; ve < numVertsIn; ve++)\n" - " {\n" - " endVertex=pVtxIn[ve];\n" - " de = dot3F4(planeNormalWS,endVertex)+planeEqWS;\n" - " if (ds<0)\n" - " {\n" - " if (de<0)\n" - " {\n" - " // Start < 0, end < 0, so output endVertex\n" - " ppVtxOut[numVertsOut++] = endVertex;\n" - " }\n" - " else\n" - " {\n" - " // Start < 0, end >= 0, so output intersection\n" - " ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" - " }\n" - " }\n" - " else\n" - " {\n" - " if (de<0)\n" - " {\n" - " // Start >= 0, end < 0 so output intersection and end\n" - " ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" - " ppVtxOut[numVertsOut++] = endVertex;\n" - " }\n" - " }\n" - " firstVertex = endVertex;\n" - " ds = de;\n" - " }\n" - " return numVertsOut;\n" - "}\n" - "// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut\n" - "int clipFace(const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, float4* ppVtxOut)\n" - "{\n" - " \n" - " int ve;\n" - " float ds, de;\n" - " int numVertsOut = 0;\n" - "//double-check next test\n" - " if (numVertsIn < 2)\n" - " return 0;\n" - " float4 firstVertex=pVtxIn[numVertsIn-1];\n" - " float4 endVertex = pVtxIn[0];\n" - " \n" - " ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;\n" - " for (ve = 0; ve < numVertsIn; ve++)\n" - " {\n" - " endVertex=pVtxIn[ve];\n" - " de = dot3F4(planeNormalWS,endVertex)+planeEqWS;\n" - " if (ds<0)\n" - " {\n" - " if (de<0)\n" - " {\n" - " // Start < 0, end < 0, so output endVertex\n" - " ppVtxOut[numVertsOut++] = endVertex;\n" - " }\n" - " else\n" - " {\n" - " // Start < 0, end >= 0, so output intersection\n" - " ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" - " }\n" - " }\n" - " else\n" - " {\n" - " if (de<0)\n" - " {\n" - " // Start >= 0, end < 0 so output intersection and end\n" - " ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" - " ppVtxOut[numVertsOut++] = endVertex;\n" - " }\n" - " }\n" - " firstVertex = endVertex;\n" - " ds = de;\n" - " }\n" - " return numVertsOut;\n" - "}\n" - "int clipFaceAgainstHull(const float4 separatingNormal, __global const b3ConvexPolyhedronData_t* hullA, \n" - " const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,\n" - " float4* worldVertsB2, int capacityWorldVertsB2,\n" - " const float minDist, float maxDist,\n" - " __global const float4* vertices,\n" - " __global const b3GpuFace_t* faces,\n" - " __global const int* indices,\n" - " float4* contactsOut,\n" - " int contactCapacity)\n" - "{\n" - " int numContactsOut = 0;\n" - " float4* pVtxIn = worldVertsB1;\n" - " float4* pVtxOut = worldVertsB2;\n" - " \n" - " int numVertsIn = numWorldVertsB1;\n" - " int numVertsOut = 0;\n" - " int closestFaceA=-1;\n" - " {\n" - " float dmin = FLT_MAX;\n" - " for(int face=0;face<hullA->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(\n" - " faces[hullA->m_faceOffset+face].m_plane.x, \n" - " faces[hullA->m_faceOffset+face].m_plane.y, \n" - " faces[hullA->m_faceOffset+face].m_plane.z,0.f);\n" - " const float4 faceANormalWS = qtRotate(ornA,Normal);\n" - " \n" - " float d = dot3F4(faceANormalWS,separatingNormal);\n" - " if (d < dmin)\n" - " {\n" - " dmin = d;\n" - " closestFaceA = face;\n" - " }\n" - " }\n" - " }\n" - " if (closestFaceA<0)\n" - " return numContactsOut;\n" - " b3GpuFace_t polyA = faces[hullA->m_faceOffset+closestFaceA];\n" - " // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" - " int numVerticesA = polyA.m_numIndices;\n" - " for(int e0=0;e0<numVerticesA;e0++)\n" - " {\n" - " const float4 a = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+e0]];\n" - " const float4 b = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+((e0+1)%numVerticesA)]];\n" - " const float4 edge0 = a - b;\n" - " const float4 WorldEdge0 = qtRotate(ornA,edge0);\n" - " float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" - " float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);\n" - " float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" - " float4 worldA1 = transform(&a,&posA,&ornA);\n" - " float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" - " \n" - " float4 planeNormalWS = planeNormalWS1;\n" - " float planeEqWS=planeEqWS1;\n" - " \n" - " //clip face\n" - " //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);\n" - " numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);\n" - " //btSwap(pVtxIn,pVtxOut);\n" - " float4* tmp = pVtxOut;\n" - " pVtxOut = pVtxIn;\n" - " pVtxIn = tmp;\n" - " numVertsIn = numVertsOut;\n" - " numVertsOut = 0;\n" - " }\n" - " \n" - " // only keep points that are behind the witness face\n" - " {\n" - " float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" - " float localPlaneEq = polyA.m_plane.w;\n" - " float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);\n" - " float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);\n" - " for (int i=0;i<numVertsIn;i++)\n" - " {\n" - " float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" - " if (depth <=minDist)\n" - " {\n" - " depth = minDist;\n" - " }\n" - " if (depth <=maxDist)\n" - " {\n" - " float4 pointInWorld = pVtxIn[i];\n" - " //resultOut.addContactPoint(separatingNormal,point,depth);\n" - " contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" - " }\n" - " }\n" - " }\n" - " return numContactsOut;\n" - "}\n" - "int clipFaceAgainstHullLocalA(const float4 separatingNormal, const b3ConvexPolyhedronData_t* hullA, \n" - " const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,\n" - " float4* worldVertsB2, int capacityWorldVertsB2,\n" - " const float minDist, float maxDist,\n" - " const float4* verticesA,\n" - " const b3GpuFace_t* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB,\n" - " __global const b3GpuFace_t* facesB,\n" - " __global const int* indicesB,\n" - " float4* contactsOut,\n" - " int contactCapacity)\n" - "{\n" - " int numContactsOut = 0;\n" - " float4* pVtxIn = worldVertsB1;\n" - " float4* pVtxOut = worldVertsB2;\n" - " \n" - " int numVertsIn = numWorldVertsB1;\n" - " int numVertsOut = 0;\n" - " int closestFaceA=-1;\n" - " {\n" - " float dmin = FLT_MAX;\n" - " for(int face=0;face<hullA->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(\n" - " facesA[hullA->m_faceOffset+face].m_plane.x, \n" - " facesA[hullA->m_faceOffset+face].m_plane.y, \n" - " facesA[hullA->m_faceOffset+face].m_plane.z,0.f);\n" - " const float4 faceANormalWS = qtRotate(ornA,Normal);\n" - " \n" - " float d = dot3F4(faceANormalWS,separatingNormal);\n" - " if (d < dmin)\n" - " {\n" - " dmin = d;\n" - " closestFaceA = face;\n" - " }\n" - " }\n" - " }\n" - " if (closestFaceA<0)\n" - " return numContactsOut;\n" - " b3GpuFace_t polyA = facesA[hullA->m_faceOffset+closestFaceA];\n" - " // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" - " int numVerticesA = polyA.m_numIndices;\n" - " for(int e0=0;e0<numVerticesA;e0++)\n" - " {\n" - " const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]];\n" - " const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]];\n" - " const float4 edge0 = a - b;\n" - " const float4 WorldEdge0 = qtRotate(ornA,edge0);\n" - " float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" - " float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);\n" - " float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" - " float4 worldA1 = transform(&a,&posA,&ornA);\n" - " float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" - " \n" - " float4 planeNormalWS = planeNormalWS1;\n" - " float planeEqWS=planeEqWS1;\n" - " \n" - " //clip face\n" - " //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);\n" - " numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);\n" - " //btSwap(pVtxIn,pVtxOut);\n" - " float4* tmp = pVtxOut;\n" - " pVtxOut = pVtxIn;\n" - " pVtxIn = tmp;\n" - " numVertsIn = numVertsOut;\n" - " numVertsOut = 0;\n" - " }\n" - " \n" - " // only keep points that are behind the witness face\n" - " {\n" - " float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" - " float localPlaneEq = polyA.m_plane.w;\n" - " float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);\n" - " float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);\n" - " for (int i=0;i<numVertsIn;i++)\n" - " {\n" - " float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" - " if (depth <=minDist)\n" - " {\n" - " depth = minDist;\n" - " }\n" - " if (depth <=maxDist)\n" - " {\n" - " float4 pointInWorld = pVtxIn[i];\n" - " //resultOut.addContactPoint(separatingNormal,point,depth);\n" - " contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" - " }\n" - " }\n" - " }\n" - " return numContactsOut;\n" - "}\n" - "int clipHullAgainstHull(const float4 separatingNormal,\n" - " __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" - " const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, \n" - " float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,\n" - " const float minDist, float maxDist,\n" - " __global const float4* vertices,\n" - " __global const b3GpuFace_t* faces,\n" - " __global const int* indices,\n" - " float4* localContactsOut,\n" - " int localContactCapacity)\n" - "{\n" - " int numContactsOut = 0;\n" - " int numWorldVertsB1= 0;\n" - " int closestFaceB=-1;\n" - " float dmax = -FLT_MAX;\n" - " {\n" - " for(int face=0;face<hullB->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, \n" - " faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);\n" - " const float4 WorldNormal = qtRotate(ornB, Normal);\n" - " float d = dot3F4(WorldNormal,separatingNormal);\n" - " if (d > dmax)\n" - " {\n" - " dmax = d;\n" - " closestFaceB = face;\n" - " }\n" - " }\n" - " }\n" - " {\n" - " const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];\n" - " const int numVertices = polyB.m_numIndices;\n" - " for(int e0=0;e0<numVertices;e0++)\n" - " {\n" - " const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];\n" - " worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" - " }\n" - " }\n" - " if (closestFaceB>=0)\n" - " {\n" - " numContactsOut = clipFaceAgainstHull(separatingNormal, hullA, \n" - " posA,ornA,\n" - " worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,vertices,\n" - " faces,\n" - " indices,localContactsOut,localContactCapacity);\n" - " }\n" - " return numContactsOut;\n" - "}\n" - "int clipHullAgainstHullLocalA(const float4 separatingNormal,\n" - " const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" - " const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, \n" - " float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,\n" - " const float minDist, float maxDist,\n" - " const float4* verticesA,\n" - " const b3GpuFace_t* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB,\n" - " __global const b3GpuFace_t* facesB,\n" - " __global const int* indicesB,\n" - " float4* localContactsOut,\n" - " int localContactCapacity)\n" - "{\n" - " int numContactsOut = 0;\n" - " int numWorldVertsB1= 0;\n" - " int closestFaceB=-1;\n" - " float dmax = -FLT_MAX;\n" - " {\n" - " for(int face=0;face<hullB->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, \n" - " facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" - " const float4 WorldNormal = qtRotate(ornB, Normal);\n" - " float d = dot3F4(WorldNormal,separatingNormal);\n" - " if (d > dmax)\n" - " {\n" - " dmax = d;\n" - " closestFaceB = face;\n" - " }\n" - " }\n" - " }\n" - " {\n" - " const b3GpuFace_t polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" - " const int numVertices = polyB.m_numIndices;\n" - " for(int e0=0;e0<numVertices;e0++)\n" - " {\n" - " const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" - " worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" - " }\n" - " }\n" - " if (closestFaceB>=0)\n" - " {\n" - " numContactsOut = clipFaceAgainstHullLocalA(separatingNormal, hullA, \n" - " posA,ornA,\n" - " worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,\n" - " verticesA,facesA,indicesA,\n" - " verticesB,facesB,indicesB,\n" - " localContactsOut,localContactCapacity);\n" - " }\n" - " return numContactsOut;\n" - "}\n" - "#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j];\n" - "#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;}\n" - "#define REDUCE_MAX(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; }\n" - "#define REDUCE_MIN(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; }\n" - "int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)\n" - "{\n" - " if( nPoints == 0 )\n" - " return 0;\n" - " \n" - " if (nPoints <=4)\n" - " return nPoints;\n" - " \n" - " \n" - " if (nPoints >64)\n" - " nPoints = 64;\n" - " \n" - " float4 center = make_float4(0.f);\n" - " {\n" - " \n" - " for (int i=0;i<nPoints;i++)\n" - " center += p[i];\n" - " center /= (float)nPoints;\n" - " }\n" - " \n" - " \n" - " \n" - " // sample 4 directions\n" - " \n" - " float4 aVector = p[0] - center;\n" - " float4 u = cross3( nearNormal, aVector );\n" - " float4 v = cross3( nearNormal, u );\n" - " u = normalize3( u );\n" - " v = normalize3( v );\n" - " \n" - " \n" - " //keep point with deepest penetration\n" - " float minW= FLT_MAX;\n" - " \n" - " int minIndex=-1;\n" - " \n" - " float4 maxDots;\n" - " maxDots.x = FLT_MIN;\n" - " maxDots.y = FLT_MIN;\n" - " maxDots.z = FLT_MIN;\n" - " maxDots.w = FLT_MIN;\n" - " \n" - " // idx, distance\n" - " for(int ie = 0; ie<nPoints; ie++ )\n" - " {\n" - " if (p[ie].w<minW)\n" - " {\n" - " minW = p[ie].w;\n" - " minIndex=ie;\n" - " }\n" - " float f;\n" - " float4 r = p[ie]-center;\n" - " f = dot3F4( u, r );\n" - " if (f<maxDots.x)\n" - " {\n" - " maxDots.x = f;\n" - " contactIdx[0].x = ie;\n" - " }\n" - " \n" - " f = dot3F4( -u, r );\n" - " if (f<maxDots.y)\n" - " {\n" - " maxDots.y = f;\n" - " contactIdx[0].y = ie;\n" - " }\n" - " \n" - " \n" - " f = dot3F4( v, r );\n" - " if (f<maxDots.z)\n" - " {\n" - " maxDots.z = f;\n" - " contactIdx[0].z = ie;\n" - " }\n" - " \n" - " f = dot3F4( -v, r );\n" - " if (f<maxDots.w)\n" - " {\n" - " maxDots.w = f;\n" - " contactIdx[0].w = ie;\n" - " }\n" - " \n" - " }\n" - " \n" - " if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)\n" - " {\n" - " //replace the first contact with minimum (todo: replace contact with least penetration)\n" - " contactIdx[0].x = minIndex;\n" - " }\n" - " \n" - " return 4;\n" - " \n" - "}\n" - "int extractManifoldSequentialGlobalFake(__global const float4* p, int nPoints, float4 nearNormal, int* contactIdx)\n" - "{\n" - " contactIdx[0] = 0;\n" - " contactIdx[1] = 1;\n" - " contactIdx[2] = 2;\n" - " contactIdx[3] = 3;\n" - " \n" - " if( nPoints == 0 ) return 0;\n" - " \n" - " nPoints = min2( nPoints, 4 );\n" - " return nPoints;\n" - " \n" - "}\n" - "int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int* contactIdx)\n" - "{\n" - " if( nPoints == 0 ) return 0;\n" - " nPoints = min2( nPoints, 64 );\n" - " float4 center = make_float4(0.f);\n" - " {\n" - " float4 v[64];\n" - " for (int i=0;i<nPoints;i++)\n" - " v[i] = p[i];\n" - " //memcpy( v, p, nPoints*sizeof(float4) );\n" - " PARALLEL_SUM( v, nPoints );\n" - " center = v[0]/(float)nPoints;\n" - " }\n" - " \n" - " { // sample 4 directions\n" - " if( nPoints < 4 )\n" - " {\n" - " for(int i=0; i<nPoints; i++) \n" - " contactIdx[i] = i;\n" - " return nPoints;\n" - " }\n" - " float4 aVector = p[0] - center;\n" - " float4 u = cross3( nearNormal, aVector );\n" - " float4 v = cross3( nearNormal, u );\n" - " u = normalize3( u );\n" - " v = normalize3( v );\n" - " int idx[4];\n" - " float2 max00 = make_float2(0,FLT_MAX);\n" - " {\n" - " // idx, distance\n" - " {\n" - " {\n" - " int4 a[64];\n" - " for(int ie = 0; ie<nPoints; ie++ )\n" - " {\n" - " \n" - " \n" - " float f;\n" - " float4 r = p[ie]-center;\n" - " f = dot3F4( u, r );\n" - " a[ie].x = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" - " f = dot3F4( -u, r );\n" - " a[ie].y = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" - " f = dot3F4( v, r );\n" - " a[ie].z = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" - " f = dot3F4( -v, r );\n" - " a[ie].w = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" - " }\n" - " for(int ie=0; ie<nPoints; ie++)\n" - " {\n" - " a[0].x = (a[0].x > a[ie].x )? a[0].x: a[ie].x;\n" - " a[0].y = (a[0].y > a[ie].y )? a[0].y: a[ie].y;\n" - " a[0].z = (a[0].z > a[ie].z )? a[0].z: a[ie].z;\n" - " a[0].w = (a[0].w > a[ie].w )? a[0].w: a[ie].w;\n" - " }\n" - " idx[0] = (int)a[0].x & 0xff;\n" - " idx[1] = (int)a[0].y & 0xff;\n" - " idx[2] = (int)a[0].z & 0xff;\n" - " idx[3] = (int)a[0].w & 0xff;\n" - " }\n" - " }\n" - " {\n" - " float2 h[64];\n" - " PARALLEL_DO( h[ie] = make_float2((float)ie, p[ie].w), nPoints );\n" - " REDUCE_MIN( h, nPoints );\n" - " max00 = h[0];\n" - " }\n" - " }\n" - " contactIdx[0] = idx[0];\n" - " contactIdx[1] = idx[1];\n" - " contactIdx[2] = idx[2];\n" - " contactIdx[3] = idx[3];\n" - " return 4;\n" - " }\n" - "}\n" - "__kernel void extractManifoldAndAddContactKernel(__global const int4* pairs, \n" - " __global const b3RigidBodyData_t* rigidBodies, \n" - " __global const float4* closestPointsWorld,\n" - " __global const float4* separatingNormalsWorld,\n" - " __global const int* contactCounts,\n" - " __global const int* contactOffsets,\n" - " __global struct b3Contact4Data* restrict contactsOut,\n" - " counter32_t nContactsOut,\n" - " int contactCapacity,\n" - " int numPairs,\n" - " int pairIndex\n" - " )\n" - "{\n" - " int idx = get_global_id(0);\n" - " \n" - " if (idx<numPairs)\n" - " {\n" - " float4 normal = separatingNormalsWorld[idx];\n" - " int nPoints = contactCounts[idx];\n" - " __global const float4* pointsIn = &closestPointsWorld[contactOffsets[idx]];\n" - " float4 localPoints[64];\n" - " for (int i=0;i<nPoints;i++)\n" - " {\n" - " localPoints[i] = pointsIn[i];\n" - " }\n" - " int contactIdx[4];// = {-1,-1,-1,-1};\n" - " contactIdx[0] = -1;\n" - " contactIdx[1] = -1;\n" - " contactIdx[2] = -1;\n" - " contactIdx[3] = -1;\n" - " int nContacts = extractManifoldSequential(localPoints, nPoints, normal, contactIdx);\n" - " int dstIdx;\n" - " AppendInc( nContactsOut, dstIdx );\n" - " if (dstIdx<contactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = contactsOut + dstIdx;\n" - " c->m_worldNormalOnB = -normal;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = idx;\n" - " int bodyA = pairs[pairIndex].x;\n" - " int bodyB = pairs[pairIndex].y;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " for (int i=0;i<nContacts;i++)\n" - " {\n" - " c->m_worldPosB[i] = localPoints[contactIdx[i]];\n" - " }\n" - " GET_NPOINTS(*c) = nContacts;\n" - " }\n" - " }\n" - "}\n" - "void trInverse(float4 translationIn, Quaternion orientationIn,\n" - " float4* translationOut, Quaternion* orientationOut)\n" - "{\n" - " *orientationOut = qtInvert(orientationIn);\n" - " *translationOut = qtRotate(*orientationOut, -translationIn);\n" - "}\n" - "void trMul(float4 translationA, Quaternion orientationA,\n" - " float4 translationB, Quaternion orientationB,\n" - " float4* translationOut, Quaternion* orientationOut)\n" - "{\n" - " *orientationOut = qtMul(orientationA,orientationB);\n" - " *translationOut = transform(&translationB,&translationA,&orientationA);\n" - "}\n" - "__kernel void clipHullHullKernel( __global int4* pairs, \n" - " __global const b3RigidBodyData_t* rigidBodies, \n" - " __global const b3Collidable_t* collidables,\n" - " __global const b3ConvexPolyhedronData_t* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const b3GpuFace_t* faces,\n" - " __global const int* indices,\n" - " __global const float4* separatingNormals,\n" - " __global const int* hasSeparatingAxis,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int numPairs,\n" - " int contactCapacity)\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " float4 worldVertsB1[64];\n" - " float4 worldVertsB2[64];\n" - " int capacityWorldVerts = 64; \n" - " float4 localContactsOut[64];\n" - " int localContactCapacity=64;\n" - " \n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " if (i<numPairs)\n" - " {\n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " if (hasSeparatingAxis[i])\n" - " {\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " \n" - " int numLocalContactsOut = clipHullAgainstHull(separatingNormals[i],\n" - " &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" - " rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,\n" - " rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,\n" - " worldVertsB1,worldVertsB2,capacityWorldVerts,\n" - " minDist, maxDist,\n" - " vertices,faces,indices,\n" - " localContactsOut,localContactCapacity);\n" - " \n" - " if (numLocalContactsOut>0)\n" - " {\n" - " float4 normal = -separatingNormals[i];\n" - " int nPoints = numLocalContactsOut;\n" - " float4* pointsIn = localContactsOut;\n" - " int contactIdx[4];// = {-1,-1,-1,-1};\n" - " contactIdx[0] = -1;\n" - " contactIdx[1] = -1;\n" - " contactIdx[2] = -1;\n" - " contactIdx[3] = -1;\n" - " \n" - " int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" - " \n" - " \n" - " int mprContactIndex = pairs[pairIndex].z;\n" - " int dstIdx = mprContactIndex;\n" - " if (dstIdx<0)\n" - " {\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " }\n" - " if (dstIdx<contactCapacity)\n" - " {\n" - " pairs[pairIndex].z = dstIdx;\n" - " __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" - " c->m_worldNormalOnB = -normal;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " int bodyA = pairs[pairIndex].x;\n" - " int bodyB = pairs[pairIndex].y;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " for (int i=0;i<nReducedContacts;i++)\n" - " {\n" - " //this condition means: overwrite contact point, unless at index i==0 we have a valid 'mpr' contact\n" - " if (i>0||(mprContactIndex<0))\n" - " {\n" - " c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" - " }\n" - " }\n" - " GET_NPOINTS(*c) = nReducedContacts;\n" - " }\n" - " \n" - " }// if (numContactsOut>0)\n" - " }// if (hasSeparatingAxis[i])\n" - " }// if (i<numPairs)\n" - "}\n" - "__kernel void clipCompoundsHullHullKernel( __global const int4* gpuCompoundPairs, \n" - " __global const b3RigidBodyData_t* rigidBodies, \n" - " __global const b3Collidable_t* collidables,\n" - " __global const b3ConvexPolyhedronData_t* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const b3GpuFace_t* faces,\n" - " __global const int* indices,\n" - " __global const b3GpuChildShape_t* gpuChildShapes,\n" - " __global const float4* gpuCompoundSepNormalsOut,\n" - " __global const int* gpuHasCompoundSepNormalsOut,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int numCompoundPairs, int maxContactCapacity)\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " float4 worldVertsB1[64];\n" - " float4 worldVertsB2[64];\n" - " int capacityWorldVerts = 64; \n" - " float4 localContactsOut[64];\n" - " int localContactCapacity=64;\n" - " \n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " if (i<numCompoundPairs)\n" - " {\n" - " if (gpuHasCompoundSepNormalsOut[i])\n" - " {\n" - " int bodyIndexA = gpuCompoundPairs[i].x;\n" - " int bodyIndexB = gpuCompoundPairs[i].y;\n" - " \n" - " int childShapeIndexA = gpuCompoundPairs[i].z;\n" - " int childShapeIndexB = gpuCompoundPairs[i].w;\n" - " \n" - " int collidableIndexA = -1;\n" - " int collidableIndexB = -1;\n" - " \n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " \n" - " float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " \n" - " if (childShapeIndexA >= 0)\n" - " {\n" - " collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" - " float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" - " float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" - " float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" - " float4 newOrnA = qtMul(ornA,childOrnA);\n" - " posA = newPosA;\n" - " ornA = newOrnA;\n" - " } else\n" - " {\n" - " collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " }\n" - " \n" - " if (childShapeIndexB>=0)\n" - " {\n" - " collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " posB = newPosB;\n" - " ornB = newOrnB;\n" - " } else\n" - " {\n" - " collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" - " }\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i],\n" - " &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " worldVertsB1,worldVertsB2,capacityWorldVerts,\n" - " minDist, maxDist,\n" - " vertices,faces,indices,\n" - " localContactsOut,localContactCapacity);\n" - " \n" - " if (numLocalContactsOut>0)\n" - " {\n" - " float4 normal = -gpuCompoundSepNormalsOut[i];\n" - " int nPoints = numLocalContactsOut;\n" - " float4* pointsIn = localContactsOut;\n" - " int contactIdx[4];// = {-1,-1,-1,-1};\n" - " contactIdx[0] = -1;\n" - " contactIdx[1] = -1;\n" - " contactIdx[2] = -1;\n" - " contactIdx[3] = -1;\n" - " \n" - " int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" - " \n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " if ((dstIdx+nReducedContacts) < maxContactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" - " c->m_worldNormalOnB = -normal;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " int bodyA = gpuCompoundPairs[pairIndex].x;\n" - " int bodyB = gpuCompoundPairs[pairIndex].y;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" - " c->m_childIndexA = childShapeIndexA;\n" - " c->m_childIndexB = childShapeIndexB;\n" - " for (int i=0;i<nReducedContacts;i++)\n" - " {\n" - " c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" - " }\n" - " GET_NPOINTS(*c) = nReducedContacts;\n" - " }\n" - " \n" - " }// if (numContactsOut>0)\n" - " }// if (gpuHasCompoundSepNormalsOut[i])\n" - " }// if (i<numCompoundPairs)\n" - "}\n" - "__kernel void sphereSphereCollisionKernel( __global const int4* pairs, \n" - " __global const b3RigidBodyData_t* rigidBodies, \n" - " __global const b3Collidable_t* collidables,\n" - " __global const float4* separatingNormals,\n" - " __global const int* hasSeparatingAxis,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int contactCapacity,\n" - " int numPairs)\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" - " collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" - " {\n" - " //sphere-sphere\n" - " float radiusA = collidables[collidableIndexA].m_radius;\n" - " float radiusB = collidables[collidableIndexB].m_radius;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " float4 diff = posA-posB;\n" - " float len = length(diff);\n" - " \n" - " ///iff distance positive, don't generate a new contact\n" - " if ( len <= (radiusA+radiusB))\n" - " {\n" - " ///distance (negative means penetration)\n" - " float dist = len - (radiusA+radiusB);\n" - " float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f);\n" - " if (len > 0.00001)\n" - " {\n" - " normalOnSurfaceB = diff / len;\n" - " }\n" - " float4 contactPosB = posB + normalOnSurfaceB*radiusB;\n" - " contactPosB.w = dist;\n" - " \n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " if (dstIdx < contactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" - " c->m_worldNormalOnB = -normalOnSurfaceB;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " int bodyA = pairs[pairIndex].x;\n" - " int bodyB = pairs[pairIndex].y;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" - " c->m_worldPosB[0] = contactPosB;\n" - " c->m_childIndexA = -1;\n" - " c->m_childIndexB = -1;\n" - " GET_NPOINTS(*c) = 1;\n" - " }//if (dstIdx < numPairs)\n" - " }//if ( len <= (radiusA+radiusB))\n" - " }//SHAPE_SPHERE SHAPE_SPHERE\n" - " }//if (i<numPairs)\n" - "} \n" - "__kernel void clipHullHullConcaveConvexKernel( __global int4* concavePairsIn,\n" - " __global const b3RigidBodyData_t* rigidBodies, \n" - " __global const b3Collidable_t* collidables,\n" - " __global const b3ConvexPolyhedronData_t* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const b3GpuFace_t* faces,\n" - " __global const int* indices,\n" - " __global const b3GpuChildShape_t* gpuChildShapes,\n" - " __global const float4* separatingNormals,\n" - " __global struct b3Contact4Data* restrict globalContactsOut,\n" - " counter32_t nGlobalContactsOut,\n" - " int contactCapacity,\n" - " int numConcavePairs)\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " float4 worldVertsB1[64];\n" - " float4 worldVertsB2[64];\n" - " int capacityWorldVerts = 64; \n" - " float4 localContactsOut[64];\n" - " int localContactCapacity=64;\n" - " \n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " if (i<numConcavePairs)\n" - " {\n" - " //negative value means that the pair is invalid\n" - " if (concavePairsIn[i].w<0)\n" - " return;\n" - " int bodyIndexA = concavePairsIn[i].x;\n" - " int bodyIndexB = concavePairsIn[i].y;\n" - " int f = concavePairsIn[i].z;\n" - " int childShapeIndexA = f;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " ///////////////////////////////////////////////////////////////\n" - " \n" - " \n" - " bool overlap = false;\n" - " \n" - " b3ConvexPolyhedronData_t convexPolyhedronA;\n" - " //add 3 vertices of the triangle\n" - " convexPolyhedronA.m_numVertices = 3;\n" - " convexPolyhedronA.m_vertexOffset = 0;\n" - " float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" - " b3GpuFace_t face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" - " \n" - " float4 verticesA[3];\n" - " for (int i=0;i<3;i++)\n" - " {\n" - " int index = indices[face.m_indexOffset+i];\n" - " float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" - " verticesA[i] = vert;\n" - " localCenter += vert;\n" - " }\n" - " float dmin = FLT_MAX;\n" - " int localCC=0;\n" - " //a triangle has 3 unique edges\n" - " convexPolyhedronA.m_numUniqueEdges = 3;\n" - " convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" - " float4 uniqueEdgesA[3];\n" - " \n" - " uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" - " uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" - " uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" - " convexPolyhedronA.m_faceOffset = 0;\n" - " \n" - " float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" - " \n" - " b3GpuFace_t facesA[TRIANGLE_NUM_CONVEX_FACES];\n" - " int indicesA[3+3+2+2+2];\n" - " int curUsedIndices=0;\n" - " int fidx=0;\n" - " //front size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[0] = 0;\n" - " indicesA[1] = 1;\n" - " indicesA[2] = 2;\n" - " curUsedIndices+=3;\n" - " float c = face.m_plane.w;\n" - " facesA[fidx].m_plane.x = normal.x;\n" - " facesA[fidx].m_plane.y = normal.y;\n" - " facesA[fidx].m_plane.z = normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " //back size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[3]=2;\n" - " indicesA[4]=1;\n" - " indicesA[5]=0;\n" - " curUsedIndices+=3;\n" - " float c = dot3F4(normal,verticesA[0]);\n" - " float c1 = -face.m_plane.w;\n" - " facesA[fidx].m_plane.x = -normal.x;\n" - " facesA[fidx].m_plane.y = -normal.y;\n" - " facesA[fidx].m_plane.z = -normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " bool addEdgePlanes = true;\n" - " if (addEdgePlanes)\n" - " {\n" - " int numVertices=3;\n" - " int prevVertex = numVertices-1;\n" - " for (int i=0;i<numVertices;i++)\n" - " {\n" - " float4 v0 = verticesA[i];\n" - " float4 v1 = verticesA[prevVertex];\n" - " \n" - " float4 edgeNormal = normalize(cross(normal,v1-v0));\n" - " float c = -dot3F4(edgeNormal,v0);\n" - " facesA[fidx].m_numIndices = 2;\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[curUsedIndices++]=i;\n" - " indicesA[curUsedIndices++]=prevVertex;\n" - " \n" - " facesA[fidx].m_plane.x = edgeNormal.x;\n" - " facesA[fidx].m_plane.y = edgeNormal.y;\n" - " facesA[fidx].m_plane.z = edgeNormal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " fidx++;\n" - " prevVertex = i;\n" - " }\n" - " }\n" - " convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" - " convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " float4 sepAxis = separatingNormals[i];\n" - " \n" - " int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" - " int childShapeIndexB =-1;\n" - " if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " ///////////////////\n" - " ///compound shape support\n" - " \n" - " childShapeIndexB = concavePairsIn[pairIndex].w;\n" - " int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " posB = newPosB;\n" - " ornB = newOrnB;\n" - " \n" - " }\n" - " \n" - " ////////////////////////////////////////\n" - " \n" - " \n" - " \n" - " int numLocalContactsOut = clipHullAgainstHullLocalA(sepAxis,\n" - " &convexPolyhedronA, &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " worldVertsB1,worldVertsB2,capacityWorldVerts,\n" - " minDist, maxDist,\n" - " &verticesA,&facesA,&indicesA,\n" - " vertices,faces,indices,\n" - " localContactsOut,localContactCapacity);\n" - " \n" - " if (numLocalContactsOut>0)\n" - " {\n" - " float4 normal = -separatingNormals[i];\n" - " int nPoints = numLocalContactsOut;\n" - " float4* pointsIn = localContactsOut;\n" - " int contactIdx[4];// = {-1,-1,-1,-1};\n" - " contactIdx[0] = -1;\n" - " contactIdx[1] = -1;\n" - " contactIdx[2] = -1;\n" - " contactIdx[3] = -1;\n" - " \n" - " int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" - " \n" - " int dstIdx;\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " if (dstIdx<contactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" - " c->m_worldNormalOnB = -normal;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " int bodyA = concavePairsIn[pairIndex].x;\n" - " int bodyB = concavePairsIn[pairIndex].y;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" - " c->m_childIndexA = childShapeIndexA;\n" - " c->m_childIndexB = childShapeIndexB;\n" - " for (int i=0;i<nReducedContacts;i++)\n" - " {\n" - " c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" - " }\n" - " GET_NPOINTS(*c) = nReducedContacts;\n" - " }\n" - " \n" - " }// if (numContactsOut>0)\n" - " }// if (i<numPairs)\n" - "}\n" - "int findClippingFaces(const float4 separatingNormal,\n" - " __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB,\n" - " const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" - " __global float4* worldVertsA1,\n" - " __global float4* worldNormalsA1,\n" - " __global float4* worldVertsB1,\n" - " int capacityWorldVerts,\n" - " const float minDist, float maxDist,\n" - " __global const float4* vertices,\n" - " __global const b3GpuFace_t* faces,\n" - " __global const int* indices,\n" - " __global int4* clippingFaces, int pairIndex)\n" - "{\n" - " int numContactsOut = 0;\n" - " int numWorldVertsB1= 0;\n" - " \n" - " \n" - " int closestFaceB=-1;\n" - " float dmax = -FLT_MAX;\n" - " \n" - " {\n" - " for(int face=0;face<hullB->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x,\n" - " faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);\n" - " const float4 WorldNormal = qtRotate(ornB, Normal);\n" - " float d = dot3F4(WorldNormal,separatingNormal);\n" - " if (d > dmax)\n" - " {\n" - " dmax = d;\n" - " closestFaceB = face;\n" - " }\n" - " }\n" - " }\n" - " \n" - " {\n" - " const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];\n" - " const int numVertices = polyB.m_numIndices;\n" - " for(int e0=0;e0<numVertices;e0++)\n" - " {\n" - " const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];\n" - " worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" - " }\n" - " }\n" - " \n" - " int closestFaceA=-1;\n" - " {\n" - " float dmin = FLT_MAX;\n" - " for(int face=0;face<hullA->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(\n" - " faces[hullA->m_faceOffset+face].m_plane.x,\n" - " faces[hullA->m_faceOffset+face].m_plane.y,\n" - " faces[hullA->m_faceOffset+face].m_plane.z,\n" - " 0.f);\n" - " const float4 faceANormalWS = qtRotate(ornA,Normal);\n" - " \n" - " float d = dot3F4(faceANormalWS,separatingNormal);\n" - " if (d < dmin)\n" - " {\n" - " dmin = d;\n" - " closestFaceA = face;\n" - " worldNormalsA1[pairIndex] = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " \n" - " int numVerticesA = faces[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" - " for(int e0=0;e0<numVerticesA;e0++)\n" - " {\n" - " const float4 a = vertices[hullA->m_vertexOffset+indices[faces[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" - " worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" - " }\n" - " \n" - " clippingFaces[pairIndex].x = closestFaceA;\n" - " clippingFaces[pairIndex].y = closestFaceB;\n" - " clippingFaces[pairIndex].z = numVerticesA;\n" - " clippingFaces[pairIndex].w = numWorldVertsB1;\n" - " \n" - " \n" - " return numContactsOut;\n" - "}\n" - "int clipFaces(__global float4* worldVertsA1,\n" - " __global float4* worldNormalsA1,\n" - " __global float4* worldVertsB1,\n" - " __global float4* worldVertsB2, \n" - " int capacityWorldVertsB2,\n" - " const float minDist, float maxDist,\n" - " __global int4* clippingFaces,\n" - " int pairIndex)\n" - "{\n" - " int numContactsOut = 0;\n" - " \n" - " int closestFaceA = clippingFaces[pairIndex].x;\n" - " int closestFaceB = clippingFaces[pairIndex].y;\n" - " int numVertsInA = clippingFaces[pairIndex].z;\n" - " int numVertsInB = clippingFaces[pairIndex].w;\n" - " \n" - " int numVertsOut = 0;\n" - " \n" - " if (closestFaceA<0)\n" - " return numContactsOut;\n" - " \n" - " __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];\n" - " __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];\n" - " \n" - " \n" - " \n" - " // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" - " \n" - " for(int e0=0;e0<numVertsInA;e0++)\n" - " {\n" - " const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];\n" - " const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];\n" - " const float4 WorldEdge0 = aw - bw;\n" - " float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];\n" - " float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" - " float4 worldA1 = aw;\n" - " float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" - " float4 planeNormalWS = planeNormalWS1;\n" - " float planeEqWS=planeEqWS1;\n" - " numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);\n" - " __global float4* tmp = pVtxOut;\n" - " pVtxOut = pVtxIn;\n" - " pVtxIn = tmp;\n" - " numVertsInB = numVertsOut;\n" - " numVertsOut = 0;\n" - " }\n" - " \n" - " //float4 planeNormalWS = worldNormalsA1[pairIndex];\n" - " //float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" - " \n" - " /*for (int i=0;i<numVertsInB;i++)\n" - " {\n" - " pVtxOut[i] = pVtxIn[i];\n" - " }*/\n" - " \n" - " \n" - " \n" - " \n" - " //numVertsInB=0;\n" - " \n" - " float4 planeNormalWS = worldNormalsA1[pairIndex];\n" - " float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" - " for (int i=0;i<numVertsInB;i++)\n" - " {\n" - " float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" - " if (depth <=minDist)\n" - " {\n" - " depth = minDist;\n" - " }\n" - " \n" - " if (depth <=maxDist)\n" - " {\n" - " float4 pointInWorld = pVtxIn[i];\n" - " pVtxOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" - " }\n" - " }\n" - " \n" - " clippingFaces[pairIndex].w =numContactsOut;\n" - " \n" - " \n" - " return numContactsOut;\n" - "}\n" - "__kernel void findClippingFacesKernel( __global const int4* pairs,\n" - " __global const b3RigidBodyData_t* rigidBodies,\n" - " __global const b3Collidable_t* collidables,\n" - " __global const b3ConvexPolyhedronData_t* convexShapes,\n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const b3GpuFace_t* faces,\n" - " __global const int* indices,\n" - " __global const float4* separatingNormals,\n" - " __global const int* hasSeparatingAxis,\n" - " __global int4* clippingFacesOut,\n" - " __global float4* worldVertsA1,\n" - " __global float4* worldNormalsA1,\n" - " __global float4* worldVertsB1,\n" - " int capacityWorldVerts,\n" - " int numPairs\n" - " )\n" - "{\n" - " \n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " \n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " \n" - " if (hasSeparatingAxis[i])\n" - " {\n" - " \n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " \n" - " \n" - " int numLocalContactsOut = findClippingFaces(separatingNormals[i],\n" - " &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" - " rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,\n" - " rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,\n" - " worldVertsA1,\n" - " worldNormalsA1,\n" - " worldVertsB1,capacityWorldVerts,\n" - " minDist, maxDist,\n" - " vertices,faces,indices,\n" - " clippingFacesOut,i);\n" - " \n" - " \n" - " }// if (hasSeparatingAxis[i])\n" - " }// if (i<numPairs)\n" - " \n" - "}\n" - "__kernel void clipFacesAndFindContactsKernel( __global const float4* separatingNormals,\n" - " __global const int* hasSeparatingAxis,\n" - " __global int4* clippingFacesOut,\n" - " __global float4* worldVertsA1,\n" - " __global float4* worldNormalsA1,\n" - " __global float4* worldVertsB1,\n" - " __global float4* worldVertsB2,\n" - " int vertexFaceCapacity,\n" - " int numPairs,\n" - " int debugMode\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " \n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " \n" - " if (hasSeparatingAxis[i])\n" - " {\n" - " \n" - "// int bodyIndexA = pairs[i].x;\n" - " // int bodyIndexB = pairs[i].y;\n" - " \n" - " int numLocalContactsOut = 0;\n" - " int capacityWorldVertsB2 = vertexFaceCapacity;\n" - " \n" - " __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];\n" - " __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];\n" - " \n" - " {\n" - " __global int4* clippingFaces = clippingFacesOut;\n" - " \n" - " \n" - " int closestFaceA = clippingFaces[pairIndex].x;\n" - " int closestFaceB = clippingFaces[pairIndex].y;\n" - " int numVertsInA = clippingFaces[pairIndex].z;\n" - " int numVertsInB = clippingFaces[pairIndex].w;\n" - " \n" - " int numVertsOut = 0;\n" - " \n" - " if (closestFaceA>=0)\n" - " {\n" - " \n" - " \n" - " \n" - " // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" - " \n" - " for(int e0=0;e0<numVertsInA;e0++)\n" - " {\n" - " const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];\n" - " const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];\n" - " const float4 WorldEdge0 = aw - bw;\n" - " float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];\n" - " float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" - " float4 worldA1 = aw;\n" - " float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" - " float4 planeNormalWS = planeNormalWS1;\n" - " float planeEqWS=planeEqWS1;\n" - " numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);\n" - " __global float4* tmp = pVtxOut;\n" - " pVtxOut = pVtxIn;\n" - " pVtxIn = tmp;\n" - " numVertsInB = numVertsOut;\n" - " numVertsOut = 0;\n" - " }\n" - " \n" - " float4 planeNormalWS = worldNormalsA1[pairIndex];\n" - " float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" - " \n" - " for (int i=0;i<numVertsInB;i++)\n" - " {\n" - " float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" - " if (depth <=minDist)\n" - " {\n" - " depth = minDist;\n" - " }\n" - " \n" - " if (depth <=maxDist)\n" - " {\n" - " float4 pointInWorld = pVtxIn[i];\n" - " pVtxOut[numLocalContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" - " }\n" - " }\n" - " \n" - " }\n" - " clippingFaces[pairIndex].w =numLocalContactsOut;\n" - " \n" - " }\n" - " \n" - " for (int i=0;i<numLocalContactsOut;i++)\n" - " pVtxIn[i] = pVtxOut[i];\n" - " \n" - " }// if (hasSeparatingAxis[i])\n" - " }// if (i<numPairs)\n" - " \n" - "}\n" - "__kernel void newContactReductionKernel( __global int4* pairs,\n" - " __global const b3RigidBodyData_t* rigidBodies,\n" - " __global const float4* separatingNormals,\n" - " __global const int* hasSeparatingAxis,\n" - " __global struct b3Contact4Data* globalContactsOut,\n" - " __global int4* clippingFaces,\n" - " __global float4* worldVertsB2,\n" - " volatile __global int* nGlobalContactsOut,\n" - " int vertexFaceCapacity,\n" - " int contactCapacity,\n" - " int numPairs\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " int pairIndex = i;\n" - " \n" - " int4 contactIdx;\n" - " contactIdx=make_int4(0,1,2,3);\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " \n" - " if (hasSeparatingAxis[i])\n" - " {\n" - " \n" - " \n" - " \n" - " \n" - " int nPoints = clippingFaces[pairIndex].w;\n" - " \n" - " if (nPoints>0)\n" - " {\n" - " __global float4* pointsIn = &worldVertsB2[pairIndex*vertexFaceCapacity];\n" - " float4 normal = -separatingNormals[i];\n" - " \n" - " int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx);\n" - " \n" - " int mprContactIndex = pairs[pairIndex].z;\n" - " int dstIdx = mprContactIndex;\n" - " if (dstIdx<0)\n" - " {\n" - " AppendInc( nGlobalContactsOut, dstIdx );\n" - " }\n" - "//#if 0\n" - " \n" - " if (dstIdx < contactCapacity)\n" - " {\n" - " __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" - " c->m_worldNormalOnB = -normal;\n" - " c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" - " c->m_batchIdx = pairIndex;\n" - " int bodyA = pairs[pairIndex].x;\n" - " int bodyB = pairs[pairIndex].y;\n" - " pairs[pairIndex].w = dstIdx;\n" - " c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" - " c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" - " c->m_childIndexA =-1;\n" - " c->m_childIndexB =-1;\n" - " switch (nReducedContacts)\n" - " {\n" - " case 4:\n" - " c->m_worldPosB[3] = pointsIn[contactIdx.w];\n" - " case 3:\n" - " c->m_worldPosB[2] = pointsIn[contactIdx.z];\n" - " case 2:\n" - " c->m_worldPosB[1] = pointsIn[contactIdx.y];\n" - " case 1:\n" - " if (mprContactIndex<0)//test\n" - " c->m_worldPosB[0] = pointsIn[contactIdx.x];\n" - " default:\n" - " {\n" - " }\n" - " };\n" - " \n" - " GET_NPOINTS(*c) = nReducedContacts;\n" - " \n" - " }\n" - " \n" - " \n" - "//#endif\n" - " \n" - " }// if (numContactsOut>0)\n" - " }// if (hasSeparatingAxis[i])\n" - " }// if (i<numPairs)\n" - " \n" - " \n" - "}\n"; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl deleted file mode 100644 index 31ca43b8cd..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl +++ /dev/null @@ -1,1220 +0,0 @@ - -//keep this enum in sync with the CPU version (in btCollidable.h) -//written by Erwin Coumans - - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_CONCAVE_TRIMESH 5 -#define TRIANGLE_NUM_CONVEX_FACES 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 - -#define B3_MAX_STACK_DEPTH 256 - - -typedef unsigned int u32; - -///keep this in sync with btCollidable.h -typedef struct -{ - union { - int m_numChildShapes; - int m_bvhIndex; - }; - union - { - float m_radius; - int m_compoundBvhIndex; - }; - - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -#define MAX_NUM_PARTS_IN_BITS 10 - -///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes - int m_escapeIndexOrTriangleIndex; -} b3QuantizedBvhNode; - -typedef struct -{ - float4 m_aabbMin; - float4 m_aabbMax; - float4 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; - -} b3BvhInfo; - - -int getTriangleIndex(const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int isLeafNode(const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int getEscapeIndex(const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - -int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - - -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes, points to the root of the subtree - int m_rootNodeIndex; - //4 bytes - int m_subtreeSize; - int m_padding[3]; -} b3BvhSubtreeInfo; - - - - - - - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - - -typedef struct -{ - float4 m_localCenter; - float4 m_extents; - float4 mC; - float4 mE; - - float m_radius; - int m_faceOffset; - int m_numFaces; - int m_numVertices; - - int m_vertexOffset; - int m_uniqueEdgesOffset; - int m_numUniqueEdges; - int m_unused; -} ConvexPolyhedronCL; - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - -#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" -#include "Bullet3Common/shared/b3Int2.h" - - - -typedef struct -{ - float4 m_plane; - int m_indexOffset; - int m_numIndices; -} btGpuFace; - -#define make_float4 (float4) - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); - - -// float4 a1 = make_float4(a.xyz,0.f); -// float4 b1 = make_float4(b.xyz,0.f); - -// return cross(a1,b1); - -//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f); - - // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f); - - //return c; -} - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - v = make_float4(v.xyz,0.f); - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - -inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, __global const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA,const float4 ornA, - const float4 posB,const float4 ornB, - float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth) -{ - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0); - project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - *depth = d0<d1 ? d0:d1; - return true; -} - - - - -inline bool IsAlmostZero(const float4 v) -{ - if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f) - return false; - return true; -} - - - -bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS*=-1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - -bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* verticesA, - __global const float4* uniqueEdgesA, - __global const btGpuFace* facesA, - __global const int* indicesA, - const float4* verticesB, - const float4* uniqueEdgesB, - const btGpuFace* facesB, - const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS *= -1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) - { - const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0]; - float4 edge0World = qtRotate(ornA,edge0); - - for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) - { - const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1]; - float4 edge1World = qtRotate(ornB,edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2,crossje)<0) - crossje *= -1.f; - - float dist; - bool result = true; - { - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - result = false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - } - - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -inline int findClippingFaces(const float4 separatingNormal, - const ConvexPolyhedronCL* hullA, - __global const ConvexPolyhedronCL* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - const float minDist, float maxDist, - const float4* verticesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - __global int4* clippingFaces, int pairIndex) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=0; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, - facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB]; - int numVertices = polyB.m_numIndices; - if (numVertices>capacityWorldVerts) - numVertices = capacityWorldVerts; - if (numVertices<0) - numVertices = 0; - - for(int e0=0;e0<numVertices;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; - worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - } - - int closestFaceA=0; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - facesA[hullA->m_faceOffset+face].m_plane.x, - facesA[hullA->m_faceOffset+face].m_plane.y, - facesA[hullA->m_faceOffset+face].m_plane.z, - 0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - worldNormalsA1[pairIndex] = faceANormalWS; - } - } - } - - int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices; - if (numVerticesA>capacityWorldVerts) - numVerticesA = capacityWorldVerts; - if (numVerticesA<0) - numVerticesA=0; - - for(int e0=0;e0<numVerticesA;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; - worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); - } - } - - clippingFaces[pairIndex].x = closestFaceA; - clippingFaces[pairIndex].y = closestFaceB; - clippingFaces[pairIndex].z = numVerticesA; - clippingFaces[pairIndex].w = numWorldVertsB1; - - - return numContactsOut; -} - - - - -// work-in-progress -__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global const btGpuChildShape* gpuChildShapes, - __global btAabbCL* aabbs, - __global float4* concaveSeparatingNormalsOut, - __global int* concaveHasSeparatingNormals, - __global int4* clippingFacesOut, - __global float4* worldVertsA1GPU, - __global float4* worldNormalsAGPU, - __global float4* worldVertsB1GPU, - __global float* dmins, - int vertexFaceCapacity, - int numConcavePairs - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - - concaveHasSeparatingNormals[i] = 0; - - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&& - collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - concavePairs[pairIdx].w = -1; - return; - } - - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - int numActualConcaveConvexTests = 0; - - int f = concavePairs[i].z; - - bool overlap = false; - - ConvexPolyhedronCL convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - float4 triMinAabb, triMaxAabb; - btAabbCL triAabb; - triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); - triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - - triAabb.m_min = min(triAabb.m_min,vert); - triAabb.m_max = max(triAabb.m_max,vert); - - } - - overlap = true; - overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; - overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; - overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; - - if (overlap) - { - float dmin = FLT_MAX; - int hasSeparatingAxis=5; - float4 sepAxis=make_float4(1,2,3,4); - - int localCC=0; - numActualConcaveConvexTests++; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - - - /////////////////// - ///compound shape support - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int compoundChild = concavePairs[pairIdx].w; - int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - } - ////////////////// - - float4 c0local = convexPolyhedronA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - - bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } else - { - bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA, - posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces,indices, - verticesA,uniqueEdgesA,facesA,indicesA, - &sepAxis,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } else - { - hasSeparatingAxis = 1; - } - } - - if (hasSeparatingAxis) - { - dmins[i] = dmin; - concaveSeparatingNormalsOut[pairIdx]=sepAxis; - concaveHasSeparatingNormals[i]=1; - - } else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - } - else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } -} - - - - -// work-in-progress -__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global const btGpuChildShape* gpuChildShapes, - __global btAabbCL* aabbs, - __global float4* concaveSeparatingNormalsOut, - __global int* concaveHasSeparatingNormals, - __global int4* clippingFacesOut, - __global float4* worldVertsA1GPU, - __global float4* worldNormalsAGPU, - __global float4* worldVertsB1GPU, - __global float* dmins, - int vertexFaceCapacity, - int numConcavePairs - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - - if (!concaveHasSeparatingNormals[i]) - return; - - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - int numActualConcaveConvexTests = 0; - - int f = concavePairs[i].z; - - bool overlap = false; - - ConvexPolyhedronCL convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - float4 triMinAabb, triMaxAabb; - btAabbCL triAabb; - triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); - triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - - triAabb.m_min = min(triAabb.m_min,vert); - triAabb.m_max = max(triAabb.m_max,vert); - - } - - overlap = true; - overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; - overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; - overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; - - if (overlap) - { - float dmin = dmins[i]; - int hasSeparatingAxis=5; - float4 sepAxis=make_float4(1,2,3,4); - sepAxis = concaveSeparatingNormalsOut[pairIdx]; - - int localCC=0; - numActualConcaveConvexTests++; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - - - /////////////////// - ///compound shape support - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int compoundChild = concavePairs[pairIdx].w; - int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - } - ////////////////// - - float4 c0local = convexPolyhedronA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - - { - bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - - if (!sepEE) - { - hasSeparatingAxis = 0; - } else - { - hasSeparatingAxis = 1; - } - } - - - if (hasSeparatingAxis) - { - sepAxis.w = dmin; - dmins[i] = dmin; - concaveSeparatingNormalsOut[pairIdx]=sepAxis; - concaveHasSeparatingNormals[i]=1; - - float minDist = -1e30f; - float maxDist = 0.02f; - - - findClippingFaces(sepAxis, - &convexPolyhedronA, - &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsA1GPU, - worldNormalsAGPU, - worldVertsB1GPU, - vertexFaceCapacity, - minDist, maxDist, - verticesA, - facesA, - indicesA, - vertices, - faces, - indices, - clippingFacesOut, pairIdx); - - - } else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - } - else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - - concavePairs[i].z = -1;//for the next stage, z is used to determine existing contact points -} - diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h deleted file mode 100644 index a60702ca62..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h +++ /dev/null @@ -1,1456 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* satConcaveKernelsCL = - "//keep this enum in sync with the CPU version (in btCollidable.h)\n" - "//written by Erwin Coumans\n" - "#define SHAPE_CONVEX_HULL 3\n" - "#define SHAPE_CONCAVE_TRIMESH 5\n" - "#define TRIANGLE_NUM_CONVEX_FACES 5\n" - "#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" - "#define B3_MAX_STACK_DEPTH 256\n" - "typedef unsigned int u32;\n" - "///keep this in sync with btCollidable.h\n" - "typedef struct\n" - "{\n" - " union {\n" - " int m_numChildShapes;\n" - " int m_bvhIndex;\n" - " };\n" - " union\n" - " {\n" - " float m_radius;\n" - " int m_compoundBvhIndex;\n" - " };\n" - " \n" - " int m_shapeType;\n" - " int m_shapeIndex;\n" - " \n" - "} btCollidableGpu;\n" - "#define MAX_NUM_PARTS_IN_BITS 10\n" - "///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.\n" - "///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" - "typedef struct\n" - "{\n" - " //12 bytes\n" - " unsigned short int m_quantizedAabbMin[3];\n" - " unsigned short int m_quantizedAabbMax[3];\n" - " //4 bytes\n" - " int m_escapeIndexOrTriangleIndex;\n" - "} b3QuantizedBvhNode;\n" - "typedef struct\n" - "{\n" - " float4 m_aabbMin;\n" - " float4 m_aabbMax;\n" - " float4 m_quantization;\n" - " int m_numNodes;\n" - " int m_numSubTrees;\n" - " int m_nodeOffset;\n" - " int m_subTreeOffset;\n" - "} b3BvhInfo;\n" - "int getTriangleIndex(const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " unsigned int x=0;\n" - " unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" - " // Get only the lower bits where the triangle index is stored\n" - " return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" - "}\n" - "int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " unsigned int x=0;\n" - " unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" - " // Get only the lower bits where the triangle index is stored\n" - " return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" - "}\n" - "int isLeafNode(const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" - " return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" - "}\n" - "int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" - " return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" - "}\n" - " \n" - "int getEscapeIndex(const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " return -rootNode->m_escapeIndexOrTriangleIndex;\n" - "}\n" - "int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " return -rootNode->m_escapeIndexOrTriangleIndex;\n" - "}\n" - "typedef struct\n" - "{\n" - " //12 bytes\n" - " unsigned short int m_quantizedAabbMin[3];\n" - " unsigned short int m_quantizedAabbMax[3];\n" - " //4 bytes, points to the root of the subtree\n" - " int m_rootNodeIndex;\n" - " //4 bytes\n" - " int m_subtreeSize;\n" - " int m_padding[3];\n" - "} b3BvhSubtreeInfo;\n" - "typedef struct\n" - "{\n" - " float4 m_childPosition;\n" - " float4 m_childOrientation;\n" - " int m_shapeIndex;\n" - " int m_unused0;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "} btGpuChildShape;\n" - "typedef struct\n" - "{\n" - " float4 m_pos;\n" - " float4 m_quat;\n" - " float4 m_linVel;\n" - " float4 m_angVel;\n" - " u32 m_collidableIdx;\n" - " float m_invMass;\n" - " float m_restituitionCoeff;\n" - " float m_frictionCoeff;\n" - "} BodyData;\n" - "typedef struct \n" - "{\n" - " float4 m_localCenter;\n" - " float4 m_extents;\n" - " float4 mC;\n" - " float4 mE;\n" - " \n" - " float m_radius;\n" - " int m_faceOffset;\n" - " int m_numFaces;\n" - " int m_numVertices;\n" - " int m_vertexOffset;\n" - " int m_uniqueEdgesOffset;\n" - " int m_numUniqueEdges;\n" - " int m_unused;\n" - "} ConvexPolyhedronCL;\n" - "typedef struct \n" - "{\n" - " union\n" - " {\n" - " float4 m_min;\n" - " float m_minElems[4];\n" - " int m_minIndices[4];\n" - " };\n" - " union\n" - " {\n" - " float4 m_max;\n" - " float m_maxElems[4];\n" - " int m_maxIndices[4];\n" - " };\n" - "} btAabbCL;\n" - "#ifndef B3_AABB_H\n" - "#define B3_AABB_H\n" - "#ifndef B3_FLOAT4_H\n" - "#define B3_FLOAT4_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#define B3_PLATFORM_DEFINITIONS_H\n" - "struct MyTest\n" - "{\n" - " int bla;\n" - "};\n" - "#ifdef __cplusplus\n" - "#else\n" - "//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" - "#define B3_LARGE_FLOAT 1e18f\n" - "#define B3_INFINITY 1e18f\n" - "#define b3Assert(a)\n" - "#define b3ConstArray(a) __global const a*\n" - "#define b3AtomicInc atomic_inc\n" - "#define b3AtomicAdd atomic_add\n" - "#define b3Fabs fabs\n" - "#define b3Sqrt native_sqrt\n" - "#define b3Sin native_sin\n" - "#define b3Cos native_cos\n" - "#define B3_STATIC\n" - "#endif\n" - "#endif\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Float4;\n" - " #define b3Float4ConstArg const b3Float4\n" - " #define b3MakeFloat4 (float4)\n" - " float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return dot(a1, b1);\n" - " }\n" - " b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return cross(a1, b1);\n" - " }\n" - " #define b3MinFloat4 min\n" - " #define b3MaxFloat4 max\n" - " #define b3Normalized(a) normalize(a)\n" - "#endif \n" - " \n" - "inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" - "{\n" - " if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" - " return false;\n" - " return true;\n" - "}\n" - "inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" - "{\n" - " float maxDot = -B3_INFINITY;\n" - " int i = 0;\n" - " int ptIndex = -1;\n" - " for( i = 0; i < vecLen; i++ )\n" - " {\n" - " float dot = b3Dot3F4(vecArray[i],vec);\n" - " \n" - " if( dot > maxDot )\n" - " {\n" - " maxDot = dot;\n" - " ptIndex = i;\n" - " }\n" - " }\n" - " b3Assert(ptIndex>=0);\n" - " if (ptIndex<0)\n" - " {\n" - " ptIndex = 0;\n" - " }\n" - " *dotOut = maxDot;\n" - " return ptIndex;\n" - "}\n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_MAT3x3_H\n" - "#define B3_MAT3x3_H\n" - "#ifndef B3_QUAT_H\n" - "#define B3_QUAT_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif\n" - "#endif\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Quat;\n" - " #define b3QuatConstArg const b3Quat\n" - " \n" - " \n" - "inline float4 b3FastNormalize4(float4 v)\n" - "{\n" - " v = (float4)(v.xyz,0.f);\n" - " return fast_normalize(v);\n" - "}\n" - " \n" - "inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" - "inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" - "inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" - "{\n" - " b3Quat ans;\n" - " ans = b3Cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - b3Dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" - "{\n" - " b3Quat q;\n" - " q=in;\n" - " //return b3FastNormalize4(in);\n" - " float len = native_sqrt(dot(q, q));\n" - " if(len > 0.f)\n" - " {\n" - " q *= 1.f / len;\n" - " }\n" - " else\n" - " {\n" - " q.x = q.y = q.z = 0.f;\n" - " q.w = 1.f;\n" - " }\n" - " return q;\n" - "}\n" - "inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " b3Quat qInv = b3QuatInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " return b3QuatRotate( b3QuatInvert( q ), vec );\n" - "}\n" - "inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" - "{\n" - " return b3QuatRotate( orientation, point ) + (translation);\n" - "}\n" - " \n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "typedef struct\n" - "{\n" - " b3Float4 m_row[3];\n" - "}b3Mat3x3;\n" - "#define b3Mat3x3ConstArg const b3Mat3x3\n" - "#define b3GetRow(m,row) (m.m_row[row])\n" - "inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" - "{\n" - " b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" - " b3Mat3x3 out;\n" - " out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" - " out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" - " out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" - " out.m_row[0].w = 0.f;\n" - " out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" - " out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" - " out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" - " out.m_row[1].w = 0.f;\n" - " out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" - " out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" - " out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" - " out.m_row[2].w = 0.f;\n" - " return out;\n" - "}\n" - "inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = fabs(matIn.m_row[0]);\n" - " out.m_row[1] = fabs(matIn.m_row[1]);\n" - " out.m_row[2] = fabs(matIn.m_row[2]);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtZero();\n" - "__inline\n" - "b3Mat3x3 mtIdentity();\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Mat3x3 mtZero()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(0.f);\n" - " m.m_row[1] = (b3Float4)(0.f);\n" - " m.m_row[2] = (b3Float4)(0.f);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtIdentity()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(1,0,0,0);\n" - " m.m_row[1] = (b3Float4)(0,1,0,0);\n" - " m.m_row[2] = (b3Float4)(0,0,1,0);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" - " out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" - " out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" - "{\n" - " b3Mat3x3 transB;\n" - " transB = mtTranspose( b );\n" - " b3Mat3x3 ans;\n" - " // why this doesn't run when 0ing in the for{}\n" - " a.m_row[0].w = 0.f;\n" - " a.m_row[1].w = 0.f;\n" - " a.m_row[2].w = 0.f;\n" - " for(int i=0; i<3; i++)\n" - " {\n" - "// a.m_row[i].w = 0.f;\n" - " ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" - " ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" - " ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" - " ans.m_row[i].w = 0.f;\n" - " }\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" - "{\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a.m_row[0], b );\n" - " ans.y = b3Dot3F4( a.m_row[1], b );\n" - " ans.z = b3Dot3F4( a.m_row[2], b );\n" - " ans.w = 0.f;\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" - "{\n" - " b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" - " b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" - " b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a, colx );\n" - " ans.y = b3Dot3F4( a, coly );\n" - " ans.z = b3Dot3F4( a, colz );\n" - " return ans;\n" - "}\n" - "#endif\n" - "#endif //B3_MAT3x3_H\n" - "typedef struct b3Aabb b3Aabb_t;\n" - "struct b3Aabb\n" - "{\n" - " union\n" - " {\n" - " float m_min[4];\n" - " b3Float4 m_minVec;\n" - " int m_minIndices[4];\n" - " };\n" - " union\n" - " {\n" - " float m_max[4];\n" - " b3Float4 m_maxVec;\n" - " int m_signedMaxIndices[4];\n" - " };\n" - "};\n" - "inline void b3TransformAabb2(b3Float4ConstArg localAabbMin,b3Float4ConstArg localAabbMax, float margin,\n" - " b3Float4ConstArg pos,\n" - " b3QuatConstArg orn,\n" - " b3Float4* aabbMinOut,b3Float4* aabbMaxOut)\n" - "{\n" - " b3Float4 localHalfExtents = 0.5f*(localAabbMax-localAabbMin);\n" - " localHalfExtents+=b3MakeFloat4(margin,margin,margin,0.f);\n" - " b3Float4 localCenter = 0.5f*(localAabbMax+localAabbMin);\n" - " b3Mat3x3 m;\n" - " m = b3QuatGetRotationMatrix(orn);\n" - " b3Mat3x3 abs_b = b3AbsoluteMat3x3(m);\n" - " b3Float4 center = b3TransformPoint(localCenter,pos,orn);\n" - " \n" - " b3Float4 extent = b3MakeFloat4(b3Dot3F4(localHalfExtents,b3GetRow(abs_b,0)),\n" - " b3Dot3F4(localHalfExtents,b3GetRow(abs_b,1)),\n" - " b3Dot3F4(localHalfExtents,b3GetRow(abs_b,2)),\n" - " 0.f);\n" - " *aabbMinOut = center-extent;\n" - " *aabbMaxOut = center+extent;\n" - "}\n" - "/// conservative test for overlap between two aabbs\n" - "inline bool b3TestAabbAgainstAabb(b3Float4ConstArg aabbMin1,b3Float4ConstArg aabbMax1,\n" - " b3Float4ConstArg aabbMin2, b3Float4ConstArg aabbMax2)\n" - "{\n" - " bool overlap = true;\n" - " overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap;\n" - " overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap;\n" - " overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap;\n" - " return overlap;\n" - "}\n" - "#endif //B3_AABB_H\n" - "/*\n" - "Bullet Continuous Collision Detection and Physics Library\n" - "Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org\n" - "This software is provided 'as-is', without any express or implied warranty.\n" - "In no event will the authors be held liable for any damages arising from the use of this software.\n" - "Permission is granted to anyone to use this software for any purpose,\n" - "including commercial applications, and to alter it and redistribute it freely,\n" - "subject to the following restrictions:\n" - "1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" - "2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" - "3. This notice may not be removed or altered from any source distribution.\n" - "*/\n" - "#ifndef B3_INT2_H\n" - "#define B3_INT2_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#define b3UnsignedInt2 uint2\n" - "#define b3Int2 int2\n" - "#define b3MakeInt2 (int2)\n" - "#endif //__cplusplus\n" - "#endif\n" - "typedef struct\n" - "{\n" - " float4 m_plane;\n" - " int m_indexOffset;\n" - " int m_numIndices;\n" - "} btGpuFace;\n" - "#define make_float4 (float4)\n" - "__inline\n" - "float4 cross3(float4 a, float4 b)\n" - "{\n" - " return cross(a,b);\n" - " \n" - "// float4 a1 = make_float4(a.xyz,0.f);\n" - "// float4 b1 = make_float4(b.xyz,0.f);\n" - "// return cross(a1,b1);\n" - "//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);\n" - " \n" - " // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);\n" - " \n" - " //return c;\n" - "}\n" - "__inline\n" - "float dot3F4(float4 a, float4 b)\n" - "{\n" - " float4 a1 = make_float4(a.xyz,0.f);\n" - " float4 b1 = make_float4(b.xyz,0.f);\n" - " return dot(a1, b1);\n" - "}\n" - "__inline\n" - "float4 fastNormalize4(float4 v)\n" - "{\n" - " v = make_float4(v.xyz,0.f);\n" - " return fast_normalize(v);\n" - "}\n" - "///////////////////////////////////////\n" - "// Quaternion\n" - "///////////////////////////////////////\n" - "typedef float4 Quaternion;\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b);\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in);\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec);\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q);\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b)\n" - "{\n" - " Quaternion ans;\n" - " ans = cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in)\n" - "{\n" - " return fastNormalize4(in);\n" - "// in /= length( in );\n" - "// return in;\n" - "}\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec)\n" - "{\n" - " Quaternion qInv = qtInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = qtMul(qtMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q)\n" - "{\n" - " return (Quaternion)(-q.xyz, q.w);\n" - "}\n" - "__inline\n" - "float4 qtInvRotate(const Quaternion q, float4 vec)\n" - "{\n" - " return qtRotate( qtInvert( q ), vec );\n" - "}\n" - "__inline\n" - "float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" - "{\n" - " return qtRotate( *orientation, *p ) + (*translation);\n" - "}\n" - "__inline\n" - "float4 normalize3(const float4 a)\n" - "{\n" - " float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" - " return fastNormalize4( n );\n" - "}\n" - "inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" - "const float4* dir, const float4* vertices, float* min, float* max)\n" - "{\n" - " min[0] = FLT_MAX;\n" - " max[0] = -FLT_MAX;\n" - " int numVerts = hull->m_numVertices;\n" - " const float4 localDir = qtInvRotate(orn,*dir);\n" - " float offset = dot(pos,*dir);\n" - " for(int i=0;i<numVerts;i++)\n" - " {\n" - " float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" - " if(dp < min[0]) \n" - " min[0] = dp;\n" - " if(dp > max[0]) \n" - " max[0] = dp;\n" - " }\n" - " if(min[0]>max[0])\n" - " {\n" - " float tmp = min[0];\n" - " min[0] = max[0];\n" - " max[0] = tmp;\n" - " }\n" - " min[0] += offset;\n" - " max[0] += offset;\n" - "}\n" - "inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" - "const float4* dir, __global const float4* vertices, float* min, float* max)\n" - "{\n" - " min[0] = FLT_MAX;\n" - " max[0] = -FLT_MAX;\n" - " int numVerts = hull->m_numVertices;\n" - " const float4 localDir = qtInvRotate(orn,*dir);\n" - " float offset = dot(pos,*dir);\n" - " for(int i=0;i<numVerts;i++)\n" - " {\n" - " float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" - " if(dp < min[0]) \n" - " min[0] = dp;\n" - " if(dp > max[0]) \n" - " max[0] = dp;\n" - " }\n" - " if(min[0]>max[0])\n" - " {\n" - " float tmp = min[0];\n" - " min[0] = max[0];\n" - " max[0] = tmp;\n" - " }\n" - " min[0] += offset;\n" - " max[0] += offset;\n" - "}\n" - "inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA,const float4 ornA,\n" - " const float4 posB,const float4 ornB,\n" - " float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)\n" - "{\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);\n" - " project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);\n" - " if(Max0<Min1 || Max1<Min0)\n" - " return false;\n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " *depth = d0<d1 ? d0:d1;\n" - " return true;\n" - "}\n" - "inline bool IsAlmostZero(const float4 v)\n" - "{\n" - " if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)\n" - " return false;\n" - " return true;\n" - "}\n" - "bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " \n" - " const float4* verticesA, \n" - " const float4* uniqueEdgesA, \n" - " const btGpuFace* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB, \n" - " __global const float4* uniqueEdgesB, \n" - " __global const btGpuFace* facesB,\n" - " __global const int* indicesB,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " \n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " {\n" - " int numFacesA = hullA->m_numFaces;\n" - " // Test normals from hullA\n" - " for(int i=0;i<numFacesA;i++)\n" - " {\n" - " const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" - " float4 faceANormalWS = qtRotate(ornA,normal);\n" - " if (dot3F4(DeltaC2,faceANormalWS)<0)\n" - " faceANormalWS*=-1.f;\n" - " curPlaneTests++;\n" - " float d;\n" - " if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))\n" - " return false;\n" - " if(d<*dmin)\n" - " {\n" - " *dmin = d;\n" - " *sep = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " __global const float4* verticesA, \n" - " __global const float4* uniqueEdgesA, \n" - " __global const btGpuFace* facesA,\n" - " __global const int* indicesA,\n" - " const float4* verticesB,\n" - " const float4* uniqueEdgesB, \n" - " const btGpuFace* facesB,\n" - " const int* indicesB,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " {\n" - " int numFacesA = hullA->m_numFaces;\n" - " // Test normals from hullA\n" - " for(int i=0;i<numFacesA;i++)\n" - " {\n" - " const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" - " float4 faceANormalWS = qtRotate(ornA,normal);\n" - " if (dot3F4(DeltaC2,faceANormalWS)<0)\n" - " faceANormalWS *= -1.f;\n" - " curPlaneTests++;\n" - " float d;\n" - " if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))\n" - " return false;\n" - " if(d<*dmin)\n" - " {\n" - " *dmin = d;\n" - " *sep = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " const float4* verticesA, \n" - " const float4* uniqueEdgesA, \n" - " const btGpuFace* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB, \n" - " __global const float4* uniqueEdgesB, \n" - " __global const btGpuFace* facesB,\n" - " __global const int* indicesB,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " int curEdgeEdge = 0;\n" - " // Test edges\n" - " for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" - " {\n" - " const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];\n" - " float4 edge0World = qtRotate(ornA,edge0);\n" - " for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" - " {\n" - " const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];\n" - " float4 edge1World = qtRotate(ornB,edge1);\n" - " float4 crossje = cross3(edge0World,edge1World);\n" - " curEdgeEdge++;\n" - " if(!IsAlmostZero(crossje))\n" - " {\n" - " crossje = normalize3(crossje);\n" - " if (dot3F4(DeltaC2,crossje)<0)\n" - " crossje *= -1.f;\n" - " float dist;\n" - " bool result = true;\n" - " {\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);\n" - " project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);\n" - " \n" - " if(Max0<Min1 || Max1<Min0)\n" - " result = false;\n" - " \n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " dist = d0<d1 ? d0:d1;\n" - " result = true;\n" - " }\n" - " \n" - " if(dist<*dmin)\n" - " {\n" - " *dmin = dist;\n" - " *sep = crossje;\n" - " }\n" - " }\n" - " }\n" - " }\n" - " \n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "inline int findClippingFaces(const float4 separatingNormal,\n" - " const ConvexPolyhedronCL* hullA, \n" - " __global const ConvexPolyhedronCL* hullB,\n" - " const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" - " __global float4* worldVertsA1,\n" - " __global float4* worldNormalsA1,\n" - " __global float4* worldVertsB1,\n" - " int capacityWorldVerts,\n" - " const float minDist, float maxDist,\n" - " const float4* verticesA,\n" - " const btGpuFace* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB,\n" - " __global const btGpuFace* facesB,\n" - " __global const int* indicesB,\n" - " __global int4* clippingFaces, int pairIndex)\n" - "{\n" - " int numContactsOut = 0;\n" - " int numWorldVertsB1= 0;\n" - " \n" - " \n" - " int closestFaceB=0;\n" - " float dmax = -FLT_MAX;\n" - " \n" - " {\n" - " for(int face=0;face<hullB->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,\n" - " facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" - " const float4 WorldNormal = qtRotate(ornB, Normal);\n" - " float d = dot3F4(WorldNormal,separatingNormal);\n" - " if (d > dmax)\n" - " {\n" - " dmax = d;\n" - " closestFaceB = face;\n" - " }\n" - " }\n" - " }\n" - " \n" - " {\n" - " const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" - " int numVertices = polyB.m_numIndices;\n" - " if (numVertices>capacityWorldVerts)\n" - " numVertices = capacityWorldVerts;\n" - " if (numVertices<0)\n" - " numVertices = 0;\n" - " \n" - " for(int e0=0;e0<numVertices;e0++)\n" - " {\n" - " if (e0<capacityWorldVerts)\n" - " {\n" - " const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" - " worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" - " }\n" - " }\n" - " }\n" - " \n" - " int closestFaceA=0;\n" - " {\n" - " float dmin = FLT_MAX;\n" - " for(int face=0;face<hullA->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(\n" - " facesA[hullA->m_faceOffset+face].m_plane.x,\n" - " facesA[hullA->m_faceOffset+face].m_plane.y,\n" - " facesA[hullA->m_faceOffset+face].m_plane.z,\n" - " 0.f);\n" - " const float4 faceANormalWS = qtRotate(ornA,Normal);\n" - " \n" - " float d = dot3F4(faceANormalWS,separatingNormal);\n" - " if (d < dmin)\n" - " {\n" - " dmin = d;\n" - " closestFaceA = face;\n" - " worldNormalsA1[pairIndex] = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " \n" - " int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" - " if (numVerticesA>capacityWorldVerts)\n" - " numVerticesA = capacityWorldVerts;\n" - " if (numVerticesA<0)\n" - " numVerticesA=0;\n" - " \n" - " for(int e0=0;e0<numVerticesA;e0++)\n" - " {\n" - " if (e0<capacityWorldVerts)\n" - " {\n" - " const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" - " worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" - " }\n" - " }\n" - " \n" - " clippingFaces[pairIndex].x = closestFaceA;\n" - " clippingFaces[pairIndex].y = closestFaceB;\n" - " clippingFaces[pairIndex].z = numVerticesA;\n" - " clippingFaces[pairIndex].w = numWorldVertsB1;\n" - " \n" - " \n" - " return numContactsOut;\n" - "}\n" - "// work-in-progress\n" - "__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs,\n" - " __global const BodyData* rigidBodies,\n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes,\n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global const btGpuChildShape* gpuChildShapes,\n" - " __global btAabbCL* aabbs,\n" - " __global float4* concaveSeparatingNormalsOut,\n" - " __global int* concaveHasSeparatingNormals,\n" - " __global int4* clippingFacesOut,\n" - " __global float4* worldVertsA1GPU,\n" - " __global float4* worldNormalsAGPU,\n" - " __global float4* worldVertsB1GPU,\n" - " __global float* dmins,\n" - " int vertexFaceCapacity,\n" - " int numConcavePairs\n" - " )\n" - "{\n" - " \n" - " int i = get_global_id(0);\n" - " if (i>=numConcavePairs)\n" - " return;\n" - " \n" - " concaveHasSeparatingNormals[i] = 0;\n" - " \n" - " int pairIdx = i;\n" - " \n" - " int bodyIndexA = concavePairs[i].x;\n" - " int bodyIndexB = concavePairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n" - " collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " concavePairs[pairIdx].w = -1;\n" - " return;\n" - " }\n" - " \n" - " \n" - " \n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " int numActualConcaveConvexTests = 0;\n" - " \n" - " int f = concavePairs[i].z;\n" - " \n" - " bool overlap = false;\n" - " \n" - " ConvexPolyhedronCL convexPolyhedronA;\n" - " \n" - " //add 3 vertices of the triangle\n" - " convexPolyhedronA.m_numVertices = 3;\n" - " convexPolyhedronA.m_vertexOffset = 0;\n" - " float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" - " \n" - " btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" - " float4 triMinAabb, triMaxAabb;\n" - " btAabbCL triAabb;\n" - " triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" - " triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" - " \n" - " float4 verticesA[3];\n" - " for (int i=0;i<3;i++)\n" - " {\n" - " int index = indices[face.m_indexOffset+i];\n" - " float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" - " verticesA[i] = vert;\n" - " localCenter += vert;\n" - " \n" - " triAabb.m_min = min(triAabb.m_min,vert);\n" - " triAabb.m_max = max(triAabb.m_max,vert);\n" - " \n" - " }\n" - " \n" - " overlap = true;\n" - " overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" - " overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" - " overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" - " \n" - " if (overlap)\n" - " {\n" - " float dmin = FLT_MAX;\n" - " int hasSeparatingAxis=5;\n" - " float4 sepAxis=make_float4(1,2,3,4);\n" - " \n" - " int localCC=0;\n" - " numActualConcaveConvexTests++;\n" - " \n" - " //a triangle has 3 unique edges\n" - " convexPolyhedronA.m_numUniqueEdges = 3;\n" - " convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" - " float4 uniqueEdgesA[3];\n" - " \n" - " uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" - " uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" - " uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" - " \n" - " \n" - " convexPolyhedronA.m_faceOffset = 0;\n" - " \n" - " float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" - " \n" - " btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" - " int indicesA[3+3+2+2+2];\n" - " int curUsedIndices=0;\n" - " int fidx=0;\n" - " \n" - " //front size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[0] = 0;\n" - " indicesA[1] = 1;\n" - " indicesA[2] = 2;\n" - " curUsedIndices+=3;\n" - " float c = face.m_plane.w;\n" - " facesA[fidx].m_plane.x = normal.x;\n" - " facesA[fidx].m_plane.y = normal.y;\n" - " facesA[fidx].m_plane.z = normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " //back size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[3]=2;\n" - " indicesA[4]=1;\n" - " indicesA[5]=0;\n" - " curUsedIndices+=3;\n" - " float c = dot(normal,verticesA[0]);\n" - " float c1 = -face.m_plane.w;\n" - " facesA[fidx].m_plane.x = -normal.x;\n" - " facesA[fidx].m_plane.y = -normal.y;\n" - " facesA[fidx].m_plane.z = -normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " \n" - " bool addEdgePlanes = true;\n" - " if (addEdgePlanes)\n" - " {\n" - " int numVertices=3;\n" - " int prevVertex = numVertices-1;\n" - " for (int i=0;i<numVertices;i++)\n" - " {\n" - " float4 v0 = verticesA[i];\n" - " float4 v1 = verticesA[prevVertex];\n" - " \n" - " float4 edgeNormal = normalize(cross(normal,v1-v0));\n" - " float c = -dot(edgeNormal,v0);\n" - " \n" - " facesA[fidx].m_numIndices = 2;\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[curUsedIndices++]=i;\n" - " indicesA[curUsedIndices++]=prevVertex;\n" - " \n" - " facesA[fidx].m_plane.x = edgeNormal.x;\n" - " facesA[fidx].m_plane.y = edgeNormal.y;\n" - " facesA[fidx].m_plane.z = edgeNormal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " fidx++;\n" - " prevVertex = i;\n" - " }\n" - " }\n" - " convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" - " convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" - " \n" - " \n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " \n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " \n" - " \n" - " \n" - " \n" - " ///////////////////\n" - " ///compound shape support\n" - " \n" - " if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " int compoundChild = concavePairs[pairIdx].w;\n" - " int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" - " int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " posB = newPosB;\n" - " ornB = newOrnB;\n" - " shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" - " }\n" - " //////////////////\n" - " \n" - " float4 c0local = convexPolyhedronA.m_localCenter;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " \n" - " \n" - " bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " verticesA,uniqueEdgesA,facesA,indicesA,\n" - " vertices,uniqueEdges,faces,indices,\n" - " &sepAxis,&dmin);\n" - " hasSeparatingAxis = 4;\n" - " if (!sepA)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else\n" - " {\n" - " bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n" - " posB,ornB,\n" - " posA,ornA,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,indices,\n" - " verticesA,uniqueEdgesA,facesA,indicesA,\n" - " &sepAxis,&dmin);\n" - " \n" - " if (!sepB)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else\n" - " {\n" - " hasSeparatingAxis = 1;\n" - " }\n" - " } \n" - " \n" - " if (hasSeparatingAxis)\n" - " {\n" - " dmins[i] = dmin;\n" - " concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" - " concaveHasSeparatingNormals[i]=1;\n" - " \n" - " } else\n" - " { \n" - " //mark this pair as in-active\n" - " concavePairs[pairIdx].w = -1;\n" - " }\n" - " }\n" - " else\n" - " { \n" - " //mark this pair as in-active\n" - " concavePairs[pairIdx].w = -1;\n" - " }\n" - "}\n" - "// work-in-progress\n" - "__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs,\n" - " __global const BodyData* rigidBodies,\n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes,\n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global const btGpuChildShape* gpuChildShapes,\n" - " __global btAabbCL* aabbs,\n" - " __global float4* concaveSeparatingNormalsOut,\n" - " __global int* concaveHasSeparatingNormals,\n" - " __global int4* clippingFacesOut,\n" - " __global float4* worldVertsA1GPU,\n" - " __global float4* worldNormalsAGPU,\n" - " __global float4* worldVertsB1GPU,\n" - " __global float* dmins,\n" - " int vertexFaceCapacity,\n" - " int numConcavePairs\n" - " )\n" - "{\n" - " \n" - " int i = get_global_id(0);\n" - " if (i>=numConcavePairs)\n" - " return;\n" - " \n" - " if (!concaveHasSeparatingNormals[i])\n" - " return;\n" - " \n" - " int pairIdx = i;\n" - " \n" - " int bodyIndexA = concavePairs[i].x;\n" - " int bodyIndexB = concavePairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " \n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " int numActualConcaveConvexTests = 0;\n" - " \n" - " int f = concavePairs[i].z;\n" - " \n" - " bool overlap = false;\n" - " \n" - " ConvexPolyhedronCL convexPolyhedronA;\n" - " \n" - " //add 3 vertices of the triangle\n" - " convexPolyhedronA.m_numVertices = 3;\n" - " convexPolyhedronA.m_vertexOffset = 0;\n" - " float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" - " \n" - " btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" - " float4 triMinAabb, triMaxAabb;\n" - " btAabbCL triAabb;\n" - " triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" - " triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" - " \n" - " float4 verticesA[3];\n" - " for (int i=0;i<3;i++)\n" - " {\n" - " int index = indices[face.m_indexOffset+i];\n" - " float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" - " verticesA[i] = vert;\n" - " localCenter += vert;\n" - " \n" - " triAabb.m_min = min(triAabb.m_min,vert);\n" - " triAabb.m_max = max(triAabb.m_max,vert);\n" - " \n" - " }\n" - " \n" - " overlap = true;\n" - " overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" - " overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" - " overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" - " \n" - " if (overlap)\n" - " {\n" - " float dmin = dmins[i];\n" - " int hasSeparatingAxis=5;\n" - " float4 sepAxis=make_float4(1,2,3,4);\n" - " sepAxis = concaveSeparatingNormalsOut[pairIdx];\n" - " \n" - " int localCC=0;\n" - " numActualConcaveConvexTests++;\n" - " \n" - " //a triangle has 3 unique edges\n" - " convexPolyhedronA.m_numUniqueEdges = 3;\n" - " convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" - " float4 uniqueEdgesA[3];\n" - " \n" - " uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" - " uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" - " uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" - " \n" - " \n" - " convexPolyhedronA.m_faceOffset = 0;\n" - " \n" - " float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" - " \n" - " btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" - " int indicesA[3+3+2+2+2];\n" - " int curUsedIndices=0;\n" - " int fidx=0;\n" - " \n" - " //front size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[0] = 0;\n" - " indicesA[1] = 1;\n" - " indicesA[2] = 2;\n" - " curUsedIndices+=3;\n" - " float c = face.m_plane.w;\n" - " facesA[fidx].m_plane.x = normal.x;\n" - " facesA[fidx].m_plane.y = normal.y;\n" - " facesA[fidx].m_plane.z = normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " //back size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[3]=2;\n" - " indicesA[4]=1;\n" - " indicesA[5]=0;\n" - " curUsedIndices+=3;\n" - " float c = dot(normal,verticesA[0]);\n" - " float c1 = -face.m_plane.w;\n" - " facesA[fidx].m_plane.x = -normal.x;\n" - " facesA[fidx].m_plane.y = -normal.y;\n" - " facesA[fidx].m_plane.z = -normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " \n" - " bool addEdgePlanes = true;\n" - " if (addEdgePlanes)\n" - " {\n" - " int numVertices=3;\n" - " int prevVertex = numVertices-1;\n" - " for (int i=0;i<numVertices;i++)\n" - " {\n" - " float4 v0 = verticesA[i];\n" - " float4 v1 = verticesA[prevVertex];\n" - " \n" - " float4 edgeNormal = normalize(cross(normal,v1-v0));\n" - " float c = -dot(edgeNormal,v0);\n" - " \n" - " facesA[fidx].m_numIndices = 2;\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[curUsedIndices++]=i;\n" - " indicesA[curUsedIndices++]=prevVertex;\n" - " \n" - " facesA[fidx].m_plane.x = edgeNormal.x;\n" - " facesA[fidx].m_plane.y = edgeNormal.y;\n" - " facesA[fidx].m_plane.z = edgeNormal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " fidx++;\n" - " prevVertex = i;\n" - " }\n" - " }\n" - " convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" - " convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" - " \n" - " \n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " \n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " \n" - " \n" - " \n" - " \n" - " ///////////////////\n" - " ///compound shape support\n" - " \n" - " if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " int compoundChild = concavePairs[pairIdx].w;\n" - " int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" - " int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " posB = newPosB;\n" - " ornB = newOrnB;\n" - " shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" - " }\n" - " //////////////////\n" - " \n" - " float4 c0local = convexPolyhedronA.m_localCenter;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " \n" - " \n" - " {\n" - " bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " verticesA,uniqueEdgesA,facesA,indicesA,\n" - " vertices,uniqueEdges,faces,indices,\n" - " &sepAxis,&dmin);\n" - " \n" - " if (!sepEE)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else\n" - " {\n" - " hasSeparatingAxis = 1;\n" - " }\n" - " }\n" - " \n" - " \n" - " if (hasSeparatingAxis)\n" - " {\n" - " sepAxis.w = dmin;\n" - " dmins[i] = dmin;\n" - " concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" - " concaveHasSeparatingNormals[i]=1;\n" - " \n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " \n" - " findClippingFaces(sepAxis,\n" - " &convexPolyhedronA,\n" - " &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " worldVertsA1GPU,\n" - " worldNormalsAGPU,\n" - " worldVertsB1GPU,\n" - " vertexFaceCapacity,\n" - " minDist, maxDist,\n" - " verticesA,\n" - " facesA,\n" - " indicesA,\n" - " vertices,\n" - " faces,\n" - " indices,\n" - " clippingFacesOut, pairIdx);\n" - " \n" - " \n" - " } else\n" - " { \n" - " //mark this pair as in-active\n" - " concavePairs[pairIdx].w = -1;\n" - " }\n" - " }\n" - " else\n" - " { \n" - " //mark this pair as in-active\n" - " concavePairs[pairIdx].w = -1;\n" - " }\n" - " \n" - " concavePairs[i].z = -1;//for the next stage, z is used to determine existing contact points\n" - "}\n"; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h deleted file mode 100644 index e627af2799..0000000000 --- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h +++ /dev/null @@ -1,2103 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* satKernelsCL = - "//keep this enum in sync with the CPU version (in btCollidable.h)\n" - "//written by Erwin Coumans\n" - "#define SHAPE_CONVEX_HULL 3\n" - "#define SHAPE_CONCAVE_TRIMESH 5\n" - "#define TRIANGLE_NUM_CONVEX_FACES 5\n" - "#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" - "#define B3_MAX_STACK_DEPTH 256\n" - "typedef unsigned int u32;\n" - "///keep this in sync with btCollidable.h\n" - "typedef struct\n" - "{\n" - " union {\n" - " int m_numChildShapes;\n" - " int m_bvhIndex;\n" - " };\n" - " union\n" - " {\n" - " float m_radius;\n" - " int m_compoundBvhIndex;\n" - " };\n" - " \n" - " int m_shapeType;\n" - " int m_shapeIndex;\n" - " \n" - "} btCollidableGpu;\n" - "#define MAX_NUM_PARTS_IN_BITS 10\n" - "///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.\n" - "///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" - "typedef struct\n" - "{\n" - " //12 bytes\n" - " unsigned short int m_quantizedAabbMin[3];\n" - " unsigned short int m_quantizedAabbMax[3];\n" - " //4 bytes\n" - " int m_escapeIndexOrTriangleIndex;\n" - "} b3QuantizedBvhNode;\n" - "typedef struct\n" - "{\n" - " float4 m_aabbMin;\n" - " float4 m_aabbMax;\n" - " float4 m_quantization;\n" - " int m_numNodes;\n" - " int m_numSubTrees;\n" - " int m_nodeOffset;\n" - " int m_subTreeOffset;\n" - "} b3BvhInfo;\n" - "int getTriangleIndex(const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " unsigned int x=0;\n" - " unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" - " // Get only the lower bits where the triangle index is stored\n" - " return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" - "}\n" - "int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " unsigned int x=0;\n" - " unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" - " // Get only the lower bits where the triangle index is stored\n" - " return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" - "}\n" - "int isLeafNode(const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" - " return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" - "}\n" - "int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" - " return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" - "}\n" - " \n" - "int getEscapeIndex(const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " return -rootNode->m_escapeIndexOrTriangleIndex;\n" - "}\n" - "int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" - "{\n" - " return -rootNode->m_escapeIndexOrTriangleIndex;\n" - "}\n" - "typedef struct\n" - "{\n" - " //12 bytes\n" - " unsigned short int m_quantizedAabbMin[3];\n" - " unsigned short int m_quantizedAabbMax[3];\n" - " //4 bytes, points to the root of the subtree\n" - " int m_rootNodeIndex;\n" - " //4 bytes\n" - " int m_subtreeSize;\n" - " int m_padding[3];\n" - "} b3BvhSubtreeInfo;\n" - "typedef struct\n" - "{\n" - " float4 m_childPosition;\n" - " float4 m_childOrientation;\n" - " int m_shapeIndex;\n" - " int m_unused0;\n" - " int m_unused1;\n" - " int m_unused2;\n" - "} btGpuChildShape;\n" - "typedef struct\n" - "{\n" - " float4 m_pos;\n" - " float4 m_quat;\n" - " float4 m_linVel;\n" - " float4 m_angVel;\n" - " u32 m_collidableIdx;\n" - " float m_invMass;\n" - " float m_restituitionCoeff;\n" - " float m_frictionCoeff;\n" - "} BodyData;\n" - "typedef struct \n" - "{\n" - " float4 m_localCenter;\n" - " float4 m_extents;\n" - " float4 mC;\n" - " float4 mE;\n" - " \n" - " float m_radius;\n" - " int m_faceOffset;\n" - " int m_numFaces;\n" - " int m_numVertices;\n" - " int m_vertexOffset;\n" - " int m_uniqueEdgesOffset;\n" - " int m_numUniqueEdges;\n" - " int m_unused;\n" - "} ConvexPolyhedronCL;\n" - "typedef struct \n" - "{\n" - " union\n" - " {\n" - " float4 m_min;\n" - " float m_minElems[4];\n" - " int m_minIndices[4];\n" - " };\n" - " union\n" - " {\n" - " float4 m_max;\n" - " float m_maxElems[4];\n" - " int m_maxIndices[4];\n" - " };\n" - "} btAabbCL;\n" - "#ifndef B3_AABB_H\n" - "#define B3_AABB_H\n" - "#ifndef B3_FLOAT4_H\n" - "#define B3_FLOAT4_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#define B3_PLATFORM_DEFINITIONS_H\n" - "struct MyTest\n" - "{\n" - " int bla;\n" - "};\n" - "#ifdef __cplusplus\n" - "#else\n" - "//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" - "#define B3_LARGE_FLOAT 1e18f\n" - "#define B3_INFINITY 1e18f\n" - "#define b3Assert(a)\n" - "#define b3ConstArray(a) __global const a*\n" - "#define b3AtomicInc atomic_inc\n" - "#define b3AtomicAdd atomic_add\n" - "#define b3Fabs fabs\n" - "#define b3Sqrt native_sqrt\n" - "#define b3Sin native_sin\n" - "#define b3Cos native_cos\n" - "#define B3_STATIC\n" - "#endif\n" - "#endif\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Float4;\n" - " #define b3Float4ConstArg const b3Float4\n" - " #define b3MakeFloat4 (float4)\n" - " float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return dot(a1, b1);\n" - " }\n" - " b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" - " {\n" - " float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" - " float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" - " return cross(a1, b1);\n" - " }\n" - " #define b3MinFloat4 min\n" - " #define b3MaxFloat4 max\n" - " #define b3Normalized(a) normalize(a)\n" - "#endif \n" - " \n" - "inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" - "{\n" - " if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" - " return false;\n" - " return true;\n" - "}\n" - "inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" - "{\n" - " float maxDot = -B3_INFINITY;\n" - " int i = 0;\n" - " int ptIndex = -1;\n" - " for( i = 0; i < vecLen; i++ )\n" - " {\n" - " float dot = b3Dot3F4(vecArray[i],vec);\n" - " \n" - " if( dot > maxDot )\n" - " {\n" - " maxDot = dot;\n" - " ptIndex = i;\n" - " }\n" - " }\n" - " b3Assert(ptIndex>=0);\n" - " if (ptIndex<0)\n" - " {\n" - " ptIndex = 0;\n" - " }\n" - " *dotOut = maxDot;\n" - " return ptIndex;\n" - "}\n" - "#endif //B3_FLOAT4_H\n" - "#ifndef B3_MAT3x3_H\n" - "#define B3_MAT3x3_H\n" - "#ifndef B3_QUAT_H\n" - "#define B3_QUAT_H\n" - "#ifndef B3_PLATFORM_DEFINITIONS_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif\n" - "#endif\n" - "#ifndef B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#endif \n" - "#endif //B3_FLOAT4_H\n" - "#ifdef __cplusplus\n" - "#else\n" - " typedef float4 b3Quat;\n" - " #define b3QuatConstArg const b3Quat\n" - " \n" - " \n" - "inline float4 b3FastNormalize4(float4 v)\n" - "{\n" - " v = (float4)(v.xyz,0.f);\n" - " return fast_normalize(v);\n" - "}\n" - " \n" - "inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" - "inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" - "inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" - "{\n" - " b3Quat ans;\n" - " ans = b3Cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - b3Dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" - "{\n" - " b3Quat q;\n" - " q=in;\n" - " //return b3FastNormalize4(in);\n" - " float len = native_sqrt(dot(q, q));\n" - " if(len > 0.f)\n" - " {\n" - " q *= 1.f / len;\n" - " }\n" - " else\n" - " {\n" - " q.x = q.y = q.z = 0.f;\n" - " q.w = 1.f;\n" - " }\n" - " return q;\n" - "}\n" - "inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " b3Quat qInv = b3QuatInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" - "{\n" - " return (b3Quat)(-q.xyz, q.w);\n" - "}\n" - "inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" - "{\n" - " return b3QuatRotate( b3QuatInvert( q ), vec );\n" - "}\n" - "inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" - "{\n" - " return b3QuatRotate( orientation, point ) + (translation);\n" - "}\n" - " \n" - "#endif \n" - "#endif //B3_QUAT_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "typedef struct\n" - "{\n" - " b3Float4 m_row[3];\n" - "}b3Mat3x3;\n" - "#define b3Mat3x3ConstArg const b3Mat3x3\n" - "#define b3GetRow(m,row) (m.m_row[row])\n" - "inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" - "{\n" - " b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" - " b3Mat3x3 out;\n" - " out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" - " out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" - " out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" - " out.m_row[0].w = 0.f;\n" - " out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" - " out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" - " out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" - " out.m_row[1].w = 0.f;\n" - " out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" - " out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" - " out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" - " out.m_row[2].w = 0.f;\n" - " return out;\n" - "}\n" - "inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = fabs(matIn.m_row[0]);\n" - " out.m_row[1] = fabs(matIn.m_row[1]);\n" - " out.m_row[2] = fabs(matIn.m_row[2]);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtZero();\n" - "__inline\n" - "b3Mat3x3 mtIdentity();\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" - "__inline\n" - "b3Mat3x3 mtZero()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(0.f);\n" - " m.m_row[1] = (b3Float4)(0.f);\n" - " m.m_row[2] = (b3Float4)(0.f);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtIdentity()\n" - "{\n" - " b3Mat3x3 m;\n" - " m.m_row[0] = (b3Float4)(1,0,0,0);\n" - " m.m_row[1] = (b3Float4)(0,1,0,0);\n" - " m.m_row[2] = (b3Float4)(0,0,1,0);\n" - " return m;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" - "{\n" - " b3Mat3x3 out;\n" - " out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" - " out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" - " out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" - " return out;\n" - "}\n" - "__inline\n" - "b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" - "{\n" - " b3Mat3x3 transB;\n" - " transB = mtTranspose( b );\n" - " b3Mat3x3 ans;\n" - " // why this doesn't run when 0ing in the for{}\n" - " a.m_row[0].w = 0.f;\n" - " a.m_row[1].w = 0.f;\n" - " a.m_row[2].w = 0.f;\n" - " for(int i=0; i<3; i++)\n" - " {\n" - "// a.m_row[i].w = 0.f;\n" - " ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" - " ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" - " ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" - " ans.m_row[i].w = 0.f;\n" - " }\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" - "{\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a.m_row[0], b );\n" - " ans.y = b3Dot3F4( a.m_row[1], b );\n" - " ans.z = b3Dot3F4( a.m_row[2], b );\n" - " ans.w = 0.f;\n" - " return ans;\n" - "}\n" - "__inline\n" - "b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" - "{\n" - " b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" - " b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" - " b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" - " b3Float4 ans;\n" - " ans.x = b3Dot3F4( a, colx );\n" - " ans.y = b3Dot3F4( a, coly );\n" - " ans.z = b3Dot3F4( a, colz );\n" - " return ans;\n" - "}\n" - "#endif\n" - "#endif //B3_MAT3x3_H\n" - "typedef struct b3Aabb b3Aabb_t;\n" - "struct b3Aabb\n" - "{\n" - " union\n" - " {\n" - " float m_min[4];\n" - " b3Float4 m_minVec;\n" - " int m_minIndices[4];\n" - " };\n" - " union\n" - " {\n" - " float m_max[4];\n" - " b3Float4 m_maxVec;\n" - " int m_signedMaxIndices[4];\n" - " };\n" - "};\n" - "inline void b3TransformAabb2(b3Float4ConstArg localAabbMin,b3Float4ConstArg localAabbMax, float margin,\n" - " b3Float4ConstArg pos,\n" - " b3QuatConstArg orn,\n" - " b3Float4* aabbMinOut,b3Float4* aabbMaxOut)\n" - "{\n" - " b3Float4 localHalfExtents = 0.5f*(localAabbMax-localAabbMin);\n" - " localHalfExtents+=b3MakeFloat4(margin,margin,margin,0.f);\n" - " b3Float4 localCenter = 0.5f*(localAabbMax+localAabbMin);\n" - " b3Mat3x3 m;\n" - " m = b3QuatGetRotationMatrix(orn);\n" - " b3Mat3x3 abs_b = b3AbsoluteMat3x3(m);\n" - " b3Float4 center = b3TransformPoint(localCenter,pos,orn);\n" - " \n" - " b3Float4 extent = b3MakeFloat4(b3Dot3F4(localHalfExtents,b3GetRow(abs_b,0)),\n" - " b3Dot3F4(localHalfExtents,b3GetRow(abs_b,1)),\n" - " b3Dot3F4(localHalfExtents,b3GetRow(abs_b,2)),\n" - " 0.f);\n" - " *aabbMinOut = center-extent;\n" - " *aabbMaxOut = center+extent;\n" - "}\n" - "/// conservative test for overlap between two aabbs\n" - "inline bool b3TestAabbAgainstAabb(b3Float4ConstArg aabbMin1,b3Float4ConstArg aabbMax1,\n" - " b3Float4ConstArg aabbMin2, b3Float4ConstArg aabbMax2)\n" - "{\n" - " bool overlap = true;\n" - " overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap;\n" - " overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap;\n" - " overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap;\n" - " return overlap;\n" - "}\n" - "#endif //B3_AABB_H\n" - "/*\n" - "Bullet Continuous Collision Detection and Physics Library\n" - "Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org\n" - "This software is provided 'as-is', without any express or implied warranty.\n" - "In no event will the authors be held liable for any damages arising from the use of this software.\n" - "Permission is granted to anyone to use this software for any purpose,\n" - "including commercial applications, and to alter it and redistribute it freely,\n" - "subject to the following restrictions:\n" - "1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" - "2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" - "3. This notice may not be removed or altered from any source distribution.\n" - "*/\n" - "#ifndef B3_INT2_H\n" - "#define B3_INT2_H\n" - "#ifdef __cplusplus\n" - "#else\n" - "#define b3UnsignedInt2 uint2\n" - "#define b3Int2 int2\n" - "#define b3MakeInt2 (int2)\n" - "#endif //__cplusplus\n" - "#endif\n" - "typedef struct\n" - "{\n" - " float4 m_plane;\n" - " int m_indexOffset;\n" - " int m_numIndices;\n" - "} btGpuFace;\n" - "#define make_float4 (float4)\n" - "__inline\n" - "float4 cross3(float4 a, float4 b)\n" - "{\n" - " return cross(a,b);\n" - " \n" - "// float4 a1 = make_float4(a.xyz,0.f);\n" - "// float4 b1 = make_float4(b.xyz,0.f);\n" - "// return cross(a1,b1);\n" - "//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);\n" - " \n" - " // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);\n" - " \n" - " //return c;\n" - "}\n" - "__inline\n" - "float dot3F4(float4 a, float4 b)\n" - "{\n" - " float4 a1 = make_float4(a.xyz,0.f);\n" - " float4 b1 = make_float4(b.xyz,0.f);\n" - " return dot(a1, b1);\n" - "}\n" - "__inline\n" - "float4 fastNormalize4(float4 v)\n" - "{\n" - " v = make_float4(v.xyz,0.f);\n" - " return fast_normalize(v);\n" - "}\n" - "///////////////////////////////////////\n" - "// Quaternion\n" - "///////////////////////////////////////\n" - "typedef float4 Quaternion;\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b);\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in);\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec);\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q);\n" - "__inline\n" - "Quaternion qtMul(Quaternion a, Quaternion b)\n" - "{\n" - " Quaternion ans;\n" - " ans = cross3( a, b );\n" - " ans += a.w*b+b.w*a;\n" - "// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" - " ans.w = a.w*b.w - dot3F4(a, b);\n" - " return ans;\n" - "}\n" - "__inline\n" - "Quaternion qtNormalize(Quaternion in)\n" - "{\n" - " return fastNormalize4(in);\n" - "// in /= length( in );\n" - "// return in;\n" - "}\n" - "__inline\n" - "float4 qtRotate(Quaternion q, float4 vec)\n" - "{\n" - " Quaternion qInv = qtInvert( q );\n" - " float4 vcpy = vec;\n" - " vcpy.w = 0.f;\n" - " float4 out = qtMul(qtMul(q,vcpy),qInv);\n" - " return out;\n" - "}\n" - "__inline\n" - "Quaternion qtInvert(Quaternion q)\n" - "{\n" - " return (Quaternion)(-q.xyz, q.w);\n" - "}\n" - "__inline\n" - "float4 qtInvRotate(const Quaternion q, float4 vec)\n" - "{\n" - " return qtRotate( qtInvert( q ), vec );\n" - "}\n" - "__inline\n" - "float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" - "{\n" - " return qtRotate( *orientation, *p ) + (*translation);\n" - "}\n" - "__inline\n" - "float4 normalize3(const float4 a)\n" - "{\n" - " float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" - " return fastNormalize4( n );\n" - "}\n" - "inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" - "const float4* dir, const float4* vertices, float* min, float* max)\n" - "{\n" - " min[0] = FLT_MAX;\n" - " max[0] = -FLT_MAX;\n" - " int numVerts = hull->m_numVertices;\n" - " const float4 localDir = qtInvRotate(orn,*dir);\n" - " float offset = dot(pos,*dir);\n" - " for(int i=0;i<numVerts;i++)\n" - " {\n" - " float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" - " if(dp < min[0]) \n" - " min[0] = dp;\n" - " if(dp > max[0]) \n" - " max[0] = dp;\n" - " }\n" - " if(min[0]>max[0])\n" - " {\n" - " float tmp = min[0];\n" - " min[0] = max[0];\n" - " max[0] = tmp;\n" - " }\n" - " min[0] += offset;\n" - " max[0] += offset;\n" - "}\n" - "inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" - "const float4* dir, __global const float4* vertices, float* min, float* max)\n" - "{\n" - " min[0] = FLT_MAX;\n" - " max[0] = -FLT_MAX;\n" - " int numVerts = hull->m_numVertices;\n" - " const float4 localDir = qtInvRotate(orn,*dir);\n" - " float offset = dot(pos,*dir);\n" - " for(int i=0;i<numVerts;i++)\n" - " {\n" - " float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" - " if(dp < min[0]) \n" - " min[0] = dp;\n" - " if(dp > max[0]) \n" - " max[0] = dp;\n" - " }\n" - " if(min[0]>max[0])\n" - " {\n" - " float tmp = min[0];\n" - " min[0] = max[0];\n" - " max[0] = tmp;\n" - " }\n" - " min[0] += offset;\n" - " max[0] += offset;\n" - "}\n" - "inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA,const float4 ornA,\n" - " const float4 posB,const float4 ornB,\n" - " float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)\n" - "{\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);\n" - " project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);\n" - " if(Max0<Min1 || Max1<Min0)\n" - " return false;\n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " *depth = d0<d1 ? d0:d1;\n" - " return true;\n" - "}\n" - "inline bool IsAlmostZero(const float4 v)\n" - "{\n" - " if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)\n" - " return false;\n" - " return true;\n" - "}\n" - "bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " \n" - " const float4* verticesA, \n" - " const float4* uniqueEdgesA, \n" - " const btGpuFace* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB, \n" - " __global const float4* uniqueEdgesB, \n" - " __global const btGpuFace* facesB,\n" - " __global const int* indicesB,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " \n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " {\n" - " int numFacesA = hullA->m_numFaces;\n" - " // Test normals from hullA\n" - " for(int i=0;i<numFacesA;i++)\n" - " {\n" - " const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" - " float4 faceANormalWS = qtRotate(ornA,normal);\n" - " if (dot3F4(DeltaC2,faceANormalWS)<0)\n" - " faceANormalWS*=-1.f;\n" - " curPlaneTests++;\n" - " float d;\n" - " if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))\n" - " return false;\n" - " if(d<*dmin)\n" - " {\n" - " *dmin = d;\n" - " *sep = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " __global const float4* verticesA, \n" - " __global const float4* uniqueEdgesA, \n" - " __global const btGpuFace* facesA,\n" - " __global const int* indicesA,\n" - " const float4* verticesB,\n" - " const float4* uniqueEdgesB, \n" - " const btGpuFace* facesB,\n" - " const int* indicesB,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " {\n" - " int numFacesA = hullA->m_numFaces;\n" - " // Test normals from hullA\n" - " for(int i=0;i<numFacesA;i++)\n" - " {\n" - " const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" - " float4 faceANormalWS = qtRotate(ornA,normal);\n" - " if (dot3F4(DeltaC2,faceANormalWS)<0)\n" - " faceANormalWS *= -1.f;\n" - " curPlaneTests++;\n" - " float d;\n" - " if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))\n" - " return false;\n" - " if(d<*dmin)\n" - " {\n" - " *dmin = d;\n" - " *sep = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " const float4* verticesA, \n" - " const float4* uniqueEdgesA, \n" - " const btGpuFace* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB, \n" - " __global const float4* uniqueEdgesB, \n" - " __global const btGpuFace* facesB,\n" - " __global const int* indicesB,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " int curEdgeEdge = 0;\n" - " // Test edges\n" - " for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" - " {\n" - " const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];\n" - " float4 edge0World = qtRotate(ornA,edge0);\n" - " for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" - " {\n" - " const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];\n" - " float4 edge1World = qtRotate(ornB,edge1);\n" - " float4 crossje = cross3(edge0World,edge1World);\n" - " curEdgeEdge++;\n" - " if(!IsAlmostZero(crossje))\n" - " {\n" - " crossje = normalize3(crossje);\n" - " if (dot3F4(DeltaC2,crossje)<0)\n" - " crossje *= -1.f;\n" - " float dist;\n" - " bool result = true;\n" - " {\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);\n" - " project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);\n" - " \n" - " if(Max0<Min1 || Max1<Min0)\n" - " result = false;\n" - " \n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " dist = d0<d1 ? d0:d1;\n" - " result = true;\n" - " }\n" - " \n" - " if(dist<*dmin)\n" - " {\n" - " *dmin = dist;\n" - " *sep = crossje;\n" - " }\n" - " }\n" - " }\n" - " }\n" - " \n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "inline bool TestSepAxis(__global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA,const float4 ornA,\n" - " const float4 posB,const float4 ornB,\n" - " float4* sep_axis, __global const float4* vertices,float* depth)\n" - "{\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " project(hullA,posA,ornA,sep_axis,vertices, &Min0, &Max0);\n" - " project(hullB,posB,ornB, sep_axis,vertices, &Min1, &Max1);\n" - " if(Max0<Min1 || Max1<Min0)\n" - " return false;\n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " *depth = d0<d1 ? d0:d1;\n" - " return true;\n" - "}\n" - "bool findSeparatingAxis( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " __global const float4* vertices, \n" - " __global const float4* uniqueEdges, \n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " \n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " \n" - " int curPlaneTests=0;\n" - " {\n" - " int numFacesA = hullA->m_numFaces;\n" - " // Test normals from hullA\n" - " for(int i=0;i<numFacesA;i++)\n" - " {\n" - " const float4 normal = faces[hullA->m_faceOffset+i].m_plane;\n" - " float4 faceANormalWS = qtRotate(ornA,normal);\n" - " \n" - " if (dot3F4(DeltaC2,faceANormalWS)<0)\n" - " faceANormalWS*=-1.f;\n" - " \n" - " curPlaneTests++;\n" - " \n" - " float d;\n" - " if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, vertices,&d))\n" - " return false;\n" - " \n" - " if(d<*dmin)\n" - " {\n" - " *dmin = d;\n" - " *sep = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " \n" - " return true;\n" - "}\n" - "bool findSeparatingAxisUnitSphere( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " __global const float4* vertices,\n" - " __global const float4* unitSphereDirections,\n" - " int numUnitSphereDirections,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " \n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " int curEdgeEdge = 0;\n" - " // Test unit sphere directions\n" - " for (int i=0;i<numUnitSphereDirections;i++)\n" - " {\n" - " float4 crossje;\n" - " crossje = unitSphereDirections[i]; \n" - " if (dot3F4(DeltaC2,crossje)>0)\n" - " crossje *= -1.f;\n" - " {\n" - " float dist;\n" - " bool result = true;\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" - " project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" - " \n" - " if(Max0<Min1 || Max1<Min0)\n" - " return false;\n" - " \n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " dist = d0<d1 ? d0:d1;\n" - " result = true;\n" - " \n" - " if(dist<*dmin)\n" - " {\n" - " *dmin = dist;\n" - " *sep = crossje;\n" - " }\n" - " }\n" - " }\n" - " \n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "bool findSeparatingAxisEdgeEdge( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" - " const float4 posA1,\n" - " const float4 ornA,\n" - " const float4 posB1,\n" - " const float4 ornB,\n" - " const float4 DeltaC2,\n" - " __global const float4* vertices, \n" - " __global const float4* uniqueEdges, \n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " float4* sep,\n" - " float* dmin)\n" - "{\n" - " \n" - " float4 posA = posA1;\n" - " posA.w = 0.f;\n" - " float4 posB = posB1;\n" - " posB.w = 0.f;\n" - " int curPlaneTests=0;\n" - " int curEdgeEdge = 0;\n" - " // Test edges\n" - " for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" - " {\n" - " const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0];\n" - " float4 edge0World = qtRotate(ornA,edge0);\n" - " for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" - " {\n" - " const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1];\n" - " float4 edge1World = qtRotate(ornB,edge1);\n" - " float4 crossje = cross3(edge0World,edge1World);\n" - " curEdgeEdge++;\n" - " if(!IsAlmostZero(crossje))\n" - " {\n" - " crossje = normalize3(crossje);\n" - " if (dot3F4(DeltaC2,crossje)<0)\n" - " crossje*=-1.f;\n" - " \n" - " float dist;\n" - " bool result = true;\n" - " {\n" - " float Min0,Max0;\n" - " float Min1,Max1;\n" - " project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" - " project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" - " \n" - " if(Max0<Min1 || Max1<Min0)\n" - " return false;\n" - " \n" - " float d0 = Max0 - Min1;\n" - " float d1 = Max1 - Min0;\n" - " dist = d0<d1 ? d0:d1;\n" - " result = true;\n" - " }\n" - " \n" - " if(dist<*dmin)\n" - " {\n" - " *dmin = dist;\n" - " *sep = crossje;\n" - " }\n" - " }\n" - " }\n" - " }\n" - " \n" - " if((dot3F4(-DeltaC2,*sep))>0.0f)\n" - " {\n" - " *sep = -(*sep);\n" - " }\n" - " return true;\n" - "}\n" - "// work-in-progress\n" - "__kernel void processCompoundPairsKernel( __global const int4* gpuCompoundPairs,\n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global btAabbCL* aabbs,\n" - " __global const btGpuChildShape* gpuChildShapes,\n" - " __global volatile float4* gpuCompoundSepNormalsOut,\n" - " __global volatile int* gpuHasCompoundSepNormalsOut,\n" - " int numCompoundPairs\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " if (i<numCompoundPairs)\n" - " {\n" - " int bodyIndexA = gpuCompoundPairs[i].x;\n" - " int bodyIndexB = gpuCompoundPairs[i].y;\n" - " int childShapeIndexA = gpuCompoundPairs[i].z;\n" - " int childShapeIndexB = gpuCompoundPairs[i].w;\n" - " \n" - " int collidableIndexA = -1;\n" - " int collidableIndexB = -1;\n" - " \n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " \n" - " float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " \n" - " if (childShapeIndexA >= 0)\n" - " {\n" - " collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" - " float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" - " float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" - " float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" - " float4 newOrnA = qtMul(ornA,childOrnA);\n" - " posA = newPosA;\n" - " ornA = newOrnA;\n" - " } else\n" - " {\n" - " collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " }\n" - " \n" - " if (childShapeIndexB>=0)\n" - " {\n" - " collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " posB = newPosB;\n" - " ornB = newOrnB;\n" - " } else\n" - " {\n" - " collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" - " }\n" - " \n" - " gpuHasCompoundSepNormalsOut[i] = 0;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " int shapeTypeA = collidables[collidableIndexA].m_shapeType;\n" - " int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" - " \n" - " if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL))\n" - " {\n" - " return;\n" - " }\n" - " int hasSeparatingAxis = 5;\n" - " \n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " float dmin = FLT_MAX;\n" - " posA.w = 0.f;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " float4 sepNormal = make_float4(1,0,0,0);\n" - " bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" - " hasSeparatingAxis = 4;\n" - " if (!sepA)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else\n" - " {\n" - " bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,posA,ornA,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" - " if (!sepB)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else//(!sepB)\n" - " {\n" - " bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" - " if (sepEE)\n" - " {\n" - " gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal);\n" - " gpuHasCompoundSepNormalsOut[i] = 1;\n" - " }//sepEE\n" - " }//(!sepB)\n" - " }//(!sepA)\n" - " \n" - " \n" - " }\n" - " \n" - "}\n" - "inline b3Float4 MyUnQuantize(const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n" - "{\n" - " b3Float4 vecOut;\n" - " vecOut = b3MakeFloat4(\n" - " (float)(vecIn[0]) / (quantization.x),\n" - " (float)(vecIn[1]) / (quantization.y),\n" - " (float)(vecIn[2]) / (quantization.z),\n" - " 0.f);\n" - " vecOut += bvhAabbMin;\n" - " return vecOut;\n" - "}\n" - "inline b3Float4 MyUnQuantizeGlobal(__global const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n" - "{\n" - " b3Float4 vecOut;\n" - " vecOut = b3MakeFloat4(\n" - " (float)(vecIn[0]) / (quantization.x),\n" - " (float)(vecIn[1]) / (quantization.y),\n" - " (float)(vecIn[2]) / (quantization.z),\n" - " 0.f);\n" - " vecOut += bvhAabbMin;\n" - " return vecOut;\n" - "}\n" - "// work-in-progress\n" - "__kernel void findCompoundPairsKernel( __global const int4* pairs, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global b3Aabb_t* aabbLocalSpace,\n" - " __global const btGpuChildShape* gpuChildShapes,\n" - " __global volatile int4* gpuCompoundPairsOut,\n" - " __global volatile int* numCompoundPairsOut,\n" - " __global const b3BvhSubtreeInfo* subtrees,\n" - " __global const b3QuantizedBvhNode* quantizedNodes,\n" - " __global const b3BvhInfo* bvhInfos,\n" - " int numPairs,\n" - " int maxNumCompoundPairsCapacity\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " if (i<numPairs)\n" - " {\n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " //once the broadphase avoids static-static pairs, we can remove this test\n" - " if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" - " {\n" - " return;\n" - " }\n" - " if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" - " {\n" - " int bvhA = collidables[collidableIndexA].m_compoundBvhIndex;\n" - " int bvhB = collidables[collidableIndexB].m_compoundBvhIndex;\n" - " int numSubTreesA = bvhInfos[bvhA].m_numSubTrees;\n" - " int subTreesOffsetA = bvhInfos[bvhA].m_subTreeOffset;\n" - " int subTreesOffsetB = bvhInfos[bvhB].m_subTreeOffset;\n" - " int numSubTreesB = bvhInfos[bvhB].m_numSubTrees;\n" - " \n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " b3Quat ornA = rigidBodies[bodyIndexA].m_quat;\n" - " b3Quat ornB = rigidBodies[bodyIndexB].m_quat;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " \n" - " for (int p=0;p<numSubTreesA;p++)\n" - " {\n" - " b3BvhSubtreeInfo subtreeA = subtrees[subTreesOffsetA+p];\n" - " //bvhInfos[bvhA].m_quantization\n" - " b3Float4 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" - " b3Float4 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" - " b3Float4 aabbAMinOut,aabbAMaxOut;\n" - " float margin=0.f;\n" - " b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n" - " \n" - " for (int q=0;q<numSubTreesB;q++)\n" - " {\n" - " b3BvhSubtreeInfo subtreeB = subtrees[subTreesOffsetB+q];\n" - " b3Float4 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" - " b3Float4 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" - " b3Float4 aabbBMinOut,aabbBMaxOut;\n" - " float margin=0.f;\n" - " b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n" - " \n" - " \n" - " bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n" - " if (aabbOverlap)\n" - " {\n" - " \n" - " int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfos[bvhA].m_nodeOffset;\n" - " int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize;\n" - " int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfos[bvhB].m_nodeOffset;\n" - " int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize;\n" - " b3Int2 nodeStack[B3_MAX_STACK_DEPTH];\n" - " b3Int2 node0;\n" - " node0.x = startNodeIndexA;\n" - " node0.y = startNodeIndexB;\n" - " int maxStackDepth = B3_MAX_STACK_DEPTH;\n" - " int depth=0;\n" - " nodeStack[depth++]=node0;\n" - " do\n" - " {\n" - " b3Int2 node = nodeStack[--depth];\n" - " b3Float4 aMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" - " b3Float4 aMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" - " b3Float4 bMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" - " b3Float4 bMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" - " float margin=0.f;\n" - " b3Float4 aabbAMinOut,aabbAMaxOut;\n" - " b3TransformAabb2(aMinLocal,aMaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n" - " b3Float4 aabbBMinOut,aabbBMaxOut;\n" - " b3TransformAabb2(bMinLocal,bMaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n" - " \n" - " bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n" - " if (nodeOverlap)\n" - " {\n" - " bool isLeafA = isLeafNodeGlobal(&quantizedNodes[node.x]);\n" - " bool isLeafB = isLeafNodeGlobal(&quantizedNodes[node.y]);\n" - " bool isInternalA = !isLeafA;\n" - " bool isInternalB = !isLeafB;\n" - " //fail, even though it might hit two leaf nodes\n" - " if (depth+4>maxStackDepth && !(isLeafA && isLeafB))\n" - " {\n" - " //printf(\"Error: traversal exceeded maxStackDepth\");\n" - " continue;\n" - " }\n" - " if(isInternalA)\n" - " {\n" - " int nodeAleftChild = node.x+1;\n" - " bool isNodeALeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.x+1]);\n" - " int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + getEscapeIndexGlobal(&quantizedNodes[node.x+1]);\n" - " if(isInternalB)\n" - " { \n" - " int nodeBleftChild = node.y+1;\n" - " bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n" - " int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n" - " nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild);\n" - " nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild);\n" - " nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild);\n" - " nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild);\n" - " }\n" - " else\n" - " {\n" - " nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y);\n" - " nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y);\n" - " }\n" - " }\n" - " else\n" - " {\n" - " if(isInternalB)\n" - " {\n" - " int nodeBleftChild = node.y+1;\n" - " bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n" - " int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n" - " nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild);\n" - " nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild);\n" - " }\n" - " else\n" - " {\n" - " int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" - " if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" - " {\n" - " int childShapeIndexA = getTriangleIndexGlobal(&quantizedNodes[node.x]);\n" - " int childShapeIndexB = getTriangleIndexGlobal(&quantizedNodes[node.y]);\n" - " gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n" - " }\n" - " }\n" - " }\n" - " }\n" - " } while (depth);\n" - " }\n" - " }\n" - " }\n" - " \n" - " return;\n" - " }\n" - " if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" - " {\n" - " if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) \n" - " {\n" - " int numChildrenA = collidables[collidableIndexA].m_numChildShapes;\n" - " for (int c=0;c<numChildrenA;c++)\n" - " {\n" - " int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c;\n" - " int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" - " float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" - " float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" - " float4 newOrnA = qtMul(ornA,childOrnA);\n" - " int shapeIndexA = collidables[childColIndexA].m_shapeIndex;\n" - " b3Aabb_t aabbAlocal = aabbLocalSpace[shapeIndexA];\n" - " float margin = 0.f;\n" - " \n" - " b3Float4 aabbAMinWS;\n" - " b3Float4 aabbAMaxWS;\n" - " \n" - " b3TransformAabb2(aabbAlocal.m_minVec,aabbAlocal.m_maxVec,margin,\n" - " newPosA,\n" - " newOrnA,\n" - " &aabbAMinWS,&aabbAMaxWS);\n" - " \n" - " \n" - " if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" - " for (int b=0;b<numChildrenB;b++)\n" - " {\n" - " int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" - " int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" - " b3Aabb_t aabbBlocal = aabbLocalSpace[shapeIndexB];\n" - " \n" - " b3Float4 aabbBMinWS;\n" - " b3Float4 aabbBMaxWS;\n" - " \n" - " b3TransformAabb2(aabbBlocal.m_minVec,aabbBlocal.m_maxVec,margin,\n" - " newPosB,\n" - " newOrnB,\n" - " &aabbBMinWS,&aabbBMaxWS);\n" - " \n" - " \n" - " \n" - " bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinWS,aabbAMaxWS,aabbBMinWS,aabbBMaxWS);\n" - " if (aabbOverlap)\n" - " {\n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " float dmin = FLT_MAX;\n" - " float4 posA = newPosA;\n" - " posA.w = 0.f;\n" - " float4 posB = newPosB;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 ornA = newOrnA;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 ornB =newOrnB;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " {//\n" - " int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" - " if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" - " {\n" - " gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n" - " }\n" - " }//\n" - " }//fi(1)\n" - " } //for (int b=0\n" - " }//if (collidables[collidableIndexB].\n" - " else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " if (1)\n" - " {\n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " float dmin = FLT_MAX;\n" - " float4 posA = newPosA;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 ornA = newOrnA;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " {\n" - " int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" - " if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" - " {\n" - " gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,-1);\n" - " }//if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" - " }//\n" - " }//fi (1)\n" - " }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " }//for (int b=0;b<numChildrenB;b++) \n" - " return;\n" - " }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) \n" - " && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" - " {\n" - " int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" - " for (int b=0;b<numChildrenB;b++)\n" - " {\n" - " int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" - " int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = qtRotate(ornB,childPosB)+posB;\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" - " //////////////////////////////////////\n" - " if (1)\n" - " {\n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " float dmin = FLT_MAX;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = newPosB;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 ornB =newOrnB;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " {//\n" - " int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" - " if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" - " {\n" - " gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,-1,childShapeIndexB);\n" - " }//fi (compoundPairIdx<maxNumCompoundPairsCapacity)\n" - " }//\n" - " }//fi (1) \n" - " }//for (int b=0;b<numChildrenB;b++)\n" - " return;\n" - " }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " return;\n" - " }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" - " }//i<numPairs\n" - "}\n" - "// work-in-progress\n" - "__kernel void findSeparatingAxisKernel( __global const int4* pairs, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global btAabbCL* aabbs,\n" - " __global volatile float4* separatingNormals,\n" - " __global volatile int* hasSeparatingAxis,\n" - " int numPairs\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " \n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " \n" - " //once the broadphase avoids static-static pairs, we can remove this test\n" - " if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " return;\n" - " }\n" - " \n" - " if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " return;\n" - " }\n" - " \n" - " if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH))\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " return;\n" - " }\n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " float dmin = FLT_MAX;\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " float4 sepNormal;\n" - " \n" - " bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,\n" - " indices,&sepNormal,&dmin);\n" - " hasSeparatingAxis[i] = 4;\n" - " if (!sepA)\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " } else\n" - " {\n" - " bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n" - " posA,ornA,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,\n" - " indices,&sepNormal,&dmin);\n" - " if (!sepB)\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " } else\n" - " {\n" - " bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,\n" - " indices,&sepNormal,&dmin);\n" - " if (!sepEE)\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " } else\n" - " {\n" - " hasSeparatingAxis[i] = 1;\n" - " separatingNormals[i] = sepNormal;\n" - " }\n" - " }\n" - " }\n" - " \n" - " }\n" - "}\n" - "__kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global btAabbCL* aabbs,\n" - " __global volatile float4* separatingNormals,\n" - " __global volatile int* hasSeparatingAxis,\n" - " __global float* dmins,\n" - " int numPairs\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " \n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " hasSeparatingAxis[i] = 0; \n" - " \n" - " //once the broadphase avoids static-static pairs, we can remove this test\n" - " if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" - " {\n" - " return;\n" - " }\n" - " \n" - " if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" - " {\n" - " return;\n" - " }\n" - " \n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " float dmin = FLT_MAX;\n" - " dmins[i] = dmin;\n" - " \n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " float4 sepNormal;\n" - " \n" - " bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,\n" - " indices,&sepNormal,&dmin);\n" - " hasSeparatingAxis[i] = 4;\n" - " if (!sepA)\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " } else\n" - " {\n" - " bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n" - " posA,ornA,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,\n" - " indices,&sepNormal,&dmin);\n" - " if (sepB)\n" - " {\n" - " dmins[i] = dmin;\n" - " hasSeparatingAxis[i] = 1;\n" - " separatingNormals[i] = sepNormal;\n" - " }\n" - " }\n" - " \n" - " }\n" - "}\n" - "__kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs, \n" - " __global const BodyData* rigidBodies, \n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global btAabbCL* aabbs,\n" - " __global float4* separatingNormals,\n" - " __global int* hasSeparatingAxis,\n" - " __global float* dmins,\n" - " __global const float4* unitSphereDirections,\n" - " int numUnitSphereDirections,\n" - " int numPairs\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " \n" - " if (i<numPairs)\n" - " {\n" - " if (hasSeparatingAxis[i])\n" - " {\n" - " \n" - " int bodyIndexA = pairs[i].x;\n" - " int bodyIndexB = pairs[i].y;\n" - " \n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " \n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " \n" - " \n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " \n" - " float dmin = dmins[i];\n" - " \n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " float4 sepNormal = separatingNormals[i];\n" - " \n" - " \n" - " \n" - " bool sepEE = false;\n" - " int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;\n" - " if (numEdgeEdgeDirections<=numUnitSphereDirections)\n" - " {\n" - " sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,\n" - " indices,&sepNormal,&dmin);\n" - " \n" - " if (!sepEE)\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " } else\n" - " {\n" - " hasSeparatingAxis[i] = 1;\n" - " separatingNormals[i] = sepNormal;\n" - " }\n" - " }\n" - " /*\n" - " ///else case is a separate kernel, to make Mac OSX OpenCL compiler happy\n" - " else\n" - " {\n" - " sepEE = findSeparatingAxisUnitSphere(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " vertices,unitSphereDirections,numUnitSphereDirections,\n" - " &sepNormal,&dmin);\n" - " if (!sepEE)\n" - " {\n" - " hasSeparatingAxis[i] = 0;\n" - " } else\n" - " {\n" - " hasSeparatingAxis[i] = 1;\n" - " separatingNormals[i] = sepNormal;\n" - " }\n" - " }\n" - " */\n" - " } //if (hasSeparatingAxis[i])\n" - " }//(i<numPairs)\n" - "}\n" - "inline int findClippingFaces(const float4 separatingNormal,\n" - " const ConvexPolyhedronCL* hullA, \n" - " __global const ConvexPolyhedronCL* hullB,\n" - " const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" - " __global float4* worldVertsA1,\n" - " __global float4* worldNormalsA1,\n" - " __global float4* worldVertsB1,\n" - " int capacityWorldVerts,\n" - " const float minDist, float maxDist,\n" - " const float4* verticesA,\n" - " const btGpuFace* facesA,\n" - " const int* indicesA,\n" - " __global const float4* verticesB,\n" - " __global const btGpuFace* facesB,\n" - " __global const int* indicesB,\n" - " __global int4* clippingFaces, int pairIndex)\n" - "{\n" - " int numContactsOut = 0;\n" - " int numWorldVertsB1= 0;\n" - " \n" - " \n" - " int closestFaceB=0;\n" - " float dmax = -FLT_MAX;\n" - " \n" - " {\n" - " for(int face=0;face<hullB->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,\n" - " facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" - " const float4 WorldNormal = qtRotate(ornB, Normal);\n" - " float d = dot3F4(WorldNormal,separatingNormal);\n" - " if (d > dmax)\n" - " {\n" - " dmax = d;\n" - " closestFaceB = face;\n" - " }\n" - " }\n" - " }\n" - " \n" - " {\n" - " const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" - " int numVertices = polyB.m_numIndices;\n" - " if (numVertices>capacityWorldVerts)\n" - " numVertices = capacityWorldVerts;\n" - " \n" - " for(int e0=0;e0<numVertices;e0++)\n" - " {\n" - " if (e0<capacityWorldVerts)\n" - " {\n" - " const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" - " worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" - " }\n" - " }\n" - " }\n" - " \n" - " int closestFaceA=0;\n" - " {\n" - " float dmin = FLT_MAX;\n" - " for(int face=0;face<hullA->m_numFaces;face++)\n" - " {\n" - " const float4 Normal = make_float4(\n" - " facesA[hullA->m_faceOffset+face].m_plane.x,\n" - " facesA[hullA->m_faceOffset+face].m_plane.y,\n" - " facesA[hullA->m_faceOffset+face].m_plane.z,\n" - " 0.f);\n" - " const float4 faceANormalWS = qtRotate(ornA,Normal);\n" - " \n" - " float d = dot3F4(faceANormalWS,separatingNormal);\n" - " if (d < dmin)\n" - " {\n" - " dmin = d;\n" - " closestFaceA = face;\n" - " worldNormalsA1[pairIndex] = faceANormalWS;\n" - " }\n" - " }\n" - " }\n" - " \n" - " int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" - " if (numVerticesA>capacityWorldVerts)\n" - " numVerticesA = capacityWorldVerts;\n" - " \n" - " for(int e0=0;e0<numVerticesA;e0++)\n" - " {\n" - " if (e0<capacityWorldVerts)\n" - " {\n" - " const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" - " worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" - " }\n" - " }\n" - " \n" - " clippingFaces[pairIndex].x = closestFaceA;\n" - " clippingFaces[pairIndex].y = closestFaceB;\n" - " clippingFaces[pairIndex].z = numVerticesA;\n" - " clippingFaces[pairIndex].w = numWorldVertsB1;\n" - " \n" - " \n" - " return numContactsOut;\n" - "}\n" - "// work-in-progress\n" - "__kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs,\n" - " __global const BodyData* rigidBodies,\n" - " __global const btCollidableGpu* collidables,\n" - " __global const ConvexPolyhedronCL* convexShapes, \n" - " __global const float4* vertices,\n" - " __global const float4* uniqueEdges,\n" - " __global const btGpuFace* faces,\n" - " __global const int* indices,\n" - " __global const btGpuChildShape* gpuChildShapes,\n" - " __global btAabbCL* aabbs,\n" - " __global float4* concaveSeparatingNormalsOut,\n" - " __global int* concaveHasSeparatingNormals,\n" - " __global int4* clippingFacesOut,\n" - " __global float4* worldVertsA1GPU,\n" - " __global float4* worldNormalsAGPU,\n" - " __global float4* worldVertsB1GPU,\n" - " int vertexFaceCapacity,\n" - " int numConcavePairs\n" - " )\n" - "{\n" - " int i = get_global_id(0);\n" - " if (i>=numConcavePairs)\n" - " return;\n" - " concaveHasSeparatingNormals[i] = 0;\n" - " int pairIdx = i;\n" - " int bodyIndexA = concavePairs[i].x;\n" - " int bodyIndexB = concavePairs[i].y;\n" - " int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" - " int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" - " int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" - " int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" - " if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n" - " collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " concavePairs[pairIdx].w = -1;\n" - " return;\n" - " }\n" - " int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" - " int numActualConcaveConvexTests = 0;\n" - " \n" - " int f = concavePairs[i].z;\n" - " \n" - " bool overlap = false;\n" - " \n" - " ConvexPolyhedronCL convexPolyhedronA;\n" - " //add 3 vertices of the triangle\n" - " convexPolyhedronA.m_numVertices = 3;\n" - " convexPolyhedronA.m_vertexOffset = 0;\n" - " float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" - " btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" - " float4 triMinAabb, triMaxAabb;\n" - " btAabbCL triAabb;\n" - " triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" - " triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" - " \n" - " float4 verticesA[3];\n" - " for (int i=0;i<3;i++)\n" - " {\n" - " int index = indices[face.m_indexOffset+i];\n" - " float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" - " verticesA[i] = vert;\n" - " localCenter += vert;\n" - " \n" - " triAabb.m_min = min(triAabb.m_min,vert); \n" - " triAabb.m_max = max(triAabb.m_max,vert); \n" - " }\n" - " overlap = true;\n" - " overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" - " overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" - " overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" - " \n" - " if (overlap)\n" - " {\n" - " float dmin = FLT_MAX;\n" - " int hasSeparatingAxis=5;\n" - " float4 sepAxis=make_float4(1,2,3,4);\n" - " int localCC=0;\n" - " numActualConcaveConvexTests++;\n" - " //a triangle has 3 unique edges\n" - " convexPolyhedronA.m_numUniqueEdges = 3;\n" - " convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" - " float4 uniqueEdgesA[3];\n" - " \n" - " uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" - " uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" - " uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" - " convexPolyhedronA.m_faceOffset = 0;\n" - " \n" - " float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" - " \n" - " btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" - " int indicesA[3+3+2+2+2];\n" - " int curUsedIndices=0;\n" - " int fidx=0;\n" - " //front size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[0] = 0;\n" - " indicesA[1] = 1;\n" - " indicesA[2] = 2;\n" - " curUsedIndices+=3;\n" - " float c = face.m_plane.w;\n" - " facesA[fidx].m_plane.x = normal.x;\n" - " facesA[fidx].m_plane.y = normal.y;\n" - " facesA[fidx].m_plane.z = normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " //back size of triangle\n" - " {\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[3]=2;\n" - " indicesA[4]=1;\n" - " indicesA[5]=0;\n" - " curUsedIndices+=3;\n" - " float c = dot(normal,verticesA[0]);\n" - " float c1 = -face.m_plane.w;\n" - " facesA[fidx].m_plane.x = -normal.x;\n" - " facesA[fidx].m_plane.y = -normal.y;\n" - " facesA[fidx].m_plane.z = -normal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " facesA[fidx].m_numIndices=3;\n" - " }\n" - " fidx++;\n" - " bool addEdgePlanes = true;\n" - " if (addEdgePlanes)\n" - " {\n" - " int numVertices=3;\n" - " int prevVertex = numVertices-1;\n" - " for (int i=0;i<numVertices;i++)\n" - " {\n" - " float4 v0 = verticesA[i];\n" - " float4 v1 = verticesA[prevVertex];\n" - " \n" - " float4 edgeNormal = normalize(cross(normal,v1-v0));\n" - " float c = -dot(edgeNormal,v0);\n" - " facesA[fidx].m_numIndices = 2;\n" - " facesA[fidx].m_indexOffset=curUsedIndices;\n" - " indicesA[curUsedIndices++]=i;\n" - " indicesA[curUsedIndices++]=prevVertex;\n" - " \n" - " facesA[fidx].m_plane.x = edgeNormal.x;\n" - " facesA[fidx].m_plane.y = edgeNormal.y;\n" - " facesA[fidx].m_plane.z = edgeNormal.z;\n" - " facesA[fidx].m_plane.w = c;\n" - " fidx++;\n" - " prevVertex = i;\n" - " }\n" - " }\n" - " convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" - " convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" - " float4 posA = rigidBodies[bodyIndexA].m_pos;\n" - " posA.w = 0.f;\n" - " float4 posB = rigidBodies[bodyIndexB].m_pos;\n" - " posB.w = 0.f;\n" - " float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" - " float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" - " \n" - " ///////////////////\n" - " ///compound shape support\n" - " if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" - " {\n" - " int compoundChild = concavePairs[pairIdx].w;\n" - " int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" - " int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" - " float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" - " float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" - " float4 newPosB = transform(&childPosB,&posB,&ornB);\n" - " float4 newOrnB = qtMul(ornB,childOrnB);\n" - " posB = newPosB;\n" - " ornB = newOrnB;\n" - " shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" - " }\n" - " //////////////////\n" - " float4 c0local = convexPolyhedronA.m_localCenter;\n" - " float4 c0 = transform(&c0local, &posA, &ornA);\n" - " float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" - " float4 c1 = transform(&c1local,&posB,&ornB);\n" - " const float4 DeltaC2 = c0 - c1;\n" - " bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " verticesA,uniqueEdgesA,facesA,indicesA,\n" - " vertices,uniqueEdges,faces,indices,\n" - " &sepAxis,&dmin);\n" - " hasSeparatingAxis = 4;\n" - " if (!sepA)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else\n" - " {\n" - " bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n" - " posB,ornB,\n" - " posA,ornA,\n" - " DeltaC2,\n" - " vertices,uniqueEdges,faces,indices,\n" - " verticesA,uniqueEdgesA,facesA,indicesA,\n" - " &sepAxis,&dmin);\n" - " if (!sepB)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else\n" - " {\n" - " bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " DeltaC2,\n" - " verticesA,uniqueEdgesA,facesA,indicesA,\n" - " vertices,uniqueEdges,faces,indices,\n" - " &sepAxis,&dmin);\n" - " \n" - " if (!sepEE)\n" - " {\n" - " hasSeparatingAxis = 0;\n" - " } else\n" - " {\n" - " hasSeparatingAxis = 1;\n" - " }\n" - " }\n" - " } \n" - " \n" - " if (hasSeparatingAxis)\n" - " {\n" - " sepAxis.w = dmin;\n" - " concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" - " concaveHasSeparatingNormals[i]=1;\n" - " float minDist = -1e30f;\n" - " float maxDist = 0.02f;\n" - " \n" - " findClippingFaces(sepAxis,\n" - " &convexPolyhedronA,\n" - " &convexShapes[shapeIndexB],\n" - " posA,ornA,\n" - " posB,ornB,\n" - " worldVertsA1GPU,\n" - " worldNormalsAGPU,\n" - " worldVertsB1GPU,\n" - " vertexFaceCapacity,\n" - " minDist, maxDist,\n" - " verticesA,\n" - " facesA,\n" - " indicesA,\n" - " vertices,\n" - " faces,\n" - " indices,\n" - " clippingFacesOut, pairIdx);\n" - " } else\n" - " { \n" - " //mark this pair as in-active\n" - " concavePairs[pairIdx].w = -1;\n" - " }\n" - " }\n" - " else\n" - " { \n" - " //mark this pair as in-active\n" - " concavePairs[pairIdx].w = -1;\n" - " }\n" - " \n" - " concavePairs[pairIdx].z = -1;//now z is used for existing/persistent contacts\n" - "}\n"; |