summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h')
-rw-r--r--thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h2104
1 files changed, 2104 insertions, 0 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h
new file mode 100644
index 0000000000..6f8b0a90db
--- /dev/null
+++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h
@@ -0,0 +1,2104 @@
+//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
+static const char* satKernelsCL= \
+"//keep this enum in sync with the CPU version (in btCollidable.h)\n"
+"//written by Erwin Coumans\n"
+"#define SHAPE_CONVEX_HULL 3\n"
+"#define SHAPE_CONCAVE_TRIMESH 5\n"
+"#define TRIANGLE_NUM_CONVEX_FACES 5\n"
+"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n"
+"#define B3_MAX_STACK_DEPTH 256\n"
+"typedef unsigned int u32;\n"
+"///keep this in sync with btCollidable.h\n"
+"typedef struct\n"
+"{\n"
+" union {\n"
+" int m_numChildShapes;\n"
+" int m_bvhIndex;\n"
+" };\n"
+" union\n"
+" {\n"
+" float m_radius;\n"
+" int m_compoundBvhIndex;\n"
+" };\n"
+" \n"
+" int m_shapeType;\n"
+" int m_shapeIndex;\n"
+" \n"
+"} btCollidableGpu;\n"
+"#define MAX_NUM_PARTS_IN_BITS 10\n"
+"///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.\n"
+"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n"
+"typedef struct\n"
+"{\n"
+" //12 bytes\n"
+" unsigned short int m_quantizedAabbMin[3];\n"
+" unsigned short int m_quantizedAabbMax[3];\n"
+" //4 bytes\n"
+" int m_escapeIndexOrTriangleIndex;\n"
+"} b3QuantizedBvhNode;\n"
+"typedef struct\n"
+"{\n"
+" float4 m_aabbMin;\n"
+" float4 m_aabbMax;\n"
+" float4 m_quantization;\n"
+" int m_numNodes;\n"
+" int m_numSubTrees;\n"
+" int m_nodeOffset;\n"
+" int m_subTreeOffset;\n"
+"} b3BvhInfo;\n"
+"int getTriangleIndex(const b3QuantizedBvhNode* rootNode)\n"
+"{\n"
+" unsigned int x=0;\n"
+" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n"
+" // Get only the lower bits where the triangle index is stored\n"
+" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n"
+"}\n"
+"int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n"
+"{\n"
+" unsigned int x=0;\n"
+" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n"
+" // Get only the lower bits where the triangle index is stored\n"
+" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n"
+"}\n"
+"int isLeafNode(const b3QuantizedBvhNode* rootNode)\n"
+"{\n"
+" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n"
+" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n"
+"}\n"
+"int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)\n"
+"{\n"
+" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n"
+" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n"
+"}\n"
+" \n"
+"int getEscapeIndex(const b3QuantizedBvhNode* rootNode)\n"
+"{\n"
+" return -rootNode->m_escapeIndexOrTriangleIndex;\n"
+"}\n"
+"int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n"
+"{\n"
+" return -rootNode->m_escapeIndexOrTriangleIndex;\n"
+"}\n"
+"typedef struct\n"
+"{\n"
+" //12 bytes\n"
+" unsigned short int m_quantizedAabbMin[3];\n"
+" unsigned short int m_quantizedAabbMax[3];\n"
+" //4 bytes, points to the root of the subtree\n"
+" int m_rootNodeIndex;\n"
+" //4 bytes\n"
+" int m_subtreeSize;\n"
+" int m_padding[3];\n"
+"} b3BvhSubtreeInfo;\n"
+"typedef struct\n"
+"{\n"
+" float4 m_childPosition;\n"
+" float4 m_childOrientation;\n"
+" int m_shapeIndex;\n"
+" int m_unused0;\n"
+" int m_unused1;\n"
+" int m_unused2;\n"
+"} btGpuChildShape;\n"
+"typedef struct\n"
+"{\n"
+" float4 m_pos;\n"
+" float4 m_quat;\n"
+" float4 m_linVel;\n"
+" float4 m_angVel;\n"
+" u32 m_collidableIdx;\n"
+" float m_invMass;\n"
+" float m_restituitionCoeff;\n"
+" float m_frictionCoeff;\n"
+"} BodyData;\n"
+"typedef struct \n"
+"{\n"
+" float4 m_localCenter;\n"
+" float4 m_extents;\n"
+" float4 mC;\n"
+" float4 mE;\n"
+" \n"
+" float m_radius;\n"
+" int m_faceOffset;\n"
+" int m_numFaces;\n"
+" int m_numVertices;\n"
+" int m_vertexOffset;\n"
+" int m_uniqueEdgesOffset;\n"
+" int m_numUniqueEdges;\n"
+" int m_unused;\n"
+"} ConvexPolyhedronCL;\n"
+"typedef struct \n"
+"{\n"
+" union\n"
+" {\n"
+" float4 m_min;\n"
+" float m_minElems[4];\n"
+" int m_minIndices[4];\n"
+" };\n"
+" union\n"
+" {\n"
+" float4 m_max;\n"
+" float m_maxElems[4];\n"
+" int m_maxIndices[4];\n"
+" };\n"
+"} btAabbCL;\n"
+"#ifndef B3_AABB_H\n"
+"#define B3_AABB_H\n"
+"#ifndef B3_FLOAT4_H\n"
+"#define B3_FLOAT4_H\n"
+"#ifndef B3_PLATFORM_DEFINITIONS_H\n"
+"#define B3_PLATFORM_DEFINITIONS_H\n"
+"struct MyTest\n"
+"{\n"
+" int bla;\n"
+"};\n"
+"#ifdef __cplusplus\n"
+"#else\n"
+"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n"
+"#define B3_LARGE_FLOAT 1e18f\n"
+"#define B3_INFINITY 1e18f\n"
+"#define b3Assert(a)\n"
+"#define b3ConstArray(a) __global const a*\n"
+"#define b3AtomicInc atomic_inc\n"
+"#define b3AtomicAdd atomic_add\n"
+"#define b3Fabs fabs\n"
+"#define b3Sqrt native_sqrt\n"
+"#define b3Sin native_sin\n"
+"#define b3Cos native_cos\n"
+"#define B3_STATIC\n"
+"#endif\n"
+"#endif\n"
+"#ifdef __cplusplus\n"
+"#else\n"
+" typedef float4 b3Float4;\n"
+" #define b3Float4ConstArg const b3Float4\n"
+" #define b3MakeFloat4 (float4)\n"
+" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n"
+" {\n"
+" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n"
+" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n"
+" return dot(a1, b1);\n"
+" }\n"
+" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n"
+" {\n"
+" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n"
+" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n"
+" return cross(a1, b1);\n"
+" }\n"
+" #define b3MinFloat4 min\n"
+" #define b3MaxFloat4 max\n"
+" #define b3Normalized(a) normalize(a)\n"
+"#endif \n"
+" \n"
+"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n"
+"{\n"
+" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n"
+" return false;\n"
+" return true;\n"
+"}\n"
+"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n"
+"{\n"
+" float maxDot = -B3_INFINITY;\n"
+" int i = 0;\n"
+" int ptIndex = -1;\n"
+" for( i = 0; i < vecLen; i++ )\n"
+" {\n"
+" float dot = b3Dot3F4(vecArray[i],vec);\n"
+" \n"
+" if( dot > maxDot )\n"
+" {\n"
+" maxDot = dot;\n"
+" ptIndex = i;\n"
+" }\n"
+" }\n"
+" b3Assert(ptIndex>=0);\n"
+" if (ptIndex<0)\n"
+" {\n"
+" ptIndex = 0;\n"
+" }\n"
+" *dotOut = maxDot;\n"
+" return ptIndex;\n"
+"}\n"
+"#endif //B3_FLOAT4_H\n"
+"#ifndef B3_MAT3x3_H\n"
+"#define B3_MAT3x3_H\n"
+"#ifndef B3_QUAT_H\n"
+"#define B3_QUAT_H\n"
+"#ifndef B3_PLATFORM_DEFINITIONS_H\n"
+"#ifdef __cplusplus\n"
+"#else\n"
+"#endif\n"
+"#endif\n"
+"#ifndef B3_FLOAT4_H\n"
+"#ifdef __cplusplus\n"
+"#else\n"
+"#endif \n"
+"#endif //B3_FLOAT4_H\n"
+"#ifdef __cplusplus\n"
+"#else\n"
+" typedef float4 b3Quat;\n"
+" #define b3QuatConstArg const b3Quat\n"
+" \n"
+" \n"
+"inline float4 b3FastNormalize4(float4 v)\n"
+"{\n"
+" v = (float4)(v.xyz,0.f);\n"
+" return fast_normalize(v);\n"
+"}\n"
+" \n"
+"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n"
+"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n"
+"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n"
+"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n"
+"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n"
+"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n"
+"{\n"
+" b3Quat ans;\n"
+" ans = b3Cross3( a, b );\n"
+" ans += a.w*b+b.w*a;\n"
+"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n"
+" ans.w = a.w*b.w - b3Dot3F4(a, b);\n"
+" return ans;\n"
+"}\n"
+"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n"
+"{\n"
+" b3Quat q;\n"
+" q=in;\n"
+" //return b3FastNormalize4(in);\n"
+" float len = native_sqrt(dot(q, q));\n"
+" if(len > 0.f)\n"
+" {\n"
+" q *= 1.f / len;\n"
+" }\n"
+" else\n"
+" {\n"
+" q.x = q.y = q.z = 0.f;\n"
+" q.w = 1.f;\n"
+" }\n"
+" return q;\n"
+"}\n"
+"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n"
+"{\n"
+" b3Quat qInv = b3QuatInvert( q );\n"
+" float4 vcpy = vec;\n"
+" vcpy.w = 0.f;\n"
+" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n"
+" return out;\n"
+"}\n"
+"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n"
+"{\n"
+" return (b3Quat)(-q.xyz, q.w);\n"
+"}\n"
+"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n"
+"{\n"
+" return (b3Quat)(-q.xyz, q.w);\n"
+"}\n"
+"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n"
+"{\n"
+" return b3QuatRotate( b3QuatInvert( q ), vec );\n"
+"}\n"
+"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n"
+"{\n"
+" return b3QuatRotate( orientation, point ) + (translation);\n"
+"}\n"
+" \n"
+"#endif \n"
+"#endif //B3_QUAT_H\n"
+"#ifdef __cplusplus\n"
+"#else\n"
+"typedef struct\n"
+"{\n"
+" b3Float4 m_row[3];\n"
+"}b3Mat3x3;\n"
+"#define b3Mat3x3ConstArg const b3Mat3x3\n"
+"#define b3GetRow(m,row) (m.m_row[row])\n"
+"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n"
+"{\n"
+" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n"
+" b3Mat3x3 out;\n"
+" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n"
+" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n"
+" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n"
+" out.m_row[0].w = 0.f;\n"
+" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n"
+" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n"
+" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n"
+" out.m_row[1].w = 0.f;\n"
+" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n"
+" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n"
+" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n"
+" out.m_row[2].w = 0.f;\n"
+" return out;\n"
+"}\n"
+"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n"
+"{\n"
+" b3Mat3x3 out;\n"
+" out.m_row[0] = fabs(matIn.m_row[0]);\n"
+" out.m_row[1] = fabs(matIn.m_row[1]);\n"
+" out.m_row[2] = fabs(matIn.m_row[2]);\n"
+" return out;\n"
+"}\n"
+"__inline\n"
+"b3Mat3x3 mtZero();\n"
+"__inline\n"
+"b3Mat3x3 mtIdentity();\n"
+"__inline\n"
+"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n"
+"__inline\n"
+"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n"
+"__inline\n"
+"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n"
+"__inline\n"
+"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n"
+"__inline\n"
+"b3Mat3x3 mtZero()\n"
+"{\n"
+" b3Mat3x3 m;\n"
+" m.m_row[0] = (b3Float4)(0.f);\n"
+" m.m_row[1] = (b3Float4)(0.f);\n"
+" m.m_row[2] = (b3Float4)(0.f);\n"
+" return m;\n"
+"}\n"
+"__inline\n"
+"b3Mat3x3 mtIdentity()\n"
+"{\n"
+" b3Mat3x3 m;\n"
+" m.m_row[0] = (b3Float4)(1,0,0,0);\n"
+" m.m_row[1] = (b3Float4)(0,1,0,0);\n"
+" m.m_row[2] = (b3Float4)(0,0,1,0);\n"
+" return m;\n"
+"}\n"
+"__inline\n"
+"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n"
+"{\n"
+" b3Mat3x3 out;\n"
+" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n"
+" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n"
+" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n"
+" return out;\n"
+"}\n"
+"__inline\n"
+"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n"
+"{\n"
+" b3Mat3x3 transB;\n"
+" transB = mtTranspose( b );\n"
+" b3Mat3x3 ans;\n"
+" // why this doesn't run when 0ing in the for{}\n"
+" a.m_row[0].w = 0.f;\n"
+" a.m_row[1].w = 0.f;\n"
+" a.m_row[2].w = 0.f;\n"
+" for(int i=0; i<3; i++)\n"
+" {\n"
+"// a.m_row[i].w = 0.f;\n"
+" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n"
+" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n"
+" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n"
+" ans.m_row[i].w = 0.f;\n"
+" }\n"
+" return ans;\n"
+"}\n"
+"__inline\n"
+"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n"
+"{\n"
+" b3Float4 ans;\n"
+" ans.x = b3Dot3F4( a.m_row[0], b );\n"
+" ans.y = b3Dot3F4( a.m_row[1], b );\n"
+" ans.z = b3Dot3F4( a.m_row[2], b );\n"
+" ans.w = 0.f;\n"
+" return ans;\n"
+"}\n"
+"__inline\n"
+"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n"
+"{\n"
+" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n"
+" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n"
+" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n"
+" b3Float4 ans;\n"
+" ans.x = b3Dot3F4( a, colx );\n"
+" ans.y = b3Dot3F4( a, coly );\n"
+" ans.z = b3Dot3F4( a, colz );\n"
+" return ans;\n"
+"}\n"
+"#endif\n"
+"#endif //B3_MAT3x3_H\n"
+"typedef struct b3Aabb b3Aabb_t;\n"
+"struct b3Aabb\n"
+"{\n"
+" union\n"
+" {\n"
+" float m_min[4];\n"
+" b3Float4 m_minVec;\n"
+" int m_minIndices[4];\n"
+" };\n"
+" union\n"
+" {\n"
+" float m_max[4];\n"
+" b3Float4 m_maxVec;\n"
+" int m_signedMaxIndices[4];\n"
+" };\n"
+"};\n"
+"inline void b3TransformAabb2(b3Float4ConstArg localAabbMin,b3Float4ConstArg localAabbMax, float margin,\n"
+" b3Float4ConstArg pos,\n"
+" b3QuatConstArg orn,\n"
+" b3Float4* aabbMinOut,b3Float4* aabbMaxOut)\n"
+"{\n"
+" b3Float4 localHalfExtents = 0.5f*(localAabbMax-localAabbMin);\n"
+" localHalfExtents+=b3MakeFloat4(margin,margin,margin,0.f);\n"
+" b3Float4 localCenter = 0.5f*(localAabbMax+localAabbMin);\n"
+" b3Mat3x3 m;\n"
+" m = b3QuatGetRotationMatrix(orn);\n"
+" b3Mat3x3 abs_b = b3AbsoluteMat3x3(m);\n"
+" b3Float4 center = b3TransformPoint(localCenter,pos,orn);\n"
+" \n"
+" b3Float4 extent = b3MakeFloat4(b3Dot3F4(localHalfExtents,b3GetRow(abs_b,0)),\n"
+" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,1)),\n"
+" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,2)),\n"
+" 0.f);\n"
+" *aabbMinOut = center-extent;\n"
+" *aabbMaxOut = center+extent;\n"
+"}\n"
+"/// conservative test for overlap between two aabbs\n"
+"inline bool b3TestAabbAgainstAabb(b3Float4ConstArg aabbMin1,b3Float4ConstArg aabbMax1,\n"
+" b3Float4ConstArg aabbMin2, b3Float4ConstArg aabbMax2)\n"
+"{\n"
+" bool overlap = true;\n"
+" overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap;\n"
+" overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap;\n"
+" overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap;\n"
+" return overlap;\n"
+"}\n"
+"#endif //B3_AABB_H\n"
+"/*\n"
+"Bullet Continuous Collision Detection and Physics Library\n"
+"Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org\n"
+"This software is provided 'as-is', without any express or implied warranty.\n"
+"In no event will the authors be held liable for any damages arising from the use of this software.\n"
+"Permission is granted to anyone to use this software for any purpose,\n"
+"including commercial applications, and to alter it and redistribute it freely,\n"
+"subject to the following restrictions:\n"
+"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n"
+"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n"
+"3. This notice may not be removed or altered from any source distribution.\n"
+"*/\n"
+"#ifndef B3_INT2_H\n"
+"#define B3_INT2_H\n"
+"#ifdef __cplusplus\n"
+"#else\n"
+"#define b3UnsignedInt2 uint2\n"
+"#define b3Int2 int2\n"
+"#define b3MakeInt2 (int2)\n"
+"#endif //__cplusplus\n"
+"#endif\n"
+"typedef struct\n"
+"{\n"
+" float4 m_plane;\n"
+" int m_indexOffset;\n"
+" int m_numIndices;\n"
+"} btGpuFace;\n"
+"#define make_float4 (float4)\n"
+"__inline\n"
+"float4 cross3(float4 a, float4 b)\n"
+"{\n"
+" return cross(a,b);\n"
+" \n"
+"// float4 a1 = make_float4(a.xyz,0.f);\n"
+"// float4 b1 = make_float4(b.xyz,0.f);\n"
+"// return cross(a1,b1);\n"
+"//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);\n"
+" \n"
+" // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);\n"
+" \n"
+" //return c;\n"
+"}\n"
+"__inline\n"
+"float dot3F4(float4 a, float4 b)\n"
+"{\n"
+" float4 a1 = make_float4(a.xyz,0.f);\n"
+" float4 b1 = make_float4(b.xyz,0.f);\n"
+" return dot(a1, b1);\n"
+"}\n"
+"__inline\n"
+"float4 fastNormalize4(float4 v)\n"
+"{\n"
+" v = make_float4(v.xyz,0.f);\n"
+" return fast_normalize(v);\n"
+"}\n"
+"///////////////////////////////////////\n"
+"// Quaternion\n"
+"///////////////////////////////////////\n"
+"typedef float4 Quaternion;\n"
+"__inline\n"
+"Quaternion qtMul(Quaternion a, Quaternion b);\n"
+"__inline\n"
+"Quaternion qtNormalize(Quaternion in);\n"
+"__inline\n"
+"float4 qtRotate(Quaternion q, float4 vec);\n"
+"__inline\n"
+"Quaternion qtInvert(Quaternion q);\n"
+"__inline\n"
+"Quaternion qtMul(Quaternion a, Quaternion b)\n"
+"{\n"
+" Quaternion ans;\n"
+" ans = cross3( a, b );\n"
+" ans += a.w*b+b.w*a;\n"
+"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n"
+" ans.w = a.w*b.w - dot3F4(a, b);\n"
+" return ans;\n"
+"}\n"
+"__inline\n"
+"Quaternion qtNormalize(Quaternion in)\n"
+"{\n"
+" return fastNormalize4(in);\n"
+"// in /= length( in );\n"
+"// return in;\n"
+"}\n"
+"__inline\n"
+"float4 qtRotate(Quaternion q, float4 vec)\n"
+"{\n"
+" Quaternion qInv = qtInvert( q );\n"
+" float4 vcpy = vec;\n"
+" vcpy.w = 0.f;\n"
+" float4 out = qtMul(qtMul(q,vcpy),qInv);\n"
+" return out;\n"
+"}\n"
+"__inline\n"
+"Quaternion qtInvert(Quaternion q)\n"
+"{\n"
+" return (Quaternion)(-q.xyz, q.w);\n"
+"}\n"
+"__inline\n"
+"float4 qtInvRotate(const Quaternion q, float4 vec)\n"
+"{\n"
+" return qtRotate( qtInvert( q ), vec );\n"
+"}\n"
+"__inline\n"
+"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n"
+"{\n"
+" return qtRotate( *orientation, *p ) + (*translation);\n"
+"}\n"
+"__inline\n"
+"float4 normalize3(const float4 a)\n"
+"{\n"
+" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n"
+" return fastNormalize4( n );\n"
+"}\n"
+"inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n"
+"const float4* dir, const float4* vertices, float* min, float* max)\n"
+"{\n"
+" min[0] = FLT_MAX;\n"
+" max[0] = -FLT_MAX;\n"
+" int numVerts = hull->m_numVertices;\n"
+" const float4 localDir = qtInvRotate(orn,*dir);\n"
+" float offset = dot(pos,*dir);\n"
+" for(int i=0;i<numVerts;i++)\n"
+" {\n"
+" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n"
+" if(dp < min[0]) \n"
+" min[0] = dp;\n"
+" if(dp > max[0]) \n"
+" max[0] = dp;\n"
+" }\n"
+" if(min[0]>max[0])\n"
+" {\n"
+" float tmp = min[0];\n"
+" min[0] = max[0];\n"
+" max[0] = tmp;\n"
+" }\n"
+" min[0] += offset;\n"
+" max[0] += offset;\n"
+"}\n"
+"inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n"
+"const float4* dir, __global const float4* vertices, float* min, float* max)\n"
+"{\n"
+" min[0] = FLT_MAX;\n"
+" max[0] = -FLT_MAX;\n"
+" int numVerts = hull->m_numVertices;\n"
+" const float4 localDir = qtInvRotate(orn,*dir);\n"
+" float offset = dot(pos,*dir);\n"
+" for(int i=0;i<numVerts;i++)\n"
+" {\n"
+" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n"
+" if(dp < min[0]) \n"
+" min[0] = dp;\n"
+" if(dp > max[0]) \n"
+" max[0] = dp;\n"
+" }\n"
+" if(min[0]>max[0])\n"
+" {\n"
+" float tmp = min[0];\n"
+" min[0] = max[0];\n"
+" max[0] = tmp;\n"
+" }\n"
+" min[0] += offset;\n"
+" max[0] += offset;\n"
+"}\n"
+"inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA,const float4 ornA,\n"
+" const float4 posB,const float4 ornB,\n"
+" float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)\n"
+"{\n"
+" float Min0,Max0;\n"
+" float Min1,Max1;\n"
+" projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);\n"
+" project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);\n"
+" if(Max0<Min1 || Max1<Min0)\n"
+" return false;\n"
+" float d0 = Max0 - Min1;\n"
+" float d1 = Max1 - Min0;\n"
+" *depth = d0<d1 ? d0:d1;\n"
+" return true;\n"
+"}\n"
+"inline bool IsAlmostZero(const float4 v)\n"
+"{\n"
+" if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)\n"
+" return false;\n"
+" return true;\n"
+"}\n"
+"bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA1,\n"
+" const float4 ornA,\n"
+" const float4 posB1,\n"
+" const float4 ornB,\n"
+" const float4 DeltaC2,\n"
+" \n"
+" const float4* verticesA, \n"
+" const float4* uniqueEdgesA, \n"
+" const btGpuFace* facesA,\n"
+" const int* indicesA,\n"
+" __global const float4* verticesB, \n"
+" __global const float4* uniqueEdgesB, \n"
+" __global const btGpuFace* facesB,\n"
+" __global const int* indicesB,\n"
+" float4* sep,\n"
+" float* dmin)\n"
+"{\n"
+" \n"
+" float4 posA = posA1;\n"
+" posA.w = 0.f;\n"
+" float4 posB = posB1;\n"
+" posB.w = 0.f;\n"
+" int curPlaneTests=0;\n"
+" {\n"
+" int numFacesA = hullA->m_numFaces;\n"
+" // Test normals from hullA\n"
+" for(int i=0;i<numFacesA;i++)\n"
+" {\n"
+" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n"
+" float4 faceANormalWS = qtRotate(ornA,normal);\n"
+" if (dot3F4(DeltaC2,faceANormalWS)<0)\n"
+" faceANormalWS*=-1.f;\n"
+" curPlaneTests++;\n"
+" float d;\n"
+" if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))\n"
+" return false;\n"
+" if(d<*dmin)\n"
+" {\n"
+" *dmin = d;\n"
+" *sep = faceANormalWS;\n"
+" }\n"
+" }\n"
+" }\n"
+" if((dot3F4(-DeltaC2,*sep))>0.0f)\n"
+" {\n"
+" *sep = -(*sep);\n"
+" }\n"
+" return true;\n"
+"}\n"
+"bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA1,\n"
+" const float4 ornA,\n"
+" const float4 posB1,\n"
+" const float4 ornB,\n"
+" const float4 DeltaC2,\n"
+" __global const float4* verticesA, \n"
+" __global const float4* uniqueEdgesA, \n"
+" __global const btGpuFace* facesA,\n"
+" __global const int* indicesA,\n"
+" const float4* verticesB,\n"
+" const float4* uniqueEdgesB, \n"
+" const btGpuFace* facesB,\n"
+" const int* indicesB,\n"
+" float4* sep,\n"
+" float* dmin)\n"
+"{\n"
+" float4 posA = posA1;\n"
+" posA.w = 0.f;\n"
+" float4 posB = posB1;\n"
+" posB.w = 0.f;\n"
+" int curPlaneTests=0;\n"
+" {\n"
+" int numFacesA = hullA->m_numFaces;\n"
+" // Test normals from hullA\n"
+" for(int i=0;i<numFacesA;i++)\n"
+" {\n"
+" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n"
+" float4 faceANormalWS = qtRotate(ornA,normal);\n"
+" if (dot3F4(DeltaC2,faceANormalWS)<0)\n"
+" faceANormalWS *= -1.f;\n"
+" curPlaneTests++;\n"
+" float d;\n"
+" if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))\n"
+" return false;\n"
+" if(d<*dmin)\n"
+" {\n"
+" *dmin = d;\n"
+" *sep = faceANormalWS;\n"
+" }\n"
+" }\n"
+" }\n"
+" if((dot3F4(-DeltaC2,*sep))>0.0f)\n"
+" {\n"
+" *sep = -(*sep);\n"
+" }\n"
+" return true;\n"
+"}\n"
+"bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA1,\n"
+" const float4 ornA,\n"
+" const float4 posB1,\n"
+" const float4 ornB,\n"
+" const float4 DeltaC2,\n"
+" const float4* verticesA, \n"
+" const float4* uniqueEdgesA, \n"
+" const btGpuFace* facesA,\n"
+" const int* indicesA,\n"
+" __global const float4* verticesB, \n"
+" __global const float4* uniqueEdgesB, \n"
+" __global const btGpuFace* facesB,\n"
+" __global const int* indicesB,\n"
+" float4* sep,\n"
+" float* dmin)\n"
+"{\n"
+" float4 posA = posA1;\n"
+" posA.w = 0.f;\n"
+" float4 posB = posB1;\n"
+" posB.w = 0.f;\n"
+" int curPlaneTests=0;\n"
+" int curEdgeEdge = 0;\n"
+" // Test edges\n"
+" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n"
+" {\n"
+" const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];\n"
+" float4 edge0World = qtRotate(ornA,edge0);\n"
+" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n"
+" {\n"
+" const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];\n"
+" float4 edge1World = qtRotate(ornB,edge1);\n"
+" float4 crossje = cross3(edge0World,edge1World);\n"
+" curEdgeEdge++;\n"
+" if(!IsAlmostZero(crossje))\n"
+" {\n"
+" crossje = normalize3(crossje);\n"
+" if (dot3F4(DeltaC2,crossje)<0)\n"
+" crossje *= -1.f;\n"
+" float dist;\n"
+" bool result = true;\n"
+" {\n"
+" float Min0,Max0;\n"
+" float Min1,Max1;\n"
+" projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);\n"
+" project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);\n"
+" \n"
+" if(Max0<Min1 || Max1<Min0)\n"
+" result = false;\n"
+" \n"
+" float d0 = Max0 - Min1;\n"
+" float d1 = Max1 - Min0;\n"
+" dist = d0<d1 ? d0:d1;\n"
+" result = true;\n"
+" }\n"
+" \n"
+" if(dist<*dmin)\n"
+" {\n"
+" *dmin = dist;\n"
+" *sep = crossje;\n"
+" }\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" if((dot3F4(-DeltaC2,*sep))>0.0f)\n"
+" {\n"
+" *sep = -(*sep);\n"
+" }\n"
+" return true;\n"
+"}\n"
+"inline bool TestSepAxis(__global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA,const float4 ornA,\n"
+" const float4 posB,const float4 ornB,\n"
+" float4* sep_axis, __global const float4* vertices,float* depth)\n"
+"{\n"
+" float Min0,Max0;\n"
+" float Min1,Max1;\n"
+" project(hullA,posA,ornA,sep_axis,vertices, &Min0, &Max0);\n"
+" project(hullB,posB,ornB, sep_axis,vertices, &Min1, &Max1);\n"
+" if(Max0<Min1 || Max1<Min0)\n"
+" return false;\n"
+" float d0 = Max0 - Min1;\n"
+" float d1 = Max1 - Min0;\n"
+" *depth = d0<d1 ? d0:d1;\n"
+" return true;\n"
+"}\n"
+"bool findSeparatingAxis( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA1,\n"
+" const float4 ornA,\n"
+" const float4 posB1,\n"
+" const float4 ornB,\n"
+" const float4 DeltaC2,\n"
+" __global const float4* vertices, \n"
+" __global const float4* uniqueEdges, \n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" float4* sep,\n"
+" float* dmin)\n"
+"{\n"
+" \n"
+" float4 posA = posA1;\n"
+" posA.w = 0.f;\n"
+" float4 posB = posB1;\n"
+" posB.w = 0.f;\n"
+" \n"
+" int curPlaneTests=0;\n"
+" {\n"
+" int numFacesA = hullA->m_numFaces;\n"
+" // Test normals from hullA\n"
+" for(int i=0;i<numFacesA;i++)\n"
+" {\n"
+" const float4 normal = faces[hullA->m_faceOffset+i].m_plane;\n"
+" float4 faceANormalWS = qtRotate(ornA,normal);\n"
+" \n"
+" if (dot3F4(DeltaC2,faceANormalWS)<0)\n"
+" faceANormalWS*=-1.f;\n"
+" \n"
+" curPlaneTests++;\n"
+" \n"
+" float d;\n"
+" if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, vertices,&d))\n"
+" return false;\n"
+" \n"
+" if(d<*dmin)\n"
+" {\n"
+" *dmin = d;\n"
+" *sep = faceANormalWS;\n"
+" }\n"
+" }\n"
+" }\n"
+" if((dot3F4(-DeltaC2,*sep))>0.0f)\n"
+" {\n"
+" *sep = -(*sep);\n"
+" }\n"
+" \n"
+" return true;\n"
+"}\n"
+"bool findSeparatingAxisUnitSphere( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA1,\n"
+" const float4 ornA,\n"
+" const float4 posB1,\n"
+" const float4 ornB,\n"
+" const float4 DeltaC2,\n"
+" __global const float4* vertices,\n"
+" __global const float4* unitSphereDirections,\n"
+" int numUnitSphereDirections,\n"
+" float4* sep,\n"
+" float* dmin)\n"
+"{\n"
+" \n"
+" float4 posA = posA1;\n"
+" posA.w = 0.f;\n"
+" float4 posB = posB1;\n"
+" posB.w = 0.f;\n"
+" int curPlaneTests=0;\n"
+" int curEdgeEdge = 0;\n"
+" // Test unit sphere directions\n"
+" for (int i=0;i<numUnitSphereDirections;i++)\n"
+" {\n"
+" float4 crossje;\n"
+" crossje = unitSphereDirections[i]; \n"
+" if (dot3F4(DeltaC2,crossje)>0)\n"
+" crossje *= -1.f;\n"
+" {\n"
+" float dist;\n"
+" bool result = true;\n"
+" float Min0,Max0;\n"
+" float Min1,Max1;\n"
+" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n"
+" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n"
+" \n"
+" if(Max0<Min1 || Max1<Min0)\n"
+" return false;\n"
+" \n"
+" float d0 = Max0 - Min1;\n"
+" float d1 = Max1 - Min0;\n"
+" dist = d0<d1 ? d0:d1;\n"
+" result = true;\n"
+" \n"
+" if(dist<*dmin)\n"
+" {\n"
+" *dmin = dist;\n"
+" *sep = crossje;\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" if((dot3F4(-DeltaC2,*sep))>0.0f)\n"
+" {\n"
+" *sep = -(*sep);\n"
+" }\n"
+" return true;\n"
+"}\n"
+"bool findSeparatingAxisEdgeEdge( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n"
+" const float4 posA1,\n"
+" const float4 ornA,\n"
+" const float4 posB1,\n"
+" const float4 ornB,\n"
+" const float4 DeltaC2,\n"
+" __global const float4* vertices, \n"
+" __global const float4* uniqueEdges, \n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" float4* sep,\n"
+" float* dmin)\n"
+"{\n"
+" \n"
+" float4 posA = posA1;\n"
+" posA.w = 0.f;\n"
+" float4 posB = posB1;\n"
+" posB.w = 0.f;\n"
+" int curPlaneTests=0;\n"
+" int curEdgeEdge = 0;\n"
+" // Test edges\n"
+" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n"
+" {\n"
+" const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0];\n"
+" float4 edge0World = qtRotate(ornA,edge0);\n"
+" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n"
+" {\n"
+" const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1];\n"
+" float4 edge1World = qtRotate(ornB,edge1);\n"
+" float4 crossje = cross3(edge0World,edge1World);\n"
+" curEdgeEdge++;\n"
+" if(!IsAlmostZero(crossje))\n"
+" {\n"
+" crossje = normalize3(crossje);\n"
+" if (dot3F4(DeltaC2,crossje)<0)\n"
+" crossje*=-1.f;\n"
+" \n"
+" float dist;\n"
+" bool result = true;\n"
+" {\n"
+" float Min0,Max0;\n"
+" float Min1,Max1;\n"
+" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n"
+" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n"
+" \n"
+" if(Max0<Min1 || Max1<Min0)\n"
+" return false;\n"
+" \n"
+" float d0 = Max0 - Min1;\n"
+" float d1 = Max1 - Min0;\n"
+" dist = d0<d1 ? d0:d1;\n"
+" result = true;\n"
+" }\n"
+" \n"
+" if(dist<*dmin)\n"
+" {\n"
+" *dmin = dist;\n"
+" *sep = crossje;\n"
+" }\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" if((dot3F4(-DeltaC2,*sep))>0.0f)\n"
+" {\n"
+" *sep = -(*sep);\n"
+" }\n"
+" return true;\n"
+"}\n"
+"// work-in-progress\n"
+"__kernel void processCompoundPairsKernel( __global const int4* gpuCompoundPairs,\n"
+" __global const BodyData* rigidBodies, \n"
+" __global const btCollidableGpu* collidables,\n"
+" __global const ConvexPolyhedronCL* convexShapes, \n"
+" __global const float4* vertices,\n"
+" __global const float4* uniqueEdges,\n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" __global btAabbCL* aabbs,\n"
+" __global const btGpuChildShape* gpuChildShapes,\n"
+" __global volatile float4* gpuCompoundSepNormalsOut,\n"
+" __global volatile int* gpuHasCompoundSepNormalsOut,\n"
+" int numCompoundPairs\n"
+" )\n"
+"{\n"
+" int i = get_global_id(0);\n"
+" if (i<numCompoundPairs)\n"
+" {\n"
+" int bodyIndexA = gpuCompoundPairs[i].x;\n"
+" int bodyIndexB = gpuCompoundPairs[i].y;\n"
+" int childShapeIndexA = gpuCompoundPairs[i].z;\n"
+" int childShapeIndexB = gpuCompoundPairs[i].w;\n"
+" \n"
+" int collidableIndexA = -1;\n"
+" int collidableIndexB = -1;\n"
+" \n"
+" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" \n"
+" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" \n"
+" if (childShapeIndexA >= 0)\n"
+" {\n"
+" collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n"
+" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n"
+" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n"
+" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n"
+" float4 newOrnA = qtMul(ornA,childOrnA);\n"
+" posA = newPosA;\n"
+" ornA = newOrnA;\n"
+" } else\n"
+" {\n"
+" collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
+" }\n"
+" \n"
+" if (childShapeIndexB>=0)\n"
+" {\n"
+" collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n"
+" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n"
+" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n"
+" float4 newPosB = transform(&childPosB,&posB,&ornB);\n"
+" float4 newOrnB = qtMul(ornB,childOrnB);\n"
+" posB = newPosB;\n"
+" ornB = newOrnB;\n"
+" } else\n"
+" {\n"
+" collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n"
+" }\n"
+" \n"
+" gpuHasCompoundSepNormalsOut[i] = 0;\n"
+" \n"
+" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
+" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
+" \n"
+" int shapeTypeA = collidables[collidableIndexA].m_shapeType;\n"
+" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n"
+" \n"
+" if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL))\n"
+" {\n"
+" return;\n"
+" }\n"
+" int hasSeparatingAxis = 5;\n"
+" \n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" float dmin = FLT_MAX;\n"
+" posA.w = 0.f;\n"
+" posB.w = 0.f;\n"
+" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" float4 sepNormal = make_float4(1,0,0,0);\n"
+" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n"
+" hasSeparatingAxis = 4;\n"
+" if (!sepA)\n"
+" {\n"
+" hasSeparatingAxis = 0;\n"
+" } else\n"
+" {\n"
+" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,posA,ornA,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n"
+" if (!sepB)\n"
+" {\n"
+" hasSeparatingAxis = 0;\n"
+" } else//(!sepB)\n"
+" {\n"
+" bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n"
+" if (sepEE)\n"
+" {\n"
+" gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal);\n"
+" gpuHasCompoundSepNormalsOut[i] = 1;\n"
+" }//sepEE\n"
+" }//(!sepB)\n"
+" }//(!sepA)\n"
+" \n"
+" \n"
+" }\n"
+" \n"
+"}\n"
+"inline b3Float4 MyUnQuantize(const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n"
+"{\n"
+" b3Float4 vecOut;\n"
+" vecOut = b3MakeFloat4(\n"
+" (float)(vecIn[0]) / (quantization.x),\n"
+" (float)(vecIn[1]) / (quantization.y),\n"
+" (float)(vecIn[2]) / (quantization.z),\n"
+" 0.f);\n"
+" vecOut += bvhAabbMin;\n"
+" return vecOut;\n"
+"}\n"
+"inline b3Float4 MyUnQuantizeGlobal(__global const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n"
+"{\n"
+" b3Float4 vecOut;\n"
+" vecOut = b3MakeFloat4(\n"
+" (float)(vecIn[0]) / (quantization.x),\n"
+" (float)(vecIn[1]) / (quantization.y),\n"
+" (float)(vecIn[2]) / (quantization.z),\n"
+" 0.f);\n"
+" vecOut += bvhAabbMin;\n"
+" return vecOut;\n"
+"}\n"
+"// work-in-progress\n"
+"__kernel void findCompoundPairsKernel( __global const int4* pairs, \n"
+" __global const BodyData* rigidBodies, \n"
+" __global const btCollidableGpu* collidables,\n"
+" __global const ConvexPolyhedronCL* convexShapes, \n"
+" __global const float4* vertices,\n"
+" __global const float4* uniqueEdges,\n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" __global b3Aabb_t* aabbLocalSpace,\n"
+" __global const btGpuChildShape* gpuChildShapes,\n"
+" __global volatile int4* gpuCompoundPairsOut,\n"
+" __global volatile int* numCompoundPairsOut,\n"
+" __global const b3BvhSubtreeInfo* subtrees,\n"
+" __global const b3QuantizedBvhNode* quantizedNodes,\n"
+" __global const b3BvhInfo* bvhInfos,\n"
+" int numPairs,\n"
+" int maxNumCompoundPairsCapacity\n"
+" )\n"
+"{\n"
+" int i = get_global_id(0);\n"
+" if (i<numPairs)\n"
+" {\n"
+" int bodyIndexA = pairs[i].x;\n"
+" int bodyIndexB = pairs[i].y;\n"
+" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
+" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
+" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
+" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
+" //once the broadphase avoids static-static pairs, we can remove this test\n"
+" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n"
+" {\n"
+" return;\n"
+" }\n"
+" if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n"
+" {\n"
+" int bvhA = collidables[collidableIndexA].m_compoundBvhIndex;\n"
+" int bvhB = collidables[collidableIndexB].m_compoundBvhIndex;\n"
+" int numSubTreesA = bvhInfos[bvhA].m_numSubTrees;\n"
+" int subTreesOffsetA = bvhInfos[bvhA].m_subTreeOffset;\n"
+" int subTreesOffsetB = bvhInfos[bvhB].m_subTreeOffset;\n"
+" int numSubTreesB = bvhInfos[bvhB].m_numSubTrees;\n"
+" \n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" b3Quat ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" b3Quat ornB = rigidBodies[bodyIndexB].m_quat;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" \n"
+" for (int p=0;p<numSubTreesA;p++)\n"
+" {\n"
+" b3BvhSubtreeInfo subtreeA = subtrees[subTreesOffsetA+p];\n"
+" //bvhInfos[bvhA].m_quantization\n"
+" b3Float4 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n"
+" b3Float4 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n"
+" b3Float4 aabbAMinOut,aabbAMaxOut;\n"
+" float margin=0.f;\n"
+" b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n"
+" \n"
+" for (int q=0;q<numSubTreesB;q++)\n"
+" {\n"
+" b3BvhSubtreeInfo subtreeB = subtrees[subTreesOffsetB+q];\n"
+" b3Float4 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n"
+" b3Float4 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n"
+" b3Float4 aabbBMinOut,aabbBMaxOut;\n"
+" float margin=0.f;\n"
+" b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n"
+" \n"
+" \n"
+" bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n"
+" if (aabbOverlap)\n"
+" {\n"
+" \n"
+" int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfos[bvhA].m_nodeOffset;\n"
+" int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize;\n"
+" int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfos[bvhB].m_nodeOffset;\n"
+" int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize;\n"
+" b3Int2 nodeStack[B3_MAX_STACK_DEPTH];\n"
+" b3Int2 node0;\n"
+" node0.x = startNodeIndexA;\n"
+" node0.y = startNodeIndexB;\n"
+" int maxStackDepth = B3_MAX_STACK_DEPTH;\n"
+" int depth=0;\n"
+" nodeStack[depth++]=node0;\n"
+" do\n"
+" {\n"
+" b3Int2 node = nodeStack[--depth];\n"
+" b3Float4 aMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n"
+" b3Float4 aMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n"
+" b3Float4 bMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n"
+" b3Float4 bMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n"
+" float margin=0.f;\n"
+" b3Float4 aabbAMinOut,aabbAMaxOut;\n"
+" b3TransformAabb2(aMinLocal,aMaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n"
+" b3Float4 aabbBMinOut,aabbBMaxOut;\n"
+" b3TransformAabb2(bMinLocal,bMaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n"
+" \n"
+" bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n"
+" if (nodeOverlap)\n"
+" {\n"
+" bool isLeafA = isLeafNodeGlobal(&quantizedNodes[node.x]);\n"
+" bool isLeafB = isLeafNodeGlobal(&quantizedNodes[node.y]);\n"
+" bool isInternalA = !isLeafA;\n"
+" bool isInternalB = !isLeafB;\n"
+" //fail, even though it might hit two leaf nodes\n"
+" if (depth+4>maxStackDepth && !(isLeafA && isLeafB))\n"
+" {\n"
+" //printf(\"Error: traversal exceeded maxStackDepth\");\n"
+" continue;\n"
+" }\n"
+" if(isInternalA)\n"
+" {\n"
+" int nodeAleftChild = node.x+1;\n"
+" bool isNodeALeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.x+1]);\n"
+" int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + getEscapeIndexGlobal(&quantizedNodes[node.x+1]);\n"
+" if(isInternalB)\n"
+" { \n"
+" int nodeBleftChild = node.y+1;\n"
+" bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n"
+" int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n"
+" nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild);\n"
+" nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild);\n"
+" nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild);\n"
+" nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild);\n"
+" }\n"
+" else\n"
+" {\n"
+" nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y);\n"
+" nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y);\n"
+" }\n"
+" }\n"
+" else\n"
+" {\n"
+" if(isInternalB)\n"
+" {\n"
+" int nodeBleftChild = node.y+1;\n"
+" bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n"
+" int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n"
+" nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild);\n"
+" nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild);\n"
+" }\n"
+" else\n"
+" {\n"
+" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n"
+" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n"
+" {\n"
+" int childShapeIndexA = getTriangleIndexGlobal(&quantizedNodes[node.x]);\n"
+" int childShapeIndexB = getTriangleIndexGlobal(&quantizedNodes[node.y]);\n"
+" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n"
+" }\n"
+" }\n"
+" }\n"
+" }\n"
+" } while (depth);\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" return;\n"
+" }\n"
+" if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n"
+" {\n"
+" if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) \n"
+" {\n"
+" int numChildrenA = collidables[collidableIndexA].m_numChildShapes;\n"
+" for (int c=0;c<numChildrenA;c++)\n"
+" {\n"
+" int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c;\n"
+" int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n"
+" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n"
+" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n"
+" float4 newOrnA = qtMul(ornA,childOrnA);\n"
+" int shapeIndexA = collidables[childColIndexA].m_shapeIndex;\n"
+" b3Aabb_t aabbAlocal = aabbLocalSpace[shapeIndexA];\n"
+" float margin = 0.f;\n"
+" \n"
+" b3Float4 aabbAMinWS;\n"
+" b3Float4 aabbAMaxWS;\n"
+" \n"
+" b3TransformAabb2(aabbAlocal.m_minVec,aabbAlocal.m_maxVec,margin,\n"
+" newPosA,\n"
+" newOrnA,\n"
+" &aabbAMinWS,&aabbAMaxWS);\n"
+" \n"
+" \n"
+" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
+" {\n"
+" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n"
+" for (int b=0;b<numChildrenB;b++)\n"
+" {\n"
+" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n"
+" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n"
+" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n"
+" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n"
+" float4 newPosB = transform(&childPosB,&posB,&ornB);\n"
+" float4 newOrnB = qtMul(ornB,childOrnB);\n"
+" int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n"
+" b3Aabb_t aabbBlocal = aabbLocalSpace[shapeIndexB];\n"
+" \n"
+" b3Float4 aabbBMinWS;\n"
+" b3Float4 aabbBMaxWS;\n"
+" \n"
+" b3TransformAabb2(aabbBlocal.m_minVec,aabbBlocal.m_maxVec,margin,\n"
+" newPosB,\n"
+" newOrnB,\n"
+" &aabbBMinWS,&aabbBMaxWS);\n"
+" \n"
+" \n"
+" \n"
+" bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinWS,aabbAMaxWS,aabbBMinWS,aabbBMaxWS);\n"
+" if (aabbOverlap)\n"
+" {\n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" float dmin = FLT_MAX;\n"
+" float4 posA = newPosA;\n"
+" posA.w = 0.f;\n"
+" float4 posB = newPosB;\n"
+" posB.w = 0.f;\n"
+" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n"
+" float4 ornA = newOrnA;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 ornB =newOrnB;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" {//\n"
+" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n"
+" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n"
+" {\n"
+" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n"
+" }\n"
+" }//\n"
+" }//fi(1)\n"
+" } //for (int b=0\n"
+" }//if (collidables[collidableIndexB].\n"
+" else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
+" {\n"
+" if (1)\n"
+" {\n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" float dmin = FLT_MAX;\n"
+" float4 posA = newPosA;\n"
+" posA.w = 0.f;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" posB.w = 0.f;\n"
+" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n"
+" float4 ornA = newOrnA;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" {\n"
+" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n"
+" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n"
+" {\n"
+" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,-1);\n"
+" }//if (compoundPairIdx<maxNumCompoundPairsCapacity)\n"
+" }//\n"
+" }//fi (1)\n"
+" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
+" }//for (int b=0;b<numChildrenB;b++) \n"
+" return;\n"
+" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
+" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) \n"
+" && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n"
+" {\n"
+" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n"
+" for (int b=0;b<numChildrenB;b++)\n"
+" {\n"
+" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n"
+" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n"
+" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n"
+" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n"
+" float4 newPosB = qtRotate(ornB,childPosB)+posB;\n"
+" float4 newOrnB = qtMul(ornB,childOrnB);\n"
+" int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n"
+" //////////////////////////////////////\n"
+" if (1)\n"
+" {\n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" float dmin = FLT_MAX;\n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" posA.w = 0.f;\n"
+" float4 posB = newPosB;\n"
+" posB.w = 0.f;\n"
+" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n"
+" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 ornB =newOrnB;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" {//\n"
+" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n"
+" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n"
+" {\n"
+" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,-1,childShapeIndexB);\n"
+" }//fi (compoundPairIdx<maxNumCompoundPairsCapacity)\n"
+" }//\n"
+" }//fi (1) \n"
+" }//for (int b=0;b<numChildrenB;b++)\n"
+" return;\n"
+" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
+" return;\n"
+" }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n"
+" }//i<numPairs\n"
+"}\n"
+"// work-in-progress\n"
+"__kernel void findSeparatingAxisKernel( __global const int4* pairs, \n"
+" __global const BodyData* rigidBodies, \n"
+" __global const btCollidableGpu* collidables,\n"
+" __global const ConvexPolyhedronCL* convexShapes, \n"
+" __global const float4* vertices,\n"
+" __global const float4* uniqueEdges,\n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" __global btAabbCL* aabbs,\n"
+" __global volatile float4* separatingNormals,\n"
+" __global volatile int* hasSeparatingAxis,\n"
+" int numPairs\n"
+" )\n"
+"{\n"
+" int i = get_global_id(0);\n"
+" \n"
+" if (i<numPairs)\n"
+" {\n"
+" \n"
+" int bodyIndexA = pairs[i].x;\n"
+" int bodyIndexB = pairs[i].y;\n"
+" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
+" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
+" \n"
+" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
+" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
+" \n"
+" \n"
+" //once the broadphase avoids static-static pairs, we can remove this test\n"
+" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" return;\n"
+" }\n"
+" \n"
+" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" return;\n"
+" }\n"
+" \n"
+" if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH))\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" return;\n"
+" }\n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" float dmin = FLT_MAX;\n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" posA.w = 0.f;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" posB.w = 0.f;\n"
+" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n"
+" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" float4 sepNormal;\n"
+" \n"
+" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n"
+" posB,ornB,\n"
+" DeltaC2,\n"
+" vertices,uniqueEdges,faces,\n"
+" indices,&sepNormal,&dmin);\n"
+" hasSeparatingAxis[i] = 4;\n"
+" if (!sepA)\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" } else\n"
+" {\n"
+" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n"
+" posA,ornA,\n"
+" DeltaC2,\n"
+" vertices,uniqueEdges,faces,\n"
+" indices,&sepNormal,&dmin);\n"
+" if (!sepB)\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" } else\n"
+" {\n"
+" bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n"
+" posB,ornB,\n"
+" DeltaC2,\n"
+" vertices,uniqueEdges,faces,\n"
+" indices,&sepNormal,&dmin);\n"
+" if (!sepEE)\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" } else\n"
+" {\n"
+" hasSeparatingAxis[i] = 1;\n"
+" separatingNormals[i] = sepNormal;\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" }\n"
+"}\n"
+"__kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs, \n"
+" __global const BodyData* rigidBodies, \n"
+" __global const btCollidableGpu* collidables,\n"
+" __global const ConvexPolyhedronCL* convexShapes, \n"
+" __global const float4* vertices,\n"
+" __global const float4* uniqueEdges,\n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" __global btAabbCL* aabbs,\n"
+" __global volatile float4* separatingNormals,\n"
+" __global volatile int* hasSeparatingAxis,\n"
+" __global float* dmins,\n"
+" int numPairs\n"
+" )\n"
+"{\n"
+" int i = get_global_id(0);\n"
+" \n"
+" if (i<numPairs)\n"
+" {\n"
+" \n"
+" int bodyIndexA = pairs[i].x;\n"
+" int bodyIndexB = pairs[i].y;\n"
+" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
+" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
+" \n"
+" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
+" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
+" \n"
+" hasSeparatingAxis[i] = 0; \n"
+" \n"
+" //once the broadphase avoids static-static pairs, we can remove this test\n"
+" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n"
+" {\n"
+" return;\n"
+" }\n"
+" \n"
+" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n"
+" {\n"
+" return;\n"
+" }\n"
+" \n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" float dmin = FLT_MAX;\n"
+" dmins[i] = dmin;\n"
+" \n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" posA.w = 0.f;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" posB.w = 0.f;\n"
+" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n"
+" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" float4 sepNormal;\n"
+" \n"
+" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n"
+" posB,ornB,\n"
+" DeltaC2,\n"
+" vertices,uniqueEdges,faces,\n"
+" indices,&sepNormal,&dmin);\n"
+" hasSeparatingAxis[i] = 4;\n"
+" if (!sepA)\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" } else\n"
+" {\n"
+" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n"
+" posA,ornA,\n"
+" DeltaC2,\n"
+" vertices,uniqueEdges,faces,\n"
+" indices,&sepNormal,&dmin);\n"
+" if (sepB)\n"
+" {\n"
+" dmins[i] = dmin;\n"
+" hasSeparatingAxis[i] = 1;\n"
+" separatingNormals[i] = sepNormal;\n"
+" }\n"
+" }\n"
+" \n"
+" }\n"
+"}\n"
+"__kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs, \n"
+" __global const BodyData* rigidBodies, \n"
+" __global const btCollidableGpu* collidables,\n"
+" __global const ConvexPolyhedronCL* convexShapes, \n"
+" __global const float4* vertices,\n"
+" __global const float4* uniqueEdges,\n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" __global btAabbCL* aabbs,\n"
+" __global float4* separatingNormals,\n"
+" __global int* hasSeparatingAxis,\n"
+" __global float* dmins,\n"
+" __global const float4* unitSphereDirections,\n"
+" int numUnitSphereDirections,\n"
+" int numPairs\n"
+" )\n"
+"{\n"
+" int i = get_global_id(0);\n"
+" \n"
+" if (i<numPairs)\n"
+" {\n"
+" if (hasSeparatingAxis[i])\n"
+" {\n"
+" \n"
+" int bodyIndexA = pairs[i].x;\n"
+" int bodyIndexB = pairs[i].y;\n"
+" \n"
+" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
+" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
+" \n"
+" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
+" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
+" \n"
+" \n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" \n"
+" float dmin = dmins[i];\n"
+" \n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" posA.w = 0.f;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" posB.w = 0.f;\n"
+" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n"
+" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" float4 sepNormal = separatingNormals[i];\n"
+" \n"
+" \n"
+" \n"
+" bool sepEE = false;\n"
+" int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;\n"
+" if (numEdgeEdgeDirections<=numUnitSphereDirections)\n"
+" {\n"
+" sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n"
+" posB,ornB,\n"
+" DeltaC2,\n"
+" vertices,uniqueEdges,faces,\n"
+" indices,&sepNormal,&dmin);\n"
+" \n"
+" if (!sepEE)\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" } else\n"
+" {\n"
+" hasSeparatingAxis[i] = 1;\n"
+" separatingNormals[i] = sepNormal;\n"
+" }\n"
+" }\n"
+" /*\n"
+" ///else case is a separate kernel, to make Mac OSX OpenCL compiler happy\n"
+" else\n"
+" {\n"
+" sepEE = findSeparatingAxisUnitSphere(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n"
+" posB,ornB,\n"
+" DeltaC2,\n"
+" vertices,unitSphereDirections,numUnitSphereDirections,\n"
+" &sepNormal,&dmin);\n"
+" if (!sepEE)\n"
+" {\n"
+" hasSeparatingAxis[i] = 0;\n"
+" } else\n"
+" {\n"
+" hasSeparatingAxis[i] = 1;\n"
+" separatingNormals[i] = sepNormal;\n"
+" }\n"
+" }\n"
+" */\n"
+" } //if (hasSeparatingAxis[i])\n"
+" }//(i<numPairs)\n"
+"}\n"
+"inline int findClippingFaces(const float4 separatingNormal,\n"
+" const ConvexPolyhedronCL* hullA, \n"
+" __global const ConvexPolyhedronCL* hullB,\n"
+" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n"
+" __global float4* worldVertsA1,\n"
+" __global float4* worldNormalsA1,\n"
+" __global float4* worldVertsB1,\n"
+" int capacityWorldVerts,\n"
+" const float minDist, float maxDist,\n"
+" const float4* verticesA,\n"
+" const btGpuFace* facesA,\n"
+" const int* indicesA,\n"
+" __global const float4* verticesB,\n"
+" __global const btGpuFace* facesB,\n"
+" __global const int* indicesB,\n"
+" __global int4* clippingFaces, int pairIndex)\n"
+"{\n"
+" int numContactsOut = 0;\n"
+" int numWorldVertsB1= 0;\n"
+" \n"
+" \n"
+" int closestFaceB=0;\n"
+" float dmax = -FLT_MAX;\n"
+" \n"
+" {\n"
+" for(int face=0;face<hullB->m_numFaces;face++)\n"
+" {\n"
+" const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,\n"
+" facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n"
+" const float4 WorldNormal = qtRotate(ornB, Normal);\n"
+" float d = dot3F4(WorldNormal,separatingNormal);\n"
+" if (d > dmax)\n"
+" {\n"
+" dmax = d;\n"
+" closestFaceB = face;\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" {\n"
+" const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n"
+" int numVertices = polyB.m_numIndices;\n"
+" if (numVertices>capacityWorldVerts)\n"
+" numVertices = capacityWorldVerts;\n"
+" \n"
+" for(int e0=0;e0<numVertices;e0++)\n"
+" {\n"
+" if (e0<capacityWorldVerts)\n"
+" {\n"
+" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n"
+" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" int closestFaceA=0;\n"
+" {\n"
+" float dmin = FLT_MAX;\n"
+" for(int face=0;face<hullA->m_numFaces;face++)\n"
+" {\n"
+" const float4 Normal = make_float4(\n"
+" facesA[hullA->m_faceOffset+face].m_plane.x,\n"
+" facesA[hullA->m_faceOffset+face].m_plane.y,\n"
+" facesA[hullA->m_faceOffset+face].m_plane.z,\n"
+" 0.f);\n"
+" const float4 faceANormalWS = qtRotate(ornA,Normal);\n"
+" \n"
+" float d = dot3F4(faceANormalWS,separatingNormal);\n"
+" if (d < dmin)\n"
+" {\n"
+" dmin = d;\n"
+" closestFaceA = face;\n"
+" worldNormalsA1[pairIndex] = faceANormalWS;\n"
+" }\n"
+" }\n"
+" }\n"
+" \n"
+" int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n"
+" if (numVerticesA>capacityWorldVerts)\n"
+" numVerticesA = capacityWorldVerts;\n"
+" \n"
+" for(int e0=0;e0<numVerticesA;e0++)\n"
+" {\n"
+" if (e0<capacityWorldVerts)\n"
+" {\n"
+" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n"
+" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n"
+" }\n"
+" }\n"
+" \n"
+" clippingFaces[pairIndex].x = closestFaceA;\n"
+" clippingFaces[pairIndex].y = closestFaceB;\n"
+" clippingFaces[pairIndex].z = numVerticesA;\n"
+" clippingFaces[pairIndex].w = numWorldVertsB1;\n"
+" \n"
+" \n"
+" return numContactsOut;\n"
+"}\n"
+"// work-in-progress\n"
+"__kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs,\n"
+" __global const BodyData* rigidBodies,\n"
+" __global const btCollidableGpu* collidables,\n"
+" __global const ConvexPolyhedronCL* convexShapes, \n"
+" __global const float4* vertices,\n"
+" __global const float4* uniqueEdges,\n"
+" __global const btGpuFace* faces,\n"
+" __global const int* indices,\n"
+" __global const btGpuChildShape* gpuChildShapes,\n"
+" __global btAabbCL* aabbs,\n"
+" __global float4* concaveSeparatingNormalsOut,\n"
+" __global int* concaveHasSeparatingNormals,\n"
+" __global int4* clippingFacesOut,\n"
+" __global float4* worldVertsA1GPU,\n"
+" __global float4* worldNormalsAGPU,\n"
+" __global float4* worldVertsB1GPU,\n"
+" int vertexFaceCapacity,\n"
+" int numConcavePairs\n"
+" )\n"
+"{\n"
+" int i = get_global_id(0);\n"
+" if (i>=numConcavePairs)\n"
+" return;\n"
+" concaveHasSeparatingNormals[i] = 0;\n"
+" int pairIdx = i;\n"
+" int bodyIndexA = concavePairs[i].x;\n"
+" int bodyIndexB = concavePairs[i].y;\n"
+" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
+" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
+" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
+" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
+" if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n"
+" collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
+" {\n"
+" concavePairs[pairIdx].w = -1;\n"
+" return;\n"
+" }\n"
+" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
+" int numActualConcaveConvexTests = 0;\n"
+" \n"
+" int f = concavePairs[i].z;\n"
+" \n"
+" bool overlap = false;\n"
+" \n"
+" ConvexPolyhedronCL convexPolyhedronA;\n"
+" //add 3 vertices of the triangle\n"
+" convexPolyhedronA.m_numVertices = 3;\n"
+" convexPolyhedronA.m_vertexOffset = 0;\n"
+" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n"
+" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n"
+" float4 triMinAabb, triMaxAabb;\n"
+" btAabbCL triAabb;\n"
+" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n"
+" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n"
+" \n"
+" float4 verticesA[3];\n"
+" for (int i=0;i<3;i++)\n"
+" {\n"
+" int index = indices[face.m_indexOffset+i];\n"
+" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n"
+" verticesA[i] = vert;\n"
+" localCenter += vert;\n"
+" \n"
+" triAabb.m_min = min(triAabb.m_min,vert); \n"
+" triAabb.m_max = max(triAabb.m_max,vert); \n"
+" }\n"
+" overlap = true;\n"
+" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n"
+" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n"
+" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n"
+" \n"
+" if (overlap)\n"
+" {\n"
+" float dmin = FLT_MAX;\n"
+" int hasSeparatingAxis=5;\n"
+" float4 sepAxis=make_float4(1,2,3,4);\n"
+" int localCC=0;\n"
+" numActualConcaveConvexTests++;\n"
+" //a triangle has 3 unique edges\n"
+" convexPolyhedronA.m_numUniqueEdges = 3;\n"
+" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n"
+" float4 uniqueEdgesA[3];\n"
+" \n"
+" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n"
+" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n"
+" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n"
+" convexPolyhedronA.m_faceOffset = 0;\n"
+" \n"
+" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n"
+" \n"
+" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n"
+" int indicesA[3+3+2+2+2];\n"
+" int curUsedIndices=0;\n"
+" int fidx=0;\n"
+" //front size of triangle\n"
+" {\n"
+" facesA[fidx].m_indexOffset=curUsedIndices;\n"
+" indicesA[0] = 0;\n"
+" indicesA[1] = 1;\n"
+" indicesA[2] = 2;\n"
+" curUsedIndices+=3;\n"
+" float c = face.m_plane.w;\n"
+" facesA[fidx].m_plane.x = normal.x;\n"
+" facesA[fidx].m_plane.y = normal.y;\n"
+" facesA[fidx].m_plane.z = normal.z;\n"
+" facesA[fidx].m_plane.w = c;\n"
+" facesA[fidx].m_numIndices=3;\n"
+" }\n"
+" fidx++;\n"
+" //back size of triangle\n"
+" {\n"
+" facesA[fidx].m_indexOffset=curUsedIndices;\n"
+" indicesA[3]=2;\n"
+" indicesA[4]=1;\n"
+" indicesA[5]=0;\n"
+" curUsedIndices+=3;\n"
+" float c = dot(normal,verticesA[0]);\n"
+" float c1 = -face.m_plane.w;\n"
+" facesA[fidx].m_plane.x = -normal.x;\n"
+" facesA[fidx].m_plane.y = -normal.y;\n"
+" facesA[fidx].m_plane.z = -normal.z;\n"
+" facesA[fidx].m_plane.w = c;\n"
+" facesA[fidx].m_numIndices=3;\n"
+" }\n"
+" fidx++;\n"
+" bool addEdgePlanes = true;\n"
+" if (addEdgePlanes)\n"
+" {\n"
+" int numVertices=3;\n"
+" int prevVertex = numVertices-1;\n"
+" for (int i=0;i<numVertices;i++)\n"
+" {\n"
+" float4 v0 = verticesA[i];\n"
+" float4 v1 = verticesA[prevVertex];\n"
+" \n"
+" float4 edgeNormal = normalize(cross(normal,v1-v0));\n"
+" float c = -dot(edgeNormal,v0);\n"
+" facesA[fidx].m_numIndices = 2;\n"
+" facesA[fidx].m_indexOffset=curUsedIndices;\n"
+" indicesA[curUsedIndices++]=i;\n"
+" indicesA[curUsedIndices++]=prevVertex;\n"
+" \n"
+" facesA[fidx].m_plane.x = edgeNormal.x;\n"
+" facesA[fidx].m_plane.y = edgeNormal.y;\n"
+" facesA[fidx].m_plane.z = edgeNormal.z;\n"
+" facesA[fidx].m_plane.w = c;\n"
+" fidx++;\n"
+" prevVertex = i;\n"
+" }\n"
+" }\n"
+" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n"
+" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n"
+" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
+" posA.w = 0.f;\n"
+" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
+" posB.w = 0.f;\n"
+" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
+" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n"
+" \n"
+" ///////////////////\n"
+" ///compound shape support\n"
+" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
+" {\n"
+" int compoundChild = concavePairs[pairIdx].w;\n"
+" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n"
+" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n"
+" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n"
+" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n"
+" float4 newPosB = transform(&childPosB,&posB,&ornB);\n"
+" float4 newOrnB = qtMul(ornB,childOrnB);\n"
+" posB = newPosB;\n"
+" ornB = newOrnB;\n"
+" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n"
+" }\n"
+" //////////////////\n"
+" float4 c0local = convexPolyhedronA.m_localCenter;\n"
+" float4 c0 = transform(&c0local, &posA, &ornA);\n"
+" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
+" float4 c1 = transform(&c1local,&posB,&ornB);\n"
+" const float4 DeltaC2 = c0 - c1;\n"
+" bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n"
+" posA,ornA,\n"
+" posB,ornB,\n"
+" DeltaC2,\n"
+" verticesA,uniqueEdgesA,facesA,indicesA,\n"
+" vertices,uniqueEdges,faces,indices,\n"
+" &sepAxis,&dmin);\n"
+" hasSeparatingAxis = 4;\n"
+" if (!sepA)\n"
+" {\n"
+" hasSeparatingAxis = 0;\n"
+" } else\n"
+" {\n"
+" bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n"
+" posB,ornB,\n"
+" posA,ornA,\n"
+" DeltaC2,\n"
+" vertices,uniqueEdges,faces,indices,\n"
+" verticesA,uniqueEdgesA,facesA,indicesA,\n"
+" &sepAxis,&dmin);\n"
+" if (!sepB)\n"
+" {\n"
+" hasSeparatingAxis = 0;\n"
+" } else\n"
+" {\n"
+" bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n"
+" posA,ornA,\n"
+" posB,ornB,\n"
+" DeltaC2,\n"
+" verticesA,uniqueEdgesA,facesA,indicesA,\n"
+" vertices,uniqueEdges,faces,indices,\n"
+" &sepAxis,&dmin);\n"
+" \n"
+" if (!sepEE)\n"
+" {\n"
+" hasSeparatingAxis = 0;\n"
+" } else\n"
+" {\n"
+" hasSeparatingAxis = 1;\n"
+" }\n"
+" }\n"
+" } \n"
+" \n"
+" if (hasSeparatingAxis)\n"
+" {\n"
+" sepAxis.w = dmin;\n"
+" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n"
+" concaveHasSeparatingNormals[i]=1;\n"
+" float minDist = -1e30f;\n"
+" float maxDist = 0.02f;\n"
+" \n"
+" findClippingFaces(sepAxis,\n"
+" &convexPolyhedronA,\n"
+" &convexShapes[shapeIndexB],\n"
+" posA,ornA,\n"
+" posB,ornB,\n"
+" worldVertsA1GPU,\n"
+" worldNormalsAGPU,\n"
+" worldVertsB1GPU,\n"
+" vertexFaceCapacity,\n"
+" minDist, maxDist,\n"
+" verticesA,\n"
+" facesA,\n"
+" indicesA,\n"
+" vertices,\n"
+" faces,\n"
+" indices,\n"
+" clippingFacesOut, pairIdx);\n"
+" } else\n"
+" { \n"
+" //mark this pair as in-active\n"
+" concavePairs[pairIdx].w = -1;\n"
+" }\n"
+" }\n"
+" else\n"
+" { \n"
+" //mark this pair as in-active\n"
+" concavePairs[pairIdx].w = -1;\n"
+" }\n"
+" \n"
+" concavePairs[pairIdx].z = -1;//now z is used for existing/persistent contacts\n"
+"}\n"
+;