summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3Dynamics
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3Dynamics')
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3ContactSolverInfo.h172
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.cpp103
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.h19
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp576
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h567
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3JacobianEntry.h103
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp1381
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.h144
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.cpp151
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.h96
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverBody.h187
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverConstraint.h59
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.cpp58
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.h210
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.cpp317
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.h49
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/shared/b3ContactConstraint4.h19
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/shared/b3ConvertConstraint4.h133
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/shared/b3Inertia.h3
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/shared/b3IntegrateTransforms.h53
20 files changed, 2001 insertions, 2399 deletions
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3ContactSolverInfo.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3ContactSolverInfo.h
index 7a12257b33..049c9116fd 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3ContactSolverInfo.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3ContactSolverInfo.h
@@ -18,7 +18,7 @@ subject to the following restrictions:
#include "Bullet3Common/b3Scalar.h"
-enum b3SolverMode
+enum b3SolverMode
{
B3_SOLVER_RANDMIZE_ORDER = 1,
B3_SOLVER_FRICTION_SEPARATE = 2,
@@ -34,45 +34,38 @@ enum b3SolverMode
struct b3ContactSolverInfoData
{
-
-
- b3Scalar m_tau;
- b3Scalar m_damping;//global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
- b3Scalar m_friction;
- b3Scalar m_timeStep;
- b3Scalar m_restitution;
- int m_numIterations;
- b3Scalar m_maxErrorReduction;
- b3Scalar m_sor;
- b3Scalar m_erp;//used as Baumgarte factor
- b3Scalar m_erp2;//used in Split Impulse
- b3Scalar m_globalCfm;//constraint force mixing
- int m_splitImpulse;
- b3Scalar m_splitImpulsePenetrationThreshold;
- b3Scalar m_splitImpulseTurnErp;
- b3Scalar m_linearSlop;
- b3Scalar m_warmstartingFactor;
-
- int m_solverMode;
- int m_restingContactRestitutionThreshold;
- int m_minimumSolverBatchSize;
- b3Scalar m_maxGyroscopicForce;
- b3Scalar m_singleAxisRollingFrictionThreshold;
-
-
+ b3Scalar m_tau;
+ b3Scalar m_damping; //global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
+ b3Scalar m_friction;
+ b3Scalar m_timeStep;
+ b3Scalar m_restitution;
+ int m_numIterations;
+ b3Scalar m_maxErrorReduction;
+ b3Scalar m_sor;
+ b3Scalar m_erp; //used as Baumgarte factor
+ b3Scalar m_erp2; //used in Split Impulse
+ b3Scalar m_globalCfm; //constraint force mixing
+ int m_splitImpulse;
+ b3Scalar m_splitImpulsePenetrationThreshold;
+ b3Scalar m_splitImpulseTurnErp;
+ b3Scalar m_linearSlop;
+ b3Scalar m_warmstartingFactor;
+
+ int m_solverMode;
+ int m_restingContactRestitutionThreshold;
+ int m_minimumSolverBatchSize;
+ b3Scalar m_maxGyroscopicForce;
+ b3Scalar m_singleAxisRollingFrictionThreshold;
};
struct b3ContactSolverInfo : public b3ContactSolverInfoData
{
-
-
-
inline b3ContactSolverInfo()
{
m_tau = b3Scalar(0.6);
m_damping = b3Scalar(1.0);
m_friction = b3Scalar(0.3);
- m_timeStep = b3Scalar(1.f/60.f);
+ m_timeStep = b3Scalar(1.f / 60.f);
m_restitution = b3Scalar(0.);
m_maxErrorReduction = b3Scalar(20.);
m_numIterations = 10;
@@ -84,76 +77,73 @@ struct b3ContactSolverInfo : public b3ContactSolverInfoData
m_splitImpulsePenetrationThreshold = -.04f;
m_splitImpulseTurnErp = 0.1f;
m_linearSlop = b3Scalar(0.0);
- m_warmstartingFactor=b3Scalar(0.85);
+ m_warmstartingFactor = b3Scalar(0.85);
//m_solverMode = B3_SOLVER_USE_WARMSTARTING | B3_SOLVER_SIMD | B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION|B3_SOLVER_USE_2_FRICTION_DIRECTIONS|B3_SOLVER_ENABLE_FRICTION_DIRECTION_CACHING;// | B3_SOLVER_RANDMIZE_ORDER;
- m_solverMode = B3_SOLVER_USE_WARMSTARTING | B3_SOLVER_SIMD;// | B3_SOLVER_RANDMIZE_ORDER;
- m_restingContactRestitutionThreshold = 2;//unused as of 2.81
- m_minimumSolverBatchSize = 128; //try to combine islands until the amount of constraints reaches this limit
- m_maxGyroscopicForce = 100.f; ///only used to clamp forces for bodies that have their B3_ENABLE_GYROPSCOPIC_FORCE flag set (using b3RigidBody::setFlag)
- m_singleAxisRollingFrictionThreshold = 1e30f;///if the velocity is above this threshold, it will use a single constraint row (axis), otherwise 3 rows.
+ m_solverMode = B3_SOLVER_USE_WARMSTARTING | B3_SOLVER_SIMD; // | B3_SOLVER_RANDMIZE_ORDER;
+ m_restingContactRestitutionThreshold = 2; //unused as of 2.81
+ m_minimumSolverBatchSize = 128; //try to combine islands until the amount of constraints reaches this limit
+ m_maxGyroscopicForce = 100.f; ///only used to clamp forces for bodies that have their B3_ENABLE_GYROPSCOPIC_FORCE flag set (using b3RigidBody::setFlag)
+ m_singleAxisRollingFrictionThreshold = 1e30f; ///if the velocity is above this threshold, it will use a single constraint row (axis), otherwise 3 rows.
}
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct b3ContactSolverInfoDoubleData
{
- double m_tau;
- double m_damping;//global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
- double m_friction;
- double m_timeStep;
- double m_restitution;
- double m_maxErrorReduction;
- double m_sor;
- double m_erp;//used as Baumgarte factor
- double m_erp2;//used in Split Impulse
- double m_globalCfm;//constraint force mixing
- double m_splitImpulsePenetrationThreshold;
- double m_splitImpulseTurnErp;
- double m_linearSlop;
- double m_warmstartingFactor;
- double m_maxGyroscopicForce;
- double m_singleAxisRollingFrictionThreshold;
-
- int m_numIterations;
- int m_solverMode;
- int m_restingContactRestitutionThreshold;
- int m_minimumSolverBatchSize;
- int m_splitImpulse;
- char m_padding[4];
-
+ double m_tau;
+ double m_damping; //global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
+ double m_friction;
+ double m_timeStep;
+ double m_restitution;
+ double m_maxErrorReduction;
+ double m_sor;
+ double m_erp; //used as Baumgarte factor
+ double m_erp2; //used in Split Impulse
+ double m_globalCfm; //constraint force mixing
+ double m_splitImpulsePenetrationThreshold;
+ double m_splitImpulseTurnErp;
+ double m_linearSlop;
+ double m_warmstartingFactor;
+ double m_maxGyroscopicForce;
+ double m_singleAxisRollingFrictionThreshold;
+
+ int m_numIterations;
+ int m_solverMode;
+ int m_restingContactRestitutionThreshold;
+ int m_minimumSolverBatchSize;
+ int m_splitImpulse;
+ char m_padding[4];
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct b3ContactSolverInfoFloatData
{
- float m_tau;
- float m_damping;//global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
- float m_friction;
- float m_timeStep;
-
- float m_restitution;
- float m_maxErrorReduction;
- float m_sor;
- float m_erp;//used as Baumgarte factor
-
- float m_erp2;//used in Split Impulse
- float m_globalCfm;//constraint force mixing
- float m_splitImpulsePenetrationThreshold;
- float m_splitImpulseTurnErp;
-
- float m_linearSlop;
- float m_warmstartingFactor;
- float m_maxGyroscopicForce;
- float m_singleAxisRollingFrictionThreshold;
-
- int m_numIterations;
- int m_solverMode;
- int m_restingContactRestitutionThreshold;
- int m_minimumSolverBatchSize;
-
- int m_splitImpulse;
- char m_padding[4];
+ float m_tau;
+ float m_damping; //global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
+ float m_friction;
+ float m_timeStep;
+
+ float m_restitution;
+ float m_maxErrorReduction;
+ float m_sor;
+ float m_erp; //used as Baumgarte factor
+
+ float m_erp2; //used in Split Impulse
+ float m_globalCfm; //constraint force mixing
+ float m_splitImpulsePenetrationThreshold;
+ float m_splitImpulseTurnErp;
+
+ float m_linearSlop;
+ float m_warmstartingFactor;
+ float m_maxGyroscopicForce;
+ float m_singleAxisRollingFrictionThreshold;
+
+ int m_numIterations;
+ int m_solverMode;
+ int m_restingContactRestitutionThreshold;
+ int m_minimumSolverBatchSize;
+
+ int m_splitImpulse;
+ char m_padding[4];
};
-
-
-#endif //B3_CONTACT_SOLVER_INFO
+#endif //B3_CONTACT_SOLVER_INFO
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.cpp b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.cpp
index 5e11e74935..ace4b18388 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.cpp
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.cpp
@@ -4,105 +4,100 @@
#include "Bullet3Common/b3TransformUtil.h"
#include <new>
-
-b3FixedConstraint::b3FixedConstraint(int rbA,int rbB, const b3Transform& frameInA,const b3Transform& frameInB)
-:b3TypedConstraint(B3_FIXED_CONSTRAINT_TYPE,rbA,rbB)
+b3FixedConstraint::b3FixedConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB)
+ : b3TypedConstraint(B3_FIXED_CONSTRAINT_TYPE, rbA, rbB)
{
m_pivotInA = frameInA.getOrigin();
m_pivotInB = frameInB.getOrigin();
- m_relTargetAB = frameInA.getRotation()*frameInB.getRotation().inverse();
-
+ m_relTargetAB = frameInA.getRotation() * frameInB.getRotation().inverse();
}
-b3FixedConstraint::~b3FixedConstraint ()
+b3FixedConstraint::~b3FixedConstraint()
{
}
-
-void b3FixedConstraint::getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies)
+void b3FixedConstraint::getInfo1(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
{
info->m_numConstraintRows = 6;
info->nub = 6;
}
-void b3FixedConstraint::getInfo2 (b3ConstraintInfo2* info, const b3RigidBodyData* bodies)
+void b3FixedConstraint::getInfo2(b3ConstraintInfo2* info, const b3RigidBodyData* bodies)
{
//fix the 3 linear degrees of freedom
const b3Vector3& worldPosA = bodies[m_rbA].m_pos;
const b3Quaternion& worldOrnA = bodies[m_rbA].m_quat;
- const b3Vector3& worldPosB= bodies[m_rbB].m_pos;
+ const b3Vector3& worldPosB = bodies[m_rbB].m_pos;
const b3Quaternion& worldOrnB = bodies[m_rbB].m_quat;
info->m_J1linearAxis[0] = 1;
- info->m_J1linearAxis[info->rowskip+1] = 1;
- info->m_J1linearAxis[2*info->rowskip+2] = 1;
+ info->m_J1linearAxis[info->rowskip + 1] = 1;
+ info->m_J1linearAxis[2 * info->rowskip + 2] = 1;
- b3Vector3 a1 = b3QuatRotate(worldOrnA,m_pivotInA);
+ b3Vector3 a1 = b3QuatRotate(worldOrnA, m_pivotInA);
{
b3Vector3* angular0 = (b3Vector3*)(info->m_J1angularAxis);
- b3Vector3* angular1 = (b3Vector3*)(info->m_J1angularAxis+info->rowskip);
- b3Vector3* angular2 = (b3Vector3*)(info->m_J1angularAxis+2*info->rowskip);
+ b3Vector3* angular1 = (b3Vector3*)(info->m_J1angularAxis + info->rowskip);
+ b3Vector3* angular2 = (b3Vector3*)(info->m_J1angularAxis + 2 * info->rowskip);
b3Vector3 a1neg = -a1;
- a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ a1neg.getSkewSymmetricMatrix(angular0, angular1, angular2);
}
-
+
if (info->m_J2linearAxis)
{
info->m_J2linearAxis[0] = -1;
- info->m_J2linearAxis[info->rowskip+1] = -1;
- info->m_J2linearAxis[2*info->rowskip+2] = -1;
+ info->m_J2linearAxis[info->rowskip + 1] = -1;
+ info->m_J2linearAxis[2 * info->rowskip + 2] = -1;
}
-
- b3Vector3 a2 = b3QuatRotate(worldOrnB,m_pivotInB);
-
+
+ b3Vector3 a2 = b3QuatRotate(worldOrnB, m_pivotInB);
+
{
- // b3Vector3 a2n = -a2;
+ // b3Vector3 a2n = -a2;
b3Vector3* angular0 = (b3Vector3*)(info->m_J2angularAxis);
- b3Vector3* angular1 = (b3Vector3*)(info->m_J2angularAxis+info->rowskip);
- b3Vector3* angular2 = (b3Vector3*)(info->m_J2angularAxis+2*info->rowskip);
- a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ b3Vector3* angular1 = (b3Vector3*)(info->m_J2angularAxis + info->rowskip);
+ b3Vector3* angular2 = (b3Vector3*)(info->m_J2angularAxis + 2 * info->rowskip);
+ a2.getSkewSymmetricMatrix(angular0, angular1, angular2);
}
- // set right hand side for the linear dofs
+ // set right hand side for the linear dofs
b3Scalar k = info->fps * info->erp;
- b3Vector3 linearError = k*(a2+worldPosB-a1-worldPosA);
- int j;
- for (j=0; j<3; j++)
- {
- info->m_constraintError[j*info->rowskip] = linearError[j];
+ b3Vector3 linearError = k * (a2 + worldPosB - a1 - worldPosA);
+ int j;
+ for (j = 0; j < 3; j++)
+ {
+ info->m_constraintError[j * info->rowskip] = linearError[j];
//printf("info->m_constraintError[%d]=%f\n",j,info->m_constraintError[j]);
- }
+ }
- //fix the 3 angular degrees of freedom
+ //fix the 3 angular degrees of freedom
int start_row = 3;
int s = info->rowskip;
- int start_index = start_row * s;
+ int start_index = start_row * s;
- // 3 rows to make body rotations equal
+ // 3 rows to make body rotations equal
info->m_J1angularAxis[start_index] = 1;
- info->m_J1angularAxis[start_index + s + 1] = 1;
- info->m_J1angularAxis[start_index + s*2+2] = 1;
- if ( info->m_J2angularAxis)
- {
- info->m_J2angularAxis[start_index] = -1;
- info->m_J2angularAxis[start_index + s+1] = -1;
- info->m_J2angularAxis[start_index + s*2+2] = -1;
- }
-
+ info->m_J1angularAxis[start_index + s + 1] = 1;
+ info->m_J1angularAxis[start_index + s * 2 + 2] = 1;
+ if (info->m_J2angularAxis)
+ {
+ info->m_J2angularAxis[start_index] = -1;
+ info->m_J2angularAxis[start_index + s + 1] = -1;
+ info->m_J2angularAxis[start_index + s * 2 + 2] = -1;
+ }
- // set right hand side for the angular dofs
+ // set right hand side for the angular dofs
b3Vector3 diff;
b3Scalar angle;
- b3Quaternion qrelCur = worldOrnA *worldOrnB.inverse();
-
- b3TransformUtil::calculateDiffAxisAngleQuaternion(m_relTargetAB,qrelCur,diff,angle);
- diff*=-angle;
- for (j=0; j<3; j++)
- {
- info->m_constraintError[(3+j)*info->rowskip] = k * diff[j];
- }
+ b3Quaternion qrelCur = worldOrnA * worldOrnB.inverse();
+ b3TransformUtil::calculateDiffAxisAngleQuaternion(m_relTargetAB, qrelCur, diff, angle);
+ diff *= -angle;
+ for (j = 0; j < 3; j++)
+ {
+ info->m_constraintError[(3 + j) * info->rowskip] = k * diff[j];
+ }
} \ No newline at end of file
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.h
index e884a82912..64809666e4 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3FixedConstraint.h
@@ -4,32 +4,31 @@
#include "b3TypedConstraint.h"
-B3_ATTRIBUTE_ALIGNED16(class) b3FixedConstraint : public b3TypedConstraint
+B3_ATTRIBUTE_ALIGNED16(class)
+b3FixedConstraint : public b3TypedConstraint
{
b3Vector3 m_pivotInA;
b3Vector3 m_pivotInB;
b3Quaternion m_relTargetAB;
public:
- b3FixedConstraint(int rbA,int rbB, const b3Transform& frameInA,const b3Transform& frameInB);
-
+ b3FixedConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB);
+
virtual ~b3FixedConstraint();
-
- virtual void getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies);
+ virtual void getInfo1(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies);
- virtual void getInfo2 (b3ConstraintInfo2* info, const b3RigidBodyData* bodies);
+ virtual void getInfo2(b3ConstraintInfo2 * info, const b3RigidBodyData* bodies);
- virtual void setParam(int num, b3Scalar value, int axis = -1)
+ virtual void setParam(int num, b3Scalar value, int axis = -1)
{
b3Assert(0);
}
- virtual b3Scalar getParam(int num, int axis = -1) const
+ virtual b3Scalar getParam(int num, int axis = -1) const
{
b3Assert(0);
return 0.f;
}
-
};
-#endif //B3_FIXED_CONSTRAINT_H
+#endif //B3_FIXED_CONSTRAINT_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp
index 168a773d56..0d5bb2014b 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp
@@ -26,69 +26,48 @@ http://gimpact.sf.net
#include "Bullet3Common/b3TransformUtil.h"
#include <new>
-
-
#define D6_USE_OBSOLETE_METHOD false
#define D6_USE_FRAME_OFFSET true
-
-
-
-
-
-b3Generic6DofConstraint::b3Generic6DofConstraint(int rbA,int rbB, const b3Transform& frameInA, const b3Transform& frameInB, bool useLinearReferenceFrameA, const b3RigidBodyData* bodies)
-: b3TypedConstraint(B3_D6_CONSTRAINT_TYPE, rbA, rbB)
-, m_frameInA(frameInA)
-, m_frameInB(frameInB),
-m_useLinearReferenceFrameA(useLinearReferenceFrameA),
-m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
-m_flags(0)
+b3Generic6DofConstraint::b3Generic6DofConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB, bool useLinearReferenceFrameA, const b3RigidBodyData* bodies)
+ : b3TypedConstraint(B3_D6_CONSTRAINT_TYPE, rbA, rbB), m_frameInA(frameInA), m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA), m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), m_flags(0)
{
calculateTransforms(bodies);
}
-
-
-
-
-
#define GENERIC_D6_DISABLE_WARMSTARTING 1
-
-
b3Scalar btGetMatrixElem(const b3Matrix3x3& mat, int index);
b3Scalar btGetMatrixElem(const b3Matrix3x3& mat, int index)
{
- int i = index%3;
- int j = index/3;
+ int i = index % 3;
+ int j = index / 3;
return mat[i][j];
}
-
-
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
-bool matrixToEulerXYZ(const b3Matrix3x3& mat,b3Vector3& xyz);
-bool matrixToEulerXYZ(const b3Matrix3x3& mat,b3Vector3& xyz)
+bool matrixToEulerXYZ(const b3Matrix3x3& mat, b3Vector3& xyz);
+bool matrixToEulerXYZ(const b3Matrix3x3& mat, b3Vector3& xyz)
{
// // rot = cy*cz -cy*sz sy
// // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
//
- b3Scalar fi = btGetMatrixElem(mat,2);
+ b3Scalar fi = btGetMatrixElem(mat, 2);
if (fi < b3Scalar(1.0f))
{
if (fi > b3Scalar(-1.0f))
{
- xyz[0] = b3Atan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
- xyz[1] = b3Asin(btGetMatrixElem(mat,2));
- xyz[2] = b3Atan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
+ xyz[0] = b3Atan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 8));
+ xyz[1] = b3Asin(btGetMatrixElem(mat, 2));
+ xyz[2] = b3Atan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
- xyz[0] = -b3Atan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[0] = -b3Atan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
xyz[1] = -B3_HALF_PI;
xyz[2] = b3Scalar(0.0);
return false;
@@ -97,7 +76,7 @@ bool matrixToEulerXYZ(const b3Matrix3x3& mat,b3Vector3& xyz)
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
- xyz[0] = b3Atan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[0] = b3Atan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
xyz[1] = B3_HALF_PI;
xyz[2] = 0.0;
}
@@ -108,85 +87,75 @@ bool matrixToEulerXYZ(const b3Matrix3x3& mat,b3Vector3& xyz)
int b3RotationalLimitMotor::testLimitValue(b3Scalar test_value)
{
- if(m_loLimit>m_hiLimit)
+ if (m_loLimit > m_hiLimit)
{
- m_currentLimit = 0;//Free from violation
+ m_currentLimit = 0; //Free from violation
return 0;
}
if (test_value < m_loLimit)
{
- m_currentLimit = 1;//low limit violation
- m_currentLimitError = test_value - m_loLimit;
- if(m_currentLimitError>B3_PI)
- m_currentLimitError-=B3_2_PI;
- else if(m_currentLimitError<-B3_PI)
- m_currentLimitError+=B3_2_PI;
+ m_currentLimit = 1; //low limit violation
+ m_currentLimitError = test_value - m_loLimit;
+ if (m_currentLimitError > B3_PI)
+ m_currentLimitError -= B3_2_PI;
+ else if (m_currentLimitError < -B3_PI)
+ m_currentLimitError += B3_2_PI;
return 1;
}
- else if (test_value> m_hiLimit)
+ else if (test_value > m_hiLimit)
{
- m_currentLimit = 2;//High limit violation
+ m_currentLimit = 2; //High limit violation
m_currentLimitError = test_value - m_hiLimit;
- if(m_currentLimitError>B3_PI)
- m_currentLimitError-=B3_2_PI;
- else if(m_currentLimitError<-B3_PI)
- m_currentLimitError+=B3_2_PI;
+ if (m_currentLimitError > B3_PI)
+ m_currentLimitError -= B3_2_PI;
+ else if (m_currentLimitError < -B3_PI)
+ m_currentLimitError += B3_2_PI;
return 2;
};
- m_currentLimit = 0;//Free from violation
+ m_currentLimit = 0; //Free from violation
return 0;
-
}
-
-
-
//////////////////////////// End b3RotationalLimitMotor ////////////////////////////////////
-
-
-
//////////////////////////// b3TranslationalLimitMotor ////////////////////////////////////
-
int b3TranslationalLimitMotor::testLimitValue(int limitIndex, b3Scalar test_value)
{
b3Scalar loLimit = m_lowerLimit[limitIndex];
b3Scalar hiLimit = m_upperLimit[limitIndex];
- if(loLimit > hiLimit)
+ if (loLimit > hiLimit)
{
- m_currentLimit[limitIndex] = 0;//Free from violation
+ m_currentLimit[limitIndex] = 0; //Free from violation
m_currentLimitError[limitIndex] = b3Scalar(0.f);
return 0;
}
if (test_value < loLimit)
{
- m_currentLimit[limitIndex] = 2;//low limit violation
- m_currentLimitError[limitIndex] = test_value - loLimit;
+ m_currentLimit[limitIndex] = 2; //low limit violation
+ m_currentLimitError[limitIndex] = test_value - loLimit;
return 2;
}
- else if (test_value> hiLimit)
+ else if (test_value > hiLimit)
{
- m_currentLimit[limitIndex] = 1;//High limit violation
+ m_currentLimit[limitIndex] = 1; //High limit violation
m_currentLimitError[limitIndex] = test_value - hiLimit;
return 1;
};
- m_currentLimit[limitIndex] = 0;//Free from violation
+ m_currentLimit[limitIndex] = 0; //Free from violation
m_currentLimitError[limitIndex] = b3Scalar(0.f);
return 0;
}
-
-
//////////////////////////// b3TranslationalLimitMotor ////////////////////////////////////
void b3Generic6DofConstraint::calculateAngleInfo()
{
- b3Matrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
- matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
+ b3Matrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse() * m_calculatedTransformB.getBasis();
+ matrixToEulerXYZ(relative_frame, m_calculatedAxisAngleDiff);
// in euler angle mode we do not actually constrain the angular velocity
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
//
@@ -211,12 +180,11 @@ void b3Generic6DofConstraint::calculateAngleInfo()
m_calculatedAxis[0].normalize();
m_calculatedAxis[1].normalize();
m_calculatedAxis[2].normalize();
-
}
static b3Transform getCenterOfMassTransform(const b3RigidBodyData& body)
{
- b3Transform tr(body.m_quat,body.m_pos);
+ b3Transform tr(body.m_quat, body.m_pos);
return tr;
}
@@ -226,26 +194,26 @@ void b3Generic6DofConstraint::calculateTransforms(const b3RigidBodyData* bodies)
b3Transform transB;
transA = getCenterOfMassTransform(bodies[m_rbA]);
transB = getCenterOfMassTransform(bodies[m_rbB]);
- calculateTransforms(transA,transB,bodies);
+ calculateTransforms(transA, transB, bodies);
}
-void b3Generic6DofConstraint::calculateTransforms(const b3Transform& transA,const b3Transform& transB,const b3RigidBodyData* bodies)
+void b3Generic6DofConstraint::calculateTransforms(const b3Transform& transA, const b3Transform& transB, const b3RigidBodyData* bodies)
{
m_calculatedTransformA = transA * m_frameInA;
m_calculatedTransformB = transB * m_frameInB;
calculateLinearInfo();
calculateAngleInfo();
- if(m_useOffsetForConstraintFrame)
- { // get weight factors depending on masses
+ if (m_useOffsetForConstraintFrame)
+ { // get weight factors depending on masses
b3Scalar miA = bodies[m_rbA].m_invMass;
b3Scalar miB = bodies[m_rbB].m_invMass;
m_hasStaticBody = (miA < B3_EPSILON) || (miB < B3_EPSILON);
b3Scalar miS = miA + miB;
- if(miS > b3Scalar(0.f))
+ if (miS > b3Scalar(0.f))
{
m_factA = miB / miS;
}
- else
+ else
{
m_factA = b3Scalar(0.5f);
}
@@ -253,12 +221,6 @@ void b3Generic6DofConstraint::calculateTransforms(const b3Transform& transA,cons
}
}
-
-
-
-
-
-
bool b3Generic6DofConstraint::testAngularLimitMotor(int axis_index)
{
b3Scalar angle = m_calculatedAxisAngleDiff[axis_index];
@@ -269,48 +231,43 @@ bool b3Generic6DofConstraint::testAngularLimitMotor(int axis_index)
return m_angularLimits[axis_index].needApplyTorques();
}
-
-
-
-void b3Generic6DofConstraint::getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies)
+void b3Generic6DofConstraint::getInfo1(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
{
//prepare constraint
- calculateTransforms(getCenterOfMassTransform(bodies[m_rbA]),getCenterOfMassTransform(bodies[m_rbB]),bodies);
+ calculateTransforms(getCenterOfMassTransform(bodies[m_rbA]), getCenterOfMassTransform(bodies[m_rbB]), bodies);
info->m_numConstraintRows = 0;
info->nub = 6;
int i;
//test linear limits
- for(i = 0; i < 3; i++)
+ for (i = 0; i < 3; i++)
{
- if(m_linearLimits.needApplyForce(i))
+ if (m_linearLimits.needApplyForce(i))
{
info->m_numConstraintRows++;
info->nub--;
}
}
//test angular limits
- for (i=0;i<3 ;i++ )
+ for (i = 0; i < 3; i++)
{
- if(testAngularLimitMotor(i))
+ if (testAngularLimitMotor(i))
{
info->m_numConstraintRows++;
info->nub--;
}
}
-// printf("info->m_numConstraintRows=%d\n",info->m_numConstraintRows);
+ // printf("info->m_numConstraintRows=%d\n",info->m_numConstraintRows);
}
-void b3Generic6DofConstraint::getInfo1NonVirtual (b3ConstraintInfo1* info,const b3RigidBodyData* bodies)
+void b3Generic6DofConstraint::getInfo1NonVirtual(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
{
//pre-allocate all 6
info->m_numConstraintRows = 6;
info->nub = 0;
}
-
-void b3Generic6DofConstraint::getInfo2 (b3ConstraintInfo2* info,const b3RigidBodyData* bodies)
+void b3Generic6DofConstraint::getInfo2(b3ConstraintInfo2* info, const b3RigidBodyData* bodies)
{
-
b3Transform transA = getCenterOfMassTransform(bodies[m_rbA]);
b3Transform transB = getCenterOfMassTransform(bodies[m_rbB]);
const b3Vector3& linVelA = bodies[m_rbA].m_linVel;
@@ -318,136 +275,124 @@ void b3Generic6DofConstraint::getInfo2 (b3ConstraintInfo2* info,const b3RigidBod
const b3Vector3& angVelA = bodies[m_rbA].m_angVel;
const b3Vector3& angVelB = bodies[m_rbB].m_angVel;
- if(m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
- setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ if (m_useOffsetForConstraintFrame)
+ { // for stability better to solve angular limits first
+ int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
- setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ { // leave old version for compatibility
+ int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
-
}
-
-void b3Generic6DofConstraint::getInfo2NonVirtual (b3ConstraintInfo2* info, const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB,const b3RigidBodyData* bodies)
+void b3Generic6DofConstraint::getInfo2NonVirtual(b3ConstraintInfo2* info, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB, const b3RigidBodyData* bodies)
{
-
//prepare constraint
- calculateTransforms(transA,transB,bodies);
+ calculateTransforms(transA, transB, bodies);
int i;
- for (i=0;i<3 ;i++ )
+ for (i = 0; i < 3; i++)
{
testAngularLimitMotor(i);
}
- if(m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
- setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ if (m_useOffsetForConstraintFrame)
+ { // for stability better to solve angular limits first
+ int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
- setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ { // leave old version for compatibility
+ int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
}
-
-
-int b3Generic6DofConstraint::setLinearLimits(b3ConstraintInfo2* info, int row, const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB)
+int b3Generic6DofConstraint::setLinearLimits(b3ConstraintInfo2* info, int row, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB)
{
-// int row = 0;
+ // int row = 0;
//solve linear limits
b3RotationalLimitMotor limot;
- for (int i=0;i<3 ;i++ )
+ for (int i = 0; i < 3; i++)
{
- if(m_linearLimits.needApplyForce(i))
- { // re-use rotational motor code
+ if (m_linearLimits.needApplyForce(i))
+ { // re-use rotational motor code
limot.m_bounce = b3Scalar(0.f);
limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
- limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
- limot.m_damping = m_linearLimits.m_damping;
- limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
- limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
- limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
- limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
- limot.m_maxLimitForce = b3Scalar(0.f);
- limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
- limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
+ limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
+ limot.m_damping = m_linearLimits.m_damping;
+ limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
+ limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
+ limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
+ limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
+ limot.m_maxLimitForce = b3Scalar(0.f);
+ limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
+ limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
b3Vector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
int flags = m_flags >> (i * B3_6DOF_FLAGS_AXIS_SHIFT);
- limot.m_normalCFM = (flags & B3_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
- limot.m_stopCFM = (flags & B3_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
- limot.m_stopERP = (flags & B3_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
- if(m_useOffsetForConstraintFrame)
+ limot.m_normalCFM = (flags & B3_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
+ limot.m_stopCFM = (flags & B3_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
+ limot.m_stopERP = (flags & B3_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
+ if (m_useOffsetForConstraintFrame)
{
int indx1 = (i + 1) % 3;
int indx2 = (i + 2) % 3;
- int rotAllowed = 1; // rotations around orthos to current axis
- if(m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
+ int rotAllowed = 1; // rotations around orthos to current axis
+ if (m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
{
rotAllowed = 0;
}
- row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
+ row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
}
else
{
- row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0);
+ row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0);
}
}
}
return row;
}
-
-
-int b3Generic6DofConstraint::setAngularLimits(b3ConstraintInfo2 *info, int row_offset, const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB)
+int b3Generic6DofConstraint::setAngularLimits(b3ConstraintInfo2* info, int row_offset, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB)
{
- b3Generic6DofConstraint * d6constraint = this;
+ b3Generic6DofConstraint* d6constraint = this;
int row = row_offset;
//solve angular limits
- for (int i=0;i<3 ;i++ )
+ for (int i = 0; i < 3; i++)
{
- if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
+ if (d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
{
b3Vector3 axis = d6constraint->getAxis(i);
int flags = m_flags >> ((i + 3) * B3_6DOF_FLAGS_AXIS_SHIFT);
- if(!(flags & B3_6DOF_FLAGS_CFM_NORM))
+ if (!(flags & B3_6DOF_FLAGS_CFM_NORM))
{
m_angularLimits[i].m_normalCFM = info->cfm[0];
}
- if(!(flags & B3_6DOF_FLAGS_CFM_STOP))
+ if (!(flags & B3_6DOF_FLAGS_CFM_STOP))
{
m_angularLimits[i].m_stopCFM = info->cfm[0];
}
- if(!(flags & B3_6DOF_FLAGS_ERP_STOP))
+ if (!(flags & B3_6DOF_FLAGS_ERP_STOP))
{
m_angularLimits[i].m_stopERP = info->erp;
}
row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
- transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
+ transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
}
}
return row;
}
-
-
-
-void b3Generic6DofConstraint::updateRHS(b3Scalar timeStep)
+void b3Generic6DofConstraint::updateRHS(b3Scalar timeStep)
{
(void)timeStep;
-
}
-
-void b3Generic6DofConstraint::setFrames(const b3Transform& frameA, const b3Transform& frameB,const b3RigidBodyData* bodies)
+void b3Generic6DofConstraint::setFrames(const b3Transform& frameA, const b3Transform& frameB, const b3RigidBodyData* bodies)
{
m_frameInA = frameA;
m_frameInB = frameB;
@@ -455,33 +400,27 @@ void b3Generic6DofConstraint::setFrames(const b3Transform& frameA, const b3Trans
calculateTransforms(bodies);
}
-
-
b3Vector3 b3Generic6DofConstraint::getAxis(int axis_index) const
{
return m_calculatedAxis[axis_index];
}
-
-b3Scalar b3Generic6DofConstraint::getRelativePivotPosition(int axisIndex) const
+b3Scalar b3Generic6DofConstraint::getRelativePivotPosition(int axisIndex) const
{
return m_calculatedLinearDiff[axisIndex];
}
-
b3Scalar b3Generic6DofConstraint::getAngle(int axisIndex) const
{
return m_calculatedAxisAngleDiff[axisIndex];
}
-
-
void b3Generic6DofConstraint::calcAnchorPos(const b3RigidBodyData* bodies)
{
b3Scalar imA = bodies[m_rbA].m_invMass;
b3Scalar imB = bodies[m_rbB].m_invMass;
b3Scalar weight;
- if(imB == b3Scalar(0.0))
+ if (imB == b3Scalar(0.0))
{
weight = b3Scalar(1.0);
}
@@ -495,47 +434,43 @@ void b3Generic6DofConstraint::calcAnchorPos(const b3RigidBodyData* bodies)
return;
}
-
-
void b3Generic6DofConstraint::calculateLinearInfo()
{
m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
- for(int i = 0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
{
m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
}
}
-
-
int b3Generic6DofConstraint::get_limit_motor_info2(
- b3RotationalLimitMotor * limot,
- const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB,
- b3ConstraintInfo2 *info, int row, b3Vector3& ax1, int rotational,int rotAllowed)
+ b3RotationalLimitMotor* limot,
+ const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB,
+ b3ConstraintInfo2* info, int row, b3Vector3& ax1, int rotational, int rotAllowed)
{
- int srow = row * info->rowskip;
- bool powered = limot->m_enableMotor;
- int limit = limot->m_currentLimit;
- if (powered || limit)
- { // if the joint is powered, or has joint limits, add in the extra row
- b3Scalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
- b3Scalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
+ int srow = row * info->rowskip;
+ bool powered = limot->m_enableMotor;
+ int limit = limot->m_currentLimit;
+ if (powered || limit)
+ { // if the joint is powered, or has joint limits, add in the extra row
+ b3Scalar* J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
+ b3Scalar* J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
if (J1)
{
- J1[srow+0] = ax1[0];
- J1[srow+1] = ax1[1];
- J1[srow+2] = ax1[2];
+ J1[srow + 0] = ax1[0];
+ J1[srow + 1] = ax1[1];
+ J1[srow + 2] = ax1[2];
}
if (J2)
{
- J2[srow+0] = -ax1[0];
- J2[srow+1] = -ax1[1];
- J2[srow+2] = -ax1[2];
+ J2[srow + 0] = -ax1[0];
+ J2[srow + 1] = -ax1[1];
+ J2[srow + 2] = -ax1[2];
}
- if((!rotational))
- {
+ if ((!rotational))
+ {
if (m_useOffsetForConstraintFrame)
{
b3Vector3 tmpA, tmpB, relA, relB;
@@ -558,55 +493,56 @@ int b3Generic6DofConstraint::get_limit_motor_info2(
relB = orthoB - totalDist * m_factB;
tmpA = relA.cross(ax1);
tmpB = relB.cross(ax1);
- if(m_hasStaticBody && (!rotAllowed))
+ if (m_hasStaticBody && (!rotAllowed))
{
tmpA *= m_factA;
tmpB *= m_factB;
}
int i;
- for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i];
- for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i];
- } else
+ for (i = 0; i < 3; i++) info->m_J1angularAxis[srow + i] = tmpA[i];
+ for (i = 0; i < 3; i++) info->m_J2angularAxis[srow + i] = -tmpB[i];
+ }
+ else
{
- b3Vector3 ltd; // Linear Torque Decoupling vector
+ b3Vector3 ltd; // Linear Torque Decoupling vector
b3Vector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
ltd = c.cross(ax1);
- info->m_J1angularAxis[srow+0] = ltd[0];
- info->m_J1angularAxis[srow+1] = ltd[1];
- info->m_J1angularAxis[srow+2] = ltd[2];
+ info->m_J1angularAxis[srow + 0] = ltd[0];
+ info->m_J1angularAxis[srow + 1] = ltd[1];
+ info->m_J1angularAxis[srow + 2] = ltd[2];
c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
ltd = -c.cross(ax1);
- info->m_J2angularAxis[srow+0] = ltd[0];
- info->m_J2angularAxis[srow+1] = ltd[1];
- info->m_J2angularAxis[srow+2] = ltd[2];
+ info->m_J2angularAxis[srow + 0] = ltd[0];
+ info->m_J2angularAxis[srow + 1] = ltd[1];
+ info->m_J2angularAxis[srow + 2] = ltd[2];
}
- }
- // if we're limited low and high simultaneously, the joint motor is
- // ineffective
- if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
- info->m_constraintError[srow] = b3Scalar(0.f);
- if (powered)
- {
+ }
+ // if we're limited low and high simultaneously, the joint motor is
+ // ineffective
+ if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
+ info->m_constraintError[srow] = b3Scalar(0.f);
+ if (powered)
+ {
info->cfm[srow] = limot->m_normalCFM;
- if(!limit)
- {
+ if (!limit)
+ {
b3Scalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
- b3Scalar mot_fact = getMotorFactor( limot->m_currentPosition,
- limot->m_loLimit,
- limot->m_hiLimit,
- tag_vel,
- info->fps * limot->m_stopERP);
+ b3Scalar mot_fact = getMotorFactor(limot->m_currentPosition,
+ limot->m_loLimit,
+ limot->m_hiLimit,
+ tag_vel,
+ info->fps * limot->m_stopERP);
info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
- info->m_lowerLimit[srow] = -limot->m_maxMotorForce;
- info->m_upperLimit[srow] = limot->m_maxMotorForce;
- }
- }
- if(limit)
- {
- b3Scalar k = info->fps * limot->m_stopERP;
- if(!rotational)
+ info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
+ info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
+ }
+ }
+ if (limit)
+ {
+ b3Scalar k = info->fps * limot->m_stopERP;
+ if (!rotational)
{
info->m_constraintError[srow] += k * limot->m_currentLimitError;
}
@@ -615,116 +551,112 @@ int b3Generic6DofConstraint::get_limit_motor_info2(
info->m_constraintError[srow] += -k * limot->m_currentLimitError;
}
info->cfm[srow] = limot->m_stopCFM;
- if (limot->m_loLimit == limot->m_hiLimit)
- { // limited low and high simultaneously
- info->m_lowerLimit[srow] = -B3_INFINITY;
- info->m_upperLimit[srow] = B3_INFINITY;
- }
- else
- {
- if (limit == 1)
- {
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = B3_INFINITY;
- }
- else
- {
- info->m_lowerLimit[srow] = -B3_INFINITY;
- info->m_upperLimit[srow] = 0;
- }
- // deal with bounce
- if (limot->m_bounce > 0)
- {
- // calculate joint velocity
- b3Scalar vel;
- if (rotational)
- {
- vel = angVelA.dot(ax1);
-//make sure that if no body -> angVelB == zero vec
-// if (body1)
- vel -= angVelB.dot(ax1);
- }
- else
- {
- vel = linVelA.dot(ax1);
-//make sure that if no body -> angVelB == zero vec
-// if (body1)
- vel -= linVelB.dot(ax1);
- }
- // only apply bounce if the velocity is incoming, and if the
- // resulting c[] exceeds what we already have.
- if (limit == 1)
- {
- if (vel < 0)
- {
- b3Scalar newc = -limot->m_bounce* vel;
- if (newc > info->m_constraintError[srow])
+ if (limot->m_loLimit == limot->m_hiLimit)
+ { // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -B3_INFINITY;
+ info->m_upperLimit[srow] = B3_INFINITY;
+ }
+ else
+ {
+ if (limit == 1)
+ {
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = B3_INFINITY;
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -B3_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ // deal with bounce
+ if (limot->m_bounce > 0)
+ {
+ // calculate joint velocity
+ b3Scalar vel;
+ if (rotational)
+ {
+ vel = angVelA.dot(ax1);
+ //make sure that if no body -> angVelB == zero vec
+ // if (body1)
+ vel -= angVelB.dot(ax1);
+ }
+ else
+ {
+ vel = linVelA.dot(ax1);
+ //make sure that if no body -> angVelB == zero vec
+ // if (body1)
+ vel -= linVelB.dot(ax1);
+ }
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if (limit == 1)
+ {
+ if (vel < 0)
+ {
+ b3Scalar newc = -limot->m_bounce * vel;
+ if (newc > info->m_constraintError[srow])
info->m_constraintError[srow] = newc;
- }
- }
- else
- {
- if (vel > 0)
- {
- b3Scalar newc = -limot->m_bounce * vel;
- if (newc < info->m_constraintError[srow])
+ }
+ }
+ else
+ {
+ if (vel > 0)
+ {
+ b3Scalar newc = -limot->m_bounce * vel;
+ if (newc < info->m_constraintError[srow])
info->m_constraintError[srow] = newc;
- }
- }
- }
- }
- }
- return 1;
- }
- else return 0;
+ }
+ }
+ }
+ }
+ }
+ return 1;
+ }
+ else
+ return 0;
}
-
-
-
-
-
- ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
- ///If no axis is provided, it uses the default axis for this constraint.
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///If no axis is provided, it uses the default axis for this constraint.
void b3Generic6DofConstraint::setParam(int num, b3Scalar value, int axis)
{
- if((axis >= 0) && (axis < 3))
+ if ((axis >= 0) && (axis < 3))
{
- switch(num)
+ switch (num)
{
- case B3_CONSTRAINT_STOP_ERP :
+ case B3_CONSTRAINT_STOP_ERP:
m_linearLimits.m_stopERP[axis] = value;
m_flags |= B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
break;
- case B3_CONSTRAINT_STOP_CFM :
+ case B3_CONSTRAINT_STOP_CFM:
m_linearLimits.m_stopCFM[axis] = value;
m_flags |= B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
break;
- case B3_CONSTRAINT_CFM :
+ case B3_CONSTRAINT_CFM:
m_linearLimits.m_normalCFM[axis] = value;
m_flags |= B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
break;
- default :
+ default:
b3AssertConstrParams(0);
}
}
- else if((axis >=3) && (axis < 6))
+ else if ((axis >= 3) && (axis < 6))
{
- switch(num)
+ switch (num)
{
- case B3_CONSTRAINT_STOP_ERP :
+ case B3_CONSTRAINT_STOP_ERP:
m_angularLimits[axis - 3].m_stopERP = value;
m_flags |= B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
break;
- case B3_CONSTRAINT_STOP_CFM :
+ case B3_CONSTRAINT_STOP_CFM:
m_angularLimits[axis - 3].m_stopCFM = value;
m_flags |= B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
break;
- case B3_CONSTRAINT_CFM :
+ case B3_CONSTRAINT_CFM:
m_angularLimits[axis - 3].m_normalCFM = value;
m_flags |= B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
break;
- default :
+ default:
b3AssertConstrParams(0);
}
}
@@ -734,47 +666,47 @@ void b3Generic6DofConstraint::setParam(int num, b3Scalar value, int axis)
}
}
- ///return the local value of parameter
-b3Scalar b3Generic6DofConstraint::getParam(int num, int axis) const
+///return the local value of parameter
+b3Scalar b3Generic6DofConstraint::getParam(int num, int axis) const
{
b3Scalar retVal = 0;
- if((axis >= 0) && (axis < 3))
+ if ((axis >= 0) && (axis < 3))
{
- switch(num)
+ switch (num)
{
- case B3_CONSTRAINT_STOP_ERP :
+ case B3_CONSTRAINT_STOP_ERP:
b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_linearLimits.m_stopERP[axis];
break;
- case B3_CONSTRAINT_STOP_CFM :
+ case B3_CONSTRAINT_STOP_CFM:
b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_linearLimits.m_stopCFM[axis];
break;
- case B3_CONSTRAINT_CFM :
+ case B3_CONSTRAINT_CFM:
b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_linearLimits.m_normalCFM[axis];
break;
- default :
+ default:
b3AssertConstrParams(0);
}
}
- else if((axis >=3) && (axis < 6))
+ else if ((axis >= 3) && (axis < 6))
{
- switch(num)
+ switch (num)
{
- case B3_CONSTRAINT_STOP_ERP :
+ case B3_CONSTRAINT_STOP_ERP:
b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_angularLimits[axis - 3].m_stopERP;
break;
- case B3_CONSTRAINT_STOP_CFM :
+ case B3_CONSTRAINT_STOP_CFM:
b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_angularLimits[axis - 3].m_stopCFM;
break;
- case B3_CONSTRAINT_CFM :
+ case B3_CONSTRAINT_CFM:
b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_angularLimits[axis - 3].m_normalCFM;
break;
- default :
+ default:
b3AssertConstrParams(0);
}
}
@@ -785,23 +717,21 @@ b3Scalar b3Generic6DofConstraint::getParam(int num, int axis) const
return retVal;
}
-
-
-void b3Generic6DofConstraint::setAxis(const b3Vector3& axis1,const b3Vector3& axis2, const b3RigidBodyData* bodies)
+void b3Generic6DofConstraint::setAxis(const b3Vector3& axis1, const b3Vector3& axis2, const b3RigidBodyData* bodies)
{
b3Vector3 zAxis = axis1.normalized();
b3Vector3 yAxis = axis2.normalized();
- b3Vector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
-
+ b3Vector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
+
b3Transform frameInW;
frameInW.setIdentity();
- frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
- xAxis[1], yAxis[1], zAxis[1],
- xAxis[2], yAxis[2], zAxis[2]);
-
+ frameInW.getBasis().setValue(xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+
// now get constraint frame in local coordinate systems
m_frameInA = getCenterOfMassTransform(bodies[m_rbA]).inverse() * frameInW;
m_frameInB = getCenterOfMassTransform(bodies[m_rbB]).inverse() * frameInW;
-
+
calculateTransforms(bodies);
}
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h
index 084d36055c..1597809db3 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h
@@ -23,7 +23,6 @@ email: projectileman@yahoo.com
http://gimpact.sf.net
*/
-
#ifndef B3_GENERIC_6DOF_CONSTRAINT_H
#define B3_GENERIC_6DOF_CONSTRAINT_H
@@ -33,88 +32,83 @@ http://gimpact.sf.net
struct b3RigidBodyData;
-
-
-
//! Rotation Limit structure for generic joints
class b3RotationalLimitMotor
{
public:
- //! limit_parameters
- //!@{
- b3Scalar m_loLimit;//!< joint limit
- b3Scalar m_hiLimit;//!< joint limit
- b3Scalar m_targetVelocity;//!< target motor velocity
- b3Scalar m_maxMotorForce;//!< max force on motor
- b3Scalar m_maxLimitForce;//!< max force on limit
- b3Scalar m_damping;//!< Damping.
- b3Scalar m_limitSoftness;//! Relaxation factor
- b3Scalar m_normalCFM;//!< Constraint force mixing factor
- b3Scalar m_stopERP;//!< Error tolerance factor when joint is at limit
- b3Scalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit
- b3Scalar m_bounce;//!< restitution factor
- bool m_enableMotor;
-
- //!@}
-
- //! temp_variables
- //!@{
- b3Scalar m_currentLimitError;//! How much is violated this limit
- b3Scalar m_currentPosition; //! current value of angle
- int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
- b3Scalar m_accumulatedImpulse;
- //!@}
-
- b3RotationalLimitMotor()
- {
- m_accumulatedImpulse = 0.f;
- m_targetVelocity = 0;
- m_maxMotorForce = 0.1f;
- m_maxLimitForce = 300.0f;
- m_loLimit = 1.0f;
- m_hiLimit = -1.0f;
+ //! limit_parameters
+ //!@{
+ b3Scalar m_loLimit; //!< joint limit
+ b3Scalar m_hiLimit; //!< joint limit
+ b3Scalar m_targetVelocity; //!< target motor velocity
+ b3Scalar m_maxMotorForce; //!< max force on motor
+ b3Scalar m_maxLimitForce; //!< max force on limit
+ b3Scalar m_damping; //!< Damping.
+ b3Scalar m_limitSoftness; //! Relaxation factor
+ b3Scalar m_normalCFM; //!< Constraint force mixing factor
+ b3Scalar m_stopERP; //!< Error tolerance factor when joint is at limit
+ b3Scalar m_stopCFM; //!< Constraint force mixing factor when joint is at limit
+ b3Scalar m_bounce; //!< restitution factor
+ bool m_enableMotor;
+
+ //!@}
+
+ //! temp_variables
+ //!@{
+ b3Scalar m_currentLimitError; //! How much is violated this limit
+ b3Scalar m_currentPosition; //! current value of angle
+ int m_currentLimit; //!< 0=free, 1=at lo limit, 2=at hi limit
+ b3Scalar m_accumulatedImpulse;
+ //!@}
+
+ b3RotationalLimitMotor()
+ {
+ m_accumulatedImpulse = 0.f;
+ m_targetVelocity = 0;
+ m_maxMotorForce = 6.0f;
+ m_maxLimitForce = 300.0f;
+ m_loLimit = 1.0f;
+ m_hiLimit = -1.0f;
m_normalCFM = 0.f;
m_stopERP = 0.2f;
m_stopCFM = 0.f;
- m_bounce = 0.0f;
- m_damping = 1.0f;
- m_limitSoftness = 0.5f;
- m_currentLimit = 0;
- m_currentLimitError = 0;
- m_enableMotor = false;
- }
-
- b3RotationalLimitMotor(const b3RotationalLimitMotor & limot)
- {
- m_targetVelocity = limot.m_targetVelocity;
- m_maxMotorForce = limot.m_maxMotorForce;
- m_limitSoftness = limot.m_limitSoftness;
- m_loLimit = limot.m_loLimit;
- m_hiLimit = limot.m_hiLimit;
+ m_bounce = 0.0f;
+ m_damping = 1.0f;
+ m_limitSoftness = 0.5f;
+ m_currentLimit = 0;
+ m_currentLimitError = 0;
+ m_enableMotor = false;
+ }
+
+ b3RotationalLimitMotor(const b3RotationalLimitMotor& limot)
+ {
+ m_targetVelocity = limot.m_targetVelocity;
+ m_maxMotorForce = limot.m_maxMotorForce;
+ m_limitSoftness = limot.m_limitSoftness;
+ m_loLimit = limot.m_loLimit;
+ m_hiLimit = limot.m_hiLimit;
m_normalCFM = limot.m_normalCFM;
m_stopERP = limot.m_stopERP;
- m_stopCFM = limot.m_stopCFM;
- m_bounce = limot.m_bounce;
- m_currentLimit = limot.m_currentLimit;
- m_currentLimitError = limot.m_currentLimitError;
- m_enableMotor = limot.m_enableMotor;
- }
-
-
+ m_stopCFM = limot.m_stopCFM;
+ m_bounce = limot.m_bounce;
+ m_currentLimit = limot.m_currentLimit;
+ m_currentLimitError = limot.m_currentLimitError;
+ m_enableMotor = limot.m_enableMotor;
+ }
//! Is limited
- bool isLimited()
- {
- if(m_loLimit > m_hiLimit) return false;
- return true;
- }
+ bool isLimited()
+ {
+ if (m_loLimit > m_hiLimit) return false;
+ return true;
+ }
//! Need apply correction
- bool needApplyTorques()
- {
- if(m_currentLimit == 0 && m_enableMotor == false) return false;
- return true;
- }
+ bool needApplyTorques()
+ {
+ if (m_currentLimit == 0 && m_enableMotor == false) return false;
+ return true;
+ }
//! calculates error
/*!
@@ -123,104 +117,98 @@ public:
int testLimitValue(b3Scalar test_value);
//! apply the correction impulses for two bodies
- b3Scalar solveAngularLimits(b3Scalar timeStep,b3Vector3& axis, b3Scalar jacDiagABInv,b3RigidBodyData * body0, b3RigidBodyData * body1);
-
+ b3Scalar solveAngularLimits(b3Scalar timeStep, b3Vector3& axis, b3Scalar jacDiagABInv, b3RigidBodyData* body0, b3RigidBodyData* body1);
};
-
-
class b3TranslationalLimitMotor
{
public:
- b3Vector3 m_lowerLimit;//!< the constraint lower limits
- b3Vector3 m_upperLimit;//!< the constraint upper limits
- b3Vector3 m_accumulatedImpulse;
- //! Linear_Limit_parameters
- //!@{
- b3Vector3 m_normalCFM;//!< Constraint force mixing factor
- b3Vector3 m_stopERP;//!< Error tolerance factor when joint is at limit
- b3Vector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit
- b3Vector3 m_targetVelocity;//!< target motor velocity
- b3Vector3 m_maxMotorForce;//!< max force on motor
- b3Vector3 m_currentLimitError;//! How much is violated this limit
- b3Vector3 m_currentLinearDiff;//! Current relative offset of constraint frames
- b3Scalar m_limitSoftness;//!< Softness for linear limit
- b3Scalar m_damping;//!< Damping for linear limit
- b3Scalar m_restitution;//! Bounce parameter for linear limit
+ b3Vector3 m_lowerLimit; //!< the constraint lower limits
+ b3Vector3 m_upperLimit; //!< the constraint upper limits
+ b3Vector3 m_accumulatedImpulse;
+ //! Linear_Limit_parameters
+ //!@{
+ b3Vector3 m_normalCFM; //!< Constraint force mixing factor
+ b3Vector3 m_stopERP; //!< Error tolerance factor when joint is at limit
+ b3Vector3 m_stopCFM; //!< Constraint force mixing factor when joint is at limit
+ b3Vector3 m_targetVelocity; //!< target motor velocity
+ b3Vector3 m_maxMotorForce; //!< max force on motor
+ b3Vector3 m_currentLimitError; //! How much is violated this limit
+ b3Vector3 m_currentLinearDiff; //! Current relative offset of constraint frames
+ b3Scalar m_limitSoftness; //!< Softness for linear limit
+ b3Scalar m_damping; //!< Damping for linear limit
+ b3Scalar m_restitution; //! Bounce parameter for linear limit
//!@}
- bool m_enableMotor[3];
- int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit
-
- b3TranslationalLimitMotor()
- {
- m_lowerLimit.setValue(0.f,0.f,0.f);
- m_upperLimit.setValue(0.f,0.f,0.f);
- m_accumulatedImpulse.setValue(0.f,0.f,0.f);
+ bool m_enableMotor[3];
+ int m_currentLimit[3]; //!< 0=free, 1=at lower limit, 2=at upper limit
+
+ b3TranslationalLimitMotor()
+ {
+ m_lowerLimit.setValue(0.f, 0.f, 0.f);
+ m_upperLimit.setValue(0.f, 0.f, 0.f);
+ m_accumulatedImpulse.setValue(0.f, 0.f, 0.f);
m_normalCFM.setValue(0.f, 0.f, 0.f);
m_stopERP.setValue(0.2f, 0.2f, 0.2f);
m_stopCFM.setValue(0.f, 0.f, 0.f);
- m_limitSoftness = 0.7f;
- m_damping = b3Scalar(1.0f);
- m_restitution = b3Scalar(0.5f);
- for(int i=0; i < 3; i++)
+ m_limitSoftness = 0.7f;
+ m_damping = b3Scalar(1.0f);
+ m_restitution = b3Scalar(0.5f);
+ for (int i = 0; i < 3; i++)
{
m_enableMotor[i] = false;
m_targetVelocity[i] = b3Scalar(0.f);
m_maxMotorForce[i] = b3Scalar(0.f);
}
- }
+ }
- b3TranslationalLimitMotor(const b3TranslationalLimitMotor & other )
- {
- m_lowerLimit = other.m_lowerLimit;
- m_upperLimit = other.m_upperLimit;
- m_accumulatedImpulse = other.m_accumulatedImpulse;
+ b3TranslationalLimitMotor(const b3TranslationalLimitMotor& other)
+ {
+ m_lowerLimit = other.m_lowerLimit;
+ m_upperLimit = other.m_upperLimit;
+ m_accumulatedImpulse = other.m_accumulatedImpulse;
- m_limitSoftness = other.m_limitSoftness ;
- m_damping = other.m_damping;
- m_restitution = other.m_restitution;
+ m_limitSoftness = other.m_limitSoftness;
+ m_damping = other.m_damping;
+ m_restitution = other.m_restitution;
m_normalCFM = other.m_normalCFM;
m_stopERP = other.m_stopERP;
m_stopCFM = other.m_stopCFM;
- for(int i=0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
{
m_enableMotor[i] = other.m_enableMotor[i];
m_targetVelocity[i] = other.m_targetVelocity[i];
m_maxMotorForce[i] = other.m_maxMotorForce[i];
}
- }
+ }
- //! Test limit
+ //! Test limit
/*!
- free means upper < lower,
- locked means upper == lower
- limited means upper > lower
- limitIndex: first 3 are linear, next 3 are angular
*/
- inline bool isLimited(int limitIndex)
- {
- return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
- }
- inline bool needApplyForce(int limitIndex)
- {
- if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
- return true;
- }
+ inline bool isLimited(int limitIndex)
+ {
+ return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
+ }
+ inline bool needApplyForce(int limitIndex)
+ {
+ if (m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
+ return true;
+ }
int testLimitValue(int limitIndex, b3Scalar test_value);
-
- b3Scalar solveLinearAxis(
- b3Scalar timeStep,
- b3Scalar jacDiagABInv,
- b3RigidBodyData& body1,const b3Vector3 &pointInA,
- b3RigidBodyData& body2,const b3Vector3 &pointInB,
- int limit_index,
- const b3Vector3 & axis_normal_on_a,
- const b3Vector3 & anchorPos);
-
-
+ b3Scalar solveLinearAxis(
+ b3Scalar timeStep,
+ b3Scalar jacDiagABInv,
+ b3RigidBodyData& body1, const b3Vector3& pointInA,
+ b3RigidBodyData& body2, const b3Vector3& pointInB,
+ int limit_index,
+ const b3Vector3& axis_normal_on_a,
+ const b3Vector3& anchorPos);
};
enum b36DofFlags
@@ -229,8 +217,7 @@ enum b36DofFlags
B3_6DOF_FLAGS_CFM_STOP = 2,
B3_6DOF_FLAGS_ERP_STOP = 4
};
-#define B3_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
-
+#define B3_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
/// b3Generic6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
/*!
@@ -268,240 +255,229 @@ This brings support for limit parameters and motors. </li>
</ul>
*/
-B3_ATTRIBUTE_ALIGNED16(class) b3Generic6DofConstraint : public b3TypedConstraint
+B3_ATTRIBUTE_ALIGNED16(class)
+b3Generic6DofConstraint : public b3TypedConstraint
{
protected:
-
//! relative_frames
- //!@{
- b3Transform m_frameInA;//!< the constraint space w.r.t body A
- b3Transform m_frameInB;//!< the constraint space w.r.t body B
- //!@}
+ //!@{
+ b3Transform m_frameInA; //!< the constraint space w.r.t body A
+ b3Transform m_frameInB; //!< the constraint space w.r.t body B
+ //!@}
- //! Jacobians
- //!@{
-// b3JacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints
-// b3JacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints
- //!@}
+ //! Jacobians
+ //!@{
+ // b3JacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints
+ // b3JacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints
+ //!@}
//! Linear_Limit_parameters
- //!@{
- b3TranslationalLimitMotor m_linearLimits;
- //!@}
-
-
- //! hinge_parameters
- //!@{
- b3RotationalLimitMotor m_angularLimits[3];
+ //!@{
+ b3TranslationalLimitMotor m_linearLimits;
//!@}
+ //! hinge_parameters
+ //!@{
+ b3RotationalLimitMotor m_angularLimits[3];
+ //!@}
protected:
- //! temporal variables
- //!@{
- b3Transform m_calculatedTransformA;
- b3Transform m_calculatedTransformB;
- b3Vector3 m_calculatedAxisAngleDiff;
- b3Vector3 m_calculatedAxis[3];
- b3Vector3 m_calculatedLinearDiff;
- b3Scalar m_timeStep;
- b3Scalar m_factA;
- b3Scalar m_factB;
- bool m_hasStaticBody;
-
- b3Vector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
+ //! temporal variables
+ //!@{
+ b3Transform m_calculatedTransformA;
+ b3Transform m_calculatedTransformB;
+ b3Vector3 m_calculatedAxisAngleDiff;
+ b3Vector3 m_calculatedAxis[3];
+ b3Vector3 m_calculatedLinearDiff;
+ b3Scalar m_timeStep;
+ b3Scalar m_factA;
+ b3Scalar m_factB;
+ bool m_hasStaticBody;
- bool m_useLinearReferenceFrameA;
- bool m_useOffsetForConstraintFrame;
-
- int m_flags;
+ b3Vector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
- //!@}
+ bool m_useLinearReferenceFrameA;
+ bool m_useOffsetForConstraintFrame;
- b3Generic6DofConstraint& operator=(b3Generic6DofConstraint& other)
- {
- b3Assert(0);
- (void) other;
- return *this;
- }
+ int m_flags;
+ //!@}
- int setAngularLimits(b3ConstraintInfo2 *info, int row_offset,const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB);
+ b3Generic6DofConstraint& operator=(b3Generic6DofConstraint& other)
+ {
+ b3Assert(0);
+ (void)other;
+ return *this;
+ }
- int setLinearLimits(b3ConstraintInfo2 *info, int row, const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB);
+ int setAngularLimits(b3ConstraintInfo2 * info, int row_offset, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB);
+ int setLinearLimits(b3ConstraintInfo2 * info, int row, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB);
// tests linear limits
void calculateLinearInfo();
//! calcs the euler angles between the two bodies.
- void calculateAngleInfo();
-
-
+ void calculateAngleInfo();
public:
-
B3_DECLARE_ALIGNED_ALLOCATOR();
-
- b3Generic6DofConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB ,bool useLinearReferenceFrameA,const b3RigidBodyData* bodies);
-
+
+ b3Generic6DofConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB, bool useLinearReferenceFrameA, const b3RigidBodyData* bodies);
+
//! Calcs global transform of the offsets
/*!
Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
\sa b3Generic6DofConstraint.getCalculatedTransformA , b3Generic6DofConstraint.getCalculatedTransformB, b3Generic6DofConstraint.calculateAngleInfo
*/
- void calculateTransforms(const b3Transform& transA,const b3Transform& transB,const b3RigidBodyData* bodies);
+ void calculateTransforms(const b3Transform& transA, const b3Transform& transB, const b3RigidBodyData* bodies);
void calculateTransforms(const b3RigidBodyData* bodies);
//! Gets the global transform of the offset for body A
- /*!
+ /*!
\sa b3Generic6DofConstraint.getFrameOffsetA, b3Generic6DofConstraint.getFrameOffsetB, b3Generic6DofConstraint.calculateAngleInfo.
*/
- const b3Transform & getCalculatedTransformA() const
- {
- return m_calculatedTransformA;
- }
+ const b3Transform& getCalculatedTransformA() const
+ {
+ return m_calculatedTransformA;
+ }
- //! Gets the global transform of the offset for body B
- /*!
+ //! Gets the global transform of the offset for body B
+ /*!
\sa b3Generic6DofConstraint.getFrameOffsetA, b3Generic6DofConstraint.getFrameOffsetB, b3Generic6DofConstraint.calculateAngleInfo.
*/
- const b3Transform & getCalculatedTransformB() const
- {
- return m_calculatedTransformB;
- }
-
- const b3Transform & getFrameOffsetA() const
- {
- return m_frameInA;
- }
-
- const b3Transform & getFrameOffsetB() const
- {
- return m_frameInB;
- }
-
-
- b3Transform & getFrameOffsetA()
- {
- return m_frameInA;
- }
+ const b3Transform& getCalculatedTransformB() const
+ {
+ return m_calculatedTransformB;
+ }
- b3Transform & getFrameOffsetB()
- {
- return m_frameInB;
- }
+ const b3Transform& getFrameOffsetA() const
+ {
+ return m_frameInA;
+ }
+ const b3Transform& getFrameOffsetB() const
+ {
+ return m_frameInB;
+ }
+ b3Transform& getFrameOffsetA()
+ {
+ return m_frameInA;
+ }
- virtual void getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies);
+ b3Transform& getFrameOffsetB()
+ {
+ return m_frameInB;
+ }
- void getInfo1NonVirtual (b3ConstraintInfo1* info,const b3RigidBodyData* bodies);
+ virtual void getInfo1(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies);
- virtual void getInfo2 (b3ConstraintInfo2* info,const b3RigidBodyData* bodies);
+ void getInfo1NonVirtual(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies);
- void getInfo2NonVirtual (b3ConstraintInfo2* info,const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB,const b3RigidBodyData* bodies);
+ virtual void getInfo2(b3ConstraintInfo2 * info, const b3RigidBodyData* bodies);
+ void getInfo2NonVirtual(b3ConstraintInfo2 * info, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB, const b3RigidBodyData* bodies);
- void updateRHS(b3Scalar timeStep);
+ void updateRHS(b3Scalar timeStep);
//! Get the rotation axis in global coordinates
- b3Vector3 getAxis(int axis_index) const;
+ b3Vector3 getAxis(int axis_index) const;
- //! Get the relative Euler angle
- /*!
+ //! Get the relative Euler angle
+ /*!
\pre b3Generic6DofConstraint::calculateTransforms() must be called previously.
*/
- b3Scalar getAngle(int axis_index) const;
+ b3Scalar getAngle(int axis_index) const;
//! Get the relative position of the constraint pivot
- /*!
+ /*!
\pre b3Generic6DofConstraint::calculateTransforms() must be called previously.
*/
b3Scalar getRelativePivotPosition(int axis_index) const;
- void setFrames(const b3Transform & frameA, const b3Transform & frameB, const b3RigidBodyData* bodies);
+ void setFrames(const b3Transform& frameA, const b3Transform& frameB, const b3RigidBodyData* bodies);
//! Test angular limit.
/*!
Calculates angular correction and returns true if limit needs to be corrected.
\pre b3Generic6DofConstraint::calculateTransforms() must be called previously.
*/
- bool testAngularLimitMotor(int axis_index);
+ bool testAngularLimitMotor(int axis_index);
- void setLinearLowerLimit(const b3Vector3& linearLower)
- {
- m_linearLimits.m_lowerLimit = linearLower;
- }
+ void setLinearLowerLimit(const b3Vector3& linearLower)
+ {
+ m_linearLimits.m_lowerLimit = linearLower;
+ }
- void getLinearLowerLimit(b3Vector3& linearLower)
+ void getLinearLowerLimit(b3Vector3 & linearLower)
{
linearLower = m_linearLimits.m_lowerLimit;
}
- void setLinearUpperLimit(const b3Vector3& linearUpper)
+ void setLinearUpperLimit(const b3Vector3& linearUpper)
{
m_linearLimits.m_upperLimit = linearUpper;
}
- void getLinearUpperLimit(b3Vector3& linearUpper)
+ void getLinearUpperLimit(b3Vector3 & linearUpper)
{
linearUpper = m_linearLimits.m_upperLimit;
}
- void setAngularLowerLimit(const b3Vector3& angularLower)
- {
- for(int i = 0; i < 3; i++)
+ void setAngularLowerLimit(const b3Vector3& angularLower)
+ {
+ for (int i = 0; i < 3; i++)
m_angularLimits[i].m_loLimit = b3NormalizeAngle(angularLower[i]);
- }
+ }
- void getAngularLowerLimit(b3Vector3& angularLower)
+ void getAngularLowerLimit(b3Vector3 & angularLower)
{
- for(int i = 0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
angularLower[i] = m_angularLimits[i].m_loLimit;
}
- void setAngularUpperLimit(const b3Vector3& angularUpper)
- {
- for(int i = 0; i < 3; i++)
+ void setAngularUpperLimit(const b3Vector3& angularUpper)
+ {
+ for (int i = 0; i < 3; i++)
m_angularLimits[i].m_hiLimit = b3NormalizeAngle(angularUpper[i]);
- }
+ }
- void getAngularUpperLimit(b3Vector3& angularUpper)
+ void getAngularUpperLimit(b3Vector3 & angularUpper)
{
- for(int i = 0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
angularUpper[i] = m_angularLimits[i].m_hiLimit;
}
//! Retrieves the angular limit informacion
- b3RotationalLimitMotor * getRotationalLimitMotor(int index)
- {
- return &m_angularLimits[index];
- }
-
- //! Retrieves the limit informacion
- b3TranslationalLimitMotor * getTranslationalLimitMotor()
- {
- return &m_linearLimits;
- }
-
- //first 3 are linear, next 3 are angular
- void setLimit(int axis, b3Scalar lo, b3Scalar hi)
- {
- if(axis<3)
- {
- m_linearLimits.m_lowerLimit[axis] = lo;
- m_linearLimits.m_upperLimit[axis] = hi;
- }
- else
- {
+ b3RotationalLimitMotor* getRotationalLimitMotor(int index)
+ {
+ return &m_angularLimits[index];
+ }
+
+ //! Retrieves the limit informacion
+ b3TranslationalLimitMotor* getTranslationalLimitMotor()
+ {
+ return &m_linearLimits;
+ }
+
+ //first 3 are linear, next 3 are angular
+ void setLimit(int axis, b3Scalar lo, b3Scalar hi)
+ {
+ if (axis < 3)
+ {
+ m_linearLimits.m_lowerLimit[axis] = lo;
+ m_linearLimits.m_upperLimit[axis] = hi;
+ }
+ else
+ {
lo = b3NormalizeAngle(lo);
hi = b3NormalizeAngle(hi);
- m_angularLimits[axis-3].m_loLimit = lo;
- m_angularLimits[axis-3].m_hiLimit = hi;
- }
- }
+ m_angularLimits[axis - 3].m_loLimit = lo;
+ m_angularLimits[axis - 3].m_hiLimit = hi;
+ }
+ }
//! Test limit
/*!
@@ -510,41 +486,32 @@ public:
- limited means upper > lower
- limitIndex: first 3 are linear, next 3 are angular
*/
- bool isLimited(int limitIndex)
- {
- if(limitIndex<3)
- {
+ bool isLimited(int limitIndex)
+ {
+ if (limitIndex < 3)
+ {
return m_linearLimits.isLimited(limitIndex);
+ }
+ return m_angularLimits[limitIndex - 3].isLimited();
+ }
- }
- return m_angularLimits[limitIndex-3].isLimited();
- }
-
- virtual void calcAnchorPos(const b3RigidBodyData* bodies); // overridable
+ virtual void calcAnchorPos(const b3RigidBodyData* bodies); // overridable
- int get_limit_motor_info2( b3RotationalLimitMotor * limot,
- const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB,
- b3ConstraintInfo2 *info, int row, b3Vector3& ax1, int rotational, int rotAllowed = false);
+ int get_limit_motor_info2(b3RotationalLimitMotor * limot,
+ const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB,
+ b3ConstraintInfo2* info, int row, b3Vector3& ax1, int rotational, int rotAllowed = false);
// access for UseFrameOffset
bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; }
void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
- ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
- virtual void setParam(int num, b3Scalar value, int axis = -1);
+ virtual void setParam(int num, b3Scalar value, int axis = -1);
///return the local value of parameter
- virtual b3Scalar getParam(int num, int axis = -1) const;
-
- void setAxis( const b3Vector3& axis1, const b3Vector3& axis2,const b3RigidBodyData* bodies);
+ virtual b3Scalar getParam(int num, int axis = -1) const;
-
-
-
+ void setAxis(const b3Vector3& axis1, const b3Vector3& axis2, const b3RigidBodyData* bodies);
};
-
-
-
-
-#endif //B3_GENERIC_6DOF_CONSTRAINT_H
+#endif //B3_GENERIC_6DOF_CONSTRAINT_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3JacobianEntry.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3JacobianEntry.h
index a55168eb38..13269debf6 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3JacobianEntry.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3JacobianEntry.h
@@ -18,7 +18,6 @@ subject to the following restrictions:
#include "Bullet3Common/b3Matrix3x3.h"
-
//notes:
// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
// which makes the b3JacobianEntry memory layout 16 bytes
@@ -27,25 +26,26 @@ subject to the following restrictions:
/// Jacobian entry is an abstraction that allows to describe constraints
/// it can be used in combination with a constraint solver
/// Can be used to relate the effect of an impulse to the constraint error
-B3_ATTRIBUTE_ALIGNED16(class) b3JacobianEntry
+B3_ATTRIBUTE_ALIGNED16(class)
+b3JacobianEntry
{
public:
- b3JacobianEntry() {};
+ b3JacobianEntry(){};
//constraint between two different rigidbodies
b3JacobianEntry(
const b3Matrix3x3& world2A,
const b3Matrix3x3& world2B,
- const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,
+ const b3Vector3& rel_pos1, const b3Vector3& rel_pos2,
const b3Vector3& jointAxis,
- const b3Vector3& inertiaInvA,
+ const b3Vector3& inertiaInvA,
const b3Scalar massInvA,
const b3Vector3& inertiaInvB,
const b3Scalar massInvB)
- :m_linearJointAxis(jointAxis)
+ : m_linearJointAxis(jointAxis)
{
- m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
- m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
- m_0MinvJt = inertiaInvA * m_aJ;
+ m_aJ = world2A * (rel_pos1.cross(m_linearJointAxis));
+ m_bJ = world2B * (rel_pos2.cross(-m_linearJointAxis));
+ m_0MinvJt = inertiaInvA * m_aJ;
m_1MinvJt = inertiaInvB * m_bJ;
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
@@ -54,33 +54,31 @@ public:
//angular constraint between two different rigidbodies
b3JacobianEntry(const b3Vector3& jointAxis,
- const b3Matrix3x3& world2A,
- const b3Matrix3x3& world2B,
- const b3Vector3& inertiaInvA,
- const b3Vector3& inertiaInvB)
- :m_linearJointAxis(b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)))
+ const b3Matrix3x3& world2A,
+ const b3Matrix3x3& world2B,
+ const b3Vector3& inertiaInvA,
+ const b3Vector3& inertiaInvB)
+ : m_linearJointAxis(b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.)))
{
- m_aJ= world2A*jointAxis;
- m_bJ = world2B*-jointAxis;
- m_0MinvJt = inertiaInvA * m_aJ;
+ m_aJ = world2A * jointAxis;
+ m_bJ = world2B * -jointAxis;
+ m_0MinvJt = inertiaInvA * m_aJ;
m_1MinvJt = inertiaInvB * m_bJ;
- m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
+ m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
b3Assert(m_Adiag > b3Scalar(0.0));
}
//angular constraint between two different rigidbodies
b3JacobianEntry(const b3Vector3& axisInA,
- const b3Vector3& axisInB,
- const b3Vector3& inertiaInvA,
- const b3Vector3& inertiaInvB)
- : m_linearJointAxis(b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)))
- , m_aJ(axisInA)
- , m_bJ(-axisInB)
+ const b3Vector3& axisInB,
+ const b3Vector3& inertiaInvA,
+ const b3Vector3& inertiaInvB)
+ : m_linearJointAxis(b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.))), m_aJ(axisInA), m_bJ(-axisInB)
{
- m_0MinvJt = inertiaInvA * m_aJ;
+ m_0MinvJt = inertiaInvA * m_aJ;
m_1MinvJt = inertiaInvB * m_bJ;
- m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
+ m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
b3Assert(m_Adiag > b3Scalar(0.0));
}
@@ -88,25 +86,25 @@ public:
//constraint on one rigidbody
b3JacobianEntry(
const b3Matrix3x3& world2A,
- const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,
+ const b3Vector3& rel_pos1, const b3Vector3& rel_pos2,
const b3Vector3& jointAxis,
- const b3Vector3& inertiaInvA,
+ const b3Vector3& inertiaInvA,
const b3Scalar massInvA)
- :m_linearJointAxis(jointAxis)
+ : m_linearJointAxis(jointAxis)
{
- m_aJ= world2A*(rel_pos1.cross(jointAxis));
- m_bJ = world2A*(rel_pos2.cross(-jointAxis));
- m_0MinvJt = inertiaInvA * m_aJ;
- m_1MinvJt = b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
+ m_aJ = world2A * (rel_pos1.cross(jointAxis));
+ m_bJ = world2A * (rel_pos2.cross(-jointAxis));
+ m_0MinvJt = inertiaInvA * m_aJ;
+ m_1MinvJt = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
b3Assert(m_Adiag > b3Scalar(0.0));
}
- b3Scalar getDiagonal() const { return m_Adiag; }
+ b3Scalar getDiagonal() const { return m_Adiag; }
// for two constraints on the same rigidbody (for example vehicle friction)
- b3Scalar getNonDiagonal(const b3JacobianEntry& jacB, const b3Scalar massInvA) const
+ b3Scalar getNonDiagonal(const b3JacobianEntry& jacB, const b3Scalar massInvA) const
{
const b3JacobianEntry& jacA = *this;
b3Scalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
@@ -114,42 +112,39 @@ public:
return lin + ang;
}
-
-
// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
- b3Scalar getNonDiagonal(const b3JacobianEntry& jacB,const b3Scalar massInvA,const b3Scalar massInvB) const
+ b3Scalar getNonDiagonal(const b3JacobianEntry& jacB, const b3Scalar massInvA, const b3Scalar massInvB) const
{
const b3JacobianEntry& jacA = *this;
b3Vector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
b3Vector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
b3Vector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
- b3Vector3 lin0 = massInvA * lin ;
+ b3Vector3 lin0 = massInvA * lin;
b3Vector3 lin1 = massInvB * lin;
- b3Vector3 sum = ang0+ang1+lin0+lin1;
- return sum[0]+sum[1]+sum[2];
+ b3Vector3 sum = ang0 + ang1 + lin0 + lin1;
+ return sum[0] + sum[1] + sum[2];
}
- b3Scalar getRelativeVelocity(const b3Vector3& linvelA,const b3Vector3& angvelA,const b3Vector3& linvelB,const b3Vector3& angvelB)
+ b3Scalar getRelativeVelocity(const b3Vector3& linvelA, const b3Vector3& angvelA, const b3Vector3& linvelB, const b3Vector3& angvelB)
{
b3Vector3 linrel = linvelA - linvelB;
- b3Vector3 angvela = angvelA * m_aJ;
- b3Vector3 angvelb = angvelB * m_bJ;
+ b3Vector3 angvela = angvelA * m_aJ;
+ b3Vector3 angvelb = angvelB * m_bJ;
linrel *= m_linearJointAxis;
angvela += angvelb;
angvela += linrel;
- b3Scalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
+ b3Scalar rel_vel2 = angvela[0] + angvela[1] + angvela[2];
return rel_vel2 + B3_EPSILON;
}
-//private:
+ //private:
- b3Vector3 m_linearJointAxis;
- b3Vector3 m_aJ;
- b3Vector3 m_bJ;
- b3Vector3 m_0MinvJt;
- b3Vector3 m_1MinvJt;
+ b3Vector3 m_linearJointAxis;
+ b3Vector3 m_aJ;
+ b3Vector3 m_bJ;
+ b3Vector3 m_0MinvJt;
+ b3Vector3 m_1MinvJt;
//Optimization: can be stored in the w/last component of one of the vectors
- b3Scalar m_Adiag;
-
+ b3Scalar m_Adiag;
};
-#endif //B3_JACOBIAN_ENTRY_H
+#endif //B3_JACOBIAN_ENTRY_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp
index de729d4556..b7050b1070 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp
@@ -29,14 +29,13 @@ subject to the following restrictions:
//#include "b3SolverBody.h"
//#include "b3SolverConstraint.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
-#include <string.h> //for memset
+#include <string.h> //for memset
//#include "../../dynamics/basic_demo/Stubs/AdlContact4.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3Contact4.h"
-
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
-static b3Transform getWorldTransform(b3RigidBodyData* rb)
+static b3Transform getWorldTransform(b3RigidBodyData* rb)
{
b3Transform newTrans;
newTrans.setOrigin(rb->m_pos);
@@ -44,19 +43,17 @@ static b3Transform getWorldTransform(b3RigidBodyData* rb)
return newTrans;
}
-static const b3Matrix3x3& getInvInertiaTensorWorld(b3InertiaData* inertia)
+static const b3Matrix3x3& getInvInertiaTensorWorld(b3InertiaData* inertia)
{
return inertia->m_invInertiaWorld;
}
-
-
-static const b3Vector3& getLinearVelocity(b3RigidBodyData* rb)
+static const b3Vector3& getLinearVelocity(b3RigidBodyData* rb)
{
return rb->m_linVel;
}
-static const b3Vector3& getAngularVelocity(b3RigidBodyData* rb)
+static const b3Vector3& getAngularVelocity(b3RigidBodyData* rb)
{
return rb->m_angVel;
}
@@ -65,47 +62,46 @@ static b3Vector3 getVelocityInLocalPoint(b3RigidBodyData* rb, const b3Vector3& r
{
//we also calculate lin/ang velocity for kinematic objects
return getLinearVelocity(rb) + getAngularVelocity(rb).cross(rel_pos);
-
}
-struct b3ContactPoint
+struct b3ContactPoint
{
- b3Vector3 m_positionWorldOnA;
- b3Vector3 m_positionWorldOnB;
- b3Vector3 m_normalWorldOnB;
- b3Scalar m_appliedImpulse;
- b3Scalar m_distance;
- b3Scalar m_combinedRestitution;
+ b3Vector3 m_positionWorldOnA;
+ b3Vector3 m_positionWorldOnB;
+ b3Vector3 m_normalWorldOnB;
+ b3Scalar m_appliedImpulse;
+ b3Scalar m_distance;
+ b3Scalar m_combinedRestitution;
///information related to friction
- b3Scalar m_combinedFriction;
- b3Vector3 m_lateralFrictionDir1;
- b3Vector3 m_lateralFrictionDir2;
- b3Scalar m_appliedImpulseLateral1;
- b3Scalar m_appliedImpulseLateral2;
- b3Scalar m_combinedRollingFriction;
- b3Scalar m_contactMotion1;
- b3Scalar m_contactMotion2;
- b3Scalar m_contactCFM1;
- b3Scalar m_contactCFM2;
-
- bool m_lateralFrictionInitialized;
-
- b3Vector3 getPositionWorldOnA()
+ b3Scalar m_combinedFriction;
+ b3Vector3 m_lateralFrictionDir1;
+ b3Vector3 m_lateralFrictionDir2;
+ b3Scalar m_appliedImpulseLateral1;
+ b3Scalar m_appliedImpulseLateral2;
+ b3Scalar m_combinedRollingFriction;
+ b3Scalar m_contactMotion1;
+ b3Scalar m_contactMotion2;
+ b3Scalar m_contactCFM1;
+ b3Scalar m_contactCFM2;
+
+ bool m_lateralFrictionInitialized;
+
+ b3Vector3 getPositionWorldOnA()
{
return m_positionWorldOnA;
}
- b3Vector3 getPositionWorldOnB()
+ b3Vector3 getPositionWorldOnB()
{
return m_positionWorldOnB;
}
- b3Scalar getDistance()
+ b3Scalar getDistance()
{
return m_distance;
}
};
-void getContactPoint(b3Contact4* contact, int contactIndex, b3ContactPoint& pointOut)
+void getContactPoint(b3Contact4* contact, int contactIndex, b3ContactPoint& pointOut)
{
pointOut.m_appliedImpulse = 0.f;
pointOut.m_appliedImpulseLateral1 = 0.f;
@@ -117,160 +113,145 @@ void getContactPoint(b3Contact4* contact, int contactIndex, b3ContactPoint& poin
pointOut.m_contactCFM2 = 0.f;
pointOut.m_contactMotion1 = 0.f;
pointOut.m_contactMotion2 = 0.f;
- pointOut.m_distance = contact->getPenetration(contactIndex);//??0.01f
+ pointOut.m_distance = contact->getPenetration(contactIndex); //??0.01f
b3Vector3 normalOnB = contact->m_worldNormalOnB;
- normalOnB.normalize();//is this needed?
+ normalOnB.normalize(); //is this needed?
- b3Vector3 l1,l2;
- b3PlaneSpace1(normalOnB,l1,l2);
+ b3Vector3 l1, l2;
+ b3PlaneSpace1(normalOnB, l1, l2);
pointOut.m_normalWorldOnB = normalOnB;
//printf("normalOnB = %f,%f,%f\n",normalOnB.getX(),normalOnB.getY(),normalOnB.getZ());
pointOut.m_lateralFrictionDir1 = l1;
pointOut.m_lateralFrictionDir2 = l2;
pointOut.m_lateralFrictionInitialized = true;
-
-
+
b3Vector3 worldPosB = contact->m_worldPosB[contactIndex];
pointOut.m_positionWorldOnB = worldPosB;
- pointOut.m_positionWorldOnA = worldPosB+normalOnB*pointOut.m_distance;
+ pointOut.m_positionWorldOnA = worldPosB + normalOnB * pointOut.m_distance;
}
-int getNumContacts(b3Contact4* contact)
+int getNumContacts(b3Contact4* contact)
{
return contact->getNPoints();
}
b3PgsJacobiSolver::b3PgsJacobiSolver(bool usePgs)
-:m_usePgs(usePgs),
-m_numSplitImpulseRecoveries(0),
-m_btSeed2(0)
+ : m_usePgs(usePgs),
+ m_numSplitImpulseRecoveries(0),
+ m_btSeed2(0)
{
-
}
b3PgsJacobiSolver::~b3PgsJacobiSolver()
{
}
-void b3PgsJacobiSolver::solveContacts(int numBodies, b3RigidBodyData* bodies, b3InertiaData* inertias, int numContacts, b3Contact4* contacts, int numConstraints, b3TypedConstraint** constraints)
+void b3PgsJacobiSolver::solveContacts(int numBodies, b3RigidBodyData* bodies, b3InertiaData* inertias, int numContacts, b3Contact4* contacts, int numConstraints, b3TypedConstraint** constraints)
{
b3ContactSolverInfo infoGlobal;
infoGlobal.m_splitImpulse = false;
- infoGlobal.m_timeStep = 1.f/60.f;
- infoGlobal.m_numIterations = 4;//4;
-// infoGlobal.m_solverMode|=B3_SOLVER_USE_2_FRICTION_DIRECTIONS|B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS|B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION;
+ infoGlobal.m_timeStep = 1.f / 60.f;
+ infoGlobal.m_numIterations = 4; //4;
+ // infoGlobal.m_solverMode|=B3_SOLVER_USE_2_FRICTION_DIRECTIONS|B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS|B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION;
//infoGlobal.m_solverMode|=B3_SOLVER_USE_2_FRICTION_DIRECTIONS|B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS;
- infoGlobal.m_solverMode|=B3_SOLVER_USE_2_FRICTION_DIRECTIONS;
+ infoGlobal.m_solverMode |= B3_SOLVER_USE_2_FRICTION_DIRECTIONS;
//if (infoGlobal.m_solverMode & B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
//if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
-
- solveGroup(bodies,inertias,numBodies,contacts,numContacts,constraints,numConstraints,infoGlobal);
+ solveGroup(bodies, inertias, numBodies, contacts, numContacts, constraints, numConstraints, infoGlobal);
if (!numContacts)
return;
}
-
-
-
/// b3PgsJacobiSolver Sequentially applies impulses
b3Scalar b3PgsJacobiSolver::solveGroup(b3RigidBodyData* bodies,
- b3InertiaData* inertias,
- int numBodies,
- b3Contact4* manifoldPtr,
- int numManifolds,
- b3TypedConstraint** constraints,
- int numConstraints,
- const b3ContactSolverInfo& infoGlobal)
+ b3InertiaData* inertias,
+ int numBodies,
+ b3Contact4* manifoldPtr,
+ int numManifolds,
+ b3TypedConstraint** constraints,
+ int numConstraints,
+ const b3ContactSolverInfo& infoGlobal)
{
-
B3_PROFILE("solveGroup");
//you need to provide at least some bodies
-
- solveGroupCacheFriendlySetup( bodies, inertias,numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal);
-
- solveGroupCacheFriendlyIterations(constraints, numConstraints,infoGlobal);
-
- solveGroupCacheFriendlyFinish(bodies, inertias,numBodies, infoGlobal);
-
- return 0.f;
-}
-
-
-
-
+ solveGroupCacheFriendlySetup(bodies, inertias, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal);
+ solveGroupCacheFriendlyIterations(constraints, numConstraints, infoGlobal);
+ solveGroupCacheFriendlyFinish(bodies, inertias, numBodies, infoGlobal);
+ return 0.f;
+}
#ifdef USE_SIMD
#include <emmintrin.h>
-#define b3VecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e))
-static inline __m128 b3SimdDot3( __m128 vec0, __m128 vec1 )
+#define b3VecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e, e, e, e))
+static inline __m128 b3SimdDot3(__m128 vec0, __m128 vec1)
{
- __m128 result = _mm_mul_ps( vec0, vec1);
- return _mm_add_ps( b3VecSplat( result, 0 ), _mm_add_ps( b3VecSplat( result, 1 ), b3VecSplat( result, 2 ) ) );
+ __m128 result = _mm_mul_ps(vec0, vec1);
+ return _mm_add_ps(b3VecSplat(result, 0), _mm_add_ps(b3VecSplat(result, 1), b3VecSplat(result, 2)));
}
-#endif//USE_SIMD
+#endif //USE_SIMD
// Project Gauss Seidel or the equivalent Sequential Impulse
-void b3PgsJacobiSolver::resolveSingleConstraintRowGenericSIMD(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c)
+void b3PgsJacobiSolver::resolveSingleConstraintRowGenericSIMD(b3SolverBody& body1, b3SolverBody& body2, const b3SolverConstraint& c)
{
#ifdef USE_SIMD
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
- __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
- __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
- __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
- __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
- __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),b3SimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- b3SimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
- b3SimdScalar resultLowerLess,resultUpperLess;
- resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
- resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
- __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
- deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
- c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
- __m128 upperMinApplied = _mm_sub_ps(upperLimit1,cpAppliedImp);
- deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) );
- c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) );
- __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
- __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128), b3SimdDot3((c.m_contactNormal).mVec128, body2.internalGetDeltaLinearVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ b3SimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
+ b3SimdScalar resultLowerLess, resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
+ c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
+ __m128 upperMinApplied = _mm_sub_ps(upperLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied));
+ c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1));
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128, body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128, body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
- body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
- body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
- body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
- body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+ body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
+ body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
+ body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
+ body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
#else
- resolveSingleConstraintRowGeneric(body1,body2,c);
+ resolveSingleConstraintRowGeneric(body1, body2, c);
#endif
}
// Project Gauss Seidel or the equivalent Sequential Impulse
- void b3PgsJacobiSolver::resolveSingleConstraintRowGeneric(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c)
+void b3PgsJacobiSolver::resolveSingleConstraintRowGeneric(b3SolverBody& body1, b3SolverBody& body2, const b3SolverConstraint& c)
{
- b3Scalar deltaImpulse = c.m_rhs-b3Scalar(c.m_appliedImpulse)*c.m_cfm;
- const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
- const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
+ b3Scalar deltaImpulse = c.m_rhs - b3Scalar(c.m_appliedImpulse) * c.m_cfm;
+ const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
+ const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
-// const b3Scalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
- deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
- deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ // const b3Scalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
+ deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;
const b3Scalar sum = b3Scalar(c.m_appliedImpulse) + deltaImpulse;
if (sum < c.m_lowerLimit)
{
- deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
c.m_appliedImpulse = c.m_lowerLimit;
}
- else if (sum > c.m_upperLimit)
+ else if (sum > c.m_upperLimit)
{
- deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
+ deltaImpulse = c.m_upperLimit - c.m_appliedImpulse;
c.m_appliedImpulse = c.m_upperLimit;
}
else
@@ -278,94 +259,93 @@ void b3PgsJacobiSolver::resolveSingleConstraintRowGenericSIMD(b3SolverBody& body
c.m_appliedImpulse = sum;
}
- body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
- body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ body1.internalApplyImpulse(c.m_contactNormal * body1.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ body2.internalApplyImpulse(-c.m_contactNormal * body2.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
}
- void b3PgsJacobiSolver::resolveSingleConstraintRowLowerLimitSIMD(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c)
+void b3PgsJacobiSolver::resolveSingleConstraintRowLowerLimitSIMD(b3SolverBody& body1, b3SolverBody& body2, const b3SolverConstraint& c)
{
#ifdef USE_SIMD
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
- __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
- __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
- __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
- __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
- __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),b3SimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- b3SimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
- b3SimdScalar resultLowerLess,resultUpperLess;
- resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
- resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
- __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
- deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
- c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
- __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
- __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128), b3SimdDot3((c.m_contactNormal).mVec128, body2.internalGetDeltaLinearVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ b3SimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
+ b3SimdScalar resultLowerLess, resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
+ c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128, body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128, body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
- body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
- body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
- body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
- body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+ body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
+ body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
+ body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
+ body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
#else
- resolveSingleConstraintRowLowerLimit(body1,body2,c);
+ resolveSingleConstraintRowLowerLimit(body1, body2, c);
#endif
}
// Project Gauss Seidel or the equivalent Sequential Impulse
- void b3PgsJacobiSolver::resolveSingleConstraintRowLowerLimit(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c)
+void b3PgsJacobiSolver::resolveSingleConstraintRowLowerLimit(b3SolverBody& body1, b3SolverBody& body2, const b3SolverConstraint& c)
{
- b3Scalar deltaImpulse = c.m_rhs-b3Scalar(c.m_appliedImpulse)*c.m_cfm;
- const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
- const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
+ b3Scalar deltaImpulse = c.m_rhs - b3Scalar(c.m_appliedImpulse) * c.m_cfm;
+ const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
+ const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
- deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
- deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;
const b3Scalar sum = b3Scalar(c.m_appliedImpulse) + deltaImpulse;
if (sum < c.m_lowerLimit)
{
- deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
c.m_appliedImpulse = c.m_lowerLimit;
}
else
{
c.m_appliedImpulse = sum;
}
- body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
- body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ body1.internalApplyImpulse(c.m_contactNormal * body1.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ body2.internalApplyImpulse(-c.m_contactNormal * body2.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
}
-
-void b3PgsJacobiSolver::resolveSplitPenetrationImpulseCacheFriendly(
- b3SolverBody& body1,
- b3SolverBody& body2,
- const b3SolverConstraint& c)
+void b3PgsJacobiSolver::resolveSplitPenetrationImpulseCacheFriendly(
+ b3SolverBody& body1,
+ b3SolverBody& body2,
+ const b3SolverConstraint& c)
{
- if (c.m_rhsPenetration)
- {
- m_numSplitImpulseRecoveries++;
- b3Scalar deltaImpulse = c.m_rhsPenetration-b3Scalar(c.m_appliedPushImpulse)*c.m_cfm;
- const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
- const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
-
- deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
- deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
- const b3Scalar sum = b3Scalar(c.m_appliedPushImpulse) + deltaImpulse;
- if (sum < c.m_lowerLimit)
- {
- deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse;
- c.m_appliedPushImpulse = c.m_lowerLimit;
- }
- else
- {
- c.m_appliedPushImpulse = sum;
- }
- body1.internalApplyPushImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
- body2.internalApplyPushImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
- }
+ if (c.m_rhsPenetration)
+ {
+ m_numSplitImpulseRecoveries++;
+ b3Scalar deltaImpulse = c.m_rhsPenetration - b3Scalar(c.m_appliedPushImpulse) * c.m_cfm;
+ const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
+ const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
+
+ deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;
+ const b3Scalar sum = b3Scalar(c.m_appliedPushImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit - c.m_appliedPushImpulse;
+ c.m_appliedPushImpulse = c.m_lowerLimit;
+ }
+ else
+ {
+ c.m_appliedPushImpulse = sum;
+ }
+ body1.internalApplyPushImpulse(c.m_contactNormal * body1.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ body2.internalApplyPushImpulse(-c.m_contactNormal * body2.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+ }
}
- void b3PgsJacobiSolver::resolveSplitPenetrationSIMD(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c)
+void b3PgsJacobiSolver::resolveSplitPenetrationSIMD(b3SolverBody& body1, b3SolverBody& body2, const b3SolverConstraint& c)
{
#ifdef USE_SIMD
if (!c.m_rhsPenetration)
@@ -374,44 +354,40 @@ void b3PgsJacobiSolver::resolveSplitPenetrationImpulseCacheFriendly(
m_numSplitImpulseRecoveries++;
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse);
- __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
- __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
- __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm)));
- __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128,body1.internalGetPushVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128));
- __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128),b3SimdDot3((c.m_contactNormal).mVec128,body2.internalGetPushVelocity().mVec128));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- b3SimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
- b3SimdScalar resultLowerLess,resultUpperLess;
- resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
- resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
- __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
- deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
- c.m_appliedPushImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
- __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
- __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse), _mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128, body1.internalGetPushVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128, body1.internalGetTurnVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128, body2.internalGetTurnVelocity().mVec128), b3SimdDot3((c.m_contactNormal).mVec128, body2.internalGetPushVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ b3SimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
+ b3SimdScalar resultLowerLess, resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
+ c.m_appliedPushImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128, body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128, body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
- body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
- body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
- body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
- body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+ body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
+ body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
+ body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
+ body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
#else
- resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c);
+ resolveSplitPenetrationImpulseCacheFriendly(body1, body2, c);
#endif
}
-
-
unsigned long b3PgsJacobiSolver::b3Rand2()
{
- m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff;
+ m_btSeed2 = (1664525L * m_btSeed2 + 1013904223L) & 0xffffffff;
return m_btSeed2;
}
-
-
//See ODE: adam's all-int straightforward(?) dRandInt (0..n-1)
-int b3PgsJacobiSolver::b3RandInt2 (int n)
+int b3PgsJacobiSolver::b3RandInt2(int n)
{
// seems good; xor-fold and modulus
const unsigned long un = static_cast<unsigned long>(n);
@@ -419,15 +395,20 @@ int b3PgsJacobiSolver::b3RandInt2 (int n)
// note: probably more aggressive than it needs to be -- might be
// able to get away without one or two of the innermost branches.
- if (un <= 0x00010000UL) {
+ if (un <= 0x00010000UL)
+ {
r ^= (r >> 16);
- if (un <= 0x00000100UL) {
+ if (un <= 0x00000100UL)
+ {
r ^= (r >> 8);
- if (un <= 0x00000010UL) {
+ if (un <= 0x00000010UL)
+ {
r ^= (r >> 4);
- if (un <= 0x00000004UL) {
+ if (un <= 0x00000004UL)
+ {
r ^= (r >> 2);
- if (un <= 0x00000002UL) {
+ if (un <= 0x00000002UL)
+ {
r ^= (r >> 1);
}
}
@@ -435,62 +416,46 @@ int b3PgsJacobiSolver::b3RandInt2 (int n)
}
}
- return (int) (r % un);
+ return (int)(r % un);
}
-
-
-void b3PgsJacobiSolver::initSolverBody(int bodyIndex, b3SolverBody* solverBody, b3RigidBodyData* rb)
+void b3PgsJacobiSolver::initSolverBody(int bodyIndex, b3SolverBody* solverBody, b3RigidBodyData* rb)
{
-
- solverBody->m_deltaLinearVelocity.setValue(0.f,0.f,0.f);
- solverBody->m_deltaAngularVelocity.setValue(0.f,0.f,0.f);
- solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f);
- solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
+ solverBody->m_deltaLinearVelocity.setValue(0.f, 0.f, 0.f);
+ solverBody->m_deltaAngularVelocity.setValue(0.f, 0.f, 0.f);
+ solverBody->internalGetPushVelocity().setValue(0.f, 0.f, 0.f);
+ solverBody->internalGetTurnVelocity().setValue(0.f, 0.f, 0.f);
if (rb)
{
solverBody->m_worldTransform = getWorldTransform(rb);
- solverBody->internalSetInvMass(b3MakeVector3(rb->m_invMass,rb->m_invMass,rb->m_invMass));
+ solverBody->internalSetInvMass(b3MakeVector3(rb->m_invMass, rb->m_invMass, rb->m_invMass));
solverBody->m_originalBodyIndex = bodyIndex;
- solverBody->m_angularFactor = b3MakeVector3(1,1,1);
- solverBody->m_linearFactor = b3MakeVector3(1,1,1);
+ solverBody->m_angularFactor = b3MakeVector3(1, 1, 1);
+ solverBody->m_linearFactor = b3MakeVector3(1, 1, 1);
solverBody->m_linearVelocity = getLinearVelocity(rb);
solverBody->m_angularVelocity = getAngularVelocity(rb);
- } else
+ }
+ else
{
solverBody->m_worldTransform.setIdentity();
- solverBody->internalSetInvMass(b3MakeVector3(0,0,0));
+ solverBody->internalSetInvMass(b3MakeVector3(0, 0, 0));
solverBody->m_originalBodyIndex = bodyIndex;
- solverBody->m_angularFactor.setValue(1,1,1);
- solverBody->m_linearFactor.setValue(1,1,1);
- solverBody->m_linearVelocity.setValue(0,0,0);
- solverBody->m_angularVelocity.setValue(0,0,0);
+ solverBody->m_angularFactor.setValue(1, 1, 1);
+ solverBody->m_linearFactor.setValue(1, 1, 1);
+ solverBody->m_linearVelocity.setValue(0, 0, 0);
+ solverBody->m_angularVelocity.setValue(0, 0, 0);
}
-
-
}
-
-
-
-
-
b3Scalar b3PgsJacobiSolver::restitutionCurve(b3Scalar rel_vel, b3Scalar restitution)
{
b3Scalar rest = restitution * -rel_vel;
return rest;
}
-
-
-
-
-
-void b3PgsJacobiSolver::setupFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip)
+void b3PgsJacobiSolver::setupFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis, int solverBodyIdA, int solverBodyIdB, b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2, b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip)
{
-
-
solverConstraint.m_contactNormal = normalAxis;
b3SolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
b3SolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
@@ -498,7 +463,6 @@ void b3PgsJacobiSolver::setupFrictionConstraint(b3RigidBodyData* bodies,b3Inerti
b3RigidBodyData* body0 = &bodies[solverBodyA.m_originalBodyIndex];
b3RigidBodyData* body1 = &bodies[solverBodyB.m_originalBodyIndex];
-
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
@@ -511,12 +475,12 @@ void b3PgsJacobiSolver::setupFrictionConstraint(b3RigidBodyData* bodies,b3Inerti
{
b3Vector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal);
solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentA = body0 ? getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0);
+ solverConstraint.m_angularComponentA = body0 ? getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex]) * ftorqueAxis1 : b3MakeVector3(0, 0, 0);
}
{
b3Vector3 ftorqueAxis1 = rel_pos2.cross(-solverConstraint.m_contactNormal);
solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentB = body1 ? getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0);
+ solverConstraint.m_angularComponentB = body1 ? getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex]) * ftorqueAxis1 : b3MakeVector3(0, 0, 0);
}
b3Scalar scaledDenom;
@@ -527,72 +491,66 @@ void b3PgsJacobiSolver::setupFrictionConstraint(b3RigidBodyData* bodies,b3Inerti
b3Scalar denom1 = 0.f;
if (body0)
{
- vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ vec = (solverConstraint.m_angularComponentA).cross(rel_pos1);
denom0 = body0->m_invMass + normalAxis.dot(vec);
}
if (body1)
{
- vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2);
denom1 = body1->m_invMass + normalAxis.dot(vec);
}
b3Scalar denom;
if (m_usePgs)
{
- scaledDenom = denom = relaxation/(denom0+denom1);
- } else
+ scaledDenom = denom = relaxation / (denom0 + denom1);
+ }
+ else
{
- denom = relaxation/(denom0+denom1);
- b3Scalar countA = body0->m_invMass ? b3Scalar(m_bodyCount[solverBodyA.m_originalBodyIndex]): 1.f;
- b3Scalar countB = body1->m_invMass ? b3Scalar(m_bodyCount[solverBodyB.m_originalBodyIndex]): 1.f;
+ denom = relaxation / (denom0 + denom1);
+ b3Scalar countA = body0->m_invMass ? b3Scalar(m_bodyCount[solverBodyA.m_originalBodyIndex]) : 1.f;
+ b3Scalar countB = body1->m_invMass ? b3Scalar(m_bodyCount[solverBodyB.m_originalBodyIndex]) : 1.f;
- scaledDenom = relaxation/(denom0*countA+denom1*countB);
+ scaledDenom = relaxation / (denom0 * countA + denom1 * countB);
}
solverConstraint.m_jacDiagABInv = denom;
}
{
-
-
b3Scalar rel_vel;
- b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?solverBodyA.m_linearVelocity:b3MakeVector3(0,0,0))
- + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:b3MakeVector3(0,0,0));
- b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?solverBodyB.m_linearVelocity:b3MakeVector3(0,0,0))
- + solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:b3MakeVector3(0,0,0));
+ b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0 ? solverBodyA.m_linearVelocity : b3MakeVector3(0, 0, 0)) + solverConstraint.m_relpos1CrossNormal.dot(body0 ? solverBodyA.m_angularVelocity : b3MakeVector3(0, 0, 0));
+ b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1 ? solverBodyB.m_linearVelocity : b3MakeVector3(0, 0, 0)) + solverConstraint.m_relpos2CrossNormal.dot(body1 ? solverBodyB.m_angularVelocity : b3MakeVector3(0, 0, 0));
- rel_vel = vel1Dotn+vel2Dotn;
+ rel_vel = vel1Dotn + vel2Dotn;
-// b3Scalar positionalError = 0.f;
+ // b3Scalar positionalError = 0.f;
- b3SimdScalar velocityError = desiredVelocity - rel_vel;
- b3SimdScalar velocityImpulse = velocityError * b3SimdScalar(scaledDenom);//solverConstraint.m_jacDiagABInv);
+ b3SimdScalar velocityError = desiredVelocity - rel_vel;
+ b3SimdScalar velocityImpulse = velocityError * b3SimdScalar(scaledDenom); //solverConstraint.m_jacDiagABInv);
solverConstraint.m_rhs = velocityImpulse;
solverConstraint.m_cfm = cfmSlip;
solverConstraint.m_lowerLimit = 0;
solverConstraint.m_upperLimit = 1e10f;
-
}
}
-b3SolverConstraint& b3PgsJacobiSolver::addFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias, const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip)
+b3SolverConstraint& b3PgsJacobiSolver::addFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, const b3Vector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2, b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip)
{
b3SolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
solverConstraint.m_frictionIndex = frictionIndex;
- setupFrictionConstraint(bodies,inertias,solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2,
+ setupFrictionConstraint(bodies, inertias, solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2,
colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
return solverConstraint;
}
-
-void b3PgsJacobiSolver::setupRollingFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis1,int solverBodyIdA,int solverBodyIdB,
- b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,
- b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation,
- b3Scalar desiredVelocity, b3Scalar cfmSlip)
+void b3PgsJacobiSolver::setupRollingFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis1, int solverBodyIdA, int solverBodyIdB,
+ b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2,
+ b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation,
+ b3Scalar desiredVelocity, b3Scalar cfmSlip)
{
- b3Vector3 normalAxis=b3MakeVector3(0,0,0);
-
+ b3Vector3 normalAxis = b3MakeVector3(0, 0, 0);
solverConstraint.m_contactNormal = normalAxis;
b3SolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
@@ -613,283 +571,256 @@ void b3PgsJacobiSolver::setupRollingFrictionConstraint(b3RigidBodyData* bodies,b
{
b3Vector3 ftorqueAxis1 = -normalAxis1;
solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentA = body0 ? getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0);
+ solverConstraint.m_angularComponentA = body0 ? getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex]) * ftorqueAxis1 : b3MakeVector3(0, 0, 0);
}
{
b3Vector3 ftorqueAxis1 = normalAxis1;
solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentB = body1 ? getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0);
+ solverConstraint.m_angularComponentB = body1 ? getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex]) * ftorqueAxis1 : b3MakeVector3(0, 0, 0);
}
-
{
- b3Vector3 iMJaA = body0?getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex])*solverConstraint.m_relpos1CrossNormal:b3MakeVector3(0,0,0);
- b3Vector3 iMJaB = body1?getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex])*solverConstraint.m_relpos2CrossNormal:b3MakeVector3(0,0,0);
+ b3Vector3 iMJaA = body0 ? getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex]) * solverConstraint.m_relpos1CrossNormal : b3MakeVector3(0, 0, 0);
+ b3Vector3 iMJaB = body1 ? getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex]) * solverConstraint.m_relpos2CrossNormal : b3MakeVector3(0, 0, 0);
b3Scalar sum = 0;
sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
- solverConstraint.m_jacDiagABInv = b3Scalar(1.)/sum;
+ solverConstraint.m_jacDiagABInv = b3Scalar(1.) / sum;
}
{
-
-
b3Scalar rel_vel;
- b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?solverBodyA.m_linearVelocity:b3MakeVector3(0,0,0))
- + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:b3MakeVector3(0,0,0));
- b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?solverBodyB.m_linearVelocity:b3MakeVector3(0,0,0))
- + solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:b3MakeVector3(0,0,0));
+ b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0 ? solverBodyA.m_linearVelocity : b3MakeVector3(0, 0, 0)) + solverConstraint.m_relpos1CrossNormal.dot(body0 ? solverBodyA.m_angularVelocity : b3MakeVector3(0, 0, 0));
+ b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1 ? solverBodyB.m_linearVelocity : b3MakeVector3(0, 0, 0)) + solverConstraint.m_relpos2CrossNormal.dot(body1 ? solverBodyB.m_angularVelocity : b3MakeVector3(0, 0, 0));
- rel_vel = vel1Dotn+vel2Dotn;
+ rel_vel = vel1Dotn + vel2Dotn;
-// b3Scalar positionalError = 0.f;
+ // b3Scalar positionalError = 0.f;
- b3SimdScalar velocityError = desiredVelocity - rel_vel;
- b3SimdScalar velocityImpulse = velocityError * b3SimdScalar(solverConstraint.m_jacDiagABInv);
+ b3SimdScalar velocityError = desiredVelocity - rel_vel;
+ b3SimdScalar velocityImpulse = velocityError * b3SimdScalar(solverConstraint.m_jacDiagABInv);
solverConstraint.m_rhs = velocityImpulse;
solverConstraint.m_cfm = cfmSlip;
solverConstraint.m_lowerLimit = 0;
solverConstraint.m_upperLimit = 1e10f;
-
}
}
-
-
-
-
-
-
-
-b3SolverConstraint& b3PgsJacobiSolver::addRollingFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias,const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip)
+b3SolverConstraint& b3PgsJacobiSolver::addRollingFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, const b3Vector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2, b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip)
{
b3SolverConstraint& solverConstraint = m_tmpSolverContactRollingFrictionConstraintPool.expandNonInitializing();
solverConstraint.m_frictionIndex = frictionIndex;
- setupRollingFrictionConstraint(bodies,inertias,solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2,
- colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
+ setupRollingFrictionConstraint(bodies, inertias, solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2,
+ colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
return solverConstraint;
}
-
-int b3PgsJacobiSolver::getOrInitSolverBody(int bodyIndex, b3RigidBodyData* bodies,b3InertiaData* inertias)
+int b3PgsJacobiSolver::getOrInitSolverBody(int bodyIndex, b3RigidBodyData* bodies, b3InertiaData* inertias)
{
//b3Assert(bodyIndex< m_tmpSolverBodyPool.size());
b3RigidBodyData& body = bodies[bodyIndex];
int curIndex = -1;
- if (m_usePgs || body.m_invMass==0.f)
+ if (m_usePgs || body.m_invMass == 0.f)
{
- if (m_bodyCount[bodyIndex]<0)
+ if (m_bodyCount[bodyIndex] < 0)
{
curIndex = m_tmpSolverBodyPool.size();
b3SolverBody& solverBody = m_tmpSolverBodyPool.expand();
- initSolverBody(bodyIndex,&solverBody,&body);
+ initSolverBody(bodyIndex, &solverBody, &body);
solverBody.m_originalBodyIndex = bodyIndex;
m_bodyCount[bodyIndex] = curIndex;
- } else
+ }
+ else
{
curIndex = m_bodyCount[bodyIndex];
}
- } else
+ }
+ else
{
- b3Assert(m_bodyCount[bodyIndex]>0);
+ b3Assert(m_bodyCount[bodyIndex] > 0);
m_bodyCountCheck[bodyIndex]++;
curIndex = m_tmpSolverBodyPool.size();
b3SolverBody& solverBody = m_tmpSolverBodyPool.expand();
- initSolverBody(bodyIndex,&solverBody,&body);
+ initSolverBody(bodyIndex, &solverBody, &body);
solverBody.m_originalBodyIndex = bodyIndex;
}
- b3Assert(curIndex>=0);
+ b3Assert(curIndex >= 0);
return curIndex;
-
}
#include <stdio.h>
-
-void b3PgsJacobiSolver::setupContactConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias,b3SolverConstraint& solverConstraint,
- int solverBodyIdA, int solverBodyIdB,
- b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal,
- b3Vector3& vel, b3Scalar& rel_vel, b3Scalar& relaxation,
- b3Vector3& rel_pos1, b3Vector3& rel_pos2)
+void b3PgsJacobiSolver::setupContactConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, b3SolverConstraint& solverConstraint,
+ int solverBodyIdA, int solverBodyIdB,
+ b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal,
+ b3Vector3& vel, b3Scalar& rel_vel, b3Scalar& relaxation,
+ b3Vector3& rel_pos1, b3Vector3& rel_pos2)
{
-
- const b3Vector3& pos1 = cp.getPositionWorldOnA();
- const b3Vector3& pos2 = cp.getPositionWorldOnB();
+ const b3Vector3& pos1 = cp.getPositionWorldOnA();
+ const b3Vector3& pos2 = cp.getPositionWorldOnB();
- b3SolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
- b3SolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
+ b3SolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
+ b3SolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
- b3RigidBodyData* rb0 = &bodies[bodyA->m_originalBodyIndex];
- b3RigidBodyData* rb1 = &bodies[bodyB->m_originalBodyIndex];
+ b3RigidBodyData* rb0 = &bodies[bodyA->m_originalBodyIndex];
+ b3RigidBodyData* rb1 = &bodies[bodyB->m_originalBodyIndex];
-// b3Vector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
-// b3Vector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
- rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
- rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+ // b3Vector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
+ // b3Vector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
+ rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
- relaxation = 1.f;
+ relaxation = 1.f;
- b3Vector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
- solverConstraint.m_angularComponentA = rb0 ? getInvInertiaTensorWorld(&inertias[bodyA->m_originalBodyIndex])*torqueAxis0 : b3MakeVector3(0,0,0);
- b3Vector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
- solverConstraint.m_angularComponentB = rb1 ? getInvInertiaTensorWorld(&inertias[bodyB->m_originalBodyIndex])*-torqueAxis1 : b3MakeVector3(0,0,0);
+ b3Vector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentA = rb0 ? getInvInertiaTensorWorld(&inertias[bodyA->m_originalBodyIndex]) * torqueAxis0 : b3MakeVector3(0, 0, 0);
+ b3Vector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentB = rb1 ? getInvInertiaTensorWorld(&inertias[bodyB->m_originalBodyIndex]) * -torqueAxis1 : b3MakeVector3(0, 0, 0);
- b3Scalar scaledDenom;
- {
+ b3Scalar scaledDenom;
+ {
#ifdef COMPUTE_IMPULSE_DENOM
- b3Scalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
- b3Scalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
-#else
- b3Vector3 vec;
- b3Scalar denom0 = 0.f;
- b3Scalar denom1 = 0.f;
- if (rb0)
- {
- vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
- denom0 = rb0->m_invMass + cp.m_normalWorldOnB.dot(vec);
- }
- if (rb1)
- {
- vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
- denom1 = rb1->m_invMass + cp.m_normalWorldOnB.dot(vec);
- }
-#endif //COMPUTE_IMPULSE_DENOM
-
-
- b3Scalar denom;
- if (m_usePgs)
- {
- scaledDenom = denom = relaxation/(denom0+denom1);
- } else
- {
- denom = relaxation/(denom0+denom1);
-
- b3Scalar countA = rb0->m_invMass? b3Scalar(m_bodyCount[bodyA->m_originalBodyIndex]) : 1.f;
- b3Scalar countB = rb1->m_invMass? b3Scalar(m_bodyCount[bodyB->m_originalBodyIndex]) : 1.f;
- scaledDenom = relaxation/(denom0*countA+denom1*countB);
- }
- solverConstraint.m_jacDiagABInv = denom;
- }
-
- solverConstraint.m_contactNormal = cp.m_normalWorldOnB;
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
-
- b3Scalar restitution = 0.f;
- b3Scalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
-
- {
- b3Vector3 vel1,vel2;
+ b3Scalar denom0 = rb0->computeImpulseDenominator(pos1, cp.m_normalWorldOnB);
+ b3Scalar denom1 = rb1->computeImpulseDenominator(pos2, cp.m_normalWorldOnB);
+#else
+ b3Vector3 vec;
+ b3Scalar denom0 = 0.f;
+ b3Scalar denom1 = 0.f;
+ if (rb0)
+ {
+ vec = (solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->m_invMass + cp.m_normalWorldOnB.dot(vec);
+ }
+ if (rb1)
+ {
+ vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->m_invMass + cp.m_normalWorldOnB.dot(vec);
+ }
+#endif //COMPUTE_IMPULSE_DENOM
- vel1 = rb0? getVelocityInLocalPoint(rb0,rel_pos1) : b3MakeVector3(0,0,0);
- vel2 = rb1? getVelocityInLocalPoint(rb1, rel_pos2) : b3MakeVector3(0,0,0);
+ b3Scalar denom;
+ if (m_usePgs)
+ {
+ scaledDenom = denom = relaxation / (denom0 + denom1);
+ }
+ else
+ {
+ denom = relaxation / (denom0 + denom1);
- // b3Vector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : b3Vector3(0,0,0);
- vel = vel1 - vel2;
- rel_vel = cp.m_normalWorldOnB.dot(vel);
+ b3Scalar countA = rb0->m_invMass ? b3Scalar(m_bodyCount[bodyA->m_originalBodyIndex]) : 1.f;
+ b3Scalar countB = rb1->m_invMass ? b3Scalar(m_bodyCount[bodyB->m_originalBodyIndex]) : 1.f;
+ scaledDenom = relaxation / (denom0 * countA + denom1 * countB);
+ }
+ solverConstraint.m_jacDiagABInv = denom;
+ }
-
+ solverConstraint.m_contactNormal = cp.m_normalWorldOnB;
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
- solverConstraint.m_friction = cp.m_combinedFriction;
+ b3Scalar restitution = 0.f;
+ b3Scalar penetration = cp.getDistance() + infoGlobal.m_linearSlop;
-
- restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
- if (restitution <= b3Scalar(0.))
- {
- restitution = 0.f;
- };
- }
+ {
+ b3Vector3 vel1, vel2;
+ vel1 = rb0 ? getVelocityInLocalPoint(rb0, rel_pos1) : b3MakeVector3(0, 0, 0);
+ vel2 = rb1 ? getVelocityInLocalPoint(rb1, rel_pos2) : b3MakeVector3(0, 0, 0);
- ///warm starting (or zero if disabled)
- if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING)
- {
- solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
- if (rb0)
- bodyA->internalApplyImpulse(solverConstraint.m_contactNormal*bodyA->internalGetInvMass(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
- if (rb1)
- bodyB->internalApplyImpulse(solverConstraint.m_contactNormal*bodyB->internalGetInvMass(),-solverConstraint.m_angularComponentB,-(b3Scalar)solverConstraint.m_appliedImpulse);
- } else
- {
- solverConstraint.m_appliedImpulse = 0.f;
- }
+ // b3Vector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : b3Vector3(0,0,0);
+ vel = vel1 - vel2;
+ rel_vel = cp.m_normalWorldOnB.dot(vel);
- solverConstraint.m_appliedPushImpulse = 0.f;
+ solverConstraint.m_friction = cp.m_combinedFriction;
- {
- b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?bodyA->m_linearVelocity:b3MakeVector3(0,0,0))
- + solverConstraint.m_relpos1CrossNormal.dot(rb0?bodyA->m_angularVelocity:b3MakeVector3(0,0,0));
- b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?bodyB->m_linearVelocity:b3MakeVector3(0,0,0))
- + solverConstraint.m_relpos2CrossNormal.dot(rb1?bodyB->m_angularVelocity:b3MakeVector3(0,0,0));
- b3Scalar rel_vel = vel1Dotn+vel2Dotn;
-
- b3Scalar positionalError = 0.f;
- b3Scalar velocityError = restitution - rel_vel;// * damping;
-
-
- b3Scalar erp = infoGlobal.m_erp2;
- if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
- {
- erp = infoGlobal.m_erp;
- }
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
+ if (restitution <= b3Scalar(0.))
+ {
+ restitution = 0.f;
+ };
+ }
- if (penetration>0)
- {
- positionalError = 0;
+ ///warm starting (or zero if disabled)
+ if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal * bodyA->internalGetInvMass(), solverConstraint.m_angularComponentA, solverConstraint.m_appliedImpulse);
+ if (rb1)
+ bodyB->internalApplyImpulse(solverConstraint.m_contactNormal * bodyB->internalGetInvMass(), -solverConstraint.m_angularComponentB, -(b3Scalar)solverConstraint.m_appliedImpulse);
+ }
+ else
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
- velocityError -= penetration / infoGlobal.m_timeStep;
- } else
- {
- positionalError = -penetration * erp/infoGlobal.m_timeStep;
- }
+ solverConstraint.m_appliedPushImpulse = 0.f;
- b3Scalar penetrationImpulse = positionalError*scaledDenom;//solverConstraint.m_jacDiagABInv;
- b3Scalar velocityImpulse = velocityError *scaledDenom;//solverConstraint.m_jacDiagABInv;
+ {
+ b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0 ? bodyA->m_linearVelocity : b3MakeVector3(0, 0, 0)) + solverConstraint.m_relpos1CrossNormal.dot(rb0 ? bodyA->m_angularVelocity : b3MakeVector3(0, 0, 0));
+ b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1 ? bodyB->m_linearVelocity : b3MakeVector3(0, 0, 0)) + solverConstraint.m_relpos2CrossNormal.dot(rb1 ? bodyB->m_angularVelocity : b3MakeVector3(0, 0, 0));
+ b3Scalar rel_vel = vel1Dotn + vel2Dotn;
- if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
- {
- //combine position and velocity into rhs
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
- solverConstraint.m_rhsPenetration = 0.f;
+ b3Scalar positionalError = 0.f;
+ b3Scalar velocityError = restitution - rel_vel; // * damping;
- } else
- {
- //split position and velocity into rhs and m_rhsPenetration
- solverConstraint.m_rhs = velocityImpulse;
- solverConstraint.m_rhsPenetration = penetrationImpulse;
- }
- solverConstraint.m_cfm = 0.f;
- solverConstraint.m_lowerLimit = 0;
- solverConstraint.m_upperLimit = 1e10f;
- }
+ b3Scalar erp = infoGlobal.m_erp2;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ erp = infoGlobal.m_erp;
+ }
+ if (penetration > 0)
+ {
+ positionalError = 0;
+ velocityError -= penetration / infoGlobal.m_timeStep;
+ }
+ else
+ {
+ positionalError = -penetration * erp / infoGlobal.m_timeStep;
+ }
+ b3Scalar penetrationImpulse = positionalError * scaledDenom; //solverConstraint.m_jacDiagABInv;
+ b3Scalar velocityImpulse = velocityError * scaledDenom; //solverConstraint.m_jacDiagABInv;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+ }
+ else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+ solverConstraint.m_cfm = 0.f;
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
}
-
-
-void b3PgsJacobiSolver::setFrictionConstraintImpulse( b3RigidBodyData* bodies, b3InertiaData* inertias,b3SolverConstraint& solverConstraint,
- int solverBodyIdA, int solverBodyIdB,
- b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal)
+void b3PgsJacobiSolver::setFrictionConstraintImpulse(b3RigidBodyData* bodies, b3InertiaData* inertias, b3SolverConstraint& solverConstraint,
+ int solverBodyIdA, int solverBodyIdB,
+ b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal)
{
-
b3SolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
b3SolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
-
{
b3SolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING)
{
frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
if (bodies[bodyA->m_originalBodyIndex].m_invMass)
- bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal*bodies[bodyA->m_originalBodyIndex].m_invMass,frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
+ bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal * bodies[bodyA->m_originalBodyIndex].m_invMass, frictionConstraint1.m_angularComponentA, frictionConstraint1.m_appliedImpulse);
if (bodies[bodyB->m_originalBodyIndex].m_invMass)
- bodyB->internalApplyImpulse(frictionConstraint1.m_contactNormal*bodies[bodyB->m_originalBodyIndex].m_invMass,-frictionConstraint1.m_angularComponentB,-(b3Scalar)frictionConstraint1.m_appliedImpulse);
- } else
+ bodyB->internalApplyImpulse(frictionConstraint1.m_contactNormal * bodies[bodyB->m_originalBodyIndex].m_invMass, -frictionConstraint1.m_angularComponentB, -(b3Scalar)frictionConstraint1.m_appliedImpulse);
+ }
+ else
{
frictionConstraint1.m_appliedImpulse = 0.f;
}
@@ -897,51 +828,45 @@ void b3PgsJacobiSolver::setFrictionConstraintImpulse( b3RigidBodyData* bodies, b
if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS))
{
- b3SolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
+ b3SolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex + 1];
if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING)
{
- frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
+ frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
if (bodies[bodyA->m_originalBodyIndex].m_invMass)
- bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal*bodies[bodyA->m_originalBodyIndex].m_invMass,frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
+ bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal * bodies[bodyA->m_originalBodyIndex].m_invMass, frictionConstraint2.m_angularComponentA, frictionConstraint2.m_appliedImpulse);
if (bodies[bodyB->m_originalBodyIndex].m_invMass)
- bodyB->internalApplyImpulse(frictionConstraint2.m_contactNormal*bodies[bodyB->m_originalBodyIndex].m_invMass,-frictionConstraint2.m_angularComponentB,-(b3Scalar)frictionConstraint2.m_appliedImpulse);
- } else
+ bodyB->internalApplyImpulse(frictionConstraint2.m_contactNormal * bodies[bodyB->m_originalBodyIndex].m_invMass, -frictionConstraint2.m_angularComponentB, -(b3Scalar)frictionConstraint2.m_appliedImpulse);
+ }
+ else
{
frictionConstraint2.m_appliedImpulse = 0.f;
}
}
}
-
-
-
-void b3PgsJacobiSolver::convertContact(b3RigidBodyData* bodies, b3InertiaData* inertias,b3Contact4* manifold,const b3ContactSolverInfo& infoGlobal)
+void b3PgsJacobiSolver::convertContact(b3RigidBodyData* bodies, b3InertiaData* inertias, b3Contact4* manifold, const b3ContactSolverInfo& infoGlobal)
{
- b3RigidBodyData* colObj0=0,*colObj1=0;
+ b3RigidBodyData *colObj0 = 0, *colObj1 = 0;
-
- int solverBodyIdA = getOrInitSolverBody(manifold->getBodyA(),bodies,inertias);
- int solverBodyIdB = getOrInitSolverBody(manifold->getBodyB(),bodies,inertias);
+ int solverBodyIdA = getOrInitSolverBody(manifold->getBodyA(), bodies, inertias);
+ int solverBodyIdB = getOrInitSolverBody(manifold->getBodyB(), bodies, inertias);
-// b3RigidBody* bodyA = b3RigidBody::upcast(colObj0);
-// b3RigidBody* bodyB = b3RigidBody::upcast(colObj1);
+ // b3RigidBody* bodyA = b3RigidBody::upcast(colObj0);
+ // b3RigidBody* bodyB = b3RigidBody::upcast(colObj1);
b3SolverBody* solverBodyA = &m_tmpSolverBodyPool[solverBodyIdA];
b3SolverBody* solverBodyB = &m_tmpSolverBodyPool[solverBodyIdB];
-
-
///avoid collision response between two static objects
if (solverBodyA->m_invMass.isZero() && solverBodyB->m_invMass.isZero())
return;
- int rollingFriction=1;
+ int rollingFriction = 1;
int numContacts = getNumContacts(manifold);
- for (int j=0;j<numContacts;j++)
+ for (int j = 0; j < numContacts; j++)
{
-
b3ContactPoint cp;
- getContactPoint(manifold,j,cp);
+ getContactPoint(manifold, j, cp);
if (cp.getDistance() <= getContactProcessingThreshold(manifold))
{
@@ -953,61 +878,60 @@ void b3PgsJacobiSolver::convertContact(b3RigidBodyData* bodies, b3InertiaData* i
int frictionIndex = m_tmpSolverContactConstraintPool.size();
b3SolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
-// b3RigidBody* rb0 = b3RigidBody::upcast(colObj0);
-// b3RigidBody* rb1 = b3RigidBody::upcast(colObj1);
+ // b3RigidBody* rb0 = b3RigidBody::upcast(colObj0);
+ // b3RigidBody* rb1 = b3RigidBody::upcast(colObj1);
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
solverConstraint.m_originalContactPoint = &cp;
- setupContactConstraint(bodies,inertias,solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2);
+ setupContactConstraint(bodies, inertias, solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2);
-// const b3Vector3& pos1 = cp.getPositionWorldOnA();
-// const b3Vector3& pos2 = cp.getPositionWorldOnB();
+ // const b3Vector3& pos1 = cp.getPositionWorldOnA();
+ // const b3Vector3& pos2 = cp.getPositionWorldOnB();
/////setup the friction constraints
solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
- b3Vector3 angVelA,angVelB;
+ b3Vector3 angVelA, angVelB;
solverBodyA->getAngularVelocity(angVelA);
- solverBodyB->getAngularVelocity(angVelB);
- b3Vector3 relAngVel = angVelB-angVelA;
+ solverBodyB->getAngularVelocity(angVelB);
+ b3Vector3 relAngVel = angVelB - angVelA;
- if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
+ if ((cp.m_combinedRollingFriction > 0.f) && (rollingFriction > 0))
{
//only a single rollingFriction per manifold
rollingFriction--;
- if (relAngVel.length()>infoGlobal.m_singleAxisRollingFrictionThreshold)
+ if (relAngVel.length() > infoGlobal.m_singleAxisRollingFrictionThreshold)
{
relAngVel.normalize();
- if (relAngVel.length()>0.001)
- addRollingFrictionConstraint(bodies,inertias,relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
- } else
+ if (relAngVel.length() > 0.001)
+ addRollingFrictionConstraint(bodies, inertias, relAngVel, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
+ }
+ else
{
- addRollingFrictionConstraint(bodies,inertias,cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
- b3Vector3 axis0,axis1;
- b3PlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
- if (axis0.length()>0.001)
- addRollingFrictionConstraint(bodies,inertias,axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
- if (axis1.length()>0.001)
- addRollingFrictionConstraint(bodies,inertias,axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
+ addRollingFrictionConstraint(bodies, inertias, cp.m_normalWorldOnB, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
+ b3Vector3 axis0, axis1;
+ b3PlaneSpace1(cp.m_normalWorldOnB, axis0, axis1);
+ if (axis0.length() > 0.001)
+ addRollingFrictionConstraint(bodies, inertias, axis0, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
+ if (axis1.length() > 0.001)
+ addRollingFrictionConstraint(bodies, inertias, axis1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
}
///Bullet has several options to set the friction directions
- ///By default, each contact has only a single friction direction that is recomputed automatically very frame
+ ///By default, each contact has only a single friction direction that is recomputed automatically very frame
///based on the relative linear velocity.
///If the relative velocity it zero, it will automatically compute a friction direction.
-
+
///You can also enable two friction directions, using the B3_SOLVER_USE_2_FRICTION_DIRECTIONS.
///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
///
///If you choose B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
///
- ///The user can manually override the friction directions for certain contacts using a contact callback,
+ ///The user can manually override the friction directions for certain contacts using a contact callback,
///and set the cp.m_lateralFrictionInitialized to true
///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
///this will give a conveyor belt effect
@@ -1018,99 +942,91 @@ void b3PgsJacobiSolver::convertContact(b3RigidBodyData* bodies, b3InertiaData* i
b3Scalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
if (!(infoGlobal.m_solverMode & B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > B3_EPSILON)
{
- cp.m_lateralFrictionDir1 *= 1.f/b3Sqrt(lat_rel_vel);
- if((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS))
+ cp.m_lateralFrictionDir1 *= 1.f / b3Sqrt(lat_rel_vel);
+ if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS))
{
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
- cp.m_lateralFrictionDir2.normalize();//??
- addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
+ cp.m_lateralFrictionDir2.normalize(); //??
+ addFrictionConstraint(bodies, inertias, cp.m_lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
- addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
- } else
+ addFrictionConstraint(bodies, inertias, cp.m_lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
+ }
+ else
{
- b3PlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+ b3PlaneSpace1(cp.m_normalWorldOnB, cp.m_lateralFrictionDir1, cp.m_lateralFrictionDir2);
if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS))
{
- addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ addFrictionConstraint(bodies, inertias, cp.m_lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
- addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ addFrictionConstraint(bodies, inertias, cp.m_lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
{
cp.m_lateralFrictionInitialized = true;
}
}
-
- } else
+ }
+ else
{
- addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1);
+ addFrictionConstraint(bodies, inertias, cp.m_lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, cp.m_contactMotion1, cp.m_contactCFM1);
if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS))
- addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
+ addFrictionConstraint(bodies, inertias, cp.m_lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
- setFrictionConstraintImpulse( bodies,inertias,solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
+ setFrictionConstraintImpulse(bodies, inertias, solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
}
-
-
-
-
}
}
}
-b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, b3Contact4* manifoldPtr, int numManifolds,b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal)
+b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, b3Contact4* manifoldPtr, int numManifolds, b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal)
{
B3_PROFILE("solveGroupCacheFriendlySetup");
-
m_maxOverrideNumSolverIterations = 0;
-
-
m_tmpSolverBodyPool.resize(0);
-
-
+
m_bodyCount.resize(0);
- m_bodyCount.resize(numBodies,0);
+ m_bodyCount.resize(numBodies, 0);
m_bodyCountCheck.resize(0);
- m_bodyCountCheck.resize(numBodies,0);
-
+ m_bodyCountCheck.resize(numBodies, 0);
+
m_deltaLinearVelocities.resize(0);
- m_deltaLinearVelocities.resize(numBodies,b3MakeVector3(0,0,0));
+ m_deltaLinearVelocities.resize(numBodies, b3MakeVector3(0, 0, 0));
m_deltaAngularVelocities.resize(0);
- m_deltaAngularVelocities.resize(numBodies,b3MakeVector3(0,0,0));
-
+ m_deltaAngularVelocities.resize(numBodies, b3MakeVector3(0, 0, 0));
+
//int totalBodies = 0;
- for (int i=0;i<numConstraints;i++)
+ for (int i = 0; i < numConstraints; i++)
{
int bodyIndexA = constraints[i]->getRigidBodyA();
int bodyIndexB = constraints[i]->getRigidBodyB();
if (m_usePgs)
{
- m_bodyCount[bodyIndexA]=-1;
- m_bodyCount[bodyIndexB]=-1;
- } else
+ m_bodyCount[bodyIndexA] = -1;
+ m_bodyCount[bodyIndexB] = -1;
+ }
+ else
{
//didn't implement joints with Jacobi version yet
b3Assert(0);
}
-
}
- for (int i=0;i<numManifolds;i++)
+ for (int i = 0; i < numManifolds; i++)
{
int bodyIndexA = manifoldPtr[i].getBodyA();
int bodyIndexB = manifoldPtr[i].getBodyB();
if (m_usePgs)
{
- m_bodyCount[bodyIndexA]=-1;
- m_bodyCount[bodyIndexB]=-1;
- } else
+ m_bodyCount[bodyIndexA] = -1;
+ m_bodyCount[bodyIndexB] = -1;
+ }
+ else
{
if (bodies[bodyIndexA].m_invMass)
{
@@ -1118,26 +1034,23 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
m_bodyCount[bodyIndexA]++;
}
else
- m_bodyCount[bodyIndexA]=-1;
+ m_bodyCount[bodyIndexA] = -1;
if (bodies[bodyIndexB].m_invMass)
- // m_bodyCount[bodyIndexB]+=manifoldPtr[i].getNPoints();
+ // m_bodyCount[bodyIndexB]+=manifoldPtr[i].getNPoints();
m_bodyCount[bodyIndexB]++;
else
- m_bodyCount[bodyIndexB]=-1;
+ m_bodyCount[bodyIndexB] = -1;
}
-
}
-
-
if (1)
{
int j;
- for (j=0;j<numConstraints;j++)
+ for (j = 0; j < numConstraints; j++)
{
b3TypedConstraint* constraint = constraints[j];
-
+
constraint->internalSetAppliedImpulse(0.0f);
}
}
@@ -1146,13 +1059,12 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
//if (1)
{
{
-
int totalNumRows = 0;
int i;
-
+
m_tmpConstraintSizesPool.resizeNoInitialize(numConstraints);
//calculate the total number of contraint rows
- for (i=0;i<numConstraints;i++)
+ for (i = 0; i < numConstraints; i++)
{
b3TypedConstraint::b3ConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
b3JointFeedback* fb = constraints[i]->getJointFeedback();
@@ -1169,8 +1081,9 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
}
if (constraints[i]->isEnabled())
{
- constraints[i]->getInfo1(&info1,bodies);
- } else
+ constraints[i]->getInfo1(&info1, bodies);
+ }
+ else
{
info1.m_numConstraintRows = 0;
info1.nub = 0;
@@ -1179,45 +1092,40 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
}
m_tmpSolverNonContactConstraintPool.resizeNoInitialize(totalNumRows);
-
#ifndef DISABLE_JOINTS
///setup the b3SolverConstraints
int currentRow = 0;
- for (i=0;i<numConstraints;i++)
+ for (i = 0; i < numConstraints; i++)
{
const b3TypedConstraint::b3ConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
-
+
if (info1.m_numConstraintRows)
{
- b3Assert(currentRow<totalNumRows);
+ b3Assert(currentRow < totalNumRows);
b3SolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow];
b3TypedConstraint* constraint = constraints[i];
- b3RigidBodyData& rbA = bodies[ constraint->getRigidBodyA()];
+ b3RigidBodyData& rbA = bodies[constraint->getRigidBodyA()];
//b3RigidBody& rbA = constraint->getRigidBodyA();
- // b3RigidBody& rbB = constraint->getRigidBodyB();
- b3RigidBodyData& rbB = bodies[ constraint->getRigidBodyB()];
-
- int solverBodyIdA = getOrInitSolverBody(constraint->getRigidBodyA(),bodies,inertias);
- int solverBodyIdB = getOrInitSolverBody(constraint->getRigidBodyB(),bodies,inertias);
-
- b3SolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
- b3SolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
-
+ // b3RigidBody& rbB = constraint->getRigidBodyB();
+ b3RigidBodyData& rbB = bodies[constraint->getRigidBodyB()];
+ int solverBodyIdA = getOrInitSolverBody(constraint->getRigidBodyA(), bodies, inertias);
+ int solverBodyIdB = getOrInitSolverBody(constraint->getRigidBodyB(), bodies, inertias);
+ b3SolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
+ b3SolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
int overrideNumSolverIterations = constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations;
- if (overrideNumSolverIterations>m_maxOverrideNumSolverIterations)
+ if (overrideNumSolverIterations > m_maxOverrideNumSolverIterations)
m_maxOverrideNumSolverIterations = overrideNumSolverIterations;
-
int j;
- for ( j=0;j<info1.m_numConstraintRows;j++)
+ for (j = 0; j < info1.m_numConstraintRows; j++)
{
- memset(&currentConstraintRow[j],0,sizeof(b3SolverConstraint));
+ memset(&currentConstraintRow[j], 0, sizeof(b3SolverConstraint));
currentConstraintRow[j].m_lowerLimit = -B3_INFINITY;
currentConstraintRow[j].m_upperLimit = B3_INFINITY;
currentConstraintRow[j].m_appliedImpulse = 0.f;
@@ -1227,26 +1135,25 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations;
}
- bodyAPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
- bodyAPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
- bodyAPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
- bodyAPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
- bodyBPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
- bodyBPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
- bodyBPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
- bodyBPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
-
+ bodyAPtr->internalGetDeltaLinearVelocity().setValue(0.f, 0.f, 0.f);
+ bodyAPtr->internalGetDeltaAngularVelocity().setValue(0.f, 0.f, 0.f);
+ bodyAPtr->internalGetPushVelocity().setValue(0.f, 0.f, 0.f);
+ bodyAPtr->internalGetTurnVelocity().setValue(0.f, 0.f, 0.f);
+ bodyBPtr->internalGetDeltaLinearVelocity().setValue(0.f, 0.f, 0.f);
+ bodyBPtr->internalGetDeltaAngularVelocity().setValue(0.f, 0.f, 0.f);
+ bodyBPtr->internalGetPushVelocity().setValue(0.f, 0.f, 0.f);
+ bodyBPtr->internalGetTurnVelocity().setValue(0.f, 0.f, 0.f);
b3TypedConstraint::b3ConstraintInfo2 info2;
- info2.fps = 1.f/infoGlobal.m_timeStep;
+ info2.fps = 1.f / infoGlobal.m_timeStep;
info2.erp = infoGlobal.m_erp;
info2.m_J1linearAxis = currentConstraintRow->m_contactNormal;
info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
info2.m_J2linearAxis = 0;
info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
- info2.rowskip = sizeof(b3SolverConstraint)/sizeof(b3Scalar);//check this
- ///the size of b3SolverConstraint needs be a multiple of b3Scalar
- b3Assert(info2.rowskip*sizeof(b3Scalar)== sizeof(b3SolverConstraint));
+ info2.rowskip = sizeof(b3SolverConstraint) / sizeof(b3Scalar); //check this
+ ///the size of b3SolverConstraint needs be a multiple of b3Scalar
+ b3Assert(info2.rowskip * sizeof(b3Scalar) == sizeof(b3SolverConstraint));
info2.m_constraintError = &currentConstraintRow->m_rhs;
currentConstraintRow->m_cfm = infoGlobal.m_globalCfm;
info2.m_damping = infoGlobal.m_damping;
@@ -1254,47 +1161,45 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
info2.m_lowerLimit = &currentConstraintRow->m_lowerLimit;
info2.m_upperLimit = &currentConstraintRow->m_upperLimit;
info2.m_numIterations = infoGlobal.m_numIterations;
- constraints[i]->getInfo2(&info2,bodies);
+ constraints[i]->getInfo2(&info2, bodies);
///finalize the constraint setup
- for ( j=0;j<info1.m_numConstraintRows;j++)
+ for (j = 0; j < info1.m_numConstraintRows; j++)
{
b3SolverConstraint& solverConstraint = currentConstraintRow[j];
- if (solverConstraint.m_upperLimit>=constraints[i]->getBreakingImpulseThreshold())
+ if (solverConstraint.m_upperLimit >= constraints[i]->getBreakingImpulseThreshold())
{
solverConstraint.m_upperLimit = constraints[i]->getBreakingImpulseThreshold();
}
- if (solverConstraint.m_lowerLimit<=-constraints[i]->getBreakingImpulseThreshold())
+ if (solverConstraint.m_lowerLimit <= -constraints[i]->getBreakingImpulseThreshold())
{
solverConstraint.m_lowerLimit = -constraints[i]->getBreakingImpulseThreshold();
}
solverConstraint.m_originalContactPoint = constraint;
-
- b3Matrix3x3& invInertiaWorldA= inertias[constraint->getRigidBodyA()].m_invInertiaWorld;
- {
+ b3Matrix3x3& invInertiaWorldA = inertias[constraint->getRigidBodyA()].m_invInertiaWorld;
+ {
//b3Vector3 angularFactorA(1,1,1);
const b3Vector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal;
- solverConstraint.m_angularComponentA = invInertiaWorldA*ftorqueAxis1;//*angularFactorA;
+ solverConstraint.m_angularComponentA = invInertiaWorldA * ftorqueAxis1; //*angularFactorA;
}
-
- b3Matrix3x3& invInertiaWorldB= inertias[constraint->getRigidBodyB()].m_invInertiaWorld;
- {
+ b3Matrix3x3& invInertiaWorldB = inertias[constraint->getRigidBodyB()].m_invInertiaWorld;
+ {
const b3Vector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal;
- solverConstraint.m_angularComponentB = invInertiaWorldB*ftorqueAxis2;//*constraint->getRigidBodyB().getAngularFactor();
+ solverConstraint.m_angularComponentB = invInertiaWorldB * ftorqueAxis2; //*constraint->getRigidBodyB().getAngularFactor();
}
{
//it is ok to use solverConstraint.m_contactNormal instead of -solverConstraint.m_contactNormal
//because it gets multiplied iMJlB
- b3Vector3 iMJlA = solverConstraint.m_contactNormal*rbA.m_invMass;
- b3Vector3 iMJaA = invInertiaWorldA*solverConstraint.m_relpos1CrossNormal;
- b3Vector3 iMJlB = solverConstraint.m_contactNormal*rbB.m_invMass;//sign of normal?
- b3Vector3 iMJaB = invInertiaWorldB*solverConstraint.m_relpos2CrossNormal;
+ b3Vector3 iMJlA = solverConstraint.m_contactNormal * rbA.m_invMass;
+ b3Vector3 iMJaA = invInertiaWorldA * solverConstraint.m_relpos1CrossNormal;
+ b3Vector3 iMJlB = solverConstraint.m_contactNormal * rbB.m_invMass; //sign of normal?
+ b3Vector3 iMJaB = invInertiaWorldB * solverConstraint.m_relpos2CrossNormal;
b3Scalar sum = iMJlA.dot(solverConstraint.m_contactNormal);
sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
@@ -1302,10 +1207,9 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
b3Scalar fsum = b3Fabs(sum);
b3Assert(fsum > B3_EPSILON);
- solverConstraint.m_jacDiagABInv = fsum>B3_EPSILON?b3Scalar(1.)/sum : 0.f;
+ solverConstraint.m_jacDiagABInv = fsum > B3_EPSILON ? b3Scalar(1.) / sum : 0.f;
}
-
///fix rhs
///todo: add force/torque accelerators
{
@@ -1313,38 +1217,35 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.m_linVel) + solverConstraint.m_relpos1CrossNormal.dot(rbA.m_angVel);
b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.m_linVel) + solverConstraint.m_relpos2CrossNormal.dot(rbB.m_angVel);
- rel_vel = vel1Dotn+vel2Dotn;
+ rel_vel = vel1Dotn + vel2Dotn;
b3Scalar restitution = 0.f;
- b3Scalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
- b3Scalar velocityError = restitution - rel_vel * info2.m_damping;
- b3Scalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
- b3Scalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ b3Scalar positionalError = solverConstraint.m_rhs; //already filled in by getConstraintInfo2
+ b3Scalar velocityError = restitution - rel_vel * info2.m_damping;
+ b3Scalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
+ b3Scalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
solverConstraint.m_appliedImpulse = 0.f;
-
}
}
}
- currentRow+=m_tmpConstraintSizesPool[i].m_numConstraintRows;
+ currentRow += m_tmpConstraintSizesPool[i].m_numConstraintRows;
}
-#endif //DISABLE_JOINTS
+#endif //DISABLE_JOINTS
}
-
{
int i;
- for (i=0;i<numManifolds;i++)
+ for (i = 0; i < numManifolds; i++)
{
b3Contact4& manifold = manifoldPtr[i];
- convertContact(bodies,inertias,&manifold,infoGlobal);
+ convertContact(bodies, inertias, &manifold, infoGlobal);
}
}
}
-// b3ContactSolverInfo info = infoGlobal;
-
+ // b3ContactSolverInfo info = infoGlobal;
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
int numConstraintPool = m_tmpSolverContactConstraintPool.size();
@@ -1353,64 +1254,63 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies
///@todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
m_orderNonContactConstraintPool.resizeNoInitialize(numNonContactPool);
if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS))
- m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool*2);
+ m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool * 2);
else
m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool);
m_orderFrictionConstraintPool.resizeNoInitialize(numFrictionPool);
{
int i;
- for (i=0;i<numNonContactPool;i++)
+ for (i = 0; i < numNonContactPool; i++)
{
m_orderNonContactConstraintPool[i] = i;
}
- for (i=0;i<numConstraintPool;i++)
+ for (i = 0; i < numConstraintPool; i++)
{
m_orderTmpConstraintPool[i] = i;
}
- for (i=0;i<numFrictionPool;i++)
+ for (i = 0; i < numFrictionPool; i++)
{
m_orderFrictionConstraintPool[i] = i;
}
}
return 0.f;
-
}
-
-b3Scalar b3PgsJacobiSolver::solveSingleIteration(int iteration,b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal)
+b3Scalar b3PgsJacobiSolver::solveSingleIteration(int iteration, b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal)
{
-
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
int numConstraintPool = m_tmpSolverContactConstraintPool.size();
int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
-
+
if (infoGlobal.m_solverMode & B3_SOLVER_RANDMIZE_ORDER)
{
- if (1) // uncomment this for a bit less random ((iteration & 7) == 0)
+ if (1) // uncomment this for a bit less random ((iteration & 7) == 0)
{
-
- for (int j=0; j<numNonContactPool; ++j) {
+ for (int j = 0; j < numNonContactPool; ++j)
+ {
int tmp = m_orderNonContactConstraintPool[j];
- int swapi = b3RandInt2(j+1);
+ int swapi = b3RandInt2(j + 1);
m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi];
m_orderNonContactConstraintPool[swapi] = tmp;
}
- //contact/friction constraints are not solved more than
- if (iteration< infoGlobal.m_numIterations)
+ //contact/friction constraints are not solved more than
+ if (iteration < infoGlobal.m_numIterations)
{
- for (int j=0; j<numConstraintPool; ++j) {
+ for (int j = 0; j < numConstraintPool; ++j)
+ {
int tmp = m_orderTmpConstraintPool[j];
- int swapi = b3RandInt2(j+1);
+ int swapi = b3RandInt2(j + 1);
m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
m_orderTmpConstraintPool[swapi] = tmp;
}
- for (int j=0; j<numFrictionPool; ++j) {
+ for (int j = 0; j < numFrictionPool; ++j)
+ {
int tmp = m_orderFrictionConstraintPool[j];
- int swapi = b3RandInt2(j+1);
+ int swapi = b3RandInt2(j + 1);
m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
m_orderFrictionConstraintPool[swapi] = tmp;
}
@@ -1421,173 +1321,163 @@ b3Scalar b3PgsJacobiSolver::solveSingleIteration(int iteration,b3TypedConstraint
if (infoGlobal.m_solverMode & B3_SOLVER_SIMD)
{
///solve all joint constraints, using SIMD, if available
- for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ for (int j = 0; j < m_tmpSolverNonContactConstraintPool.size(); j++)
{
b3SolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
if (iteration < constraint.m_overrideNumSolverIterations)
- resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
+ resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[constraint.m_solverBodyIdA], m_tmpSolverBodyPool[constraint.m_solverBodyIdB], constraint);
}
- if (iteration< infoGlobal.m_numIterations)
+ if (iteration < infoGlobal.m_numIterations)
{
-
///solve all contact constraints using SIMD, if available
if (infoGlobal.m_solverMode & B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
- int multiplier = (infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1;
+ int multiplier = (infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS) ? 2 : 1;
- for (int c=0;c<numPoolConstraints;c++)
+ for (int c = 0; c < numPoolConstraints; c++)
{
- b3Scalar totalImpulse =0;
+ b3Scalar totalImpulse = 0;
{
const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
- resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
totalImpulse = solveManifold.m_appliedImpulse;
}
bool applyFriction = true;
if (applyFriction)
{
{
+ b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c * multiplier]];
- b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]];
-
- if (totalImpulse>b3Scalar(0))
+ if (totalImpulse > b3Scalar(0))
{
- solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
- solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction * totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction * totalImpulse;
- resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
}
if (infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)
{
+ b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c * multiplier + 1]];
- b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]];
-
- if (totalImpulse>b3Scalar(0))
+ if (totalImpulse > b3Scalar(0))
{
- solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
- solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction * totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction * totalImpulse;
- resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
}
}
}
-
}
- else//B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
+ else //B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
{
//solve the friction constraints after all contact constraints, don't interleave them
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
- for (j=0;j<numPoolConstraints;j++)
+ for (j = 0; j < numPoolConstraints; j++)
{
const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
- resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
-
+ resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
if (!m_usePgs)
averageVelocities();
-
///solve all friction constraints, using SIMD, if available
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
- for (j=0;j<numFrictionPoolConstraints;j++)
+ for (j = 0; j < numFrictionPoolConstraints; j++)
{
b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
- if (totalImpulse>b3Scalar(0))
+ if (totalImpulse > b3Scalar(0))
{
- solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
- solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction * totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction * totalImpulse;
- resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
}
-
int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
- for (j=0;j<numRollingFrictionPoolConstraints;j++)
+ for (j = 0; j < numRollingFrictionPoolConstraints; j++)
{
-
b3SolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
- if (totalImpulse>b3Scalar(0))
+ if (totalImpulse > b3Scalar(0))
{
- b3Scalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
- if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
+ b3Scalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction * totalImpulse;
+ if (rollingFrictionMagnitude > rollingFrictionConstraint.m_friction)
rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
- resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
+ resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA], m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB], rollingFrictionConstraint);
}
}
-
-
- }
+ }
}
- } else
+ }
+ else
{
//non-SIMD version
///solve all joint constraints
- for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ for (int j = 0; j < m_tmpSolverNonContactConstraintPool.size(); j++)
{
b3SolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
if (iteration < constraint.m_overrideNumSolverIterations)
- resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
+ resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA], m_tmpSolverBodyPool[constraint.m_solverBodyIdB], constraint);
}
- if (iteration< infoGlobal.m_numIterations)
+ if (iteration < infoGlobal.m_numIterations)
{
-
///solve all contact constraints
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
- for (int j=0;j<numPoolConstraints;j++)
+ for (int j = 0; j < numPoolConstraints; j++)
{
const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
- resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
///solve all friction constraints
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
- for (int j=0;j<numFrictionPoolConstraints;j++)
+ for (int j = 0; j < numFrictionPoolConstraints; j++)
{
b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
- if (totalImpulse>b3Scalar(0))
+ if (totalImpulse > b3Scalar(0))
{
- solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
- solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction * totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction * totalImpulse;
- resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
}
int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
- for (int j=0;j<numRollingFrictionPoolConstraints;j++)
+ for (int j = 0; j < numRollingFrictionPoolConstraints; j++)
{
b3SolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
- if (totalImpulse>b3Scalar(0))
+ if (totalImpulse > b3Scalar(0))
{
- b3Scalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
- if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
+ b3Scalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction * totalImpulse;
+ if (rollingFrictionMagnitude > rollingFrictionConstraint.m_friction)
rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
- resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
+ resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA], m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB], rollingFrictionConstraint);
}
}
}
@@ -1595,40 +1485,39 @@ b3Scalar b3PgsJacobiSolver::solveSingleIteration(int iteration,b3TypedConstraint
return 0.f;
}
-
-void b3PgsJacobiSolver::solveGroupCacheFriendlySplitImpulseIterations(b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal)
+void b3PgsJacobiSolver::solveGroupCacheFriendlySplitImpulseIterations(b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal)
{
int iteration;
if (infoGlobal.m_splitImpulse)
{
if (infoGlobal.m_solverMode & B3_SOLVER_SIMD)
{
- for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
+ for (iteration = 0; iteration < infoGlobal.m_numIterations; iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
- for (j=0;j<numPoolConstraints;j++)
+ for (j = 0; j < numPoolConstraints; j++)
{
const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
- resolveSplitPenetrationSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSplitPenetrationSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
}
}
}
else
{
- for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
+ for (iteration = 0; iteration < infoGlobal.m_numIterations; iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
- for (j=0;j<numPoolConstraints;j++)
+ for (j = 0; j < numPoolConstraints; j++)
{
const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
- resolveSplitPenetrationImpulseCacheFriendly(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSplitPenetrationImpulseCacheFriendly(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
}
}
}
@@ -1636,100 +1525,95 @@ void b3PgsJacobiSolver::solveGroupCacheFriendlySplitImpulseIterations(b3TypedCon
}
}
-b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyIterations(b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal)
+b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyIterations(b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal)
{
B3_PROFILE("solveGroupCacheFriendlyIterations");
{
///this is a special step to resolve penetrations (just for contacts)
- solveGroupCacheFriendlySplitImpulseIterations(constraints,numConstraints,infoGlobal);
+ solveGroupCacheFriendlySplitImpulseIterations(constraints, numConstraints, infoGlobal);
- int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
+ int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations ? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
- for ( int iteration = 0 ; iteration< maxIterations ; iteration++)
+ for (int iteration = 0; iteration < maxIterations; iteration++)
//for ( int iteration = maxIterations-1 ; iteration >= 0;iteration--)
- {
-
- solveSingleIteration(iteration, constraints,numConstraints,infoGlobal);
-
+ {
+ solveSingleIteration(iteration, constraints, numConstraints, infoGlobal);
if (!m_usePgs)
{
averageVelocities();
}
}
-
}
return 0.f;
}
-void b3PgsJacobiSolver::averageVelocities()
+void b3PgsJacobiSolver::averageVelocities()
{
B3_PROFILE("averaging");
//average the velocities
int numBodies = m_bodyCount.size();
m_deltaLinearVelocities.resize(0);
- m_deltaLinearVelocities.resize(numBodies,b3MakeVector3(0,0,0));
+ m_deltaLinearVelocities.resize(numBodies, b3MakeVector3(0, 0, 0));
m_deltaAngularVelocities.resize(0);
- m_deltaAngularVelocities.resize(numBodies,b3MakeVector3(0,0,0));
+ m_deltaAngularVelocities.resize(numBodies, b3MakeVector3(0, 0, 0));
- for (int i=0;i<m_tmpSolverBodyPool.size();i++)
+ for (int i = 0; i < m_tmpSolverBodyPool.size(); i++)
{
if (!m_tmpSolverBodyPool[i].m_invMass.isZero())
{
int orgBodyIndex = m_tmpSolverBodyPool[i].m_originalBodyIndex;
- m_deltaLinearVelocities[orgBodyIndex]+=m_tmpSolverBodyPool[i].getDeltaLinearVelocity();
- m_deltaAngularVelocities[orgBodyIndex]+=m_tmpSolverBodyPool[i].getDeltaAngularVelocity();
+ m_deltaLinearVelocities[orgBodyIndex] += m_tmpSolverBodyPool[i].getDeltaLinearVelocity();
+ m_deltaAngularVelocities[orgBodyIndex] += m_tmpSolverBodyPool[i].getDeltaAngularVelocity();
}
}
-
- for (int i=0;i<m_tmpSolverBodyPool.size();i++)
+
+ for (int i = 0; i < m_tmpSolverBodyPool.size(); i++)
{
int orgBodyIndex = m_tmpSolverBodyPool[i].m_originalBodyIndex;
if (!m_tmpSolverBodyPool[i].m_invMass.isZero())
{
-
b3Assert(m_bodyCount[orgBodyIndex] == m_bodyCountCheck[orgBodyIndex]);
-
- b3Scalar factor = 1.f/b3Scalar(m_bodyCount[orgBodyIndex]);
-
- m_tmpSolverBodyPool[i].m_deltaLinearVelocity = m_deltaLinearVelocities[orgBodyIndex]*factor;
- m_tmpSolverBodyPool[i].m_deltaAngularVelocity = m_deltaAngularVelocities[orgBodyIndex]*factor;
+ b3Scalar factor = 1.f / b3Scalar(m_bodyCount[orgBodyIndex]);
+
+ m_tmpSolverBodyPool[i].m_deltaLinearVelocity = m_deltaLinearVelocities[orgBodyIndex] * factor;
+ m_tmpSolverBodyPool[i].m_deltaAngularVelocity = m_deltaAngularVelocities[orgBodyIndex] * factor;
}
}
}
-b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodies,b3InertiaData* inertias,int numBodies,const b3ContactSolverInfo& infoGlobal)
+b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, const b3ContactSolverInfo& infoGlobal)
{
B3_PROFILE("solveGroupCacheFriendlyFinish");
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
- int i,j;
+ int i, j;
if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING)
{
- for (j=0;j<numPoolConstraints;j++)
+ for (j = 0; j < numPoolConstraints; j++)
{
const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j];
- b3ContactPoint* pt = (b3ContactPoint*) solveManifold.m_originalContactPoint;
+ b3ContactPoint* pt = (b3ContactPoint*)solveManifold.m_originalContactPoint;
b3Assert(pt);
pt->m_appliedImpulse = solveManifold.m_appliedImpulse;
- // float f = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+ // float f = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
// printf("pt->m_appliedImpulseLateral1 = %f\n", f);
pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
//printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS))
{
- pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse;
+ pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex + 1].m_appliedImpulse;
}
//do a callback here?
}
}
numPoolConstraints = m_tmpSolverNonContactConstraintPool.size();
- for (j=0;j<numPoolConstraints;j++)
+ for (j = 0; j < numPoolConstraints; j++)
{
const b3SolverConstraint& solverConstr = m_tmpSolverNonContactConstraintPool[j];
b3TypedConstraint* constr = (b3TypedConstraint*)solverConstr.m_originalContactPoint;
@@ -1739,15 +1623,14 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodie
b3SolverBody* bodyA = &m_tmpSolverBodyPool[solverConstr.m_solverBodyIdA];
b3SolverBody* bodyB = &m_tmpSolverBodyPool[solverConstr.m_solverBodyIdB];
- fb->m_appliedForceBodyA += solverConstr.m_contactNormal*solverConstr.m_appliedImpulse*bodyA->m_linearFactor/infoGlobal.m_timeStep;
- fb->m_appliedForceBodyB += -solverConstr.m_contactNormal*solverConstr.m_appliedImpulse*bodyB->m_linearFactor/infoGlobal.m_timeStep;
- fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal* bodyA->m_angularFactor*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep;
- fb->m_appliedTorqueBodyB += -solverConstr.m_relpos1CrossNormal* bodyB->m_angularFactor*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep;
-
+ fb->m_appliedForceBodyA += solverConstr.m_contactNormal * solverConstr.m_appliedImpulse * bodyA->m_linearFactor / infoGlobal.m_timeStep;
+ fb->m_appliedForceBodyB += -solverConstr.m_contactNormal * solverConstr.m_appliedImpulse * bodyB->m_linearFactor / infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal * bodyA->m_angularFactor * solverConstr.m_appliedImpulse / infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyB += -solverConstr.m_relpos1CrossNormal * bodyB->m_angularFactor * solverConstr.m_appliedImpulse / infoGlobal.m_timeStep;
}
constr->internalSetAppliedImpulse(solverConstr.m_appliedImpulse);
- if (b3Fabs(solverConstr.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
+ if (b3Fabs(solverConstr.m_appliedImpulse) >= constr->getBreakingImpulseThreshold())
{
constr->setEnabled(false);
}
@@ -1755,7 +1638,7 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodie
{
B3_PROFILE("write back velocities and transforms");
- for ( i=0;i<m_tmpSolverBodyPool.size();i++)
+ for (i = 0; i < m_tmpSolverBodyPool.size(); i++)
{
int bodyIndex = m_tmpSolverBodyPool[i].m_originalBodyIndex;
//b3Assert(i==bodyIndex);
@@ -1772,12 +1655,13 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodie
{
body->m_linVel = m_tmpSolverBodyPool[i].m_linearVelocity;
body->m_angVel = m_tmpSolverBodyPool[i].m_angularVelocity;
- } else
+ }
+ else
{
- b3Scalar factor = 1.f/b3Scalar(m_bodyCount[bodyIndex]);
+ b3Scalar factor = 1.f / b3Scalar(m_bodyCount[bodyIndex]);
- b3Vector3 deltaLinVel = m_deltaLinearVelocities[bodyIndex]*factor;
- b3Vector3 deltaAngVel = m_deltaAngularVelocities[bodyIndex]*factor;
+ b3Vector3 deltaLinVel = m_deltaLinearVelocities[bodyIndex] * factor;
+ b3Vector3 deltaAngVel = m_deltaAngularVelocities[bodyIndex] * factor;
//printf("body %d\n",bodyIndex);
//printf("deltaLinVel = %f,%f,%f\n",deltaLinVel.getX(),deltaLinVel.getY(),deltaLinVel.getZ());
//printf("deltaAngVel = %f,%f,%f\n",deltaAngVel.getX(),deltaAngVel.getY(),deltaAngVel.getZ());
@@ -1785,7 +1669,7 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodie
body->m_linVel += deltaLinVel;
body->m_angVel += deltaAngVel;
}
-
+
if (infoGlobal.m_splitImpulse)
{
body->m_pos = m_tmpSolverBodyPool[i].m_worldTransform.getOrigin();
@@ -1797,7 +1681,6 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodie
}
}
-
m_tmpSolverContactConstraintPool.resizeNoInitialize(0);
m_tmpSolverNonContactConstraintPool.resizeNoInitialize(0);
m_tmpSolverContactFrictionConstraintPool.resizeNoInitialize(0);
@@ -1807,9 +1690,7 @@ b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodie
return 0.f;
}
-
-
-void b3PgsJacobiSolver::reset()
+void b3PgsJacobiSolver::reset()
{
m_btSeed2 = 0;
} \ No newline at end of file
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.h
index d2ca307fab..5b616541d9 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.h
@@ -1,11 +1,9 @@
#ifndef B3_PGS_JACOBI_SOLVER
#define B3_PGS_JACOBI_SOLVER
-
struct b3Contact4;
struct b3ContactPoint;
-
class b3Dispatcher;
#include "b3TypedConstraint.h"
@@ -18,132 +16,118 @@ struct b3InertiaData;
class b3PgsJacobiSolver
{
-
protected:
- b3AlignedObjectArray<b3SolverBody> m_tmpSolverBodyPool;
- b3ConstraintArray m_tmpSolverContactConstraintPool;
- b3ConstraintArray m_tmpSolverNonContactConstraintPool;
- b3ConstraintArray m_tmpSolverContactFrictionConstraintPool;
- b3ConstraintArray m_tmpSolverContactRollingFrictionConstraintPool;
-
- b3AlignedObjectArray<int> m_orderTmpConstraintPool;
- b3AlignedObjectArray<int> m_orderNonContactConstraintPool;
- b3AlignedObjectArray<int> m_orderFrictionConstraintPool;
+ b3AlignedObjectArray<b3SolverBody> m_tmpSolverBodyPool;
+ b3ConstraintArray m_tmpSolverContactConstraintPool;
+ b3ConstraintArray m_tmpSolverNonContactConstraintPool;
+ b3ConstraintArray m_tmpSolverContactFrictionConstraintPool;
+ b3ConstraintArray m_tmpSolverContactRollingFrictionConstraintPool;
+
+ b3AlignedObjectArray<int> m_orderTmpConstraintPool;
+ b3AlignedObjectArray<int> m_orderNonContactConstraintPool;
+ b3AlignedObjectArray<int> m_orderFrictionConstraintPool;
b3AlignedObjectArray<b3TypedConstraint::b3ConstraintInfo1> m_tmpConstraintSizesPool;
-
- b3AlignedObjectArray<int> m_bodyCount;
- b3AlignedObjectArray<int> m_bodyCountCheck;
-
- b3AlignedObjectArray<b3Vector3> m_deltaLinearVelocities;
- b3AlignedObjectArray<b3Vector3> m_deltaAngularVelocities;
- bool m_usePgs;
- void averageVelocities();
+ b3AlignedObjectArray<int> m_bodyCount;
+ b3AlignedObjectArray<int> m_bodyCountCheck;
+
+ b3AlignedObjectArray<b3Vector3> m_deltaLinearVelocities;
+ b3AlignedObjectArray<b3Vector3> m_deltaAngularVelocities;
+
+ bool m_usePgs;
+ void averageVelocities();
- int m_maxOverrideNumSolverIterations;
+ int m_maxOverrideNumSolverIterations;
- int m_numSplitImpulseRecoveries;
+ int m_numSplitImpulseRecoveries;
- b3Scalar getContactProcessingThreshold(b3Contact4* contact)
+ b3Scalar getContactProcessingThreshold(b3Contact4* contact)
{
return 0.02f;
}
- void setupFrictionConstraint( b3RigidBodyData* bodies,b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
- b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,
- b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation,
- b3Scalar desiredVelocity=0., b3Scalar cfmSlip=0.);
+ void setupFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
+ b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2,
+ b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation,
+ b3Scalar desiredVelocity = 0., b3Scalar cfmSlip = 0.);
- void setupRollingFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
- b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,
- b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation,
- b3Scalar desiredVelocity=0., b3Scalar cfmSlip=0.);
-
- b3SolverConstraint& addFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias,const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity=0., b3Scalar cfmSlip=0.);
- b3SolverConstraint& addRollingFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias,const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity=0, b3Scalar cfmSlip=0.f);
+ void setupRollingFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
+ b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2,
+ b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation,
+ b3Scalar desiredVelocity = 0., b3Scalar cfmSlip = 0.);
+ b3SolverConstraint& addFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, const b3Vector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2, b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity = 0., b3Scalar cfmSlip = 0.);
+ b3SolverConstraint& addRollingFrictionConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias, const b3Vector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, b3ContactPoint& cp, const b3Vector3& rel_pos1, const b3Vector3& rel_pos2, b3RigidBodyData* colObj0, b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity = 0, b3Scalar cfmSlip = 0.f);
void setupContactConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias,
- b3SolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, b3ContactPoint& cp,
- const b3ContactSolverInfo& infoGlobal, b3Vector3& vel, b3Scalar& rel_vel, b3Scalar& relaxation,
+ b3SolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, b3ContactPoint& cp,
+ const b3ContactSolverInfo& infoGlobal, b3Vector3& vel, b3Scalar& rel_vel, b3Scalar& relaxation,
b3Vector3& rel_pos1, b3Vector3& rel_pos2);
- void setFrictionConstraintImpulse( b3RigidBodyData* bodies, b3InertiaData* inertias,b3SolverConstraint& solverConstraint, int solverBodyIdA,int solverBodyIdB,
- b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal);
+ void setFrictionConstraintImpulse(b3RigidBodyData* bodies, b3InertiaData* inertias, b3SolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB,
+ b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal);
///m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
- unsigned long m_btSeed2;
+ unsigned long m_btSeed2;
-
b3Scalar restitutionCurve(b3Scalar rel_vel, b3Scalar restitution);
- void convertContact(b3RigidBodyData* bodies, b3InertiaData* inertias,b3Contact4* manifold,const b3ContactSolverInfo& infoGlobal);
-
+ void convertContact(b3RigidBodyData* bodies, b3InertiaData* inertias, b3Contact4* manifold, const b3ContactSolverInfo& infoGlobal);
- void resolveSplitPenetrationSIMD(
- b3SolverBody& bodyA,b3SolverBody& bodyB,
- const b3SolverConstraint& contactConstraint);
+ void resolveSplitPenetrationSIMD(
+ b3SolverBody& bodyA, b3SolverBody& bodyB,
+ const b3SolverConstraint& contactConstraint);
- void resolveSplitPenetrationImpulseCacheFriendly(
- b3SolverBody& bodyA,b3SolverBody& bodyB,
- const b3SolverConstraint& contactConstraint);
+ void resolveSplitPenetrationImpulseCacheFriendly(
+ b3SolverBody& bodyA, b3SolverBody& bodyB,
+ const b3SolverConstraint& contactConstraint);
//internal method
- int getOrInitSolverBody(int bodyIndex, b3RigidBodyData* bodies,b3InertiaData* inertias);
- void initSolverBody(int bodyIndex, b3SolverBody* solverBody, b3RigidBodyData* collisionObject);
+ int getOrInitSolverBody(int bodyIndex, b3RigidBodyData* bodies, b3InertiaData* inertias);
+ void initSolverBody(int bodyIndex, b3SolverBody* solverBody, b3RigidBodyData* collisionObject);
- void resolveSingleConstraintRowGeneric(b3SolverBody& bodyA,b3SolverBody& bodyB,const b3SolverConstraint& contactConstraint);
-
- void resolveSingleConstraintRowGenericSIMD(b3SolverBody& bodyA,b3SolverBody& bodyB,const b3SolverConstraint& contactConstraint);
-
- void resolveSingleConstraintRowLowerLimit(b3SolverBody& bodyA,b3SolverBody& bodyB,const b3SolverConstraint& contactConstraint);
-
- void resolveSingleConstraintRowLowerLimitSIMD(b3SolverBody& bodyA,b3SolverBody& bodyB,const b3SolverConstraint& contactConstraint);
-
-protected:
+ void resolveSingleConstraintRowGeneric(b3SolverBody& bodyA, b3SolverBody& bodyB, const b3SolverConstraint& contactConstraint);
- virtual b3Scalar solveGroupCacheFriendlySetup(b3RigidBodyData* bodies, b3InertiaData* inertias,int numBodies,b3Contact4* manifoldPtr, int numManifolds,b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal);
+ void resolveSingleConstraintRowGenericSIMD(b3SolverBody& bodyA, b3SolverBody& bodyB, const b3SolverConstraint& contactConstraint);
+ void resolveSingleConstraintRowLowerLimit(b3SolverBody& bodyA, b3SolverBody& bodyB, const b3SolverConstraint& contactConstraint);
- virtual b3Scalar solveGroupCacheFriendlyIterations(b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal);
- virtual void solveGroupCacheFriendlySplitImpulseIterations(b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal);
- b3Scalar solveSingleIteration(int iteration, b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal);
+ void resolveSingleConstraintRowLowerLimitSIMD(b3SolverBody& bodyA, b3SolverBody& bodyB, const b3SolverConstraint& contactConstraint);
+protected:
+ virtual b3Scalar solveGroupCacheFriendlySetup(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, b3Contact4* manifoldPtr, int numManifolds, b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal);
- virtual b3Scalar solveGroupCacheFriendlyFinish(b3RigidBodyData* bodies, b3InertiaData* inertias,int numBodies,const b3ContactSolverInfo& infoGlobal);
+ virtual b3Scalar solveGroupCacheFriendlyIterations(b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal);
+ virtual void solveGroupCacheFriendlySplitImpulseIterations(b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal);
+ b3Scalar solveSingleIteration(int iteration, b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal);
+ virtual b3Scalar solveGroupCacheFriendlyFinish(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, const b3ContactSolverInfo& infoGlobal);
public:
-
B3_DECLARE_ALIGNED_ALLOCATOR();
-
+
b3PgsJacobiSolver(bool usePgs);
virtual ~b3PgsJacobiSolver();
-// void solveContacts(int numBodies, b3RigidBodyData* bodies, b3InertiaData* inertias, int numContacts, b3Contact4* contacts);
- void solveContacts(int numBodies, b3RigidBodyData* bodies, b3InertiaData* inertias, int numContacts, b3Contact4* contacts, int numConstraints, b3TypedConstraint** constraints);
+ // void solveContacts(int numBodies, b3RigidBodyData* bodies, b3InertiaData* inertias, int numContacts, b3Contact4* contacts);
+ void solveContacts(int numBodies, b3RigidBodyData* bodies, b3InertiaData* inertias, int numContacts, b3Contact4* contacts, int numConstraints, b3TypedConstraint** constraints);
- b3Scalar solveGroup(b3RigidBodyData* bodies,b3InertiaData* inertias,int numBodies,b3Contact4* manifoldPtr, int numManifolds,b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal);
+ b3Scalar solveGroup(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, b3Contact4* manifoldPtr, int numManifolds, b3TypedConstraint** constraints, int numConstraints, const b3ContactSolverInfo& infoGlobal);
///clear internal cached data and reset random seed
- virtual void reset();
-
+ virtual void reset();
+
unsigned long b3Rand2();
- int b3RandInt2 (int n);
+ int b3RandInt2(int n);
- void setRandSeed(unsigned long seed)
+ void setRandSeed(unsigned long seed)
{
m_btSeed2 = seed;
}
- unsigned long getRandSeed() const
+ unsigned long getRandSeed() const
{
return m_btSeed2;
}
-
-
-
-
};
-#endif //B3_PGS_JACOBI_SOLVER
-
+#endif //B3_PGS_JACOBI_SOLVER
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.cpp b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.cpp
index 02c11db320..cfa7c7dd11 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.cpp
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.cpp
@@ -13,21 +13,14 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-
#include "b3Point2PointConstraint.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
#include <new>
-
-
-
-
-b3Point2PointConstraint::b3Point2PointConstraint(int rbA,int rbB, const b3Vector3& pivotInA,const b3Vector3& pivotInB)
-:b3TypedConstraint(B3_POINT2POINT_CONSTRAINT_TYPE,rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
-m_flags(0)
+b3Point2PointConstraint::b3Point2PointConstraint(int rbA, int rbB, const b3Vector3& pivotInA, const b3Vector3& pivotInB)
+ : b3TypedConstraint(B3_POINT2POINT_CONSTRAINT_TYPE, rbA, rbB), m_pivotInA(pivotInA), m_pivotInB(pivotInB), m_flags(0)
{
-
}
/*
@@ -40,22 +33,18 @@ m_useSolveConstraintObsolete(false)
}
*/
-
-void b3Point2PointConstraint::getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies)
+void b3Point2PointConstraint::getInfo1(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
{
- getInfo1NonVirtual(info,bodies);
+ getInfo1NonVirtual(info, bodies);
}
-void b3Point2PointConstraint::getInfo1NonVirtual (b3ConstraintInfo1* info,const b3RigidBodyData* bodies)
+void b3Point2PointConstraint::getInfo1NonVirtual(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
{
- info->m_numConstraintRows = 3;
- info->nub = 3;
+ info->m_numConstraintRows = 3;
+ info->nub = 3;
}
-
-
-
-void b3Point2PointConstraint::getInfo2 (b3ConstraintInfo2* info, const b3RigidBodyData* bodies)
+void b3Point2PointConstraint::getInfo2(b3ConstraintInfo2* info, const b3RigidBodyData* bodies)
{
b3Transform trA;
trA.setIdentity();
@@ -67,143 +56,135 @@ void b3Point2PointConstraint::getInfo2 (b3ConstraintInfo2* info, const b3RigidBo
trB.setOrigin(bodies[m_rbB].m_pos);
trB.setRotation(bodies[m_rbB].m_quat);
- getInfo2NonVirtual(info, trA,trB);
+ getInfo2NonVirtual(info, trA, trB);
}
-void b3Point2PointConstraint::getInfo2NonVirtual (b3ConstraintInfo2* info, const b3Transform& body0_trans, const b3Transform& body1_trans)
+void b3Point2PointConstraint::getInfo2NonVirtual(b3ConstraintInfo2* info, const b3Transform& body0_trans, const b3Transform& body1_trans)
{
-
- //retrieve matrices
+ //retrieve matrices
// anchor points in global coordinates with respect to body PORs.
-
- // set jacobian
- info->m_J1linearAxis[0] = 1;
- info->m_J1linearAxis[info->rowskip+1] = 1;
- info->m_J1linearAxis[2*info->rowskip+2] = 1;
- b3Vector3 a1 = body0_trans.getBasis()*getPivotInA();
+ // set jacobian
+ info->m_J1linearAxis[0] = 1;
+ info->m_J1linearAxis[info->rowskip + 1] = 1;
+ info->m_J1linearAxis[2 * info->rowskip + 2] = 1;
+
+ b3Vector3 a1 = body0_trans.getBasis() * getPivotInA();
//b3Vector3 a1a = b3QuatRotate(body0_trans.getRotation(),getPivotInA());
{
b3Vector3* angular0 = (b3Vector3*)(info->m_J1angularAxis);
- b3Vector3* angular1 = (b3Vector3*)(info->m_J1angularAxis+info->rowskip);
- b3Vector3* angular2 = (b3Vector3*)(info->m_J1angularAxis+2*info->rowskip);
+ b3Vector3* angular1 = (b3Vector3*)(info->m_J1angularAxis + info->rowskip);
+ b3Vector3* angular2 = (b3Vector3*)(info->m_J1angularAxis + 2 * info->rowskip);
b3Vector3 a1neg = -a1;
- a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ a1neg.getSkewSymmetricMatrix(angular0, angular1, angular2);
}
-
+
if (info->m_J2linearAxis)
{
info->m_J2linearAxis[0] = -1;
- info->m_J2linearAxis[info->rowskip+1] = -1;
- info->m_J2linearAxis[2*info->rowskip+2] = -1;
+ info->m_J2linearAxis[info->rowskip + 1] = -1;
+ info->m_J2linearAxis[2 * info->rowskip + 2] = -1;
}
-
- b3Vector3 a2 = body1_trans.getBasis()*getPivotInB();
-
+
+ b3Vector3 a2 = body1_trans.getBasis() * getPivotInB();
+
{
- // b3Vector3 a2n = -a2;
+ // b3Vector3 a2n = -a2;
b3Vector3* angular0 = (b3Vector3*)(info->m_J2angularAxis);
- b3Vector3* angular1 = (b3Vector3*)(info->m_J2angularAxis+info->rowskip);
- b3Vector3* angular2 = (b3Vector3*)(info->m_J2angularAxis+2*info->rowskip);
- a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ b3Vector3* angular1 = (b3Vector3*)(info->m_J2angularAxis + info->rowskip);
+ b3Vector3* angular2 = (b3Vector3*)(info->m_J2angularAxis + 2 * info->rowskip);
+ a2.getSkewSymmetricMatrix(angular0, angular1, angular2);
}
-
-
- // set right hand side
+ // set right hand side
b3Scalar currERP = (m_flags & B3_P2P_FLAGS_ERP) ? m_erp : info->erp;
- b3Scalar k = info->fps * currERP;
- int j;
- for (j=0; j<3; j++)
- {
- info->m_constraintError[j*info->rowskip] = k * (a2[j] + body1_trans.getOrigin()[j] - a1[j] - body0_trans.getOrigin()[j]);
+ b3Scalar k = info->fps * currERP;
+ int j;
+ for (j = 0; j < 3; j++)
+ {
+ info->m_constraintError[j * info->rowskip] = k * (a2[j] + body1_trans.getOrigin()[j] - a1[j] - body0_trans.getOrigin()[j]);
//printf("info->m_constraintError[%d]=%f\n",j,info->m_constraintError[j]);
- }
- if(m_flags & B3_P2P_FLAGS_CFM)
+ }
+ if (m_flags & B3_P2P_FLAGS_CFM)
{
- for (j=0; j<3; j++)
+ for (j = 0; j < 3; j++)
{
- info->cfm[j*info->rowskip] = m_cfm;
+ info->cfm[j * info->rowskip] = m_cfm;
}
}
- b3Scalar impulseClamp = m_setting.m_impulseClamp;//
- for (j=0; j<3; j++)
- {
+ b3Scalar impulseClamp = m_setting.m_impulseClamp; //
+ for (j = 0; j < 3; j++)
+ {
if (m_setting.m_impulseClamp > 0)
{
- info->m_lowerLimit[j*info->rowskip] = -impulseClamp;
- info->m_upperLimit[j*info->rowskip] = impulseClamp;
+ info->m_lowerLimit[j * info->rowskip] = -impulseClamp;
+ info->m_upperLimit[j * info->rowskip] = impulseClamp;
}
}
info->m_damping = m_setting.m_damping;
-
}
-
-
-void b3Point2PointConstraint::updateRHS(b3Scalar timeStep)
+void b3Point2PointConstraint::updateRHS(b3Scalar timeStep)
{
(void)timeStep;
-
}
-///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
void b3Point2PointConstraint::setParam(int num, b3Scalar value, int axis)
{
- if(axis != -1)
+ if (axis != -1)
{
b3AssertConstrParams(0);
}
else
{
- switch(num)
+ switch (num)
{
- case B3_CONSTRAINT_ERP :
- case B3_CONSTRAINT_STOP_ERP :
- m_erp = value;
+ case B3_CONSTRAINT_ERP:
+ case B3_CONSTRAINT_STOP_ERP:
+ m_erp = value;
m_flags |= B3_P2P_FLAGS_ERP;
break;
- case B3_CONSTRAINT_CFM :
- case B3_CONSTRAINT_STOP_CFM :
- m_cfm = value;
+ case B3_CONSTRAINT_CFM:
+ case B3_CONSTRAINT_STOP_CFM:
+ m_cfm = value;
m_flags |= B3_P2P_FLAGS_CFM;
break;
- default:
+ default:
b3AssertConstrParams(0);
}
}
}
///return the local value of parameter
-b3Scalar b3Point2PointConstraint::getParam(int num, int axis) const
+b3Scalar b3Point2PointConstraint::getParam(int num, int axis) const
{
b3Scalar retVal(B3_INFINITY);
- if(axis != -1)
+ if (axis != -1)
{
b3AssertConstrParams(0);
}
else
{
- switch(num)
+ switch (num)
{
- case B3_CONSTRAINT_ERP :
- case B3_CONSTRAINT_STOP_ERP :
+ case B3_CONSTRAINT_ERP:
+ case B3_CONSTRAINT_STOP_ERP:
b3AssertConstrParams(m_flags & B3_P2P_FLAGS_ERP);
- retVal = m_erp;
+ retVal = m_erp;
break;
- case B3_CONSTRAINT_CFM :
- case B3_CONSTRAINT_STOP_CFM :
+ case B3_CONSTRAINT_CFM:
+ case B3_CONSTRAINT_STOP_CFM:
b3AssertConstrParams(m_flags & B3_P2P_FLAGS_CFM);
- retVal = m_cfm;
+ retVal = m_cfm;
break;
- default:
+ default:
b3AssertConstrParams(0);
}
}
return retVal;
}
-
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.h
index 681b487334..14762a3e35 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Point2PointConstraint.h
@@ -22,26 +22,24 @@ subject to the following restrictions:
class b3RigidBody;
-
#ifdef B3_USE_DOUBLE_PRECISION
-#define b3Point2PointConstraintData b3Point2PointConstraintDoubleData
-#define b3Point2PointConstraintDataName "b3Point2PointConstraintDoubleData"
+#define b3Point2PointConstraintData b3Point2PointConstraintDoubleData
+#define b3Point2PointConstraintDataName "b3Point2PointConstraintDoubleData"
#else
-#define b3Point2PointConstraintData b3Point2PointConstraintFloatData
-#define b3Point2PointConstraintDataName "b3Point2PointConstraintFloatData"
-#endif //B3_USE_DOUBLE_PRECISION
+#define b3Point2PointConstraintData b3Point2PointConstraintFloatData
+#define b3Point2PointConstraintDataName "b3Point2PointConstraintFloatData"
+#endif //B3_USE_DOUBLE_PRECISION
-struct b3ConstraintSetting
+struct b3ConstraintSetting
{
- b3ConstraintSetting() :
- m_tau(b3Scalar(0.3)),
- m_damping(b3Scalar(1.)),
- m_impulseClamp(b3Scalar(0.))
+ b3ConstraintSetting() : m_tau(b3Scalar(0.3)),
+ m_damping(b3Scalar(1.)),
+ m_impulseClamp(b3Scalar(0.))
{
}
- b3Scalar m_tau;
- b3Scalar m_damping;
- b3Scalar m_impulseClamp;
+ b3Scalar m_tau;
+ b3Scalar m_damping;
+ b3Scalar m_impulseClamp;
};
enum b3Point2PointFlags
@@ -51,47 +49,45 @@ enum b3Point2PointFlags
};
/// point to point constraint between two rigidbodies each with a pivotpoint that descibes the 'ballsocket' location in local space
-B3_ATTRIBUTE_ALIGNED16(class) b3Point2PointConstraint : public b3TypedConstraint
+B3_ATTRIBUTE_ALIGNED16(class)
+b3Point2PointConstraint : public b3TypedConstraint
{
#ifdef IN_PARALLELL_SOLVER
public:
#endif
-
- b3Vector3 m_pivotInA;
- b3Vector3 m_pivotInB;
-
- int m_flags;
- b3Scalar m_erp;
- b3Scalar m_cfm;
-
-public:
- B3_DECLARE_ALIGNED_ALLOCATOR();
+ b3Vector3 m_pivotInA;
+ b3Vector3 m_pivotInB;
- b3ConstraintSetting m_setting;
+ int m_flags;
+ b3Scalar m_erp;
+ b3Scalar m_cfm;
- b3Point2PointConstraint(int rbA,int rbB, const b3Vector3& pivotInA,const b3Vector3& pivotInB);
+public:
+ B3_DECLARE_ALIGNED_ALLOCATOR();
- //b3Point2PointConstraint(int rbA,const b3Vector3& pivotInA);
+ b3ConstraintSetting m_setting;
+ b3Point2PointConstraint(int rbA, int rbB, const b3Vector3& pivotInA, const b3Vector3& pivotInB);
+ //b3Point2PointConstraint(int rbA,const b3Vector3& pivotInA);
- virtual void getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies);
+ virtual void getInfo1(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies);
- void getInfo1NonVirtual (b3ConstraintInfo1* info,const b3RigidBodyData* bodies);
+ void getInfo1NonVirtual(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies);
- virtual void getInfo2 (b3ConstraintInfo2* info, const b3RigidBodyData* bodies);
+ virtual void getInfo2(b3ConstraintInfo2 * info, const b3RigidBodyData* bodies);
- void getInfo2NonVirtual (b3ConstraintInfo2* info, const b3Transform& body0_trans, const b3Transform& body1_trans);
+ void getInfo2NonVirtual(b3ConstraintInfo2 * info, const b3Transform& body0_trans, const b3Transform& body1_trans);
- void updateRHS(b3Scalar timeStep);
+ void updateRHS(b3Scalar timeStep);
- void setPivotA(const b3Vector3& pivotA)
+ void setPivotA(const b3Vector3& pivotA)
{
m_pivotInA = pivotA;
}
- void setPivotB(const b3Vector3& pivotB)
+ void setPivotB(const b3Vector3& pivotB)
{
m_pivotInB = pivotB;
}
@@ -106,34 +102,32 @@ public:
return m_pivotInB;
}
- ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
- virtual void setParam(int num, b3Scalar value, int axis = -1);
+ virtual void setParam(int num, b3Scalar value, int axis = -1);
///return the local value of parameter
- virtual b3Scalar getParam(int num, int axis = -1) const;
+ virtual b3Scalar getParam(int num, int axis = -1) const;
-// virtual int calculateSerializeBufferSize() const;
+ // virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
-// virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
-
-
+ // virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
-struct b3Point2PointConstraintFloatData
+struct b3Point2PointConstraintFloatData
{
- b3TypedConstraintData m_typeConstraintData;
- b3Vector3FloatData m_pivotInA;
- b3Vector3FloatData m_pivotInB;
+ b3TypedConstraintData m_typeConstraintData;
+ b3Vector3FloatData m_pivotInA;
+ b3Vector3FloatData m_pivotInB;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
-struct b3Point2PointConstraintDoubleData
+struct b3Point2PointConstraintDoubleData
{
- b3TypedConstraintData m_typeConstraintData;
- b3Vector3DoubleData m_pivotInA;
- b3Vector3DoubleData m_pivotInB;
+ b3TypedConstraintData m_typeConstraintData;
+ b3Vector3DoubleData m_pivotInA;
+ b3Vector3DoubleData m_pivotInB;
};
/*
@@ -156,4 +150,4 @@ B3_FORCE_INLINE const char* b3Point2PointConstraint::serialize(void* dataBuffer,
}
*/
-#endif //B3_POINT2POINTCONSTRAINT_H
+#endif //B3_POINT2POINTCONSTRAINT_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverBody.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverBody.h
index 0049317d98..196d0e5793 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverBody.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverBody.h
@@ -16,7 +16,6 @@ subject to the following restrictions:
#ifndef B3_SOLVER_BODY_H
#define B3_SOLVER_BODY_H
-
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3Matrix3x3.h"
@@ -26,110 +25,104 @@ subject to the following restrictions:
///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
#ifdef B3_USE_SSE
#define USE_SIMD 1
-#endif //
-
+#endif //
#ifdef USE_SIMD
-struct b3SimdScalar
+struct b3SimdScalar
{
- B3_FORCE_INLINE b3SimdScalar()
+ B3_FORCE_INLINE b3SimdScalar()
{
-
}
- B3_FORCE_INLINE b3SimdScalar(float fl)
- :m_vec128 (_mm_set1_ps(fl))
+ B3_FORCE_INLINE b3SimdScalar(float fl)
+ : m_vec128(_mm_set1_ps(fl))
{
}
- B3_FORCE_INLINE b3SimdScalar(__m128 v128)
- :m_vec128(v128)
+ B3_FORCE_INLINE b3SimdScalar(__m128 v128)
+ : m_vec128(v128)
{
}
- union
- {
- __m128 m_vec128;
- float m_floats[4];
- float x,y,z,w;
- int m_ints[4];
- b3Scalar m_unusedPadding;
+ union {
+ __m128 m_vec128;
+ float m_floats[4];
+ float x, y, z, w;
+ int m_ints[4];
+ b3Scalar m_unusedPadding;
};
- B3_FORCE_INLINE __m128 get128()
+ B3_FORCE_INLINE __m128 get128()
{
return m_vec128;
}
- B3_FORCE_INLINE const __m128 get128() const
+ B3_FORCE_INLINE const __m128 get128() const
{
return m_vec128;
}
- B3_FORCE_INLINE void set128(__m128 v128)
+ B3_FORCE_INLINE void set128(__m128 v128)
{
m_vec128 = v128;
}
- B3_FORCE_INLINE operator __m128()
- {
- return m_vec128;
- }
- B3_FORCE_INLINE operator const __m128() const
- {
- return m_vec128;
+ B3_FORCE_INLINE operator __m128()
+ {
+ return m_vec128;
}
-
- B3_FORCE_INLINE operator float() const
- {
- return m_floats[0];
+ B3_FORCE_INLINE operator const __m128() const
+ {
+ return m_vec128;
}
+ B3_FORCE_INLINE operator float() const
+ {
+ return m_floats[0];
+ }
};
///@brief Return the elementwise product of two b3SimdScalar
-B3_FORCE_INLINE b3SimdScalar
-operator*(const b3SimdScalar& v1, const b3SimdScalar& v2)
+B3_FORCE_INLINE b3SimdScalar
+operator*(const b3SimdScalar& v1, const b3SimdScalar& v2)
{
- return b3SimdScalar(_mm_mul_ps(v1.get128(),v2.get128()));
+ return b3SimdScalar(_mm_mul_ps(v1.get128(), v2.get128()));
}
///@brief Return the elementwise product of two b3SimdScalar
-B3_FORCE_INLINE b3SimdScalar
-operator+(const b3SimdScalar& v1, const b3SimdScalar& v2)
+B3_FORCE_INLINE b3SimdScalar
+operator+(const b3SimdScalar& v1, const b3SimdScalar& v2)
{
- return b3SimdScalar(_mm_add_ps(v1.get128(),v2.get128()));
+ return b3SimdScalar(_mm_add_ps(v1.get128(), v2.get128()));
}
-
#else
#define b3SimdScalar b3Scalar
#endif
///The b3SolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
-B3_ATTRIBUTE_ALIGNED16 (struct) b3SolverBody
+B3_ATTRIBUTE_ALIGNED16(struct)
+b3SolverBody
{
B3_DECLARE_ALIGNED_ALLOCATOR();
- b3Transform m_worldTransform;
- b3Vector3 m_deltaLinearVelocity;
- b3Vector3 m_deltaAngularVelocity;
- b3Vector3 m_angularFactor;
- b3Vector3 m_linearFactor;
- b3Vector3 m_invMass;
- b3Vector3 m_pushVelocity;
- b3Vector3 m_turnVelocity;
- b3Vector3 m_linearVelocity;
- b3Vector3 m_angularVelocity;
-
- union
- {
- void* m_originalBody;
- int m_originalBodyIndex;
+ b3Transform m_worldTransform;
+ b3Vector3 m_deltaLinearVelocity;
+ b3Vector3 m_deltaAngularVelocity;
+ b3Vector3 m_angularFactor;
+ b3Vector3 m_linearFactor;
+ b3Vector3 m_invMass;
+ b3Vector3 m_pushVelocity;
+ b3Vector3 m_turnVelocity;
+ b3Vector3 m_linearVelocity;
+ b3Vector3 m_angularVelocity;
+
+ union {
+ void* m_originalBody;
+ int m_originalBodyIndex;
};
int padding[3];
-
- void setWorldTransform(const b3Transform& worldTransform)
+ void setWorldTransform(const b3Transform& worldTransform)
{
m_worldTransform = worldTransform;
}
@@ -138,45 +131,42 @@ B3_ATTRIBUTE_ALIGNED16 (struct) b3SolverBody
{
return m_worldTransform;
}
-
- B3_FORCE_INLINE void getVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity ) const
+
+ B3_FORCE_INLINE void getVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity) const
{
if (m_originalBody)
- velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
+ velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
else
- velocity.setValue(0,0,0);
+ velocity.setValue(0, 0, 0);
}
- B3_FORCE_INLINE void getAngularVelocity(b3Vector3& angVel) const
+ B3_FORCE_INLINE void getAngularVelocity(b3Vector3 & angVel) const
{
if (m_originalBody)
- angVel =m_angularVelocity+m_deltaAngularVelocity;
+ angVel = m_angularVelocity + m_deltaAngularVelocity;
else
- angVel.setValue(0,0,0);
+ angVel.setValue(0, 0, 0);
}
-
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
- B3_FORCE_INLINE void applyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent,const b3Scalar impulseMagnitude)
+ B3_FORCE_INLINE void applyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, const b3Scalar impulseMagnitude)
{
if (m_originalBody)
{
- m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
- m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
+ m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
+ m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
}
}
- B3_FORCE_INLINE void internalApplyPushImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent,b3Scalar impulseMagnitude)
+ B3_FORCE_INLINE void internalApplyPushImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, b3Scalar impulseMagnitude)
{
if (m_originalBody)
{
- m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor;
- m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
+ m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
+ m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
}
}
-
-
const b3Vector3& getDeltaLinearVelocity() const
{
return m_deltaLinearVelocity;
@@ -187,20 +177,19 @@ B3_ATTRIBUTE_ALIGNED16 (struct) b3SolverBody
return m_deltaAngularVelocity;
}
- const b3Vector3& getPushVelocity() const
+ const b3Vector3& getPushVelocity() const
{
return m_pushVelocity;
}
- const b3Vector3& getTurnVelocity() const
+ const b3Vector3& getTurnVelocity() const
{
return m_turnVelocity;
}
-
////////////////////////////////////////////////
///some internal methods, don't use them
-
+
b3Vector3& internalGetDeltaLinearVelocity()
{
return m_deltaLinearVelocity;
@@ -225,7 +214,7 @@ B3_ATTRIBUTE_ALIGNED16 (struct) b3SolverBody
{
m_invMass = invMass;
}
-
+
b3Vector3& internalGetPushVelocity()
{
return m_pushVelocity;
@@ -236,67 +225,57 @@ B3_ATTRIBUTE_ALIGNED16 (struct) b3SolverBody
return m_turnVelocity;
}
- B3_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity ) const
+ B3_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity) const
{
- velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
+ velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
}
- B3_FORCE_INLINE void internalGetAngularVelocity(b3Vector3& angVel) const
+ B3_FORCE_INLINE void internalGetAngularVelocity(b3Vector3 & angVel) const
{
- angVel = m_angularVelocity+m_deltaAngularVelocity;
+ angVel = m_angularVelocity + m_deltaAngularVelocity;
}
-
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
- B3_FORCE_INLINE void internalApplyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent,const b3Scalar impulseMagnitude)
+ B3_FORCE_INLINE void internalApplyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, const b3Scalar impulseMagnitude)
{
//if (m_originalBody)
{
- m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
- m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
+ m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
+ m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
}
}
-
-
-
- void writebackVelocity()
+ void writebackVelocity()
{
//if (m_originalBody>=0)
{
- m_linearVelocity +=m_deltaLinearVelocity;
+ m_linearVelocity += m_deltaLinearVelocity;
m_angularVelocity += m_deltaAngularVelocity;
-
+
//m_originalBody->setCompanionId(-1);
}
}
-
- void writebackVelocityAndTransform(b3Scalar timeStep, b3Scalar splitImpulseTurnErp)
+ void writebackVelocityAndTransform(b3Scalar timeStep, b3Scalar splitImpulseTurnErp)
{
- (void) timeStep;
+ (void)timeStep;
if (m_originalBody)
{
m_linearVelocity += m_deltaLinearVelocity;
m_angularVelocity += m_deltaAngularVelocity;
-
+
//correct the position/orientation based on push/turn recovery
b3Transform newTransform;
- if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0)
+ if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
{
- // b3Quaternion orn = m_worldTransform.getRotation();
- b3TransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
+ // b3Quaternion orn = m_worldTransform.getRotation();
+ b3TransformUtil::integrateTransform(m_worldTransform, m_pushVelocity, m_turnVelocity * splitImpulseTurnErp, timeStep, newTransform);
m_worldTransform = newTransform;
}
//m_worldTransform.setRotation(orn);
//m_originalBody->setCompanionId(-1);
}
}
-
-
-
};
-#endif //B3_SOLVER_BODY_H
-
-
+#endif //B3_SOLVER_BODY_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverConstraint.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverConstraint.h
index bce83d4608..4927ae4288 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverConstraint.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3SolverConstraint.h
@@ -16,7 +16,6 @@ subject to the following restrictions:
#ifndef B3_SOLVER_CONSTRAINT_H
#define B3_SOLVER_CONSTRAINT_H
-
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3Matrix3x3.h"
//#include "b3JacobianEntry.h"
@@ -25,56 +24,50 @@ subject to the following restrictions:
//#define NO_FRICTION_TANGENTIALS 1
#include "b3SolverBody.h"
-
///1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and friction constraints.
-B3_ATTRIBUTE_ALIGNED16 (struct) b3SolverConstraint
+B3_ATTRIBUTE_ALIGNED16(struct)
+b3SolverConstraint
{
B3_DECLARE_ALIGNED_ALLOCATOR();
- b3Vector3 m_relpos1CrossNormal;
- b3Vector3 m_contactNormal;
+ b3Vector3 m_relpos1CrossNormal;
+ b3Vector3 m_contactNormal;
- b3Vector3 m_relpos2CrossNormal;
+ b3Vector3 m_relpos2CrossNormal;
//b3Vector3 m_contactNormal2;//usually m_contactNormal2 == -m_contactNormal
- b3Vector3 m_angularComponentA;
- b3Vector3 m_angularComponentB;
-
- mutable b3SimdScalar m_appliedPushImpulse;
- mutable b3SimdScalar m_appliedImpulse;
+ b3Vector3 m_angularComponentA;
+ b3Vector3 m_angularComponentB;
+
+ mutable b3SimdScalar m_appliedPushImpulse;
+ mutable b3SimdScalar m_appliedImpulse;
int m_padding1;
int m_padding2;
- b3Scalar m_friction;
- b3Scalar m_jacDiagABInv;
- b3Scalar m_rhs;
- b3Scalar m_cfm;
-
- b3Scalar m_lowerLimit;
- b3Scalar m_upperLimit;
- b3Scalar m_rhsPenetration;
- union
- {
- void* m_originalContactPoint;
- b3Scalar m_unusedPadding4;
+ b3Scalar m_friction;
+ b3Scalar m_jacDiagABInv;
+ b3Scalar m_rhs;
+ b3Scalar m_cfm;
+
+ b3Scalar m_lowerLimit;
+ b3Scalar m_upperLimit;
+ b3Scalar m_rhsPenetration;
+ union {
+ void* m_originalContactPoint;
+ b3Scalar m_unusedPadding4;
};
- int m_overrideNumSolverIterations;
- int m_frictionIndex;
+ int m_overrideNumSolverIterations;
+ int m_frictionIndex;
int m_solverBodyIdA;
int m_solverBodyIdB;
-
- enum b3SolverConstraintType
+ enum b3SolverConstraintType
{
B3_SOLVER_CONTACT_1D = 0,
B3_SOLVER_FRICTION_1D
};
};
-typedef b3AlignedObjectArray<b3SolverConstraint> b3ConstraintArray;
-
-
-#endif //B3_SOLVER_CONSTRAINT_H
-
-
+typedef b3AlignedObjectArray<b3SolverConstraint> b3ConstraintArray;
+#endif //B3_SOLVER_CONSTRAINT_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.cpp b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.cpp
index 699c481d64..885e277d8c 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.cpp
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.cpp
@@ -13,53 +13,46 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-
#include "b3TypedConstraint.h"
//#include "Bullet3Common/b3Serializer.h"
-
#define B3_DEFAULT_DEBUGDRAW_SIZE b3Scalar(0.3f)
-
-
-b3TypedConstraint::b3TypedConstraint(b3TypedConstraintType type, int rbA,int rbB)
-:b3TypedObject(type),
-m_userConstraintType(-1),
-m_userConstraintPtr((void*)-1),
-m_breakingImpulseThreshold(B3_INFINITY),
-m_isEnabled(true),
-m_needsFeedback(false),
-m_overrideNumSolverIterations(-1),
-m_rbA(rbA),
-m_rbB(rbB),
-m_appliedImpulse(b3Scalar(0.)),
-m_dbgDrawSize(B3_DEFAULT_DEBUGDRAW_SIZE),
-m_jointFeedback(0)
+b3TypedConstraint::b3TypedConstraint(b3TypedConstraintType type, int rbA, int rbB)
+ : b3TypedObject(type),
+ m_userConstraintType(-1),
+ m_userConstraintPtr((void*)-1),
+ m_breakingImpulseThreshold(B3_INFINITY),
+ m_isEnabled(true),
+ m_needsFeedback(false),
+ m_overrideNumSolverIterations(-1),
+ m_rbA(rbA),
+ m_rbB(rbB),
+ m_appliedImpulse(b3Scalar(0.)),
+ m_dbgDrawSize(B3_DEFAULT_DEBUGDRAW_SIZE),
+ m_jointFeedback(0)
{
}
-
-
-
b3Scalar b3TypedConstraint::getMotorFactor(b3Scalar pos, b3Scalar lowLim, b3Scalar uppLim, b3Scalar vel, b3Scalar timeFact)
{
- if(lowLim > uppLim)
+ if (lowLim > uppLim)
{
return b3Scalar(1.0f);
}
- else if(lowLim == uppLim)
+ else if (lowLim == uppLim)
{
return b3Scalar(0.0f);
}
b3Scalar lim_fact = b3Scalar(1.0f);
b3Scalar delta_max = vel / timeFact;
- if(delta_max < b3Scalar(0.0f))
+ if (delta_max < b3Scalar(0.0f))
{
- if((pos >= lowLim) && (pos < (lowLim - delta_max)))
+ if ((pos >= lowLim) && (pos < (lowLim - delta_max)))
{
lim_fact = (lowLim - pos) / delta_max;
}
- else if(pos < lowLim)
+ else if (pos < lowLim)
{
lim_fact = b3Scalar(0.0f);
}
@@ -68,13 +61,13 @@ b3Scalar b3TypedConstraint::getMotorFactor(b3Scalar pos, b3Scalar lowLim, b3Scal
lim_fact = b3Scalar(1.0f);
}
}
- else if(delta_max > b3Scalar(0.0f))
+ else if (delta_max > b3Scalar(0.0f))
{
- if((pos <= uppLim) && (pos > (uppLim - delta_max)))
+ if ((pos <= uppLim) && (pos > (uppLim - delta_max)))
{
lim_fact = (uppLim - pos) / delta_max;
}
- else if(pos > uppLim)
+ else if (pos > uppLim)
{
lim_fact = b3Scalar(0.0f);
}
@@ -85,18 +78,16 @@ b3Scalar b3TypedConstraint::getMotorFactor(b3Scalar pos, b3Scalar lowLim, b3Scal
}
else
{
- lim_fact = b3Scalar(0.0f);
+ lim_fact = b3Scalar(0.0f);
}
return lim_fact;
}
-
-
void b3AngularLimit::set(b3Scalar low, b3Scalar high, b3Scalar _softness, b3Scalar _biasFactor, b3Scalar _relaxationFactor)
{
m_halfRange = (high - low) / 2.0f;
m_center = b3NormalizeAngle(low + m_halfRange);
- m_softness = _softness;
+ m_softness = _softness;
m_biasFactor = _biasFactor;
m_relaxationFactor = _relaxationFactor;
}
@@ -113,7 +104,7 @@ void b3AngularLimit::test(const b3Scalar angle)
if (deviation < -m_halfRange)
{
m_solveLimit = true;
- m_correction = - (deviation + m_halfRange);
+ m_correction = -(deviation + m_halfRange);
m_sign = +1.0f;
}
else if (deviation > m_halfRange)
@@ -125,7 +116,6 @@ void b3AngularLimit::test(const b3Scalar angle)
}
}
-
b3Scalar b3AngularLimit::getError() const
{
return m_correction * m_sign;
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.h
index cf9cec0d5e..f74aec4d3c 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3TypedConstraint.h
@@ -16,7 +16,6 @@ subject to the following restrictions:
#ifndef B3_TYPED_CONSTRAINT_H
#define B3_TYPED_CONSTRAINT_H
-
#include "Bullet3Common/b3Scalar.h"
#include "b3SolverConstraint.h"
@@ -25,7 +24,7 @@ class b3Serializer;
//Don't change any of the existing enum values, so add enum types at the end for serialization compatibility
enum b3TypedConstraintType
{
- B3_POINT2POINT_CONSTRAINT_TYPE=3,
+ B3_POINT2POINT_CONSTRAINT_TYPE = 3,
B3_HINGE_CONSTRAINT_TYPE,
B3_CONETWIST_CONSTRAINT_TYPE,
B3_D6_CONSTRAINT_TYPE,
@@ -37,92 +36,86 @@ enum b3TypedConstraintType
B3_MAX_CONSTRAINT_TYPE
};
-
enum b3ConstraintParams
{
- B3_CONSTRAINT_ERP=1,
+ B3_CONSTRAINT_ERP = 1,
B3_CONSTRAINT_STOP_ERP,
B3_CONSTRAINT_CFM,
B3_CONSTRAINT_STOP_CFM
};
#if 1
- #define b3AssertConstrParams(_par) b3Assert(_par)
+#define b3AssertConstrParams(_par) b3Assert(_par)
#else
- #define b3AssertConstrParams(_par)
+#define b3AssertConstrParams(_par)
#endif
-
-B3_ATTRIBUTE_ALIGNED16(struct) b3JointFeedback
+B3_ATTRIBUTE_ALIGNED16(struct)
+b3JointFeedback
{
- b3Vector3 m_appliedForceBodyA;
- b3Vector3 m_appliedTorqueBodyA;
- b3Vector3 m_appliedForceBodyB;
- b3Vector3 m_appliedTorqueBodyB;
+ b3Vector3 m_appliedForceBodyA;
+ b3Vector3 m_appliedTorqueBodyA;
+ b3Vector3 m_appliedForceBodyB;
+ b3Vector3 m_appliedTorqueBodyB;
};
-
struct b3RigidBodyData;
-
///TypedConstraint is the baseclass for Bullet constraints and vehicles
-B3_ATTRIBUTE_ALIGNED16(class) b3TypedConstraint : public b3TypedObject
+B3_ATTRIBUTE_ALIGNED16(class)
+b3TypedConstraint : public b3TypedObject
{
- int m_userConstraintType;
+ int m_userConstraintType;
- union
- {
- int m_userConstraintId;
+ union {
+ int m_userConstraintId;
void* m_userConstraintPtr;
};
- b3Scalar m_breakingImpulseThreshold;
- bool m_isEnabled;
- bool m_needsFeedback;
- int m_overrideNumSolverIterations;
+ b3Scalar m_breakingImpulseThreshold;
+ bool m_isEnabled;
+ bool m_needsFeedback;
+ int m_overrideNumSolverIterations;
-
- b3TypedConstraint& operator=(b3TypedConstraint& other)
+ b3TypedConstraint& operator=(b3TypedConstraint& other)
{
b3Assert(0);
- (void) other;
+ (void)other;
return *this;
}
protected:
- int m_rbA;
- int m_rbB;
- b3Scalar m_appliedImpulse;
- b3Scalar m_dbgDrawSize;
- b3JointFeedback* m_jointFeedback;
+ int m_rbA;
+ int m_rbB;
+ b3Scalar m_appliedImpulse;
+ b3Scalar m_dbgDrawSize;
+ b3JointFeedback* m_jointFeedback;
///internal method used by the constraint solver, don't use them directly
b3Scalar getMotorFactor(b3Scalar pos, b3Scalar lowLim, b3Scalar uppLim, b3Scalar vel, b3Scalar timeFact);
-
public:
-
B3_DECLARE_ALIGNED_ALLOCATOR();
- virtual ~b3TypedConstraint() {};
- b3TypedConstraint(b3TypedConstraintType type, int bodyA,int bodyB);
+ virtual ~b3TypedConstraint(){};
+ b3TypedConstraint(b3TypedConstraintType type, int bodyA, int bodyB);
- struct b3ConstraintInfo1 {
- int m_numConstraintRows,nub;
+ struct b3ConstraintInfo1
+ {
+ int m_numConstraintRows, nub;
};
-
-
- struct b3ConstraintInfo2 {
+ struct b3ConstraintInfo2
+ {
// integrator parameters: frames per second (1/stepsize), default error
// reduction parameter (0..1).
- b3Scalar fps,erp;
+ b3Scalar fps, erp;
// for the first and second body, pointers to two (linear and angular)
// n*3 jacobian sub matrices, stored by rows. these matrices will have
// been initialized to 0 on entry. if the second body is zero then the
// J2xx pointers may be 0.
- b3Scalar *m_J1linearAxis,*m_J1angularAxis,*m_J2linearAxis,*m_J2angularAxis;
+ b3Scalar *m_J1linearAxis, *m_J1angularAxis, *m_J2linearAxis, *m_J2angularAxis;
// elements to jump from one row to the next in J's
int rowskip;
@@ -130,24 +123,24 @@ public:
// right hand sides of the equation J*v = c + cfm * lambda. cfm is the
// "constraint force mixing" vector. c is set to zero on entry, cfm is
// set to a constant value (typically very small or zero) value on entry.
- b3Scalar *m_constraintError,*cfm;
+ b3Scalar *m_constraintError, *cfm;
// lo and hi limits for variables (set to -/+ infinity on entry).
- b3Scalar *m_lowerLimit,*m_upperLimit;
+ b3Scalar *m_lowerLimit, *m_upperLimit;
// findex vector for variables. see the LCP solver interface for a
// description of what this does. this is set to -1 on entry.
// note that the returned indexes are relative to the first index of
// the constraint.
- int *findex;
+ int* findex;
// number of solver iterations
int m_numIterations;
//damping of the velocity
- b3Scalar m_damping;
+ b3Scalar m_damping;
};
- int getOverrideNumSolverIterations() const
+ int getOverrideNumSolverIterations() const
{
return m_overrideNumSolverIterations;
}
@@ -159,59 +152,55 @@ public:
m_overrideNumSolverIterations = overideNumIterations;
}
-
///internal method used by the constraint solver, don't use them directly
- virtual void setupSolverConstraint(b3ConstraintArray& ca, int solverBodyA,int solverBodyB, b3Scalar timeStep)
+ virtual void setupSolverConstraint(b3ConstraintArray & ca, int solverBodyA, int solverBodyB, b3Scalar timeStep)
{
- (void)ca;
- (void)solverBodyA;
- (void)solverBodyB;
- (void)timeStep;
+ (void)ca;
+ (void)solverBodyA;
+ (void)solverBodyB;
+ (void)timeStep;
}
-
+
///internal method used by the constraint solver, don't use them directly
- virtual void getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies)=0;
+ virtual void getInfo1(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies) = 0;
///internal method used by the constraint solver, don't use them directly
- virtual void getInfo2 (b3ConstraintInfo2* info, const b3RigidBodyData* bodies)=0;
+ virtual void getInfo2(b3ConstraintInfo2 * info, const b3RigidBodyData* bodies) = 0;
///internal method used by the constraint solver, don't use them directly
- void internalSetAppliedImpulse(b3Scalar appliedImpulse)
+ void internalSetAppliedImpulse(b3Scalar appliedImpulse)
{
m_appliedImpulse = appliedImpulse;
}
///internal method used by the constraint solver, don't use them directly
- b3Scalar internalGetAppliedImpulse()
+ b3Scalar internalGetAppliedImpulse()
{
return m_appliedImpulse;
}
-
- b3Scalar getBreakingImpulseThreshold() const
+ b3Scalar getBreakingImpulseThreshold() const
{
- return m_breakingImpulseThreshold;
+ return m_breakingImpulseThreshold;
}
- void setBreakingImpulseThreshold(b3Scalar threshold)
+ void setBreakingImpulseThreshold(b3Scalar threshold)
{
m_breakingImpulseThreshold = threshold;
}
- bool isEnabled() const
+ bool isEnabled() const
{
return m_isEnabled;
}
- void setEnabled(bool enabled)
+ void setEnabled(bool enabled)
{
- m_isEnabled=enabled;
+ m_isEnabled = enabled;
}
-
///internal method used by the constraint solver, don't use them directly
- virtual void solveConstraintObsolete(b3SolverBody& /*bodyA*/,b3SolverBody& /*bodyB*/,b3Scalar /*timeStep*/) {};
+ virtual void solveConstraintObsolete(b3SolverBody& /*bodyA*/, b3SolverBody& /*bodyB*/, b3Scalar /*timeStep*/){};
-
int getRigidBodyA() const
{
return m_rbA;
@@ -221,8 +210,7 @@ public:
return m_rbB;
}
-
- int getRigidBodyA()
+ int getRigidBodyA()
{
return m_rbA;
}
@@ -233,15 +221,15 @@ public:
int getUserConstraintType() const
{
- return m_userConstraintType ;
+ return m_userConstraintType;
}
- void setUserConstraintType(int userConstraintType)
+ void setUserConstraintType(int userConstraintType)
{
m_userConstraintType = userConstraintType;
};
- void setUserConstraintId(int uid)
+ void setUserConstraintId(int uid)
{
m_userConstraintId = uid;
}
@@ -251,17 +239,17 @@ public:
return m_userConstraintId;
}
- void setUserConstraintPtr(void* ptr)
+ void setUserConstraintPtr(void* ptr)
{
m_userConstraintPtr = ptr;
}
- void* getUserConstraintPtr()
+ void* getUserConstraintPtr()
{
return m_userConstraintPtr;
}
- void setJointFeedback(b3JointFeedback* jointFeedback)
+ void setJointFeedback(b3JointFeedback * jointFeedback)
{
m_jointFeedback = jointFeedback;
}
@@ -276,37 +264,36 @@ public:
return m_jointFeedback;
}
-
int getUid() const
{
- return m_userConstraintId;
- }
+ return m_userConstraintId;
+ }
- bool needsFeedback() const
+ bool needsFeedback() const
{
return m_needsFeedback;
}
///enableFeedback will allow to read the applied linear and angular impulse
///use getAppliedImpulse, getAppliedLinearImpulse and getAppliedAngularImpulse to read feedback information
- void enableFeedback(bool needsFeedback)
+ void enableFeedback(bool needsFeedback)
{
m_needsFeedback = needsFeedback;
}
- ///getAppliedImpulse is an estimated total applied impulse.
+ ///getAppliedImpulse is an estimated total applied impulse.
///This feedback could be used to determine breaking constraints or playing sounds.
- b3Scalar getAppliedImpulse() const
+ b3Scalar getAppliedImpulse() const
{
b3Assert(m_needsFeedback);
return m_appliedImpulse;
}
- b3TypedConstraintType getConstraintType () const
+ b3TypedConstraintType getConstraintType() const
{
return b3TypedConstraintType(m_objectType);
}
-
+
void setDbgDrawSize(b3Scalar dbgDrawSize)
{
m_dbgDrawSize = dbgDrawSize;
@@ -316,35 +303,34 @@ public:
return m_dbgDrawSize;
}
- ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
- virtual void setParam(int num, b3Scalar value, int axis = -1) = 0;
+ virtual void setParam(int num, b3Scalar value, int axis = -1) = 0;
///return the local value of parameter
- virtual b3Scalar getParam(int num, int axis = -1) const = 0;
-
-// virtual int calculateSerializeBufferSize() const;
+ virtual b3Scalar getParam(int num, int axis = -1) const = 0;
+
+ // virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
//virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
-
};
-// returns angle in range [-B3_2_PI, B3_2_PI], closest to one of the limits
+// returns angle in range [-B3_2_PI, B3_2_PI], closest to one of the limits
// all arguments should be normalized angles (i.e. in range [-B3_PI, B3_PI])
B3_FORCE_INLINE b3Scalar b3AdjustAngleToLimits(b3Scalar angleInRadians, b3Scalar angleLowerLimitInRadians, b3Scalar angleUpperLimitInRadians)
{
- if(angleLowerLimitInRadians >= angleUpperLimitInRadians)
+ if (angleLowerLimitInRadians >= angleUpperLimitInRadians)
{
return angleInRadians;
}
- else if(angleInRadians < angleLowerLimitInRadians)
+ else if (angleInRadians < angleLowerLimitInRadians)
{
b3Scalar diffLo = b3Fabs(b3NormalizeAngle(angleLowerLimitInRadians - angleInRadians));
b3Scalar diffHi = b3Fabs(b3NormalizeAngle(angleUpperLimitInRadians - angleInRadians));
return (diffLo < diffHi) ? angleInRadians : (angleInRadians + B3_2_PI);
}
- else if(angleInRadians > angleUpperLimitInRadians)
+ else if (angleInRadians > angleUpperLimitInRadians)
{
b3Scalar diffHi = b3Fabs(b3NormalizeAngle(angleInRadians - angleUpperLimitInRadians));
b3Scalar diffLo = b3Fabs(b3NormalizeAngle(angleInRadians - angleLowerLimitInRadians));
@@ -356,6 +342,7 @@ B3_FORCE_INLINE b3Scalar b3AdjustAngleToLimits(b3Scalar angleInRadians, b3Scalar
}
}
+// clang-format off
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct b3TypedConstraintData
{
@@ -379,17 +366,18 @@ struct b3TypedConstraintData
};
+// clang-format on
+
/*B3_FORCE_INLINE int b3TypedConstraint::calculateSerializeBufferSize() const
{
return sizeof(b3TypedConstraintData);
}
*/
-
class b3AngularLimit
{
private:
- b3Scalar
+ b3Scalar
m_center,
m_halfRange,
m_softness,
@@ -404,15 +392,16 @@ private:
public:
/// Default constructor initializes limit as inactive, allowing free constraint movement
b3AngularLimit()
- :m_center(0.0f),
- m_halfRange(-1.0f),
- m_softness(0.9f),
- m_biasFactor(0.3f),
- m_relaxationFactor(1.0f),
- m_correction(0.0f),
- m_sign(0.0f),
- m_solveLimit(false)
- {}
+ : m_center(0.0f),
+ m_halfRange(-1.0f),
+ m_softness(0.9f),
+ m_biasFactor(0.3f),
+ m_relaxationFactor(1.0f),
+ m_correction(0.0f),
+ m_sign(0.0f),
+ m_solveLimit(false)
+ {
+ }
/// Sets all limit's parameters.
/// When low > high limit becomes inactive.
@@ -441,13 +430,13 @@ public:
return m_relaxationFactor;
}
- /// Returns correction value evaluated when test() was invoked
+ /// Returns correction value evaluated when test() was invoked
inline b3Scalar getCorrection() const
{
return m_correction;
}
- /// Returns sign value evaluated when test() was invoked
+ /// Returns sign value evaluated when test() was invoked
inline b3Scalar getSign() const
{
return m_sign;
@@ -475,9 +464,6 @@ public:
b3Scalar getLow() const;
b3Scalar getHigh() const;
-
};
-
-
-#endif //B3_TYPED_CONSTRAINT_H
+#endif //B3_TYPED_CONSTRAINT_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.cpp b/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.cpp
index fbc84cc28d..f1080d9d5e 100644
--- a/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.cpp
+++ b/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.cpp
@@ -11,7 +11,6 @@
#include "Bullet3Dynamics/shared/b3ContactConstraint4.h"
#include "Bullet3Dynamics/shared/b3Inertia.h"
-
struct b3CpuRigidBodyPipelineInternalData
{
b3AlignedObjectArray<b3RigidBodyData> m_rigidBodies;
@@ -22,7 +21,6 @@ struct b3CpuRigidBodyPipelineInternalData
b3CpuNarrowPhase* m_np;
b3Config m_config;
};
-
b3CpuRigidBodyPipeline::b3CpuRigidBodyPipeline(class b3CpuNarrowPhase* narrowphase, struct b3DynamicBvhBroadphase* broadphaseDbvt, const b3Config& config)
{
@@ -39,49 +37,43 @@ b3CpuRigidBodyPipeline::~b3CpuRigidBodyPipeline()
void b3CpuRigidBodyPipeline::updateAabbWorldSpace()
{
-
- for (int i=0;i<this->getNumBodies();i++)
+ for (int i = 0; i < this->getNumBodies(); i++)
{
b3RigidBodyData* body = &m_data->m_rigidBodies[i];
b3Float4 position = body->m_pos;
- b3Quat orientation = body->m_quat;
+ b3Quat orientation = body->m_quat;
int collidableIndex = body->m_collidableIdx;
b3Collidable& collidable = m_data->m_np->getCollidableCpu(collidableIndex);
int shapeIndex = collidable.m_shapeIndex;
-
- if (shapeIndex>=0)
- {
-
+ if (shapeIndex >= 0)
+ {
b3Aabb localAabb = m_data->m_np->getLocalSpaceAabb(shapeIndex);
b3Aabb& worldAabb = m_data->m_aabbWorldSpace[i];
- float margin=0.f;
- b3TransformAabb2(localAabb.m_minVec,localAabb.m_maxVec,margin,position,orientation,&worldAabb.m_minVec,&worldAabb.m_maxVec);
- m_data->m_bp->setAabb(i,worldAabb.m_minVec,worldAabb.m_maxVec,0);
+ float margin = 0.f;
+ b3TransformAabb2(localAabb.m_minVec, localAabb.m_maxVec, margin, position, orientation, &worldAabb.m_minVec, &worldAabb.m_maxVec);
+ m_data->m_bp->setAabb(i, worldAabb.m_minVec, worldAabb.m_maxVec, 0);
}
}
}
-void b3CpuRigidBodyPipeline::computeOverlappingPairs()
+void b3CpuRigidBodyPipeline::computeOverlappingPairs()
{
int numPairs = m_data->m_bp->getOverlappingPairCache()->getNumOverlappingPairs();
m_data->m_bp->calculateOverlappingPairs();
numPairs = m_data->m_bp->getOverlappingPairCache()->getNumOverlappingPairs();
- printf("numPairs=%d\n",numPairs);
+ printf("numPairs=%d\n", numPairs);
}
void b3CpuRigidBodyPipeline::computeContactPoints()
{
-
b3AlignedObjectArray<b3Int4>& pairs = m_data->m_bp->getOverlappingPairCache()->getOverlappingPairArray();
-
- m_data->m_np->computeContacts(pairs,m_data->m_aabbWorldSpace, m_data->m_rigidBodies);
+ m_data->m_np->computeContacts(pairs, m_data->m_aabbWorldSpace, m_data->m_rigidBodies);
}
-void b3CpuRigidBodyPipeline::stepSimulation(float deltaTime)
+void b3CpuRigidBodyPipeline::stepSimulation(float deltaTime)
{
-
//update world space aabb's
updateAabbWorldSpace();
@@ -92,73 +84,71 @@ void b3CpuRigidBodyPipeline::stepSimulation(float deltaTime)
computeContactPoints();
//solve contacts
-
+
//update transforms
integrate(deltaTime);
-
-
}
-
-static inline float b3CalcRelVel(const b3Vector3& l0, const b3Vector3& l1, const b3Vector3& a0, const b3Vector3& a1,
- const b3Vector3& linVel0, const b3Vector3& angVel0, const b3Vector3& linVel1, const b3Vector3& angVel1)
+static inline float b3CalcRelVel(const b3Vector3& l0, const b3Vector3& l1, const b3Vector3& a0, const b3Vector3& a1,
+ const b3Vector3& linVel0, const b3Vector3& angVel0, const b3Vector3& linVel1, const b3Vector3& angVel1)
{
return b3Dot(l0, linVel0) + b3Dot(a0, angVel0) + b3Dot(l1, linVel1) + b3Dot(a1, angVel1);
}
-
-static inline void b3SetLinearAndAngular(const b3Vector3& n, const b3Vector3& r0, const b3Vector3& r1,
- b3Vector3& linear, b3Vector3& angular0, b3Vector3& angular1)
+static inline void b3SetLinearAndAngular(const b3Vector3& n, const b3Vector3& r0, const b3Vector3& r1,
+ b3Vector3& linear, b3Vector3& angular0, b3Vector3& angular1)
{
linear = -n;
angular0 = -b3Cross(r0, n);
angular1 = b3Cross(r1, n);
}
-
-
-static inline void b3SolveContact(b3ContactConstraint4& cs,
- const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
- const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
- float maxRambdaDt[4], float minRambdaDt[4])
+static inline void b3SolveContact(b3ContactConstraint4& cs,
+ const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
+ const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
+ float maxRambdaDt[4], float minRambdaDt[4])
{
-
- b3Vector3 dLinVelA; dLinVelA.setZero();
- b3Vector3 dAngVelA; dAngVelA.setZero();
- b3Vector3 dLinVelB; dLinVelB.setZero();
- b3Vector3 dAngVelB; dAngVelB.setZero();
-
- for(int ic=0; ic<4; ic++)
+ b3Vector3 dLinVelA;
+ dLinVelA.setZero();
+ b3Vector3 dAngVelA;
+ dAngVelA.setZero();
+ b3Vector3 dLinVelB;
+ dLinVelB.setZero();
+ b3Vector3 dAngVelB;
+ dAngVelB.setZero();
+
+ for (int ic = 0; ic < 4; ic++)
{
// dont necessary because this makes change to 0
- if( cs.m_jacCoeffInv[ic] == 0.f ) continue;
+ if (cs.m_jacCoeffInv[ic] == 0.f) continue;
{
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = cs.m_worldPos[ic] - (b3Vector3&)posA;
b3Vector3 r1 = cs.m_worldPos[ic] - (b3Vector3&)posB;
- b3SetLinearAndAngular( (const b3Vector3 &)-cs.m_linear, (const b3Vector3 &)r0, (const b3Vector3 &)r1, linear, angular0, angular1 );
+ b3SetLinearAndAngular((const b3Vector3&)-cs.m_linear, (const b3Vector3&)r0, (const b3Vector3&)r1, linear, angular0, angular1);
- float rambdaDt = b3CalcRelVel((const b3Vector3 &)cs.m_linear,(const b3Vector3 &) -cs.m_linear, angular0, angular1,
- linVelA, angVelA, linVelB, angVelB ) + cs.m_b[ic];
+ float rambdaDt = b3CalcRelVel((const b3Vector3&)cs.m_linear, (const b3Vector3&)-cs.m_linear, angular0, angular1,
+ linVelA, angVelA, linVelB, angVelB) +
+ cs.m_b[ic];
rambdaDt *= cs.m_jacCoeffInv[ic];
{
float prevSum = cs.m_appliedRambdaDt[ic];
float updated = prevSum;
updated += rambdaDt;
- updated = b3Max( updated, minRambdaDt[ic] );
- updated = b3Min( updated, maxRambdaDt[ic] );
+ updated = b3Max(updated, minRambdaDt[ic]);
+ updated = b3Min(updated, maxRambdaDt[ic]);
rambdaDt = updated - prevSum;
cs.m_appliedRambdaDt[ic] = updated;
}
- b3Vector3 linImp0 = invMassA*linear*rambdaDt;
- b3Vector3 linImp1 = invMassB*(-linear)*rambdaDt;
- b3Vector3 angImp0 = (invInertiaA* angular0)*rambdaDt;
- b3Vector3 angImp1 = (invInertiaB* angular1)*rambdaDt;
+ b3Vector3 linImp0 = invMassA * linear * rambdaDt;
+ b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
+ b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
+ b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
- b3Assert(_finite(linImp0.getX()));
+ b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
#endif
{
@@ -169,53 +159,46 @@ static inline void b3SolveContact(b3ContactConstraint4& cs,
}
}
}
-
-
}
-
-
-
-
-static inline void b3SolveFriction(b3ContactConstraint4& cs,
- const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
- const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
- float maxRambdaDt[4], float minRambdaDt[4])
+static inline void b3SolveFriction(b3ContactConstraint4& cs,
+ const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
+ const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
+ float maxRambdaDt[4], float minRambdaDt[4])
{
-
- if( cs.m_fJacCoeffInv[0] == 0 && cs.m_fJacCoeffInv[0] == 0 ) return;
+ if (cs.m_fJacCoeffInv[0] == 0 && cs.m_fJacCoeffInv[0] == 0) return;
const b3Vector3& center = (const b3Vector3&)cs.m_center;
b3Vector3 n = -(const b3Vector3&)cs.m_linear;
b3Vector3 tangent[2];
- b3PlaneSpace1 (n, tangent[0],tangent[1]);
+ b3PlaneSpace1(n, tangent[0], tangent[1]);
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = center - posA;
b3Vector3 r1 = center - posB;
- for(int i=0; i<2; i++)
+ for (int i = 0; i < 2; i++)
{
- b3SetLinearAndAngular( tangent[i], r0, r1, linear, angular0, angular1 );
+ b3SetLinearAndAngular(tangent[i], r0, r1, linear, angular0, angular1);
float rambdaDt = b3CalcRelVel(linear, -linear, angular0, angular1,
- linVelA, angVelA, linVelB, angVelB );
+ linVelA, angVelA, linVelB, angVelB);
rambdaDt *= cs.m_fJacCoeffInv[i];
- {
- float prevSum = cs.m_fAppliedRambdaDt[i];
- float updated = prevSum;
- updated += rambdaDt;
- updated = b3Max( updated, minRambdaDt[i] );
- updated = b3Min( updated, maxRambdaDt[i] );
- rambdaDt = updated - prevSum;
- cs.m_fAppliedRambdaDt[i] = updated;
- }
+ {
+ float prevSum = cs.m_fAppliedRambdaDt[i];
+ float updated = prevSum;
+ updated += rambdaDt;
+ updated = b3Max(updated, minRambdaDt[i]);
+ updated = b3Min(updated, maxRambdaDt[i]);
+ rambdaDt = updated - prevSum;
+ cs.m_fAppliedRambdaDt[i] = updated;
+ }
- b3Vector3 linImp0 = invMassA*linear*rambdaDt;
- b3Vector3 linImp1 = invMassB*(-linear)*rambdaDt;
- b3Vector3 angImp0 = (invInertiaA* angular0)*rambdaDt;
- b3Vector3 angImp1 = (invInertiaB* angular1)*rambdaDt;
+ b3Vector3 linImp0 = invMassA * linear * rambdaDt;
+ b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
+ b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
+ b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
@@ -226,57 +209,45 @@ static inline void b3SolveFriction(b3ContactConstraint4& cs,
angVelB += angImp1;
}
- { // angular damping for point constraint
- b3Vector3 ab = ( posB - posA ).normalized();
- b3Vector3 ac = ( center - posA ).normalized();
- if( b3Dot( ab, ac ) > 0.95f || (invMassA == 0.f || invMassB == 0.f))
+ { // angular damping for point constraint
+ b3Vector3 ab = (posB - posA).normalized();
+ b3Vector3 ac = (center - posA).normalized();
+ if (b3Dot(ab, ac) > 0.95f || (invMassA == 0.f || invMassB == 0.f))
{
- float angNA = b3Dot( n, angVelA );
- float angNB = b3Dot( n, angVelB );
+ float angNA = b3Dot(n, angVelA);
+ float angNB = b3Dot(n, angVelB);
- angVelA -= (angNA*0.1f)*n;
- angVelB -= (angNB*0.1f)*n;
+ angVelA -= (angNA * 0.1f) * n;
+ angVelB -= (angNB * 0.1f) * n;
}
}
-
}
-
-
-
-
-struct b3SolveTask// : public ThreadPool::Task
+struct b3SolveTask // : public ThreadPool::Task
{
- b3SolveTask(b3AlignedObjectArray<b3RigidBodyData>& bodies,
- b3AlignedObjectArray<b3Inertia>& shapes,
+ b3SolveTask(b3AlignedObjectArray<b3RigidBodyData>& bodies,
+ b3AlignedObjectArray<b3Inertia>& shapes,
b3AlignedObjectArray<b3ContactConstraint4>& constraints,
int start, int nConstraints,
int maxNumBatches,
- b3AlignedObjectArray<int>* wgUsedBodies, int curWgidx
- )
- : m_bodies( bodies ), m_shapes( shapes ), m_constraints( constraints ),
- m_wgUsedBodies(wgUsedBodies),m_curWgidx(curWgidx),
-m_start( start ),
- m_nConstraints( nConstraints ),
- m_solveFriction( true ),
- m_maxNumBatches(maxNumBatches)
- {}
-
- unsigned short int getType(){ return 0; }
+ b3AlignedObjectArray<int>* wgUsedBodies, int curWgidx)
+ : m_bodies(bodies), m_shapes(shapes), m_constraints(constraints), m_wgUsedBodies(wgUsedBodies), m_curWgidx(curWgidx), m_start(start), m_nConstraints(nConstraints), m_solveFriction(true), m_maxNumBatches(maxNumBatches)
+ {
+ }
+
+ unsigned short int getType() { return 0; }
void run(int tIdx)
{
b3AlignedObjectArray<int> usedBodies;
//printf("run..............\n");
-
- for (int bb=0;bb<m_maxNumBatches;bb++)
+ for (int bb = 0; bb < m_maxNumBatches; bb++)
{
usedBodies.resize(0);
- for(int ic=m_nConstraints-1; ic>=0; ic--)
+ for (int ic = m_nConstraints - 1; ic >= 0; ic--)
//for(int ic=0; ic<m_nConstraints; ic++)
{
-
int i = m_start + ic;
if (m_constraints[i].m_batchIdx != bb)
continue;
@@ -298,87 +269,80 @@ m_start( start ),
//printf("ic(b)=%d, localBatch=%d\n",ic,localBatch);
}
#endif
- if (aIdx==10)
+ if (aIdx == 10)
{
//printf("ic(a)=%d, localBatch=%d\n",ic,localBatch);
}
- if (usedBodies.size()<(aIdx+1))
+ if (usedBodies.size() < (aIdx + 1))
{
- usedBodies.resize(aIdx+1,0);
+ usedBodies.resize(aIdx + 1, 0);
}
-
- if (usedBodies.size()<(bIdx+1))
+
+ if (usedBodies.size() < (bIdx + 1))
{
- usedBodies.resize(bIdx+1,0);
+ usedBodies.resize(bIdx + 1, 0);
}
if (bodyA.m_invMass)
{
- b3Assert(usedBodies[aIdx]==0);
+ b3Assert(usedBodies[aIdx] == 0);
usedBodies[aIdx]++;
}
-
+
if (bodyB.m_invMass)
{
- b3Assert(usedBodies[bIdx]==0);
+ b3Assert(usedBodies[bIdx] == 0);
usedBodies[bIdx]++;
}
-
- if( !m_solveFriction )
+ if (!m_solveFriction)
{
- float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
- float minRambdaDt[4] = {0.f,0.f,0.f,0.f};
-
- b3SolveContact( m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3 &)m_shapes[aIdx].m_invInertiaWorld,
- (b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3 &)m_shapes[bIdx].m_invInertiaWorld,
- maxRambdaDt, minRambdaDt );
+ float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
+ float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
+ b3SolveContact(m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3&)m_shapes[aIdx].m_invInertiaWorld,
+ (b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3&)m_shapes[bIdx].m_invInertiaWorld,
+ maxRambdaDt, minRambdaDt);
}
else
{
- float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
- float minRambdaDt[4] = {0.f,0.f,0.f,0.f};
+ float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
+ float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
float sum = 0;
- for(int j=0; j<4; j++)
+ for (int j = 0; j < 4; j++)
{
- sum +=m_constraints[i].m_appliedRambdaDt[j];
+ sum += m_constraints[i].m_appliedRambdaDt[j];
}
frictionCoeff = 0.7f;
- for(int j=0; j<4; j++)
+ for (int j = 0; j < 4; j++)
{
- maxRambdaDt[j] = frictionCoeff*sum;
+ maxRambdaDt[j] = frictionCoeff * sum;
minRambdaDt[j] = -maxRambdaDt[j];
}
- b3SolveFriction( m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass,(const b3Matrix3x3 &) m_shapes[aIdx].m_invInertiaWorld,
- (b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass,(const b3Matrix3x3 &) m_shapes[bIdx].m_invInertiaWorld,
- maxRambdaDt, minRambdaDt );
-
+ b3SolveFriction(m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3&)m_shapes[aIdx].m_invInertiaWorld,
+ (b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3&)m_shapes[bIdx].m_invInertiaWorld,
+ maxRambdaDt, minRambdaDt);
}
}
if (m_wgUsedBodies)
{
- if (m_wgUsedBodies[m_curWgidx].size()<usedBodies.size())
+ if (m_wgUsedBodies[m_curWgidx].size() < usedBodies.size())
{
m_wgUsedBodies[m_curWgidx].resize(usedBodies.size());
}
- for (int i=0;i<usedBodies.size();i++)
+ for (int i = 0; i < usedBodies.size(); i++)
{
if (usedBodies[i])
{
//printf("cell %d uses body %d\n", m_curWgidx,i);
- m_wgUsedBodies[m_curWgidx][i]=1;
+ m_wgUsedBodies[m_curWgidx][i] = 1;
}
}
}
-
}
-
-
-
}
b3AlignedObjectArray<b3RigidBodyData>& m_bodies;
@@ -397,24 +361,22 @@ void b3CpuRigidBodyPipeline::solveContactConstraints()
int m_nIterations = 4;
b3AlignedObjectArray<b3ContactConstraint4> contactConstraints;
-// const b3AlignedObjectArray<b3Contact4Data>& contacts = m_data->m_np->getContacts();
+ // const b3AlignedObjectArray<b3Contact4Data>& contacts = m_data->m_np->getContacts();
int n = contactConstraints.size();
//convert contacts...
-
-
int maxNumBatches = 250;
- for(int iter=0; iter<m_nIterations; iter++)
+ for (int iter = 0; iter < m_nIterations; iter++)
{
- b3SolveTask task( m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n ,maxNumBatches,0,0);
+ b3SolveTask task(m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n, maxNumBatches, 0, 0);
task.m_solveFriction = false;
task.run(0);
}
- for(int iter=0; iter<m_nIterations; iter++)
+ for (int iter = 0; iter < m_nIterations; iter++)
{
- b3SolveTask task( m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n ,maxNumBatches,0,0);
+ b3SolveTask task(m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n, maxNumBatches, 0, 0);
task.m_solveFriction = true;
task.run(0);
}
@@ -422,53 +384,51 @@ void b3CpuRigidBodyPipeline::solveContactConstraints()
void b3CpuRigidBodyPipeline::integrate(float deltaTime)
{
- float angDamping=0.f;
- b3Vector3 gravityAcceleration=b3MakeVector3(0,-9,0);
+ float angDamping = 0.f;
+ b3Vector3 gravityAcceleration = b3MakeVector3(0, -9, 0);
//integrate transforms (external forces/gravity should be moved into constraint solver)
- for (int i=0;i<m_data->m_rigidBodies.size();i++)
+ for (int i = 0; i < m_data->m_rigidBodies.size(); i++)
{
- b3IntegrateTransform(&m_data->m_rigidBodies[i],deltaTime,angDamping,gravityAcceleration);
+ b3IntegrateTransform(&m_data->m_rigidBodies[i], deltaTime, angDamping, gravityAcceleration);
}
-
}
-int b3CpuRigidBodyPipeline::registerPhysicsInstance(float mass, const float* position, const float* orientation, int collidableIndex, int userData)
+int b3CpuRigidBodyPipeline::registerPhysicsInstance(float mass, const float* position, const float* orientation, int collidableIndex, int userData)
{
b3RigidBodyData body;
int bodyIndex = m_data->m_rigidBodies.size();
- body.m_invMass = mass ? 1.f/mass : 0.f;
- body.m_angVel.setValue(0,0,0);
+ body.m_invMass = mass ? 1.f / mass : 0.f;
+ body.m_angVel.setValue(0, 0, 0);
body.m_collidableIdx = collidableIndex;
body.m_frictionCoeff = 0.3f;
- body.m_linVel.setValue(0,0,0);
- body.m_pos.setValue(position[0],position[1],position[2]);
- body.m_quat.setValue(orientation[0],orientation[1],orientation[2],orientation[3]);
+ body.m_linVel.setValue(0, 0, 0);
+ body.m_pos.setValue(position[0], position[1], position[2]);
+ body.m_quat.setValue(orientation[0], orientation[1], orientation[2], orientation[3]);
body.m_restituitionCoeff = 0.f;
m_data->m_rigidBodies.push_back(body);
-
- if (collidableIndex>=0)
+ if (collidableIndex >= 0)
{
b3Aabb& worldAabb = m_data->m_aabbWorldSpace.expand();
b3Aabb localAabb = m_data->m_np->getLocalSpaceAabb(collidableIndex);
- b3Vector3 localAabbMin=b3MakeVector3(localAabb.m_min[0],localAabb.m_min[1],localAabb.m_min[2]);
- b3Vector3 localAabbMax=b3MakeVector3(localAabb.m_max[0],localAabb.m_max[1],localAabb.m_max[2]);
-
+ b3Vector3 localAabbMin = b3MakeVector3(localAabb.m_min[0], localAabb.m_min[1], localAabb.m_min[2]);
+ b3Vector3 localAabbMax = b3MakeVector3(localAabb.m_max[0], localAabb.m_max[1], localAabb.m_max[2]);
+
b3Scalar margin = 0.01f;
b3Transform t;
t.setIdentity();
- t.setOrigin(b3MakeVector3(position[0],position[1],position[2]));
- t.setRotation(b3Quaternion(orientation[0],orientation[1],orientation[2],orientation[3]));
- b3TransformAabb(localAabbMin,localAabbMax, margin,t,worldAabb.m_minVec,worldAabb.m_maxVec);
-
- m_data->m_bp->createProxy(worldAabb.m_minVec,worldAabb.m_maxVec,bodyIndex,0,1,1);
-// b3Vector3 aabbMin,aabbMax;
- // m_data->m_bp->getAabb(bodyIndex,aabbMin,aabbMax);
+ t.setOrigin(b3MakeVector3(position[0], position[1], position[2]));
+ t.setRotation(b3Quaternion(orientation[0], orientation[1], orientation[2], orientation[3]));
+ b3TransformAabb(localAabbMin, localAabbMax, margin, t, worldAabb.m_minVec, worldAabb.m_maxVec);
- } else
+ m_data->m_bp->createProxy(worldAabb.m_minVec, worldAabb.m_maxVec, bodyIndex, 0, 1, 1);
+ // b3Vector3 aabbMin,aabbMax;
+ // m_data->m_bp->getAabb(bodyIndex,aabbMin,aabbMax);
+ }
+ else
{
b3Error("registerPhysicsInstance using invalid collidableIndex\n");
}
@@ -476,13 +436,12 @@ int b3CpuRigidBodyPipeline::registerPhysicsInstance(float mass, const float* po
return bodyIndex;
}
-
const struct b3RigidBodyData* b3CpuRigidBodyPipeline::getBodyBuffer() const
{
return m_data->m_rigidBodies.size() ? &m_data->m_rigidBodies[0] : 0;
}
-int b3CpuRigidBodyPipeline::getNumBodies() const
+int b3CpuRigidBodyPipeline::getNumBodies() const
{
return m_data->m_rigidBodies.size();
}
diff --git a/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.h b/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.h
index 2f3c2ae77e..9c65419f26 100644
--- a/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.h
+++ b/thirdparty/bullet/Bullet3Dynamics/b3CpuRigidBodyPipeline.h
@@ -16,52 +16,47 @@ subject to the following restrictions:
#ifndef B3_CPU_RIGIDBODY_PIPELINE_H
#define B3_CPU_RIGIDBODY_PIPELINE_H
-
-
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3RaycastInfo.h"
class b3CpuRigidBodyPipeline
{
protected:
- struct b3CpuRigidBodyPipelineInternalData* m_data;
+ struct b3CpuRigidBodyPipelineInternalData* m_data;
int allocateCollidable();
public:
-
-
b3CpuRigidBodyPipeline(class b3CpuNarrowPhase* narrowphase, struct b3DynamicBvhBroadphase* broadphaseDbvt, const struct b3Config& config);
virtual ~b3CpuRigidBodyPipeline();
- virtual void stepSimulation(float deltaTime);
- virtual void integrate(float timeStep);
- virtual void updateAabbWorldSpace();
- virtual void computeOverlappingPairs();
- virtual void computeContactPoints();
- virtual void solveContactConstraints();
-
- int registerConvexPolyhedron(class b3ConvexUtility* convex);
-
- int registerPhysicsInstance(float mass, const float* position, const float* orientation, int collisionShapeIndex, int userData);
- void writeAllInstancesToGpu();
- void copyConstraintsToHost();
- void setGravity(const float* grav);
- void reset();
-
- int createPoint2PointConstraint(int bodyA, int bodyB, const float* pivotInA, const float* pivotInB,float breakingThreshold);
+ virtual void stepSimulation(float deltaTime);
+ virtual void integrate(float timeStep);
+ virtual void updateAabbWorldSpace();
+ virtual void computeOverlappingPairs();
+ virtual void computeContactPoints();
+ virtual void solveContactConstraints();
+
+ int registerConvexPolyhedron(class b3ConvexUtility* convex);
+
+ int registerPhysicsInstance(float mass, const float* position, const float* orientation, int collisionShapeIndex, int userData);
+ void writeAllInstancesToGpu();
+ void copyConstraintsToHost();
+ void setGravity(const float* grav);
+ void reset();
+
+ int createPoint2PointConstraint(int bodyA, int bodyB, const float* pivotInA, const float* pivotInB, float breakingThreshold);
int createFixedConstraint(int bodyA, int bodyB, const float* pivotInA, const float* pivotInB, const float* relTargetAB, float breakingThreshold);
void removeConstraintByUid(int uid);
- void addConstraint(class b3TypedConstraint* constraint);
- void removeConstraint(b3TypedConstraint* constraint);
+ void addConstraint(class b3TypedConstraint* constraint);
+ void removeConstraint(b3TypedConstraint* constraint);
- void castRays(const b3AlignedObjectArray<b3RayInfo>& rays, b3AlignedObjectArray<b3RayHit>& hitResults);
+ void castRays(const b3AlignedObjectArray<b3RayInfo>& rays, b3AlignedObjectArray<b3RayHit>& hitResults);
const struct b3RigidBodyData* getBodyBuffer() const;
- int getNumBodies() const;
-
+ int getNumBodies() const;
};
-#endif //B3_CPU_RIGIDBODY_PIPELINE_H \ No newline at end of file
+#endif //B3_CPU_RIGIDBODY_PIPELINE_H \ No newline at end of file
diff --git a/thirdparty/bullet/Bullet3Dynamics/shared/b3ContactConstraint4.h b/thirdparty/bullet/Bullet3Dynamics/shared/b3ContactConstraint4.h
index 68cf65e312..cf2eed0e7c 100644
--- a/thirdparty/bullet/Bullet3Dynamics/shared/b3ContactConstraint4.h
+++ b/thirdparty/bullet/Bullet3Dynamics/shared/b3ContactConstraint4.h
@@ -5,30 +5,27 @@
typedef struct b3ContactConstraint4 b3ContactConstraint4_t;
-
struct b3ContactConstraint4
{
-
- b3Float4 m_linear;//normal?
+ b3Float4 m_linear; //normal?
b3Float4 m_worldPos[4];
- b3Float4 m_center; // friction
+ b3Float4 m_center; // friction
float m_jacCoeffInv[4];
float m_b[4];
float m_appliedRambdaDt[4];
- float m_fJacCoeffInv[2]; // friction
- float m_fAppliedRambdaDt[2]; // friction
+ float m_fJacCoeffInv[2]; // friction
+ float m_fAppliedRambdaDt[2]; // friction
unsigned int m_bodyA;
unsigned int m_bodyB;
- int m_batchIdx;
+ int m_batchIdx;
unsigned int m_paddings;
-
};
//inline void setFrictionCoeff(float value) { m_linear[3] = value; }
-inline float b3GetFrictionCoeff(b3ContactConstraint4_t* constraint)
+inline float b3GetFrictionCoeff(b3ContactConstraint4_t* constraint)
{
- return constraint->m_linear.w;
+ return constraint->m_linear.w;
}
-#endif //B3_CONTACT_CONSTRAINT5_H
+#endif //B3_CONTACT_CONSTRAINT5_H
diff --git a/thirdparty/bullet/Bullet3Dynamics/shared/b3ConvertConstraint4.h b/thirdparty/bullet/Bullet3Dynamics/shared/b3ConvertConstraint4.h
index 805a2bd3ea..3e72f1c3f2 100644
--- a/thirdparty/bullet/Bullet3Dynamics/shared/b3ConvertConstraint4.h
+++ b/thirdparty/bullet/Bullet3Dynamics/shared/b3ConvertConstraint4.h
@@ -4,89 +4,84 @@
#include "Bullet3Dynamics/shared/b3ContactConstraint4.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
-
-void b3PlaneSpace1 (b3Float4ConstArg n, b3Float4* p, b3Float4* q);
- void b3PlaneSpace1 (b3Float4ConstArg n, b3Float4* p, b3Float4* q)
+void b3PlaneSpace1(b3Float4ConstArg n, b3Float4* p, b3Float4* q);
+void b3PlaneSpace1(b3Float4ConstArg n, b3Float4* p, b3Float4* q)
{
- if (b3Fabs(n.z) > 0.70710678f) {
- // choose p in y-z plane
- float a = n.y*n.y + n.z*n.z;
- float k = 1.f/sqrt(a);
- p[0].x = 0;
- p[0].y = -n.z*k;
- p[0].z = n.y*k;
- // set q = n x p
- q[0].x = a*k;
- q[0].y = -n.x*p[0].z;
- q[0].z = n.x*p[0].y;
- }
- else {
- // choose p in x-y plane
- float a = n.x*n.x + n.y*n.y;
- float k = 1.f/sqrt(a);
- p[0].x = -n.y*k;
- p[0].y = n.x*k;
- p[0].z = 0;
- // set q = n x p
- q[0].x = -n.z*p[0].y;
- q[0].y = n.z*p[0].x;
- q[0].z = a*k;
- }
+ if (b3Fabs(n.z) > 0.70710678f)
+ {
+ // choose p in y-z plane
+ float a = n.y * n.y + n.z * n.z;
+ float k = 1.f / sqrt(a);
+ p[0].x = 0;
+ p[0].y = -n.z * k;
+ p[0].z = n.y * k;
+ // set q = n x p
+ q[0].x = a * k;
+ q[0].y = -n.x * p[0].z;
+ q[0].z = n.x * p[0].y;
+ }
+ else
+ {
+ // choose p in x-y plane
+ float a = n.x * n.x + n.y * n.y;
+ float k = 1.f / sqrt(a);
+ p[0].x = -n.y * k;
+ p[0].y = n.x * k;
+ p[0].z = 0;
+ // set q = n x p
+ q[0].x = -n.z * p[0].y;
+ q[0].y = n.z * p[0].x;
+ q[0].z = a * k;
+ }
}
-
-
-void setLinearAndAngular( b3Float4ConstArg n, b3Float4ConstArg r0, b3Float4ConstArg r1, b3Float4* linear, b3Float4* angular0, b3Float4* angular1)
+void setLinearAndAngular(b3Float4ConstArg n, b3Float4ConstArg r0, b3Float4ConstArg r1, b3Float4* linear, b3Float4* angular0, b3Float4* angular1)
{
- *linear = b3MakeFloat4(n.x,n.y,n.z,0.f);
+ *linear = b3MakeFloat4(n.x, n.y, n.z, 0.f);
*angular0 = b3Cross3(r0, n);
*angular1 = -b3Cross3(r1, n);
}
-
-float calcRelVel( b3Float4ConstArg l0, b3Float4ConstArg l1, b3Float4ConstArg a0, b3Float4ConstArg a1, b3Float4ConstArg linVel0,
- b3Float4ConstArg angVel0, b3Float4ConstArg linVel1, b3Float4ConstArg angVel1 )
+float calcRelVel(b3Float4ConstArg l0, b3Float4ConstArg l1, b3Float4ConstArg a0, b3Float4ConstArg a1, b3Float4ConstArg linVel0,
+ b3Float4ConstArg angVel0, b3Float4ConstArg linVel1, b3Float4ConstArg angVel1)
{
return b3Dot3F4(l0, linVel0) + b3Dot3F4(a0, angVel0) + b3Dot3F4(l1, linVel1) + b3Dot3F4(a1, angVel1);
}
-
float calcJacCoeff(b3Float4ConstArg linear0, b3Float4ConstArg linear1, b3Float4ConstArg angular0, b3Float4ConstArg angular1,
- float invMass0, const b3Mat3x3* invInertia0, float invMass1, const b3Mat3x3* invInertia1)
+ float invMass0, const b3Mat3x3* invInertia0, float invMass1, const b3Mat3x3* invInertia1)
{
// linear0,1 are normlized
- float jmj0 = invMass0;//b3Dot3F4(linear0, linear0)*invMass0;
- float jmj1 = b3Dot3F4(mtMul3(angular0,*invInertia0), angular0);
- float jmj2 = invMass1;//b3Dot3F4(linear1, linear1)*invMass1;
- float jmj3 = b3Dot3F4(mtMul3(angular1,*invInertia1), angular1);
- return -1.f/(jmj0+jmj1+jmj2+jmj3);
+ float jmj0 = invMass0; //b3Dot3F4(linear0, linear0)*invMass0;
+ float jmj1 = b3Dot3F4(mtMul3(angular0, *invInertia0), angular0);
+ float jmj2 = invMass1; //b3Dot3F4(linear1, linear1)*invMass1;
+ float jmj3 = b3Dot3F4(mtMul3(angular1, *invInertia1), angular1);
+ return -1.f / (jmj0 + jmj1 + jmj2 + jmj3);
}
-
-void setConstraint4( b3Float4ConstArg posA, b3Float4ConstArg linVelA, b3Float4ConstArg angVelA, float invMassA, b3Mat3x3ConstArg invInertiaA,
- b3Float4ConstArg posB, b3Float4ConstArg linVelB, b3Float4ConstArg angVelB, float invMassB, b3Mat3x3ConstArg invInertiaB,
- __global struct b3Contact4Data* src, float dt, float positionDrift, float positionConstraintCoeff,
- b3ContactConstraint4_t* dstC )
+void setConstraint4(b3Float4ConstArg posA, b3Float4ConstArg linVelA, b3Float4ConstArg angVelA, float invMassA, b3Mat3x3ConstArg invInertiaA,
+ b3Float4ConstArg posB, b3Float4ConstArg linVelB, b3Float4ConstArg angVelB, float invMassB, b3Mat3x3ConstArg invInertiaB,
+ __global struct b3Contact4Data* src, float dt, float positionDrift, float positionConstraintCoeff,
+ b3ContactConstraint4_t* dstC)
{
dstC->m_bodyA = abs(src->m_bodyAPtrAndSignBit);
dstC->m_bodyB = abs(src->m_bodyBPtrAndSignBit);
- float dtInv = 1.f/dt;
- for(int ic=0; ic<4; ic++)
+ float dtInv = 1.f / dt;
+ for (int ic = 0; ic < 4; ic++)
{
dstC->m_appliedRambdaDt[ic] = 0.f;
}
dstC->m_fJacCoeffInv[0] = dstC->m_fJacCoeffInv[1] = 0.f;
-
dstC->m_linear = src->m_worldNormalOnB;
- dstC->m_linear.w = 0.7f ;//src->getFrictionCoeff() );
- for(int ic=0; ic<4; ic++)
+ dstC->m_linear.w = 0.7f; //src->getFrictionCoeff() );
+ for (int ic = 0; ic < 4; ic++)
{
b3Float4 r0 = src->m_worldPosB[ic] - posA;
b3Float4 r1 = src->m_worldPosB[ic] - posB;
- if( ic >= src->m_worldNormalOnB.w )//npoints
+ if (ic >= src->m_worldNormalOnB.w) //npoints
{
dstC->m_jacCoeffInv[ic] = 0.f;
continue;
@@ -98,56 +93,56 @@ void setConstraint4( b3Float4ConstArg posA, b3Float4ConstArg linVelA, b3Float4Co
setLinearAndAngular(src->m_worldNormalOnB, r0, r1, &linear, &angular0, &angular1);
dstC->m_jacCoeffInv[ic] = calcJacCoeff(linear, -linear, angular0, angular1,
- invMassA, &invInertiaA, invMassB, &invInertiaB );
+ invMassA, &invInertiaA, invMassB, &invInertiaB);
relVelN = calcRelVel(linear, -linear, angular0, angular1,
- linVelA, angVelA, linVelB, angVelB);
+ linVelA, angVelA, linVelB, angVelB);
- float e = 0.f;//src->getRestituitionCoeff();
- if( relVelN*relVelN < 0.004f ) e = 0.f;
+ float e = 0.f; //src->getRestituitionCoeff();
+ if (relVelN * relVelN < 0.004f) e = 0.f;
- dstC->m_b[ic] = e*relVelN;
+ dstC->m_b[ic] = e * relVelN;
//float penetration = src->m_worldPosB[ic].w;
- dstC->m_b[ic] += (src->m_worldPosB[ic].w + positionDrift)*positionConstraintCoeff*dtInv;
+ dstC->m_b[ic] += (src->m_worldPosB[ic].w + positionDrift) * positionConstraintCoeff * dtInv;
dstC->m_appliedRambdaDt[ic] = 0.f;
}
}
- if( src->m_worldNormalOnB.w > 0 )//npoints
- { // prepare friction
- b3Float4 center = b3MakeFloat4(0.f,0.f,0.f,0.f);
- for(int i=0; i<src->m_worldNormalOnB.w; i++)
+ if (src->m_worldNormalOnB.w > 0) //npoints
+ { // prepare friction
+ b3Float4 center = b3MakeFloat4(0.f, 0.f, 0.f, 0.f);
+ for (int i = 0; i < src->m_worldNormalOnB.w; i++)
center += src->m_worldPosB[i];
center /= (float)src->m_worldNormalOnB.w;
b3Float4 tangent[2];
- b3PlaneSpace1(src->m_worldNormalOnB,&tangent[0],&tangent[1]);
-
+ b3PlaneSpace1(src->m_worldNormalOnB, &tangent[0], &tangent[1]);
+
b3Float4 r[2];
r[0] = center - posA;
r[1] = center - posB;
- for(int i=0; i<2; i++)
+ for (int i = 0; i < 2; i++)
{
b3Float4 linear, angular0, angular1;
setLinearAndAngular(tangent[i], r[0], r[1], &linear, &angular0, &angular1);
dstC->m_fJacCoeffInv[i] = calcJacCoeff(linear, -linear, angular0, angular1,
- invMassA, &invInertiaA, invMassB, &invInertiaB );
+ invMassA, &invInertiaA, invMassB, &invInertiaB);
dstC->m_fAppliedRambdaDt[i] = 0.f;
}
dstC->m_center = center;
}
- for(int i=0; i<4; i++)
+ for (int i = 0; i < 4; i++)
{
- if( i<src->m_worldNormalOnB.w )
+ if (i < src->m_worldNormalOnB.w)
{
dstC->m_worldPos[i] = src->m_worldPosB[i];
}
else
{
- dstC->m_worldPos[i] = b3MakeFloat4(0.f,0.f,0.f,0.f);
+ dstC->m_worldPos[i] = b3MakeFloat4(0.f, 0.f, 0.f, 0.f);
}
}
}
diff --git a/thirdparty/bullet/Bullet3Dynamics/shared/b3Inertia.h b/thirdparty/bullet/Bullet3Dynamics/shared/b3Inertia.h
index 96fe9f8b39..602a1335aa 100644
--- a/thirdparty/bullet/Bullet3Dynamics/shared/b3Inertia.h
+++ b/thirdparty/bullet/Bullet3Dynamics/shared/b3Inertia.h
@@ -11,5 +11,4 @@ struct b3Inertia
b3Mat3x3 m_initInvInertia;
};
-
-#endif //B3_INERTIA_H \ No newline at end of file
+#endif //B3_INERTIA_H \ No newline at end of file
diff --git a/thirdparty/bullet/Bullet3Dynamics/shared/b3IntegrateTransforms.h b/thirdparty/bullet/Bullet3Dynamics/shared/b3IntegrateTransforms.h
index e96f90d3f3..56d9118f95 100644
--- a/thirdparty/bullet/Bullet3Dynamics/shared/b3IntegrateTransforms.h
+++ b/thirdparty/bullet/Bullet3Dynamics/shared/b3IntegrateTransforms.h
@@ -2,11 +2,8 @@
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
-
-
-inline void integrateSingleTransform( __global b3RigidBodyData_t* bodies,int nodeID, float timeStep, float angularDamping, b3Float4ConstArg gravityAcceleration)
+inline void integrateSingleTransform(__global b3RigidBodyData_t* bodies, int nodeID, float timeStep, float angularDamping, b3Float4ConstArg gravityAcceleration)
{
-
if (bodies[nodeID].m_invMass != 0.f)
{
float BT_GPU_ANGULAR_MOTION_THRESHOLD = (0.25f * 3.14159254f);
@@ -18,27 +15,27 @@ inline void integrateSingleTransform( __global b3RigidBodyData_t* bodies,int nod
bodies[nodeID].m_angVel.x *= angularDamping;
bodies[nodeID].m_angVel.y *= angularDamping;
bodies[nodeID].m_angVel.z *= angularDamping;
-
+
b3Float4 angvel = bodies[nodeID].m_angVel;
float fAngle = b3Sqrt(b3Dot3F4(angvel, angvel));
-
+
//limit the angular motion
- if(fAngle*timeStep > BT_GPU_ANGULAR_MOTION_THRESHOLD)
+ if (fAngle * timeStep > BT_GPU_ANGULAR_MOTION_THRESHOLD)
{
fAngle = BT_GPU_ANGULAR_MOTION_THRESHOLD / timeStep;
}
- if(fAngle < 0.001f)
+ if (fAngle < 0.001f)
{
// use Taylor's expansions of sync function
- axis = angvel * (0.5f*timeStep-(timeStep*timeStep*timeStep)*0.020833333333f * fAngle * fAngle);
+ axis = angvel * (0.5f * timeStep - (timeStep * timeStep * timeStep) * 0.020833333333f * fAngle * fAngle);
}
else
{
// sync(fAngle) = sin(c*fAngle)/t
- axis = angvel * ( b3Sin(0.5f * fAngle * timeStep) / fAngle);
+ axis = angvel * (b3Sin(0.5f * fAngle * timeStep) / fAngle);
}
-
+
b3Quat dorn;
dorn.x = axis.x;
dorn.y = axis.y;
@@ -47,23 +44,21 @@ inline void integrateSingleTransform( __global b3RigidBodyData_t* bodies,int nod
b3Quat orn0 = bodies[nodeID].m_quat;
b3Quat predictedOrn = b3QuatMul(dorn, orn0);
predictedOrn = b3QuatNormalized(predictedOrn);
- bodies[nodeID].m_quat=predictedOrn;
+ bodies[nodeID].m_quat = predictedOrn;
}
- //linear velocity
- bodies[nodeID].m_pos += bodies[nodeID].m_linVel * timeStep;
-
+ //linear velocity
+ bodies[nodeID].m_pos += bodies[nodeID].m_linVel * timeStep;
+
//apply gravity
bodies[nodeID].m_linVel += gravityAcceleration * timeStep;
-
}
-
}
-inline void b3IntegrateTransform( __global b3RigidBodyData_t* body, float timeStep, float angularDamping, b3Float4ConstArg gravityAcceleration)
+inline void b3IntegrateTransform(__global b3RigidBodyData_t* body, float timeStep, float angularDamping, b3Float4ConstArg gravityAcceleration)
{
float BT_GPU_ANGULAR_MOTION_THRESHOLD = (0.25f * 3.14159254f);
-
- if( (body->m_invMass != 0.f))
+
+ if ((body->m_invMass != 0.f))
{
//angular velocity
{
@@ -72,23 +67,23 @@ inline void b3IntegrateTransform( __global b3RigidBodyData_t* body, float timeSt
body->m_angVel.x *= angularDamping;
body->m_angVel.y *= angularDamping;
body->m_angVel.z *= angularDamping;
-
+
b3Float4 angvel = body->m_angVel;
float fAngle = b3Sqrt(b3Dot3F4(angvel, angvel));
//limit the angular motion
- if(fAngle*timeStep > BT_GPU_ANGULAR_MOTION_THRESHOLD)
+ if (fAngle * timeStep > BT_GPU_ANGULAR_MOTION_THRESHOLD)
{
fAngle = BT_GPU_ANGULAR_MOTION_THRESHOLD / timeStep;
}
- if(fAngle < 0.001f)
+ if (fAngle < 0.001f)
{
// use Taylor's expansions of sync function
- axis = angvel * (0.5f*timeStep-(timeStep*timeStep*timeStep)*0.020833333333f * fAngle * fAngle);
+ axis = angvel * (0.5f * timeStep - (timeStep * timeStep * timeStep) * 0.020833333333f * fAngle * fAngle);
}
else
{
// sync(fAngle) = sin(c*fAngle)/t
- axis = angvel * ( b3Sin(0.5f * fAngle * timeStep) / fAngle);
+ axis = angvel * (b3Sin(0.5f * fAngle * timeStep) / fAngle);
}
b3Quat dorn;
dorn.x = axis.x;
@@ -99,15 +94,13 @@ inline void b3IntegrateTransform( __global b3RigidBodyData_t* body, float timeSt
b3Quat predictedOrn = b3QuatMul(dorn, orn0);
predictedOrn = b3QuatNormalized(predictedOrn);
- body->m_quat=predictedOrn;
+ body->m_quat = predictedOrn;
}
//apply gravity
body->m_linVel += gravityAcceleration * timeStep;
- //linear velocity
- body->m_pos += body->m_linVel * timeStep;
-
+ //linear velocity
+ body->m_pos += body->m_linVel * timeStep;
}
-
}