diff options
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h')
| -rw-r--r-- | thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h | 729 | 
1 files changed, 729 insertions, 0 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h b/thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h new file mode 100644 index 0000000000..5eb8f45b16 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h @@ -0,0 +1,729 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* parallelLinearBvhCL= \ +"/*\n" +"This software is provided 'as-is', without any express or implied warranty.\n" +"In no event will the authors be held liable for any damages arising from the use of this software.\n" +"Permission is granted to anyone to use this software for any purpose,\n" +"including commercial applications, and to alter it and redistribute it freely,\n" +"subject to the following restrictions:\n" +"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" +"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" +"3. This notice may not be removed or altered from any source distribution.\n" +"*/\n" +"//Initial Author Jackson Lee, 2014\n" +"typedef float b3Scalar;\n" +"typedef float4 b3Vector3;\n" +"#define b3Max max\n" +"#define b3Min min\n" +"#define b3Sqrt sqrt\n" +"typedef struct\n" +"{\n" +"	unsigned int m_key;\n" +"	unsigned int m_value;\n" +"} SortDataCL;\n" +"typedef struct \n" +"{\n" +"	union\n" +"	{\n" +"		float4	m_min;\n" +"		float   m_minElems[4];\n" +"		int			m_minIndices[4];\n" +"	};\n" +"	union\n" +"	{\n" +"		float4	m_max;\n" +"		float   m_maxElems[4];\n" +"		int			m_maxIndices[4];\n" +"	};\n" +"} b3AabbCL;\n" +"unsigned int interleaveBits(unsigned int x)\n" +"{\n" +"	//........ ........ ......12 3456789A	//x\n" +"	//....1..2 ..3..4.. 5..6..7. .8..9..A	//x after interleaving bits\n" +"	\n" +"	//......12 3456789A ......12 3456789A	//x ^ (x << 16)\n" +"	//11111111 ........ ........ 11111111	//0x FF 00 00 FF\n" +"	//......12 ........ ........ 3456789A	//x = (x ^ (x << 16)) & 0xFF0000FF;\n" +"	\n" +"	//......12 ........ 3456789A 3456789A	//x ^ (x <<  8)\n" +"	//......11 ........ 1111.... ....1111	//0x 03 00 F0 0F\n" +"	//......12 ........ 3456.... ....789A	//x = (x ^ (x <<  8)) & 0x0300F00F;\n" +"	\n" +"	//..12..12 ....3456 3456.... 789A789A	//x ^ (x <<  4)\n" +"	//......11 ....11.. ..11.... 11....11	//0x 03 0C 30 C3\n" +"	//......12 ....34.. ..56.... 78....9A	//x = (x ^ (x <<  4)) & 0x030C30C3;\n" +"	\n" +"	//....1212 ..3434.. 5656..78 78..9A9A	//x ^ (x <<  2)\n" +"	//....1..1 ..1..1.. 1..1..1. .1..1..1	//0x 09 24 92 49\n" +"	//....1..2 ..3..4.. 5..6..7. .8..9..A	//x = (x ^ (x <<  2)) & 0x09249249;\n" +"	\n" +"	//........ ........ ......11 11111111	//0x000003FF\n" +"	x &= 0x000003FF;		//Clear all bits above bit 10\n" +"	\n" +"	x = (x ^ (x << 16)) & 0xFF0000FF;\n" +"	x = (x ^ (x <<  8)) & 0x0300F00F;\n" +"	x = (x ^ (x <<  4)) & 0x030C30C3;\n" +"	x = (x ^ (x <<  2)) & 0x09249249;\n" +"	\n" +"	return x;\n" +"}\n" +"unsigned int getMortonCode(unsigned int x, unsigned int y, unsigned int z)\n" +"{\n" +"	return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2;\n" +"}\n" +"__kernel void separateAabbs(__global b3AabbCL* unseparatedAabbs, __global int* aabbIndices, __global b3AabbCL* out_aabbs, int numAabbsToSeparate)\n" +"{\n" +"	int separatedAabbIndex = get_global_id(0);\n" +"	if(separatedAabbIndex >= numAabbsToSeparate) return;\n" +"	int unseparatedAabbIndex = aabbIndices[separatedAabbIndex];\n" +"	out_aabbs[separatedAabbIndex] = unseparatedAabbs[unseparatedAabbIndex];\n" +"}\n" +"//Should replace with an optimized parallel reduction\n" +"__kernel void findAllNodesMergedAabb(__global b3AabbCL* out_mergedAabb, int numAabbsNeedingMerge)\n" +"{\n" +"	//Each time this kernel is added to the command queue, \n" +"	//the number of AABBs needing to be merged is halved\n" +"	//\n" +"	//Example with 159 AABBs:\n" +"	//	numRemainingAabbs == 159 / 2 + 159 % 2 == 80\n" +"	//	numMergedAabbs == 159 - 80 == 79\n" +"	//So, indices [0, 78] are merged with [0 + 80, 78 + 80]\n" +"	\n" +"	int numRemainingAabbs = numAabbsNeedingMerge / 2 + numAabbsNeedingMerge % 2;\n" +"	int numMergedAabbs = numAabbsNeedingMerge - numRemainingAabbs;\n" +"	\n" +"	int aabbIndex = get_global_id(0);\n" +"	if(aabbIndex >= numMergedAabbs) return;\n" +"	\n" +"	int otherAabbIndex = aabbIndex + numRemainingAabbs;\n" +"	\n" +"	b3AabbCL aabb = out_mergedAabb[aabbIndex];\n" +"	b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex];\n" +"		\n" +"	b3AabbCL mergedAabb;\n" +"	mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min);\n" +"	mergedAabb.m_max = b3Max(aabb.m_max, otherAabb.m_max);\n" +"	out_mergedAabb[aabbIndex] = mergedAabb;\n" +"}\n" +"__kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* mergedAabbOfAllNodes, \n" +"												__global SortDataCL* out_mortonCodesAndAabbIndices, int numAabbs)\n" +"{\n" +"	int leafNodeIndex = get_global_id(0);	//Leaf node index == AABB index\n" +"	if(leafNodeIndex >= numAabbs) return;\n" +"	\n" +"	b3AabbCL mergedAabb = mergedAabbOfAllNodes[0];\n" +"	b3Vector3 gridCenter = (mergedAabb.m_min + mergedAabb.m_max) * 0.5f;\n" +"	b3Vector3 gridCellSize = (mergedAabb.m_max - mergedAabb.m_min) / (float)1024;\n" +"	\n" +"	b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex];\n" +"	b3Vector3 aabbCenter = (aabb.m_min + aabb.m_max) * 0.5f;\n" +"	b3Vector3 aabbCenterRelativeToGrid = aabbCenter - gridCenter;\n" +"	\n" +"	//Quantize into integer coordinates\n" +"	//floor() is needed to prevent the center cell, at (0,0,0) from being twice the size\n" +"	b3Vector3 gridPosition = aabbCenterRelativeToGrid / gridCellSize;\n" +"	\n" +"	int4 discretePosition;\n" +"	discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) );\n" +"	discretePosition.y = (int)( (gridPosition.y >= 0.0f) ? gridPosition.y : floor(gridPosition.y) );\n" +"	discretePosition.z = (int)( (gridPosition.z >= 0.0f) ? gridPosition.z : floor(gridPosition.z) );\n" +"	\n" +"	//Clamp coordinates into [-512, 511], then convert range from [-512, 511] to [0, 1023]\n" +"	discretePosition = b3Max( -512, b3Min(discretePosition, 511) );\n" +"	discretePosition += 512;\n" +"	\n" +"	//Interleave bits(assign a morton code, also known as a z-curve)\n" +"	unsigned int mortonCode = getMortonCode(discretePosition.x, discretePosition.y, discretePosition.z);\n" +"	\n" +"	//\n" +"	SortDataCL mortonCodeIndexPair;\n" +"	mortonCodeIndexPair.m_key = mortonCode;\n" +"	mortonCodeIndexPair.m_value = leafNodeIndex;\n" +"	\n" +"	out_mortonCodesAndAabbIndices[leafNodeIndex] = mortonCodeIndexPair;\n" +"}\n" +"#define B3_PLVBH_TRAVERSE_MAX_STACK_SIZE 128\n" +"//The most significant bit(0x80000000) of a int32 is used to distinguish between leaf and internal nodes.\n" +"//If it is set, then the index is for an internal node; otherwise, it is a leaf node. \n" +"//In both cases, the bit should be cleared to access the actual node index.\n" +"int isLeafNode(int index) { return (index >> 31 == 0); }\n" +"int getIndexWithInternalNodeMarkerRemoved(int index) { return index & (~0x80000000); }\n" +"int getIndexWithInternalNodeMarkerSet(int isLeaf, int index) { return (isLeaf) ? index : (index | 0x80000000); }\n" +"//From sap.cl\n" +"#define NEW_PAIR_MARKER -1\n" +"bool TestAabbAgainstAabb2(const b3AabbCL* aabb1, const b3AabbCL* aabb2)\n" +"{\n" +"	bool overlap = true;\n" +"	overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap;\n" +"	overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap;\n" +"	overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap;\n" +"	return overlap;\n" +"}\n" +"//From sap.cl\n" +"__kernel void plbvhCalculateOverlappingPairs(__global b3AabbCL* rigidAabbs, \n" +"											__global int* rootNodeIndex, \n" +"											__global int2* internalNodeChildIndices, \n" +"											__global b3AabbCL* internalNodeAabbs,\n" +"											__global int2* internalNodeLeafIndexRanges,\n" +"											\n" +"											__global SortDataCL* mortonCodesAndAabbIndices,\n" +"											__global int* out_numPairs, __global int4* out_overlappingPairs, \n" +"											int maxPairs, int numQueryAabbs)\n" +"{\n" +"	//Using get_group_id()/get_local_id() is Faster than get_global_id(0) since\n" +"	//mortonCodesAndAabbIndices[] contains rigid body indices sorted along the z-curve (more spatially coherent)\n" +"	int queryBvhNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);\n" +"	if(queryBvhNodeIndex >= numQueryAabbs) return;\n" +"	\n" +"	int queryRigidIndex = mortonCodesAndAabbIndices[queryBvhNodeIndex].m_value;\n" +"	b3AabbCL queryAabb = rigidAabbs[queryRigidIndex];\n" +"	\n" +"	int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];\n" +"	\n" +"	int stackSize = 1;\n" +"	stack[0] = *rootNodeIndex;\n" +"	\n" +"	while(stackSize)\n" +"	{\n" +"		int internalOrLeafNodeIndex = stack[ stackSize - 1 ];\n" +"		--stackSize;\n" +"		\n" +"		int isLeaf = isLeafNode(internalOrLeafNodeIndex);	//Internal node if false\n" +"		int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex);\n" +"		\n" +"		//Optimization - if the BVH is structured as a binary radix tree, then\n" +"		//each internal node corresponds to a contiguous range of leaf nodes(internalNodeLeafIndexRanges[]).\n" +"		//This can be used to avoid testing each AABB-AABB pair twice, including preventing each node from colliding with itself.\n" +"		{\n" +"			int highestLeafIndex = (isLeaf) ? bvhNodeIndex : internalNodeLeafIndexRanges[bvhNodeIndex].y;\n" +"			if(highestLeafIndex <= queryBvhNodeIndex) continue;\n" +"		}\n" +"		\n" +"		//bvhRigidIndex is not used if internal node\n" +"		int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1;\n" +"	\n" +"		b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex];\n" +"		if( TestAabbAgainstAabb2(&queryAabb, &bvhNodeAabb) )\n" +"		{\n" +"			if(isLeaf)\n" +"			{\n" +"				int4 pair;\n" +"				pair.x = rigidAabbs[queryRigidIndex].m_minIndices[3];\n" +"				pair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3];\n" +"				pair.z = NEW_PAIR_MARKER;\n" +"				pair.w = NEW_PAIR_MARKER;\n" +"				\n" +"				int pairIndex = atomic_inc(out_numPairs);\n" +"				if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair;\n" +"			}\n" +"			\n" +"			if(!isLeaf)	//Internal node\n" +"			{\n" +"				if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE)\n" +"				{\n" +"					//Error\n" +"				}\n" +"				else\n" +"				{\n" +"					stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x;\n" +"					stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y;\n" +"				}\n" +"			}\n" +"		}\n" +"		\n" +"	}\n" +"}\n" +"//From rayCastKernels.cl\n" +"typedef struct\n" +"{\n" +"	float4 m_from;\n" +"	float4 m_to;\n" +"} b3RayInfo;\n" +"//From rayCastKernels.cl\n" +"b3Vector3 b3Vector3_normalize(b3Vector3 v)\n" +"{\n" +"	b3Vector3 normal = (b3Vector3){v.x, v.y, v.z, 0.f};\n" +"	return normalize(normal);	//OpenCL normalize == vector4 normalize\n" +"}\n" +"b3Scalar b3Vector3_length2(b3Vector3 v) { return v.x*v.x + v.y*v.y + v.z*v.z; }\n" +"b3Scalar b3Vector3_dot(b3Vector3 a, b3Vector3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; }\n" +"int rayIntersectsAabb(b3Vector3 rayOrigin, b3Scalar rayLength, b3Vector3 rayNormalizedDirection, b3AabbCL aabb)\n" +"{\n" +"	//AABB is considered as 3 pairs of 2 planes( {x_min, x_max}, {y_min, y_max}, {z_min, z_max} ).\n" +"	//t_min is the point of intersection with the closer plane, t_max is the point of intersection with the farther plane.\n" +"	//\n" +"	//if (rayNormalizedDirection.x < 0.0f), then max.x will be the near plane \n" +"	//and min.x will be the far plane; otherwise, it is reversed.\n" +"	//\n" +"	//In order for there to be a collision, the t_min and t_max of each pair must overlap.\n" +"	//This can be tested for by selecting the highest t_min and lowest t_max and comparing them.\n" +"	\n" +"	int4 isNegative = isless( rayNormalizedDirection, ((b3Vector3){0.0f, 0.0f, 0.0f, 0.0f}) );	//isless(x,y) returns (x < y)\n" +"	\n" +"	//When using vector types, the select() function checks the most signficant bit, \n" +"	//but isless() sets the least significant bit.\n" +"	isNegative <<= 31;\n" +"	//select(b, a, condition) == condition ? a : b\n" +"	//When using select() with vector types, (condition[i]) is true if its most significant bit is 1\n" +"	b3Vector3 t_min = ( select(aabb.m_min, aabb.m_max, isNegative) - rayOrigin ) / rayNormalizedDirection;\n" +"	b3Vector3 t_max = ( select(aabb.m_max, aabb.m_min, isNegative) - rayOrigin ) / rayNormalizedDirection;\n" +"	\n" +"	b3Scalar t_min_final = 0.0f;\n" +"	b3Scalar t_max_final = rayLength;\n" +"	\n" +"	//Must use fmin()/fmax(); if one of the parameters is NaN, then the parameter that is not NaN is returned. \n" +"	//Behavior of min()/max() with NaNs is undefined. (See OpenCL Specification 1.2 [6.12.2] and [6.12.4])\n" +"	//Since the innermost fmin()/fmax() is always not NaN, this should never return NaN.\n" +"	t_min_final = fmax( t_min.z, fmax(t_min.y, fmax(t_min.x, t_min_final)) );\n" +"	t_max_final = fmin( t_max.z, fmin(t_max.y, fmin(t_max.x, t_max_final)) );\n" +"	\n" +"	return (t_min_final <= t_max_final);\n" +"}\n" +"__kernel void plbvhRayTraverse(__global b3AabbCL* rigidAabbs,\n" +"								__global int* rootNodeIndex, \n" +"								__global int2* internalNodeChildIndices, \n" +"								__global b3AabbCL* internalNodeAabbs,\n" +"								__global int2* internalNodeLeafIndexRanges,\n" +"								__global SortDataCL* mortonCodesAndAabbIndices,\n" +"								\n" +"								__global b3RayInfo* rays,\n" +"								\n" +"								__global int* out_numRayRigidPairs, \n" +"								__global int2* out_rayRigidPairs,\n" +"								int maxRayRigidPairs, int numRays)\n" +"{\n" +"	int rayIndex = get_global_id(0);\n" +"	if(rayIndex >= numRays) return;\n" +"	\n" +"	//\n" +"	b3Vector3 rayFrom = rays[rayIndex].m_from;\n" +"	b3Vector3 rayTo = rays[rayIndex].m_to;\n" +"	b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom);\n" +"	b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) );\n" +"	\n" +"	//\n" +"	int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];\n" +"	\n" +"	int stackSize = 1;\n" +"	stack[0] = *rootNodeIndex;\n" +"	\n" +"	while(stackSize)\n" +"	{\n" +"		int internalOrLeafNodeIndex = stack[ stackSize - 1 ];\n" +"		--stackSize;\n" +"		\n" +"		int isLeaf = isLeafNode(internalOrLeafNodeIndex);	//Internal node if false\n" +"		int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex);\n" +"		\n" +"		//bvhRigidIndex is not used if internal node\n" +"		int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1;\n" +"	\n" +"		b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex];\n" +"		if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, bvhNodeAabb)  )\n" +"		{\n" +"			if(isLeaf)\n" +"			{\n" +"				int2 rayRigidPair;\n" +"				rayRigidPair.x = rayIndex;\n" +"				rayRigidPair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3];\n" +"				\n" +"				int pairIndex = atomic_inc(out_numRayRigidPairs);\n" +"				if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair;\n" +"			}\n" +"			\n" +"			if(!isLeaf)	//Internal node\n" +"			{\n" +"				if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE)\n" +"				{\n" +"					//Error\n" +"				}\n" +"				else\n" +"				{\n" +"					stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x;\n" +"					stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y;\n" +"				}\n" +"			}\n" +"		}\n" +"	}\n" +"}\n" +"__kernel void plbvhLargeAabbAabbTest(__global b3AabbCL* smallAabbs, __global b3AabbCL* largeAabbs, \n" +"									__global int* out_numPairs, __global int4* out_overlappingPairs, \n" +"									int maxPairs, int numLargeAabbRigids, int numSmallAabbRigids)\n" +"{\n" +"	int smallAabbIndex = get_global_id(0);\n" +"	if(smallAabbIndex >= numSmallAabbRigids) return;\n" +"	\n" +"	b3AabbCL smallAabb = smallAabbs[smallAabbIndex];\n" +"	for(int i = 0; i < numLargeAabbRigids; ++i)\n" +"	{\n" +"		b3AabbCL largeAabb = largeAabbs[i];\n" +"		if( TestAabbAgainstAabb2(&smallAabb, &largeAabb) )\n" +"		{\n" +"			int4 pair;\n" +"			pair.x = largeAabb.m_minIndices[3];\n" +"			pair.y = smallAabb.m_minIndices[3];\n" +"			pair.z = NEW_PAIR_MARKER;\n" +"			pair.w = NEW_PAIR_MARKER;\n" +"			\n" +"			int pairIndex = atomic_inc(out_numPairs);\n" +"			if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair;\n" +"		}\n" +"	}\n" +"}\n" +"__kernel void plbvhLargeAabbRayTest(__global b3AabbCL* largeRigidAabbs, __global b3RayInfo* rays,\n" +"									__global int* out_numRayRigidPairs,  __global int2* out_rayRigidPairs,\n" +"									int numLargeAabbRigids, int maxRayRigidPairs, int numRays)\n" +"{\n" +"	int rayIndex = get_global_id(0);\n" +"	if(rayIndex >= numRays) return;\n" +"	\n" +"	b3Vector3 rayFrom = rays[rayIndex].m_from;\n" +"	b3Vector3 rayTo = rays[rayIndex].m_to;\n" +"	b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom);\n" +"	b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) );\n" +"	\n" +"	for(int i = 0; i < numLargeAabbRigids; ++i)\n" +"	{\n" +"		b3AabbCL rigidAabb = largeRigidAabbs[i];\n" +"		if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, rigidAabb) )\n" +"		{\n" +"			int2 rayRigidPair;\n" +"			rayRigidPair.x = rayIndex;\n" +"			rayRigidPair.y = rigidAabb.m_minIndices[3];\n" +"			\n" +"			int pairIndex = atomic_inc(out_numRayRigidPairs);\n" +"			if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair;\n" +"		}\n" +"	}\n" +"}\n" +"//Set so that it is always greater than the actual common prefixes, and never selected as a parent node.\n" +"//If there are no duplicates, then the highest common prefix is 32 or 64, depending on the number of bits used for the z-curve.\n" +"//Duplicate common prefixes increase the highest common prefix at most by the number of bits used to index the leaf node.\n" +"//Since 32 bit ints are used to index leaf nodes, the max prefix is 64(32 + 32 bit z-curve) or 96(32 + 64 bit z-curve).\n" +"#define B3_PLBVH_INVALID_COMMON_PREFIX 128\n" +"#define B3_PLBVH_ROOT_NODE_MARKER -1\n" +"#define b3Int64 long\n" +"int computeCommonPrefixLength(b3Int64 i, b3Int64 j) { return (int)clz(i ^ j); }\n" +"b3Int64 computeCommonPrefix(b3Int64 i, b3Int64 j) \n" +"{\n" +"	//This function only needs to return (i & j) in order for the algorithm to work,\n" +"	//but it may help with debugging to mask out the lower bits.\n" +"	b3Int64 commonPrefixLength = (b3Int64)computeCommonPrefixLength(i, j);\n" +"	b3Int64 sharedBits = i & j;\n" +"	b3Int64 bitmask = ((b3Int64)(~0)) << (64 - commonPrefixLength);	//Set all bits after the common prefix to 0\n" +"	\n" +"	return sharedBits & bitmask;\n" +"}\n" +"//Same as computeCommonPrefixLength(), but allows for prefixes with different lengths\n" +"int getSharedPrefixLength(b3Int64 prefixA, int prefixLengthA, b3Int64 prefixB, int prefixLengthB)\n" +"{\n" +"	return b3Min( computeCommonPrefixLength(prefixA, prefixB), b3Min(prefixLengthA, prefixLengthB) );\n" +"}\n" +"__kernel void computeAdjacentPairCommonPrefix(__global SortDataCL* mortonCodesAndAabbIndices,\n" +"											__global b3Int64* out_commonPrefixes,\n" +"											__global int* out_commonPrefixLengths,\n" +"											int numInternalNodes)\n" +"{\n" +"	int internalNodeIndex = get_global_id(0);\n" +"	if (internalNodeIndex >= numInternalNodes) return;\n" +"	\n" +"	//Here, (internalNodeIndex + 1) is never out of bounds since it is a leaf node index,\n" +"	//and the number of internal nodes is always numLeafNodes - 1\n" +"	int leftLeafIndex = internalNodeIndex;\n" +"	int rightLeafIndex = internalNodeIndex + 1;\n" +"	\n" +"	int leftLeafMortonCode = mortonCodesAndAabbIndices[leftLeafIndex].m_key;\n" +"	int rightLeafMortonCode = mortonCodesAndAabbIndices[rightLeafIndex].m_key;\n" +"	\n" +"	//Binary radix tree construction algorithm does not work if there are duplicate morton codes.\n" +"	//Append the index of each leaf node to each morton code so that there are no duplicates.\n" +"	//The algorithm also requires that the morton codes are sorted in ascending order; this requirement\n" +"	//is also satisfied with this method, as (leftLeafIndex < rightLeafIndex) is always true.\n" +"	//\n" +"	//upsample(a, b) == ( ((b3Int64)a) << 32) | b\n" +"	b3Int64 nonduplicateLeftMortonCode = upsample(leftLeafMortonCode, leftLeafIndex);\n" +"	b3Int64 nonduplicateRightMortonCode = upsample(rightLeafMortonCode, rightLeafIndex);\n" +"	\n" +"	out_commonPrefixes[internalNodeIndex] = computeCommonPrefix(nonduplicateLeftMortonCode, nonduplicateRightMortonCode);\n" +"	out_commonPrefixLengths[internalNodeIndex] = computeCommonPrefixLength(nonduplicateLeftMortonCode, nonduplicateRightMortonCode);\n" +"}\n" +"__kernel void buildBinaryRadixTreeLeafNodes(__global int* commonPrefixLengths, __global int* out_leafNodeParentNodes,\n" +"											__global int2* out_childNodes, int numLeafNodes)\n" +"{\n" +"	int leafNodeIndex = get_global_id(0);\n" +"	if (leafNodeIndex >= numLeafNodes) return;\n" +"	\n" +"	int numInternalNodes = numLeafNodes - 1;\n" +"	\n" +"	int leftSplitIndex = leafNodeIndex - 1;\n" +"	int rightSplitIndex = leafNodeIndex;\n" +"	\n" +"	int leftCommonPrefix = (leftSplitIndex >= 0) ? commonPrefixLengths[leftSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +"	int rightCommonPrefix = (rightSplitIndex < numInternalNodes) ? commonPrefixLengths[rightSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +"	\n" +"	//Parent node is the highest adjacent common prefix that is lower than the node's common prefix\n" +"	//Leaf nodes are considered as having the highest common prefix\n" +"	int isLeftHigherCommonPrefix = (leftCommonPrefix > rightCommonPrefix);\n" +"	\n" +"	//Handle cases for the edge nodes; the first and last node\n" +"	//For leaf nodes, leftCommonPrefix and rightCommonPrefix should never both be B3_PLBVH_INVALID_COMMON_PREFIX\n" +"	if(leftCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = false;\n" +"	if(rightCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = true;\n" +"	\n" +"	int parentNodeIndex = (isLeftHigherCommonPrefix) ? leftSplitIndex : rightSplitIndex;\n" +"	out_leafNodeParentNodes[leafNodeIndex] = parentNodeIndex;\n" +"	\n" +"	int isRightChild = (isLeftHigherCommonPrefix);	//If the left node is the parent, then this node is its right child and vice versa\n" +"	\n" +"	//out_childNodesAsInt[0] == int2.x == left child\n" +"	//out_childNodesAsInt[1] == int2.y == right child\n" +"	int isLeaf = 1;\n" +"	__global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]);\n" +"	out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, leafNodeIndex);\n" +"}\n" +"__kernel void buildBinaryRadixTreeInternalNodes(__global b3Int64* commonPrefixes, __global int* commonPrefixLengths,\n" +"												__global int2* out_childNodes,\n" +"												__global int* out_internalNodeParentNodes, __global int* out_rootNodeIndex,\n" +"												int numInternalNodes)\n" +"{\n" +"	int internalNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);\n" +"	if(internalNodeIndex >= numInternalNodes) return;\n" +"	\n" +"	b3Int64 nodePrefix = commonPrefixes[internalNodeIndex];\n" +"	int nodePrefixLength = commonPrefixLengths[internalNodeIndex];\n" +"	\n" +"//#define USE_LINEAR_SEARCH\n" +"#ifdef USE_LINEAR_SEARCH\n" +"	int leftIndex = -1;\n" +"	int rightIndex = -1;\n" +"	\n" +"	//Find nearest element to left with a lower common prefix\n" +"	for(int i = internalNodeIndex - 1; i >= 0; --i)\n" +"	{\n" +"		int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]);\n" +"		if(nodeLeftSharedPrefixLength < nodePrefixLength)\n" +"		{\n" +"			leftIndex = i;\n" +"			break;\n" +"		}\n" +"	}\n" +"	\n" +"	//Find nearest element to right with a lower common prefix\n" +"	for(int i = internalNodeIndex + 1; i < numInternalNodes; ++i)\n" +"	{\n" +"		int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]);\n" +"		if(nodeRightSharedPrefixLength < nodePrefixLength)\n" +"		{\n" +"			rightIndex = i;\n" +"			break;\n" +"		}\n" +"	}\n" +"	\n" +"#else //Use binary search\n" +"	//Find nearest element to left with a lower common prefix\n" +"	int leftIndex = -1;\n" +"	{\n" +"		int lower = 0;\n" +"		int upper = internalNodeIndex - 1;\n" +"		\n" +"		while(lower <= upper)\n" +"		{\n" +"			int mid = (lower + upper) / 2;\n" +"			b3Int64 midPrefix = commonPrefixes[mid];\n" +"			int midPrefixLength = commonPrefixLengths[mid];\n" +"			\n" +"			int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength);\n" +"			if(nodeMidSharedPrefixLength < nodePrefixLength) \n" +"			{\n" +"				int right = mid + 1;\n" +"				if(right < internalNodeIndex)\n" +"				{\n" +"					b3Int64 rightPrefix = commonPrefixes[right];\n" +"					int rightPrefixLength = commonPrefixLengths[right];\n" +"					\n" +"					int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, rightPrefix, rightPrefixLength);\n" +"					if(nodeRightSharedPrefixLength < nodePrefixLength) \n" +"					{\n" +"						lower = right;\n" +"						leftIndex = right;\n" +"					}\n" +"					else \n" +"					{\n" +"						leftIndex = mid;\n" +"						break;\n" +"					}\n" +"				}\n" +"				else \n" +"				{\n" +"					leftIndex = mid;\n" +"					break;\n" +"				}\n" +"			}\n" +"			else upper = mid - 1;\n" +"		}\n" +"	}\n" +"	\n" +"	//Find nearest element to right with a lower common prefix\n" +"	int rightIndex = -1;\n" +"	{\n" +"		int lower = internalNodeIndex + 1;\n" +"		int upper = numInternalNodes - 1;\n" +"		\n" +"		while(lower <= upper)\n" +"		{\n" +"			int mid = (lower + upper) / 2;\n" +"			b3Int64 midPrefix = commonPrefixes[mid];\n" +"			int midPrefixLength = commonPrefixLengths[mid];\n" +"			\n" +"			int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength);\n" +"			if(nodeMidSharedPrefixLength < nodePrefixLength) \n" +"			{\n" +"				int left = mid - 1;\n" +"				if(left > internalNodeIndex)\n" +"				{\n" +"					b3Int64 leftPrefix = commonPrefixes[left];\n" +"					int leftPrefixLength = commonPrefixLengths[left];\n" +"				\n" +"					int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, leftPrefix, leftPrefixLength);\n" +"					if(nodeLeftSharedPrefixLength < nodePrefixLength) \n" +"					{\n" +"						upper = left;\n" +"						rightIndex = left;\n" +"					}\n" +"					else \n" +"					{\n" +"						rightIndex = mid;\n" +"						break;\n" +"					}\n" +"				}\n" +"				else \n" +"				{\n" +"					rightIndex = mid;\n" +"					break;\n" +"				}\n" +"			}\n" +"			else lower = mid + 1;\n" +"		}\n" +"	}\n" +"#endif\n" +"	\n" +"	//Select parent\n" +"	{\n" +"		int leftPrefixLength = (leftIndex != -1) ? commonPrefixLengths[leftIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +"		int rightPrefixLength =  (rightIndex != -1) ? commonPrefixLengths[rightIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +"		\n" +"		int isLeftHigherPrefixLength = (leftPrefixLength > rightPrefixLength);\n" +"		\n" +"		if(leftPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = false;\n" +"		else if(rightPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = true;\n" +"		\n" +"		int parentNodeIndex = (isLeftHigherPrefixLength) ? leftIndex : rightIndex;\n" +"		\n" +"		int isRootNode = (leftIndex == -1 && rightIndex == -1);\n" +"		out_internalNodeParentNodes[internalNodeIndex] = (!isRootNode) ? parentNodeIndex : B3_PLBVH_ROOT_NODE_MARKER;\n" +"		\n" +"		int isLeaf = 0;\n" +"		if(!isRootNode)\n" +"		{\n" +"			int isRightChild = (isLeftHigherPrefixLength);	//If the left node is the parent, then this node is its right child and vice versa\n" +"			\n" +"			//out_childNodesAsInt[0] == int2.x == left child\n" +"			//out_childNodesAsInt[1] == int2.y == right child\n" +"			__global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]);\n" +"			out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex);\n" +"		}\n" +"		else *out_rootNodeIndex = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex);\n" +"	}\n" +"}\n" +"__kernel void findDistanceFromRoot(__global int* rootNodeIndex, __global int* internalNodeParentNodes,\n" +"									__global int* out_maxDistanceFromRoot, __global int* out_distanceFromRoot, int numInternalNodes)\n" +"{\n" +"	if( get_global_id(0) == 0 ) atomic_xchg(out_maxDistanceFromRoot, 0);\n" +"	int internalNodeIndex = get_global_id(0);\n" +"	if(internalNodeIndex >= numInternalNodes) return;\n" +"	\n" +"	//\n" +"	int distanceFromRoot = 0;\n" +"	{\n" +"		int parentIndex = internalNodeParentNodes[internalNodeIndex];\n" +"		while(parentIndex != B3_PLBVH_ROOT_NODE_MARKER)\n" +"		{\n" +"			parentIndex = internalNodeParentNodes[parentIndex];\n" +"			++distanceFromRoot;\n" +"		}\n" +"	}\n" +"	out_distanceFromRoot[internalNodeIndex] = distanceFromRoot;\n" +"	\n" +"	//\n" +"	__local int localMaxDistanceFromRoot;\n" +"	if( get_local_id(0) == 0 ) localMaxDistanceFromRoot = 0;\n" +"	barrier(CLK_LOCAL_MEM_FENCE);\n" +"	\n" +"	atomic_max(&localMaxDistanceFromRoot, distanceFromRoot);\n" +"	barrier(CLK_LOCAL_MEM_FENCE);\n" +"	\n" +"	if( get_local_id(0) == 0 ) atomic_max(out_maxDistanceFromRoot, localMaxDistanceFromRoot);\n" +"}\n" +"__kernel void buildBinaryRadixTreeAabbsRecursive(__global int* distanceFromRoot, __global SortDataCL* mortonCodesAndAabbIndices,\n" +"												__global int2* childNodes,\n" +"												__global b3AabbCL* leafNodeAabbs, __global b3AabbCL* internalNodeAabbs,\n" +"												int maxDistanceFromRoot, int processedDistance, int numInternalNodes)\n" +"{\n" +"	int internalNodeIndex = get_global_id(0);\n" +"	if(internalNodeIndex >= numInternalNodes) return;\n" +"	\n" +"	int distance = distanceFromRoot[internalNodeIndex];\n" +"	\n" +"	if(distance == processedDistance)\n" +"	{\n" +"		int leftChildIndex = childNodes[internalNodeIndex].x;\n" +"		int rightChildIndex = childNodes[internalNodeIndex].y;\n" +"		\n" +"		int isLeftChildLeaf = isLeafNode(leftChildIndex);\n" +"		int isRightChildLeaf = isLeafNode(rightChildIndex);\n" +"		\n" +"		leftChildIndex = getIndexWithInternalNodeMarkerRemoved(leftChildIndex);\n" +"		rightChildIndex = getIndexWithInternalNodeMarkerRemoved(rightChildIndex);\n" +"		\n" +"		//leftRigidIndex/rightRigidIndex is not used if internal node\n" +"		int leftRigidIndex = (isLeftChildLeaf) ? mortonCodesAndAabbIndices[leftChildIndex].m_value : -1;\n" +"		int rightRigidIndex = (isRightChildLeaf) ? mortonCodesAndAabbIndices[rightChildIndex].m_value : -1;\n" +"		\n" +"		b3AabbCL leftChildAabb = (isLeftChildLeaf) ? leafNodeAabbs[leftRigidIndex] : internalNodeAabbs[leftChildIndex];\n" +"		b3AabbCL rightChildAabb = (isRightChildLeaf) ? leafNodeAabbs[rightRigidIndex] : internalNodeAabbs[rightChildIndex];\n" +"		\n" +"		b3AabbCL mergedAabb;\n" +"		mergedAabb.m_min = b3Min(leftChildAabb.m_min, rightChildAabb.m_min);\n" +"		mergedAabb.m_max = b3Max(leftChildAabb.m_max, rightChildAabb.m_max);\n" +"		internalNodeAabbs[internalNodeIndex] = mergedAabb;\n" +"	}\n" +"}\n" +"__kernel void findLeafIndexRanges(__global int2* internalNodeChildNodes, __global int2* out_leafIndexRanges, int numInternalNodes)\n" +"{\n" +"	int internalNodeIndex = get_global_id(0);\n" +"	if(internalNodeIndex >= numInternalNodes) return;\n" +"	\n" +"	int numLeafNodes = numInternalNodes + 1;\n" +"	\n" +"	int2 childNodes = internalNodeChildNodes[internalNodeIndex];\n" +"	\n" +"	int2 leafIndexRange;	//x == min leaf index, y == max leaf index\n" +"	\n" +"	//Find lowest leaf index covered by this internal node\n" +"	{\n" +"		int lowestIndex = childNodes.x;		//childNodes.x == Left child\n" +"		while( !isLeafNode(lowestIndex) ) lowestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(lowestIndex) ].x;\n" +"		leafIndexRange.x = lowestIndex;\n" +"	}\n" +"	\n" +"	//Find highest leaf index covered by this internal node\n" +"	{\n" +"		int highestIndex = childNodes.y;	//childNodes.y == Right child\n" +"		while( !isLeafNode(highestIndex) ) highestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(highestIndex) ].y;\n" +"		leafIndexRange.y = highestIndex;\n" +"	}\n" +"	\n" +"	//\n" +"	out_leafIndexRanges[internalNodeIndex] = leafIndexRange;\n" +"}\n" +;  |