summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp')
-rw-r--r--thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp493
1 files changed, 229 insertions, 264 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp
index cf3d5ef49d..dae61d4581 100644
--- a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp
+++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp
@@ -23,26 +23,24 @@ subject to the following restrictions:
*/
-
#include "b3VoronoiSimplexSolver.h"
-#define VERTA 0
-#define VERTB 1
-#define VERTC 2
-#define VERTD 3
+#define VERTA 0
+#define VERTB 1
+#define VERTC 2
+#define VERTD 3
#define B3_CATCH_DEGENERATE_TETRAHEDRON 1
-void b3VoronoiSimplexSolver::removeVertex(int index)
+void b3VoronoiSimplexSolver::removeVertex(int index)
{
-
- b3Assert(m_numVertices>0);
+ b3Assert(m_numVertices > 0);
m_numVertices--;
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
}
-void b3VoronoiSimplexSolver::reduceVertices (const b3UsageBitfield& usedVerts)
+void b3VoronoiSimplexSolver::reduceVertices(const b3UsageBitfield& usedVerts)
{
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
removeVertex(3);
@@ -52,29 +50,22 @@ void b3VoronoiSimplexSolver::reduceVertices (const b3UsageBitfield& usedVerts)
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
removeVertex(1);
-
+
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
removeVertex(0);
-
}
-
-
-
-
//clear the simplex, remove all the vertices
void b3VoronoiSimplexSolver::reset()
{
m_cachedValidClosest = false;
m_numVertices = 0;
m_needsUpdate = true;
- m_lastW = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
+ m_lastW = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
m_cachedBC.reset();
}
-
-
- //add a vertex
+//add a vertex
void b3VoronoiSimplexSolver::addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q)
{
m_lastW = w;
@@ -87,9 +78,8 @@ void b3VoronoiSimplexSolver::addVertex(const b3Vector3& w, const b3Vector3& p, c
m_numVertices++;
}
-bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
+bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
{
-
if (m_needsUpdate)
{
m_cachedBC.reset();
@@ -98,127 +88,131 @@ bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
switch (numVertices())
{
- case 0:
+ case 0:
m_cachedValidClosest = false;
break;
- case 1:
+ case 1:
{
m_cachedP1 = m_simplexPointsP[0];
m_cachedP2 = m_simplexPointsQ[0];
- m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
+ m_cachedV = m_cachedP1 - m_cachedP2; //== m_simplexVectorW[0]
m_cachedBC.reset();
- m_cachedBC.setBarycentricCoordinates(b3Scalar(1.),b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
+ m_cachedBC.setBarycentricCoordinates(b3Scalar(1.), b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
m_cachedValidClosest = m_cachedBC.isValid();
break;
};
- case 2:
+ case 2:
{
- //closest point origin from line segment
- const b3Vector3& from = m_simplexVectorW[0];
- const b3Vector3& to = m_simplexVectorW[1];
- b3Vector3 nearest;
-
- b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
- b3Vector3 diff = p - from;
- b3Vector3 v = to - from;
- b3Scalar t = v.dot(diff);
-
- if (t > 0) {
- b3Scalar dotVV = v.dot(v);
- if (t < dotVV) {
- t /= dotVV;
- diff -= t*v;
- m_cachedBC.m_usedVertices.usedVertexA = true;
- m_cachedBC.m_usedVertices.usedVertexB = true;
- } else {
- t = 1;
- diff -= v;
- //reduce to 1 point
- m_cachedBC.m_usedVertices.usedVertexB = true;
- }
- } else
+ //closest point origin from line segment
+ const b3Vector3& from = m_simplexVectorW[0];
+ const b3Vector3& to = m_simplexVectorW[1];
+ b3Vector3 nearest;
+
+ b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
+ b3Vector3 diff = p - from;
+ b3Vector3 v = to - from;
+ b3Scalar t = v.dot(diff);
+
+ if (t > 0)
+ {
+ b3Scalar dotVV = v.dot(v);
+ if (t < dotVV)
{
- t = 0;
- //reduce to 1 point
+ t /= dotVV;
+ diff -= t * v;
m_cachedBC.m_usedVertices.usedVertexA = true;
+ m_cachedBC.m_usedVertices.usedVertexB = true;
+ }
+ else
+ {
+ t = 1;
+ diff -= v;
+ //reduce to 1 point
+ m_cachedBC.m_usedVertices.usedVertexB = true;
}
- m_cachedBC.setBarycentricCoordinates(1-t,t);
- nearest = from + t*v;
+ }
+ else
+ {
+ t = 0;
+ //reduce to 1 point
+ m_cachedBC.m_usedVertices.usedVertexA = true;
+ }
+ m_cachedBC.setBarycentricCoordinates(1 - t, t);
+ nearest = from + t * v;
- m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
- m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
- m_cachedV = m_cachedP1 - m_cachedP2;
-
- reduceVertices(m_cachedBC.m_usedVertices);
+ m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
+ m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
+ m_cachedV = m_cachedP1 - m_cachedP2;
- m_cachedValidClosest = m_cachedBC.isValid();
- break;
+ reduceVertices(m_cachedBC.m_usedVertices);
+
+ m_cachedValidClosest = m_cachedBC.isValid();
+ break;
}
- case 3:
- {
- //closest point origin from triangle
- b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
+ case 3:
+ {
+ //closest point origin from triangle
+ b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
- const b3Vector3& a = m_simplexVectorW[0];
- const b3Vector3& b = m_simplexVectorW[1];
- const b3Vector3& c = m_simplexVectorW[2];
+ const b3Vector3& a = m_simplexVectorW[0];
+ const b3Vector3& b = m_simplexVectorW[1];
+ const b3Vector3& c = m_simplexVectorW[2];
- closestPtPointTriangle(p,a,b,c,m_cachedBC);
- m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
- m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
- m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
+ closestPtPointTriangle(p, a, b, c, m_cachedBC);
+ m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
+ m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
+ m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
- m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
- m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
- m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
+ m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
+ m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
+ m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
- m_cachedV = m_cachedP1-m_cachedP2;
+ m_cachedV = m_cachedP1 - m_cachedP2;
- reduceVertices (m_cachedBC.m_usedVertices);
- m_cachedValidClosest = m_cachedBC.isValid();
+ reduceVertices(m_cachedBC.m_usedVertices);
+ m_cachedValidClosest = m_cachedBC.isValid();
- break;
+ break;
}
- case 4:
+ case 4:
{
+ b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
-
- b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
-
const b3Vector3& a = m_simplexVectorW[0];
const b3Vector3& b = m_simplexVectorW[1];
const b3Vector3& c = m_simplexVectorW[2];
const b3Vector3& d = m_simplexVectorW[3];
- bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
+ bool hasSeperation = closestPtPointTetrahedron(p, a, b, c, d, m_cachedBC);
if (hasSeperation)
{
-
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
- m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
- m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
- m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
+ m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
+ m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
+ m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
- m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
- m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
- m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
+ m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
+ m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
+ m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
- m_cachedV = m_cachedP1-m_cachedP2;
- reduceVertices (m_cachedBC.m_usedVertices);
- } else
+ m_cachedV = m_cachedP1 - m_cachedP2;
+ reduceVertices(m_cachedBC.m_usedVertices);
+ }
+ else
{
-// printf("sub distance got penetration\n");
+ // printf("sub distance got penetration\n");
if (m_cachedBC.m_degenerate)
{
m_cachedValidClosest = false;
- } else
+ }
+ else
{
m_cachedValidClosest = true;
//degenerate case == false, penetration = true + zero
- m_cachedV.setValue(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
+ m_cachedV.setValue(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
}
break;
}
@@ -228,7 +222,7 @@ bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
//closest point origin from tetrahedron
break;
}
- default:
+ default:
{
m_cachedValidClosest = false;
}
@@ -236,7 +230,6 @@ bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
}
return m_cachedValidClosest;
-
}
//return/calculate the closest vertex
@@ -247,13 +240,11 @@ bool b3VoronoiSimplexSolver::closest(b3Vector3& v)
return succes;
}
-
-
b3Scalar b3VoronoiSimplexSolver::maxVertex()
{
int i, numverts = numVertices();
b3Scalar maxV = b3Scalar(0.);
- for (i=0;i<numverts;i++)
+ for (i = 0; i < numverts; i++)
{
b3Scalar curLen2 = m_simplexVectorW[i].length2();
if (maxV < curLen2)
@@ -262,13 +253,11 @@ b3Scalar b3VoronoiSimplexSolver::maxVertex()
return maxV;
}
-
-
- //return the current simplex
-int b3VoronoiSimplexSolver::getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vector3 *yBuf) const
+//return the current simplex
+int b3VoronoiSimplexSolver::getSimplex(b3Vector3* pBuf, b3Vector3* qBuf, b3Vector3* yBuf) const
{
int i;
- for (i=0;i<numVertices();i++)
+ for (i = 0; i < numVertices(); i++)
{
yBuf[i] = m_simplexVectorW[i];
pBuf[i] = m_simplexPointsP[i];
@@ -277,20 +266,17 @@ int b3VoronoiSimplexSolver::getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vecto
return numVertices();
}
-
-
-
bool b3VoronoiSimplexSolver::inSimplex(const b3Vector3& w)
{
bool found = false;
int i, numverts = numVertices();
//b3Scalar maxV = b3Scalar(0.);
-
+
//w is in the current (reduced) simplex
- for (i=0;i<numverts;i++)
+ for (i = 0; i < numverts; i++)
{
#ifdef BT_USE_EQUAL_VERTEX_THRESHOLD
- if ( m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
+ if (m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
#else
if (m_simplexVectorW[i] == w)
#endif
@@ -300,199 +286,190 @@ bool b3VoronoiSimplexSolver::inSimplex(const b3Vector3& w)
//check in case lastW is already removed
if (w == m_lastW)
return true;
-
+
return found;
}
-void b3VoronoiSimplexSolver::backup_closest(b3Vector3& v)
+void b3VoronoiSimplexSolver::backup_closest(b3Vector3& v)
{
v = m_cachedV;
}
-
-bool b3VoronoiSimplexSolver::emptySimplex() const
+bool b3VoronoiSimplexSolver::emptySimplex() const
{
return (numVertices() == 0);
-
}
-void b3VoronoiSimplexSolver::compute_points(b3Vector3& p1, b3Vector3& p2)
+void b3VoronoiSimplexSolver::compute_points(b3Vector3& p1, b3Vector3& p2)
{
updateClosestVectorAndPoints();
p1 = m_cachedP1;
p2 = m_cachedP2;
-
}
-
-
-
-bool b3VoronoiSimplexSolver::closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c,b3SubSimplexClosestResult& result)
+bool b3VoronoiSimplexSolver::closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, b3SubSimplexClosestResult& result)
{
result.m_usedVertices.reset();
- // Check if P in vertex region outside A
- b3Vector3 ab = b - a;
- b3Vector3 ac = c - a;
- b3Vector3 ap = p - a;
- b3Scalar d1 = ab.dot(ap);
- b3Scalar d2 = ac.dot(ap);
- if (d1 <= b3Scalar(0.0) && d2 <= b3Scalar(0.0))
+ // Check if P in vertex region outside A
+ b3Vector3 ab = b - a;
+ b3Vector3 ac = c - a;
+ b3Vector3 ap = p - a;
+ b3Scalar d1 = ab.dot(ap);
+ b3Scalar d2 = ac.dot(ap);
+ if (d1 <= b3Scalar(0.0) && d2 <= b3Scalar(0.0))
{
result.m_closestPointOnSimplex = a;
result.m_usedVertices.usedVertexA = true;
- result.setBarycentricCoordinates(1,0,0);
- return true;// a; // barycentric coordinates (1,0,0)
+ result.setBarycentricCoordinates(1, 0, 0);
+ return true; // a; // barycentric coordinates (1,0,0)
}
- // Check if P in vertex region outside B
- b3Vector3 bp = p - b;
- b3Scalar d3 = ab.dot(bp);
- b3Scalar d4 = ac.dot(bp);
- if (d3 >= b3Scalar(0.0) && d4 <= d3)
+ // Check if P in vertex region outside B
+ b3Vector3 bp = p - b;
+ b3Scalar d3 = ab.dot(bp);
+ b3Scalar d4 = ac.dot(bp);
+ if (d3 >= b3Scalar(0.0) && d4 <= d3)
{
result.m_closestPointOnSimplex = b;
result.m_usedVertices.usedVertexB = true;
- result.setBarycentricCoordinates(0,1,0);
+ result.setBarycentricCoordinates(0, 1, 0);
- return true; // b; // barycentric coordinates (0,1,0)
+ return true; // b; // barycentric coordinates (0,1,0)
}
- // Check if P in edge region of AB, if so return projection of P onto AB
- b3Scalar vc = d1*d4 - d3*d2;
- if (vc <= b3Scalar(0.0) && d1 >= b3Scalar(0.0) && d3 <= b3Scalar(0.0)) {
- b3Scalar v = d1 / (d1 - d3);
+ // Check if P in edge region of AB, if so return projection of P onto AB
+ b3Scalar vc = d1 * d4 - d3 * d2;
+ if (vc <= b3Scalar(0.0) && d1 >= b3Scalar(0.0) && d3 <= b3Scalar(0.0))
+ {
+ b3Scalar v = d1 / (d1 - d3);
result.m_closestPointOnSimplex = a + v * ab;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
- result.setBarycentricCoordinates(1-v,v,0);
+ result.setBarycentricCoordinates(1 - v, v, 0);
return true;
- //return a + v * ab; // barycentric coordinates (1-v,v,0)
- }
-
- // Check if P in vertex region outside C
- b3Vector3 cp = p - c;
- b3Scalar d5 = ab.dot(cp);
- b3Scalar d6 = ac.dot(cp);
- if (d6 >= b3Scalar(0.0) && d5 <= d6)
+ //return a + v * ab; // barycentric coordinates (1-v,v,0)
+ }
+
+ // Check if P in vertex region outside C
+ b3Vector3 cp = p - c;
+ b3Scalar d5 = ab.dot(cp);
+ b3Scalar d6 = ac.dot(cp);
+ if (d6 >= b3Scalar(0.0) && d5 <= d6)
{
result.m_closestPointOnSimplex = c;
result.m_usedVertices.usedVertexC = true;
- result.setBarycentricCoordinates(0,0,1);
- return true;//c; // barycentric coordinates (0,0,1)
+ result.setBarycentricCoordinates(0, 0, 1);
+ return true; //c; // barycentric coordinates (0,0,1)
}
- // Check if P in edge region of AC, if so return projection of P onto AC
- b3Scalar vb = d5*d2 - d1*d6;
- if (vb <= b3Scalar(0.0) && d2 >= b3Scalar(0.0) && d6 <= b3Scalar(0.0)) {
- b3Scalar w = d2 / (d2 - d6);
+ // Check if P in edge region of AC, if so return projection of P onto AC
+ b3Scalar vb = d5 * d2 - d1 * d6;
+ if (vb <= b3Scalar(0.0) && d2 >= b3Scalar(0.0) && d6 <= b3Scalar(0.0))
+ {
+ b3Scalar w = d2 / (d2 - d6);
result.m_closestPointOnSimplex = a + w * ac;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexC = true;
- result.setBarycentricCoordinates(1-w,0,w);
+ result.setBarycentricCoordinates(1 - w, 0, w);
return true;
- //return a + w * ac; // barycentric coordinates (1-w,0,w)
- }
+ //return a + w * ac; // barycentric coordinates (1-w,0,w)
+ }
+
+ // Check if P in edge region of BC, if so return projection of P onto BC
+ b3Scalar va = d3 * d6 - d5 * d4;
+ if (va <= b3Scalar(0.0) && (d4 - d3) >= b3Scalar(0.0) && (d5 - d6) >= b3Scalar(0.0))
+ {
+ b3Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
- // Check if P in edge region of BC, if so return projection of P onto BC
- b3Scalar va = d3*d6 - d5*d4;
- if (va <= b3Scalar(0.0) && (d4 - d3) >= b3Scalar(0.0) && (d5 - d6) >= b3Scalar(0.0)) {
- b3Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
-
result.m_closestPointOnSimplex = b + w * (c - b);
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
- result.setBarycentricCoordinates(0,1-w,w);
- return true;
- // return b + w * (c - b); // barycentric coordinates (0,1-w,w)
- }
-
- // P inside face region. Compute Q through its barycentric coordinates (u,v,w)
- b3Scalar denom = b3Scalar(1.0) / (va + vb + vc);
- b3Scalar v = vb * denom;
- b3Scalar w = vc * denom;
-
+ result.setBarycentricCoordinates(0, 1 - w, w);
+ return true;
+ // return b + w * (c - b); // barycentric coordinates (0,1-w,w)
+ }
+
+ // P inside face region. Compute Q through its barycentric coordinates (u,v,w)
+ b3Scalar denom = b3Scalar(1.0) / (va + vb + vc);
+ b3Scalar v = vb * denom;
+ b3Scalar w = vc * denom;
+
result.m_closestPointOnSimplex = a + ab * v + ac * w;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
- result.setBarycentricCoordinates(1-v-w,v,w);
-
- return true;
-// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = b3Scalar(1.0) - v - w
+ result.setBarycentricCoordinates(1 - v - w, v, w);
+ return true;
+ // return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = b3Scalar(1.0) - v - w
}
-
-
-
-
/// Test if point p and d lie on opposite sides of plane through abc
int b3VoronoiSimplexSolver::pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d)
{
- b3Vector3 normal = (b-a).cross(c-a);
+ b3Vector3 normal = (b - a).cross(c - a);
- b3Scalar signp = (p - a).dot(normal); // [AP AB AC]
- b3Scalar signd = (d - a).dot( normal); // [AD AB AC]
+ b3Scalar signp = (p - a).dot(normal); // [AP AB AC]
+ b3Scalar signd = (d - a).dot(normal); // [AD AB AC]
#ifdef B3_CATCH_DEGENERATE_TETRAHEDRON
#ifdef BT_USE_DOUBLE_PRECISION
-if (signd * signd < (b3Scalar(1e-8) * b3Scalar(1e-8)))
+ if (signd * signd < (b3Scalar(1e-8) * b3Scalar(1e-8)))
{
return -1;
}
#else
if (signd * signd < (b3Scalar(1e-4) * b3Scalar(1e-4)))
{
-// printf("affine dependent/degenerate\n");//
+ // printf("affine dependent/degenerate\n");//
return -1;
}
#endif
#endif
// Points on opposite sides if expression signs are opposite
- return signp * signd < b3Scalar(0.);
+ return signp * signd < b3Scalar(0.);
}
-
-bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult)
+bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult)
{
b3SubSimplexClosestResult tempResult;
- // Start out assuming point inside all halfspaces, so closest to itself
+ // Start out assuming point inside all halfspaces, so closest to itself
finalResult.m_closestPointOnSimplex = p;
finalResult.m_usedVertices.reset();
- finalResult.m_usedVertices.usedVertexA = true;
+ finalResult.m_usedVertices.usedVertexA = true;
finalResult.m_usedVertices.usedVertexB = true;
finalResult.m_usedVertices.usedVertexC = true;
finalResult.m_usedVertices.usedVertexD = true;
- int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
+ int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
- int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
- int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
-
- if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
- {
- finalResult.m_degenerate = true;
- return false;
- }
+ int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
+ int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
- if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
- {
- return false;
- }
+ if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
+ {
+ finalResult.m_degenerate = true;
+ return false;
+ }
+ if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
+ {
+ return false;
+ }
- b3Scalar bestSqDist = FLT_MAX;
- // If point outside face abc then compute closest point on abc
- if (pointOutsideABC)
+ b3Scalar bestSqDist = FLT_MAX;
+ // If point outside face abc then compute closest point on abc
+ if (pointOutsideABC)
{
- closestPtPointTriangle(p, a, b, c,tempResult);
+ closestPtPointTriangle(p, a, b, c, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
-
- b3Scalar sqDist = (q - p).dot( q - p);
- // Update best closest point if (squared) distance is less than current best
- if (sqDist < bestSqDist) {
+
+ b3Scalar sqDist = (q - p).dot(q - p);
+ // Update best closest point if (squared) distance is less than current best
+ if (sqDist < bestSqDist)
+ {
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
//convert result bitmask!
@@ -501,25 +478,22 @@ bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
- tempResult.m_barycentricCoords[VERTA],
- tempResult.m_barycentricCoords[VERTB],
- tempResult.m_barycentricCoords[VERTC],
- 0
- );
-
+ tempResult.m_barycentricCoords[VERTA],
+ tempResult.m_barycentricCoords[VERTB],
+ tempResult.m_barycentricCoords[VERTC],
+ 0);
}
- }
-
+ }
// Repeat test for face acd
- if (pointOutsideACD)
+ if (pointOutsideACD)
{
- closestPtPointTriangle(p, a, c, d,tempResult);
+ closestPtPointTriangle(p, a, c, d, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
- b3Scalar sqDist = (q - p).dot( q - p);
- if (sqDist < bestSqDist)
+ b3Scalar sqDist = (q - p).dot(q - p);
+ if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
@@ -529,52 +503,46 @@ bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
- tempResult.m_barycentricCoords[VERTA],
- 0,
- tempResult.m_barycentricCoords[VERTB],
- tempResult.m_barycentricCoords[VERTC]
- );
-
+ tempResult.m_barycentricCoords[VERTA],
+ 0,
+ tempResult.m_barycentricCoords[VERTB],
+ tempResult.m_barycentricCoords[VERTC]);
}
- }
- // Repeat test for face adb
+ }
+ // Repeat test for face adb
-
if (pointOutsideADB)
{
- closestPtPointTriangle(p, a, d, b,tempResult);
+ closestPtPointTriangle(p, a, d, b, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
- b3Scalar sqDist = (q - p).dot( q - p);
- if (sqDist < bestSqDist)
+ b3Scalar sqDist = (q - p).dot(q - p);
+ if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
-
+
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
- tempResult.m_barycentricCoords[VERTA],
- tempResult.m_barycentricCoords[VERTC],
- 0,
- tempResult.m_barycentricCoords[VERTB]
- );
-
+ tempResult.m_barycentricCoords[VERTA],
+ tempResult.m_barycentricCoords[VERTC],
+ 0,
+ tempResult.m_barycentricCoords[VERTB]);
}
- }
- // Repeat test for face bdc
-
+ }
+ // Repeat test for face bdc
if (pointOutsideBDC)
{
- closestPtPointTriangle(p, b, d, c,tempResult);
+ closestPtPointTriangle(p, b, d, c, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
- b3Scalar sqDist = (q - p).dot( q - p);
- if (sqDist < bestSqDist)
+ b3Scalar sqDist = (q - p).dot(q - p);
+ if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
@@ -585,25 +553,22 @@ bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
- 0,
- tempResult.m_barycentricCoords[VERTA],
- tempResult.m_barycentricCoords[VERTC],
- tempResult.m_barycentricCoords[VERTB]
- );
-
+ 0,
+ tempResult.m_barycentricCoords[VERTA],
+ tempResult.m_barycentricCoords[VERTC],
+ tempResult.m_barycentricCoords[VERTB]);
}
- }
+ }
//help! we ended up full !
-
+
if (finalResult.m_usedVertices.usedVertexA &&
finalResult.m_usedVertices.usedVertexB &&
finalResult.m_usedVertices.usedVertexC &&
- finalResult.m_usedVertices.usedVertexD)
+ finalResult.m_usedVertices.usedVertexD)
{
return true;
}
- return true;
+ return true;
}
-