summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl')
-rw-r--r--thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl767
1 files changed, 0 insertions, 767 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl b/thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl
deleted file mode 100644
index c375b9bf37..0000000000
--- a/thirdparty/bullet/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl
+++ /dev/null
@@ -1,767 +0,0 @@
-/*
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-//Initial Author Jackson Lee, 2014
-
-typedef float b3Scalar;
-typedef float4 b3Vector3;
-#define b3Max max
-#define b3Min min
-#define b3Sqrt sqrt
-
-typedef struct
-{
- unsigned int m_key;
- unsigned int m_value;
-} SortDataCL;
-
-typedef struct
-{
- union
- {
- float4 m_min;
- float m_minElems[4];
- int m_minIndices[4];
- };
- union
- {
- float4 m_max;
- float m_maxElems[4];
- int m_maxIndices[4];
- };
-} b3AabbCL;
-
-
-unsigned int interleaveBits(unsigned int x)
-{
- //........ ........ ......12 3456789A //x
- //....1..2 ..3..4.. 5..6..7. .8..9..A //x after interleaving bits
-
- //......12 3456789A ......12 3456789A //x ^ (x << 16)
- //11111111 ........ ........ 11111111 //0x FF 00 00 FF
- //......12 ........ ........ 3456789A //x = (x ^ (x << 16)) & 0xFF0000FF;
-
- //......12 ........ 3456789A 3456789A //x ^ (x << 8)
- //......11 ........ 1111.... ....1111 //0x 03 00 F0 0F
- //......12 ........ 3456.... ....789A //x = (x ^ (x << 8)) & 0x0300F00F;
-
- //..12..12 ....3456 3456.... 789A789A //x ^ (x << 4)
- //......11 ....11.. ..11.... 11....11 //0x 03 0C 30 C3
- //......12 ....34.. ..56.... 78....9A //x = (x ^ (x << 4)) & 0x030C30C3;
-
- //....1212 ..3434.. 5656..78 78..9A9A //x ^ (x << 2)
- //....1..1 ..1..1.. 1..1..1. .1..1..1 //0x 09 24 92 49
- //....1..2 ..3..4.. 5..6..7. .8..9..A //x = (x ^ (x << 2)) & 0x09249249;
-
- //........ ........ ......11 11111111 //0x000003FF
- x &= 0x000003FF; //Clear all bits above bit 10
-
- x = (x ^ (x << 16)) & 0xFF0000FF;
- x = (x ^ (x << 8)) & 0x0300F00F;
- x = (x ^ (x << 4)) & 0x030C30C3;
- x = (x ^ (x << 2)) & 0x09249249;
-
- return x;
-}
-unsigned int getMortonCode(unsigned int x, unsigned int y, unsigned int z)
-{
- return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2;
-}
-
-__kernel void separateAabbs(__global b3AabbCL* unseparatedAabbs, __global int* aabbIndices, __global b3AabbCL* out_aabbs, int numAabbsToSeparate)
-{
- int separatedAabbIndex = get_global_id(0);
- if(separatedAabbIndex >= numAabbsToSeparate) return;
-
- int unseparatedAabbIndex = aabbIndices[separatedAabbIndex];
- out_aabbs[separatedAabbIndex] = unseparatedAabbs[unseparatedAabbIndex];
-}
-
-//Should replace with an optimized parallel reduction
-__kernel void findAllNodesMergedAabb(__global b3AabbCL* out_mergedAabb, int numAabbsNeedingMerge)
-{
- //Each time this kernel is added to the command queue,
- //the number of AABBs needing to be merged is halved
- //
- //Example with 159 AABBs:
- // numRemainingAabbs == 159 / 2 + 159 % 2 == 80
- // numMergedAabbs == 159 - 80 == 79
- //So, indices [0, 78] are merged with [0 + 80, 78 + 80]
-
- int numRemainingAabbs = numAabbsNeedingMerge / 2 + numAabbsNeedingMerge % 2;
- int numMergedAabbs = numAabbsNeedingMerge - numRemainingAabbs;
-
- int aabbIndex = get_global_id(0);
- if(aabbIndex >= numMergedAabbs) return;
-
- int otherAabbIndex = aabbIndex + numRemainingAabbs;
-
- b3AabbCL aabb = out_mergedAabb[aabbIndex];
- b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex];
-
- b3AabbCL mergedAabb;
- mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min);
- mergedAabb.m_max = b3Max(aabb.m_max, otherAabb.m_max);
- out_mergedAabb[aabbIndex] = mergedAabb;
-}
-
-__kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* mergedAabbOfAllNodes,
- __global SortDataCL* out_mortonCodesAndAabbIndices, int numAabbs)
-{
- int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index
- if(leafNodeIndex >= numAabbs) return;
-
- b3AabbCL mergedAabb = mergedAabbOfAllNodes[0];
- b3Vector3 gridCenter = (mergedAabb.m_min + mergedAabb.m_max) * 0.5f;
- b3Vector3 gridCellSize = (mergedAabb.m_max - mergedAabb.m_min) / (float)1024;
-
- b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex];
- b3Vector3 aabbCenter = (aabb.m_min + aabb.m_max) * 0.5f;
- b3Vector3 aabbCenterRelativeToGrid = aabbCenter - gridCenter;
-
- //Quantize into integer coordinates
- //floor() is needed to prevent the center cell, at (0,0,0) from being twice the size
- b3Vector3 gridPosition = aabbCenterRelativeToGrid / gridCellSize;
-
- int4 discretePosition;
- discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) );
- discretePosition.y = (int)( (gridPosition.y >= 0.0f) ? gridPosition.y : floor(gridPosition.y) );
- discretePosition.z = (int)( (gridPosition.z >= 0.0f) ? gridPosition.z : floor(gridPosition.z) );
-
- //Clamp coordinates into [-512, 511], then convert range from [-512, 511] to [0, 1023]
- discretePosition = b3Max( -512, b3Min(discretePosition, 511) );
- discretePosition += 512;
-
- //Interleave bits(assign a morton code, also known as a z-curve)
- unsigned int mortonCode = getMortonCode(discretePosition.x, discretePosition.y, discretePosition.z);
-
- //
- SortDataCL mortonCodeIndexPair;
- mortonCodeIndexPair.m_key = mortonCode;
- mortonCodeIndexPair.m_value = leafNodeIndex;
-
- out_mortonCodesAndAabbIndices[leafNodeIndex] = mortonCodeIndexPair;
-}
-
-#define B3_PLVBH_TRAVERSE_MAX_STACK_SIZE 128
-
-//The most significant bit(0x80000000) of a int32 is used to distinguish between leaf and internal nodes.
-//If it is set, then the index is for an internal node; otherwise, it is a leaf node.
-//In both cases, the bit should be cleared to access the actual node index.
-int isLeafNode(int index) { return (index >> 31 == 0); }
-int getIndexWithInternalNodeMarkerRemoved(int index) { return index & (~0x80000000); }
-int getIndexWithInternalNodeMarkerSet(int isLeaf, int index) { return (isLeaf) ? index : (index | 0x80000000); }
-
-//From sap.cl
-#define NEW_PAIR_MARKER -1
-
-bool TestAabbAgainstAabb2(const b3AabbCL* aabb1, const b3AabbCL* aabb2)
-{
- bool overlap = true;
- overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap;
- overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap;
- overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap;
- return overlap;
-}
-//From sap.cl
-
-__kernel void plbvhCalculateOverlappingPairs(__global b3AabbCL* rigidAabbs,
-
- __global int* rootNodeIndex,
- __global int2* internalNodeChildIndices,
- __global b3AabbCL* internalNodeAabbs,
- __global int2* internalNodeLeafIndexRanges,
-
- __global SortDataCL* mortonCodesAndAabbIndices,
- __global int* out_numPairs, __global int4* out_overlappingPairs,
- int maxPairs, int numQueryAabbs)
-{
- //Using get_group_id()/get_local_id() is Faster than get_global_id(0) since
- //mortonCodesAndAabbIndices[] contains rigid body indices sorted along the z-curve (more spatially coherent)
- int queryBvhNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);
- if(queryBvhNodeIndex >= numQueryAabbs) return;
-
- int queryRigidIndex = mortonCodesAndAabbIndices[queryBvhNodeIndex].m_value;
- b3AabbCL queryAabb = rigidAabbs[queryRigidIndex];
-
- int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];
-
- int stackSize = 1;
- stack[0] = *rootNodeIndex;
-
- while(stackSize)
- {
- int internalOrLeafNodeIndex = stack[ stackSize - 1 ];
- --stackSize;
-
- int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false
- int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex);
-
- //Optimization - if the BVH is structured as a binary radix tree, then
- //each internal node corresponds to a contiguous range of leaf nodes(internalNodeLeafIndexRanges[]).
- //This can be used to avoid testing each AABB-AABB pair twice, including preventing each node from colliding with itself.
- {
- int highestLeafIndex = (isLeaf) ? bvhNodeIndex : internalNodeLeafIndexRanges[bvhNodeIndex].y;
- if(highestLeafIndex <= queryBvhNodeIndex) continue;
- }
-
- //bvhRigidIndex is not used if internal node
- int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1;
-
- b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex];
- if( TestAabbAgainstAabb2(&queryAabb, &bvhNodeAabb) )
- {
- if(isLeaf)
- {
- int4 pair;
- pair.x = rigidAabbs[queryRigidIndex].m_minIndices[3];
- pair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3];
- pair.z = NEW_PAIR_MARKER;
- pair.w = NEW_PAIR_MARKER;
-
- int pairIndex = atomic_inc(out_numPairs);
- if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair;
- }
-
- if(!isLeaf) //Internal node
- {
- if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE)
- {
- //Error
- }
- else
- {
- stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x;
- stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y;
- }
- }
- }
-
- }
-}
-
-
-//From rayCastKernels.cl
-typedef struct
-{
- float4 m_from;
- float4 m_to;
-} b3RayInfo;
-//From rayCastKernels.cl
-
-b3Vector3 b3Vector3_normalize(b3Vector3 v)
-{
- b3Vector3 normal = (b3Vector3){v.x, v.y, v.z, 0.f};
- return normalize(normal); //OpenCL normalize == vector4 normalize
-}
-b3Scalar b3Vector3_length2(b3Vector3 v) { return v.x*v.x + v.y*v.y + v.z*v.z; }
-b3Scalar b3Vector3_dot(b3Vector3 a, b3Vector3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; }
-
-int rayIntersectsAabb(b3Vector3 rayOrigin, b3Scalar rayLength, b3Vector3 rayNormalizedDirection, b3AabbCL aabb)
-{
- //AABB is considered as 3 pairs of 2 planes( {x_min, x_max}, {y_min, y_max}, {z_min, z_max} ).
- //t_min is the point of intersection with the closer plane, t_max is the point of intersection with the farther plane.
- //
- //if (rayNormalizedDirection.x < 0.0f), then max.x will be the near plane
- //and min.x will be the far plane; otherwise, it is reversed.
- //
- //In order for there to be a collision, the t_min and t_max of each pair must overlap.
- //This can be tested for by selecting the highest t_min and lowest t_max and comparing them.
-
- int4 isNegative = isless( rayNormalizedDirection, ((b3Vector3){0.0f, 0.0f, 0.0f, 0.0f}) ); //isless(x,y) returns (x < y)
-
- //When using vector types, the select() function checks the most signficant bit,
- //but isless() sets the least significant bit.
- isNegative <<= 31;
-
- //select(b, a, condition) == condition ? a : b
- //When using select() with vector types, (condition[i]) is true if its most significant bit is 1
- b3Vector3 t_min = ( select(aabb.m_min, aabb.m_max, isNegative) - rayOrigin ) / rayNormalizedDirection;
- b3Vector3 t_max = ( select(aabb.m_max, aabb.m_min, isNegative) - rayOrigin ) / rayNormalizedDirection;
-
- b3Scalar t_min_final = 0.0f;
- b3Scalar t_max_final = rayLength;
-
- //Must use fmin()/fmax(); if one of the parameters is NaN, then the parameter that is not NaN is returned.
- //Behavior of min()/max() with NaNs is undefined. (See OpenCL Specification 1.2 [6.12.2] and [6.12.4])
- //Since the innermost fmin()/fmax() is always not NaN, this should never return NaN.
- t_min_final = fmax( t_min.z, fmax(t_min.y, fmax(t_min.x, t_min_final)) );
- t_max_final = fmin( t_max.z, fmin(t_max.y, fmin(t_max.x, t_max_final)) );
-
- return (t_min_final <= t_max_final);
-}
-
-__kernel void plbvhRayTraverse(__global b3AabbCL* rigidAabbs,
-
- __global int* rootNodeIndex,
- __global int2* internalNodeChildIndices,
- __global b3AabbCL* internalNodeAabbs,
- __global int2* internalNodeLeafIndexRanges,
- __global SortDataCL* mortonCodesAndAabbIndices,
-
- __global b3RayInfo* rays,
-
- __global int* out_numRayRigidPairs,
- __global int2* out_rayRigidPairs,
- int maxRayRigidPairs, int numRays)
-{
- int rayIndex = get_global_id(0);
- if(rayIndex >= numRays) return;
-
- //
- b3Vector3 rayFrom = rays[rayIndex].m_from;
- b3Vector3 rayTo = rays[rayIndex].m_to;
- b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom);
- b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) );
-
- //
- int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];
-
- int stackSize = 1;
- stack[0] = *rootNodeIndex;
-
- while(stackSize)
- {
- int internalOrLeafNodeIndex = stack[ stackSize - 1 ];
- --stackSize;
-
- int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false
- int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex);
-
- //bvhRigidIndex is not used if internal node
- int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1;
-
- b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex];
- if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, bvhNodeAabb) )
- {
- if(isLeaf)
- {
- int2 rayRigidPair;
- rayRigidPair.x = rayIndex;
- rayRigidPair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3];
-
- int pairIndex = atomic_inc(out_numRayRigidPairs);
- if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair;
- }
-
- if(!isLeaf) //Internal node
- {
- if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE)
- {
- //Error
- }
- else
- {
- stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x;
- stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y;
- }
- }
- }
- }
-}
-
-__kernel void plbvhLargeAabbAabbTest(__global b3AabbCL* smallAabbs, __global b3AabbCL* largeAabbs,
- __global int* out_numPairs, __global int4* out_overlappingPairs,
- int maxPairs, int numLargeAabbRigids, int numSmallAabbRigids)
-{
- int smallAabbIndex = get_global_id(0);
- if(smallAabbIndex >= numSmallAabbRigids) return;
-
- b3AabbCL smallAabb = smallAabbs[smallAabbIndex];
- for(int i = 0; i < numLargeAabbRigids; ++i)
- {
- b3AabbCL largeAabb = largeAabbs[i];
- if( TestAabbAgainstAabb2(&smallAabb, &largeAabb) )
- {
- int4 pair;
- pair.x = largeAabb.m_minIndices[3];
- pair.y = smallAabb.m_minIndices[3];
- pair.z = NEW_PAIR_MARKER;
- pair.w = NEW_PAIR_MARKER;
-
- int pairIndex = atomic_inc(out_numPairs);
- if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair;
- }
- }
-}
-__kernel void plbvhLargeAabbRayTest(__global b3AabbCL* largeRigidAabbs, __global b3RayInfo* rays,
- __global int* out_numRayRigidPairs, __global int2* out_rayRigidPairs,
- int numLargeAabbRigids, int maxRayRigidPairs, int numRays)
-{
- int rayIndex = get_global_id(0);
- if(rayIndex >= numRays) return;
-
- b3Vector3 rayFrom = rays[rayIndex].m_from;
- b3Vector3 rayTo = rays[rayIndex].m_to;
- b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom);
- b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) );
-
- for(int i = 0; i < numLargeAabbRigids; ++i)
- {
- b3AabbCL rigidAabb = largeRigidAabbs[i];
- if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, rigidAabb) )
- {
- int2 rayRigidPair;
- rayRigidPair.x = rayIndex;
- rayRigidPair.y = rigidAabb.m_minIndices[3];
-
- int pairIndex = atomic_inc(out_numRayRigidPairs);
- if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair;
- }
- }
-}
-
-
-//Set so that it is always greater than the actual common prefixes, and never selected as a parent node.
-//If there are no duplicates, then the highest common prefix is 32 or 64, depending on the number of bits used for the z-curve.
-//Duplicate common prefixes increase the highest common prefix at most by the number of bits used to index the leaf node.
-//Since 32 bit ints are used to index leaf nodes, the max prefix is 64(32 + 32 bit z-curve) or 96(32 + 64 bit z-curve).
-#define B3_PLBVH_INVALID_COMMON_PREFIX 128
-
-#define B3_PLBVH_ROOT_NODE_MARKER -1
-
-#define b3Int64 long
-
-int computeCommonPrefixLength(b3Int64 i, b3Int64 j) { return (int)clz(i ^ j); }
-b3Int64 computeCommonPrefix(b3Int64 i, b3Int64 j)
-{
- //This function only needs to return (i & j) in order for the algorithm to work,
- //but it may help with debugging to mask out the lower bits.
-
- b3Int64 commonPrefixLength = (b3Int64)computeCommonPrefixLength(i, j);
-
- b3Int64 sharedBits = i & j;
- b3Int64 bitmask = ((b3Int64)(~0)) << (64 - commonPrefixLength); //Set all bits after the common prefix to 0
-
- return sharedBits & bitmask;
-}
-
-//Same as computeCommonPrefixLength(), but allows for prefixes with different lengths
-int getSharedPrefixLength(b3Int64 prefixA, int prefixLengthA, b3Int64 prefixB, int prefixLengthB)
-{
- return b3Min( computeCommonPrefixLength(prefixA, prefixB), b3Min(prefixLengthA, prefixLengthB) );
-}
-
-__kernel void computeAdjacentPairCommonPrefix(__global SortDataCL* mortonCodesAndAabbIndices,
- __global b3Int64* out_commonPrefixes,
- __global int* out_commonPrefixLengths,
- int numInternalNodes)
-{
- int internalNodeIndex = get_global_id(0);
- if (internalNodeIndex >= numInternalNodes) return;
-
- //Here, (internalNodeIndex + 1) is never out of bounds since it is a leaf node index,
- //and the number of internal nodes is always numLeafNodes - 1
- int leftLeafIndex = internalNodeIndex;
- int rightLeafIndex = internalNodeIndex + 1;
-
- int leftLeafMortonCode = mortonCodesAndAabbIndices[leftLeafIndex].m_key;
- int rightLeafMortonCode = mortonCodesAndAabbIndices[rightLeafIndex].m_key;
-
- //Binary radix tree construction algorithm does not work if there are duplicate morton codes.
- //Append the index of each leaf node to each morton code so that there are no duplicates.
- //The algorithm also requires that the morton codes are sorted in ascending order; this requirement
- //is also satisfied with this method, as (leftLeafIndex < rightLeafIndex) is always true.
- //
- //upsample(a, b) == ( ((b3Int64)a) << 32) | b
- b3Int64 nonduplicateLeftMortonCode = upsample(leftLeafMortonCode, leftLeafIndex);
- b3Int64 nonduplicateRightMortonCode = upsample(rightLeafMortonCode, rightLeafIndex);
-
- out_commonPrefixes[internalNodeIndex] = computeCommonPrefix(nonduplicateLeftMortonCode, nonduplicateRightMortonCode);
- out_commonPrefixLengths[internalNodeIndex] = computeCommonPrefixLength(nonduplicateLeftMortonCode, nonduplicateRightMortonCode);
-}
-
-
-__kernel void buildBinaryRadixTreeLeafNodes(__global int* commonPrefixLengths, __global int* out_leafNodeParentNodes,
- __global int2* out_childNodes, int numLeafNodes)
-{
- int leafNodeIndex = get_global_id(0);
- if (leafNodeIndex >= numLeafNodes) return;
-
- int numInternalNodes = numLeafNodes - 1;
-
- int leftSplitIndex = leafNodeIndex - 1;
- int rightSplitIndex = leafNodeIndex;
-
- int leftCommonPrefix = (leftSplitIndex >= 0) ? commonPrefixLengths[leftSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;
- int rightCommonPrefix = (rightSplitIndex < numInternalNodes) ? commonPrefixLengths[rightSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;
-
- //Parent node is the highest adjacent common prefix that is lower than the node's common prefix
- //Leaf nodes are considered as having the highest common prefix
- int isLeftHigherCommonPrefix = (leftCommonPrefix > rightCommonPrefix);
-
- //Handle cases for the edge nodes; the first and last node
- //For leaf nodes, leftCommonPrefix and rightCommonPrefix should never both be B3_PLBVH_INVALID_COMMON_PREFIX
- if(leftCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = false;
- if(rightCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = true;
-
- int parentNodeIndex = (isLeftHigherCommonPrefix) ? leftSplitIndex : rightSplitIndex;
- out_leafNodeParentNodes[leafNodeIndex] = parentNodeIndex;
-
- int isRightChild = (isLeftHigherCommonPrefix); //If the left node is the parent, then this node is its right child and vice versa
-
- //out_childNodesAsInt[0] == int2.x == left child
- //out_childNodesAsInt[1] == int2.y == right child
- int isLeaf = 1;
- __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]);
- out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, leafNodeIndex);
-}
-
-__kernel void buildBinaryRadixTreeInternalNodes(__global b3Int64* commonPrefixes, __global int* commonPrefixLengths,
- __global int2* out_childNodes,
- __global int* out_internalNodeParentNodes, __global int* out_rootNodeIndex,
- int numInternalNodes)
-{
- int internalNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);
- if(internalNodeIndex >= numInternalNodes) return;
-
- b3Int64 nodePrefix = commonPrefixes[internalNodeIndex];
- int nodePrefixLength = commonPrefixLengths[internalNodeIndex];
-
-//#define USE_LINEAR_SEARCH
-#ifdef USE_LINEAR_SEARCH
- int leftIndex = -1;
- int rightIndex = -1;
-
- //Find nearest element to left with a lower common prefix
- for(int i = internalNodeIndex - 1; i >= 0; --i)
- {
- int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]);
- if(nodeLeftSharedPrefixLength < nodePrefixLength)
- {
- leftIndex = i;
- break;
- }
- }
-
- //Find nearest element to right with a lower common prefix
- for(int i = internalNodeIndex + 1; i < numInternalNodes; ++i)
- {
- int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]);
- if(nodeRightSharedPrefixLength < nodePrefixLength)
- {
- rightIndex = i;
- break;
- }
- }
-
-#else //Use binary search
-
- //Find nearest element to left with a lower common prefix
- int leftIndex = -1;
- {
- int lower = 0;
- int upper = internalNodeIndex - 1;
-
- while(lower <= upper)
- {
- int mid = (lower + upper) / 2;
- b3Int64 midPrefix = commonPrefixes[mid];
- int midPrefixLength = commonPrefixLengths[mid];
-
- int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength);
- if(nodeMidSharedPrefixLength < nodePrefixLength)
- {
- int right = mid + 1;
- if(right < internalNodeIndex)
- {
- b3Int64 rightPrefix = commonPrefixes[right];
- int rightPrefixLength = commonPrefixLengths[right];
-
- int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, rightPrefix, rightPrefixLength);
- if(nodeRightSharedPrefixLength < nodePrefixLength)
- {
- lower = right;
- leftIndex = right;
- }
- else
- {
- leftIndex = mid;
- break;
- }
- }
- else
- {
- leftIndex = mid;
- break;
- }
- }
- else upper = mid - 1;
- }
- }
-
- //Find nearest element to right with a lower common prefix
- int rightIndex = -1;
- {
- int lower = internalNodeIndex + 1;
- int upper = numInternalNodes - 1;
-
- while(lower <= upper)
- {
- int mid = (lower + upper) / 2;
- b3Int64 midPrefix = commonPrefixes[mid];
- int midPrefixLength = commonPrefixLengths[mid];
-
- int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength);
- if(nodeMidSharedPrefixLength < nodePrefixLength)
- {
- int left = mid - 1;
- if(left > internalNodeIndex)
- {
- b3Int64 leftPrefix = commonPrefixes[left];
- int leftPrefixLength = commonPrefixLengths[left];
-
- int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, leftPrefix, leftPrefixLength);
- if(nodeLeftSharedPrefixLength < nodePrefixLength)
- {
- upper = left;
- rightIndex = left;
- }
- else
- {
- rightIndex = mid;
- break;
- }
- }
- else
- {
- rightIndex = mid;
- break;
- }
- }
- else lower = mid + 1;
- }
- }
-#endif
-
- //Select parent
- {
- int leftPrefixLength = (leftIndex != -1) ? commonPrefixLengths[leftIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;
- int rightPrefixLength = (rightIndex != -1) ? commonPrefixLengths[rightIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;
-
- int isLeftHigherPrefixLength = (leftPrefixLength > rightPrefixLength);
-
- if(leftPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = false;
- else if(rightPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = true;
-
- int parentNodeIndex = (isLeftHigherPrefixLength) ? leftIndex : rightIndex;
-
- int isRootNode = (leftIndex == -1 && rightIndex == -1);
- out_internalNodeParentNodes[internalNodeIndex] = (!isRootNode) ? parentNodeIndex : B3_PLBVH_ROOT_NODE_MARKER;
-
- int isLeaf = 0;
- if(!isRootNode)
- {
- int isRightChild = (isLeftHigherPrefixLength); //If the left node is the parent, then this node is its right child and vice versa
-
- //out_childNodesAsInt[0] == int2.x == left child
- //out_childNodesAsInt[1] == int2.y == right child
- __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]);
- out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex);
- }
- else *out_rootNodeIndex = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex);
- }
-}
-
-__kernel void findDistanceFromRoot(__global int* rootNodeIndex, __global int* internalNodeParentNodes,
- __global int* out_maxDistanceFromRoot, __global int* out_distanceFromRoot, int numInternalNodes)
-{
- if( get_global_id(0) == 0 ) atomic_xchg(out_maxDistanceFromRoot, 0);
-
- int internalNodeIndex = get_global_id(0);
- if(internalNodeIndex >= numInternalNodes) return;
-
- //
- int distanceFromRoot = 0;
- {
- int parentIndex = internalNodeParentNodes[internalNodeIndex];
- while(parentIndex != B3_PLBVH_ROOT_NODE_MARKER)
- {
- parentIndex = internalNodeParentNodes[parentIndex];
- ++distanceFromRoot;
- }
- }
- out_distanceFromRoot[internalNodeIndex] = distanceFromRoot;
-
- //
- __local int localMaxDistanceFromRoot;
- if( get_local_id(0) == 0 ) localMaxDistanceFromRoot = 0;
- barrier(CLK_LOCAL_MEM_FENCE);
-
- atomic_max(&localMaxDistanceFromRoot, distanceFromRoot);
- barrier(CLK_LOCAL_MEM_FENCE);
-
- if( get_local_id(0) == 0 ) atomic_max(out_maxDistanceFromRoot, localMaxDistanceFromRoot);
-}
-
-__kernel void buildBinaryRadixTreeAabbsRecursive(__global int* distanceFromRoot, __global SortDataCL* mortonCodesAndAabbIndices,
- __global int2* childNodes,
- __global b3AabbCL* leafNodeAabbs, __global b3AabbCL* internalNodeAabbs,
- int maxDistanceFromRoot, int processedDistance, int numInternalNodes)
-{
- int internalNodeIndex = get_global_id(0);
- if(internalNodeIndex >= numInternalNodes) return;
-
- int distance = distanceFromRoot[internalNodeIndex];
-
- if(distance == processedDistance)
- {
- int leftChildIndex = childNodes[internalNodeIndex].x;
- int rightChildIndex = childNodes[internalNodeIndex].y;
-
- int isLeftChildLeaf = isLeafNode(leftChildIndex);
- int isRightChildLeaf = isLeafNode(rightChildIndex);
-
- leftChildIndex = getIndexWithInternalNodeMarkerRemoved(leftChildIndex);
- rightChildIndex = getIndexWithInternalNodeMarkerRemoved(rightChildIndex);
-
- //leftRigidIndex/rightRigidIndex is not used if internal node
- int leftRigidIndex = (isLeftChildLeaf) ? mortonCodesAndAabbIndices[leftChildIndex].m_value : -1;
- int rightRigidIndex = (isRightChildLeaf) ? mortonCodesAndAabbIndices[rightChildIndex].m_value : -1;
-
- b3AabbCL leftChildAabb = (isLeftChildLeaf) ? leafNodeAabbs[leftRigidIndex] : internalNodeAabbs[leftChildIndex];
- b3AabbCL rightChildAabb = (isRightChildLeaf) ? leafNodeAabbs[rightRigidIndex] : internalNodeAabbs[rightChildIndex];
-
- b3AabbCL mergedAabb;
- mergedAabb.m_min = b3Min(leftChildAabb.m_min, rightChildAabb.m_min);
- mergedAabb.m_max = b3Max(leftChildAabb.m_max, rightChildAabb.m_max);
- internalNodeAabbs[internalNodeIndex] = mergedAabb;
- }
-}
-
-__kernel void findLeafIndexRanges(__global int2* internalNodeChildNodes, __global int2* out_leafIndexRanges, int numInternalNodes)
-{
- int internalNodeIndex = get_global_id(0);
- if(internalNodeIndex >= numInternalNodes) return;
-
- int numLeafNodes = numInternalNodes + 1;
-
- int2 childNodes = internalNodeChildNodes[internalNodeIndex];
-
- int2 leafIndexRange; //x == min leaf index, y == max leaf index
-
- //Find lowest leaf index covered by this internal node
- {
- int lowestIndex = childNodes.x; //childNodes.x == Left child
- while( !isLeafNode(lowestIndex) ) lowestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(lowestIndex) ].x;
- leafIndexRange.x = lowestIndex;
- }
-
- //Find highest leaf index covered by this internal node
- {
- int highestIndex = childNodes.y; //childNodes.y == Right child
- while( !isLeafNode(highestIndex) ) highestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(highestIndex) ].y;
- leafIndexRange.y = highestIndex;
- }
-
- //
- out_leafIndexRanges[internalNodeIndex] = leafIndexRange;
-}