summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h')
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h567
1 files changed, 267 insertions, 300 deletions
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h
index 084d36055c..1597809db3 100644
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h
+++ b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.h
@@ -23,7 +23,6 @@ email: projectileman@yahoo.com
http://gimpact.sf.net
*/
-
#ifndef B3_GENERIC_6DOF_CONSTRAINT_H
#define B3_GENERIC_6DOF_CONSTRAINT_H
@@ -33,88 +32,83 @@ http://gimpact.sf.net
struct b3RigidBodyData;
-
-
-
//! Rotation Limit structure for generic joints
class b3RotationalLimitMotor
{
public:
- //! limit_parameters
- //!@{
- b3Scalar m_loLimit;//!< joint limit
- b3Scalar m_hiLimit;//!< joint limit
- b3Scalar m_targetVelocity;//!< target motor velocity
- b3Scalar m_maxMotorForce;//!< max force on motor
- b3Scalar m_maxLimitForce;//!< max force on limit
- b3Scalar m_damping;//!< Damping.
- b3Scalar m_limitSoftness;//! Relaxation factor
- b3Scalar m_normalCFM;//!< Constraint force mixing factor
- b3Scalar m_stopERP;//!< Error tolerance factor when joint is at limit
- b3Scalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit
- b3Scalar m_bounce;//!< restitution factor
- bool m_enableMotor;
-
- //!@}
-
- //! temp_variables
- //!@{
- b3Scalar m_currentLimitError;//! How much is violated this limit
- b3Scalar m_currentPosition; //! current value of angle
- int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
- b3Scalar m_accumulatedImpulse;
- //!@}
-
- b3RotationalLimitMotor()
- {
- m_accumulatedImpulse = 0.f;
- m_targetVelocity = 0;
- m_maxMotorForce = 0.1f;
- m_maxLimitForce = 300.0f;
- m_loLimit = 1.0f;
- m_hiLimit = -1.0f;
+ //! limit_parameters
+ //!@{
+ b3Scalar m_loLimit; //!< joint limit
+ b3Scalar m_hiLimit; //!< joint limit
+ b3Scalar m_targetVelocity; //!< target motor velocity
+ b3Scalar m_maxMotorForce; //!< max force on motor
+ b3Scalar m_maxLimitForce; //!< max force on limit
+ b3Scalar m_damping; //!< Damping.
+ b3Scalar m_limitSoftness; //! Relaxation factor
+ b3Scalar m_normalCFM; //!< Constraint force mixing factor
+ b3Scalar m_stopERP; //!< Error tolerance factor when joint is at limit
+ b3Scalar m_stopCFM; //!< Constraint force mixing factor when joint is at limit
+ b3Scalar m_bounce; //!< restitution factor
+ bool m_enableMotor;
+
+ //!@}
+
+ //! temp_variables
+ //!@{
+ b3Scalar m_currentLimitError; //! How much is violated this limit
+ b3Scalar m_currentPosition; //! current value of angle
+ int m_currentLimit; //!< 0=free, 1=at lo limit, 2=at hi limit
+ b3Scalar m_accumulatedImpulse;
+ //!@}
+
+ b3RotationalLimitMotor()
+ {
+ m_accumulatedImpulse = 0.f;
+ m_targetVelocity = 0;
+ m_maxMotorForce = 6.0f;
+ m_maxLimitForce = 300.0f;
+ m_loLimit = 1.0f;
+ m_hiLimit = -1.0f;
m_normalCFM = 0.f;
m_stopERP = 0.2f;
m_stopCFM = 0.f;
- m_bounce = 0.0f;
- m_damping = 1.0f;
- m_limitSoftness = 0.5f;
- m_currentLimit = 0;
- m_currentLimitError = 0;
- m_enableMotor = false;
- }
-
- b3RotationalLimitMotor(const b3RotationalLimitMotor & limot)
- {
- m_targetVelocity = limot.m_targetVelocity;
- m_maxMotorForce = limot.m_maxMotorForce;
- m_limitSoftness = limot.m_limitSoftness;
- m_loLimit = limot.m_loLimit;
- m_hiLimit = limot.m_hiLimit;
+ m_bounce = 0.0f;
+ m_damping = 1.0f;
+ m_limitSoftness = 0.5f;
+ m_currentLimit = 0;
+ m_currentLimitError = 0;
+ m_enableMotor = false;
+ }
+
+ b3RotationalLimitMotor(const b3RotationalLimitMotor& limot)
+ {
+ m_targetVelocity = limot.m_targetVelocity;
+ m_maxMotorForce = limot.m_maxMotorForce;
+ m_limitSoftness = limot.m_limitSoftness;
+ m_loLimit = limot.m_loLimit;
+ m_hiLimit = limot.m_hiLimit;
m_normalCFM = limot.m_normalCFM;
m_stopERP = limot.m_stopERP;
- m_stopCFM = limot.m_stopCFM;
- m_bounce = limot.m_bounce;
- m_currentLimit = limot.m_currentLimit;
- m_currentLimitError = limot.m_currentLimitError;
- m_enableMotor = limot.m_enableMotor;
- }
-
-
+ m_stopCFM = limot.m_stopCFM;
+ m_bounce = limot.m_bounce;
+ m_currentLimit = limot.m_currentLimit;
+ m_currentLimitError = limot.m_currentLimitError;
+ m_enableMotor = limot.m_enableMotor;
+ }
//! Is limited
- bool isLimited()
- {
- if(m_loLimit > m_hiLimit) return false;
- return true;
- }
+ bool isLimited()
+ {
+ if (m_loLimit > m_hiLimit) return false;
+ return true;
+ }
//! Need apply correction
- bool needApplyTorques()
- {
- if(m_currentLimit == 0 && m_enableMotor == false) return false;
- return true;
- }
+ bool needApplyTorques()
+ {
+ if (m_currentLimit == 0 && m_enableMotor == false) return false;
+ return true;
+ }
//! calculates error
/*!
@@ -123,104 +117,98 @@ public:
int testLimitValue(b3Scalar test_value);
//! apply the correction impulses for two bodies
- b3Scalar solveAngularLimits(b3Scalar timeStep,b3Vector3& axis, b3Scalar jacDiagABInv,b3RigidBodyData * body0, b3RigidBodyData * body1);
-
+ b3Scalar solveAngularLimits(b3Scalar timeStep, b3Vector3& axis, b3Scalar jacDiagABInv, b3RigidBodyData* body0, b3RigidBodyData* body1);
};
-
-
class b3TranslationalLimitMotor
{
public:
- b3Vector3 m_lowerLimit;//!< the constraint lower limits
- b3Vector3 m_upperLimit;//!< the constraint upper limits
- b3Vector3 m_accumulatedImpulse;
- //! Linear_Limit_parameters
- //!@{
- b3Vector3 m_normalCFM;//!< Constraint force mixing factor
- b3Vector3 m_stopERP;//!< Error tolerance factor when joint is at limit
- b3Vector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit
- b3Vector3 m_targetVelocity;//!< target motor velocity
- b3Vector3 m_maxMotorForce;//!< max force on motor
- b3Vector3 m_currentLimitError;//! How much is violated this limit
- b3Vector3 m_currentLinearDiff;//! Current relative offset of constraint frames
- b3Scalar m_limitSoftness;//!< Softness for linear limit
- b3Scalar m_damping;//!< Damping for linear limit
- b3Scalar m_restitution;//! Bounce parameter for linear limit
+ b3Vector3 m_lowerLimit; //!< the constraint lower limits
+ b3Vector3 m_upperLimit; //!< the constraint upper limits
+ b3Vector3 m_accumulatedImpulse;
+ //! Linear_Limit_parameters
+ //!@{
+ b3Vector3 m_normalCFM; //!< Constraint force mixing factor
+ b3Vector3 m_stopERP; //!< Error tolerance factor when joint is at limit
+ b3Vector3 m_stopCFM; //!< Constraint force mixing factor when joint is at limit
+ b3Vector3 m_targetVelocity; //!< target motor velocity
+ b3Vector3 m_maxMotorForce; //!< max force on motor
+ b3Vector3 m_currentLimitError; //! How much is violated this limit
+ b3Vector3 m_currentLinearDiff; //! Current relative offset of constraint frames
+ b3Scalar m_limitSoftness; //!< Softness for linear limit
+ b3Scalar m_damping; //!< Damping for linear limit
+ b3Scalar m_restitution; //! Bounce parameter for linear limit
//!@}
- bool m_enableMotor[3];
- int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit
-
- b3TranslationalLimitMotor()
- {
- m_lowerLimit.setValue(0.f,0.f,0.f);
- m_upperLimit.setValue(0.f,0.f,0.f);
- m_accumulatedImpulse.setValue(0.f,0.f,0.f);
+ bool m_enableMotor[3];
+ int m_currentLimit[3]; //!< 0=free, 1=at lower limit, 2=at upper limit
+
+ b3TranslationalLimitMotor()
+ {
+ m_lowerLimit.setValue(0.f, 0.f, 0.f);
+ m_upperLimit.setValue(0.f, 0.f, 0.f);
+ m_accumulatedImpulse.setValue(0.f, 0.f, 0.f);
m_normalCFM.setValue(0.f, 0.f, 0.f);
m_stopERP.setValue(0.2f, 0.2f, 0.2f);
m_stopCFM.setValue(0.f, 0.f, 0.f);
- m_limitSoftness = 0.7f;
- m_damping = b3Scalar(1.0f);
- m_restitution = b3Scalar(0.5f);
- for(int i=0; i < 3; i++)
+ m_limitSoftness = 0.7f;
+ m_damping = b3Scalar(1.0f);
+ m_restitution = b3Scalar(0.5f);
+ for (int i = 0; i < 3; i++)
{
m_enableMotor[i] = false;
m_targetVelocity[i] = b3Scalar(0.f);
m_maxMotorForce[i] = b3Scalar(0.f);
}
- }
+ }
- b3TranslationalLimitMotor(const b3TranslationalLimitMotor & other )
- {
- m_lowerLimit = other.m_lowerLimit;
- m_upperLimit = other.m_upperLimit;
- m_accumulatedImpulse = other.m_accumulatedImpulse;
+ b3TranslationalLimitMotor(const b3TranslationalLimitMotor& other)
+ {
+ m_lowerLimit = other.m_lowerLimit;
+ m_upperLimit = other.m_upperLimit;
+ m_accumulatedImpulse = other.m_accumulatedImpulse;
- m_limitSoftness = other.m_limitSoftness ;
- m_damping = other.m_damping;
- m_restitution = other.m_restitution;
+ m_limitSoftness = other.m_limitSoftness;
+ m_damping = other.m_damping;
+ m_restitution = other.m_restitution;
m_normalCFM = other.m_normalCFM;
m_stopERP = other.m_stopERP;
m_stopCFM = other.m_stopCFM;
- for(int i=0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
{
m_enableMotor[i] = other.m_enableMotor[i];
m_targetVelocity[i] = other.m_targetVelocity[i];
m_maxMotorForce[i] = other.m_maxMotorForce[i];
}
- }
+ }
- //! Test limit
+ //! Test limit
/*!
- free means upper < lower,
- locked means upper == lower
- limited means upper > lower
- limitIndex: first 3 are linear, next 3 are angular
*/
- inline bool isLimited(int limitIndex)
- {
- return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
- }
- inline bool needApplyForce(int limitIndex)
- {
- if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
- return true;
- }
+ inline bool isLimited(int limitIndex)
+ {
+ return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
+ }
+ inline bool needApplyForce(int limitIndex)
+ {
+ if (m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
+ return true;
+ }
int testLimitValue(int limitIndex, b3Scalar test_value);
-
- b3Scalar solveLinearAxis(
- b3Scalar timeStep,
- b3Scalar jacDiagABInv,
- b3RigidBodyData& body1,const b3Vector3 &pointInA,
- b3RigidBodyData& body2,const b3Vector3 &pointInB,
- int limit_index,
- const b3Vector3 & axis_normal_on_a,
- const b3Vector3 & anchorPos);
-
-
+ b3Scalar solveLinearAxis(
+ b3Scalar timeStep,
+ b3Scalar jacDiagABInv,
+ b3RigidBodyData& body1, const b3Vector3& pointInA,
+ b3RigidBodyData& body2, const b3Vector3& pointInB,
+ int limit_index,
+ const b3Vector3& axis_normal_on_a,
+ const b3Vector3& anchorPos);
};
enum b36DofFlags
@@ -229,8 +217,7 @@ enum b36DofFlags
B3_6DOF_FLAGS_CFM_STOP = 2,
B3_6DOF_FLAGS_ERP_STOP = 4
};
-#define B3_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
-
+#define B3_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
/// b3Generic6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
/*!
@@ -268,240 +255,229 @@ This brings support for limit parameters and motors. </li>
</ul>
*/
-B3_ATTRIBUTE_ALIGNED16(class) b3Generic6DofConstraint : public b3TypedConstraint
+B3_ATTRIBUTE_ALIGNED16(class)
+b3Generic6DofConstraint : public b3TypedConstraint
{
protected:
-
//! relative_frames
- //!@{
- b3Transform m_frameInA;//!< the constraint space w.r.t body A
- b3Transform m_frameInB;//!< the constraint space w.r.t body B
- //!@}
+ //!@{
+ b3Transform m_frameInA; //!< the constraint space w.r.t body A
+ b3Transform m_frameInB; //!< the constraint space w.r.t body B
+ //!@}
- //! Jacobians
- //!@{
-// b3JacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints
-// b3JacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints
- //!@}
+ //! Jacobians
+ //!@{
+ // b3JacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints
+ // b3JacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints
+ //!@}
//! Linear_Limit_parameters
- //!@{
- b3TranslationalLimitMotor m_linearLimits;
- //!@}
-
-
- //! hinge_parameters
- //!@{
- b3RotationalLimitMotor m_angularLimits[3];
+ //!@{
+ b3TranslationalLimitMotor m_linearLimits;
//!@}
+ //! hinge_parameters
+ //!@{
+ b3RotationalLimitMotor m_angularLimits[3];
+ //!@}
protected:
- //! temporal variables
- //!@{
- b3Transform m_calculatedTransformA;
- b3Transform m_calculatedTransformB;
- b3Vector3 m_calculatedAxisAngleDiff;
- b3Vector3 m_calculatedAxis[3];
- b3Vector3 m_calculatedLinearDiff;
- b3Scalar m_timeStep;
- b3Scalar m_factA;
- b3Scalar m_factB;
- bool m_hasStaticBody;
-
- b3Vector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
+ //! temporal variables
+ //!@{
+ b3Transform m_calculatedTransformA;
+ b3Transform m_calculatedTransformB;
+ b3Vector3 m_calculatedAxisAngleDiff;
+ b3Vector3 m_calculatedAxis[3];
+ b3Vector3 m_calculatedLinearDiff;
+ b3Scalar m_timeStep;
+ b3Scalar m_factA;
+ b3Scalar m_factB;
+ bool m_hasStaticBody;
- bool m_useLinearReferenceFrameA;
- bool m_useOffsetForConstraintFrame;
-
- int m_flags;
+ b3Vector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
- //!@}
+ bool m_useLinearReferenceFrameA;
+ bool m_useOffsetForConstraintFrame;
- b3Generic6DofConstraint& operator=(b3Generic6DofConstraint& other)
- {
- b3Assert(0);
- (void) other;
- return *this;
- }
+ int m_flags;
+ //!@}
- int setAngularLimits(b3ConstraintInfo2 *info, int row_offset,const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB);
+ b3Generic6DofConstraint& operator=(b3Generic6DofConstraint& other)
+ {
+ b3Assert(0);
+ (void)other;
+ return *this;
+ }
- int setLinearLimits(b3ConstraintInfo2 *info, int row, const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB);
+ int setAngularLimits(b3ConstraintInfo2 * info, int row_offset, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB);
+ int setLinearLimits(b3ConstraintInfo2 * info, int row, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB);
// tests linear limits
void calculateLinearInfo();
//! calcs the euler angles between the two bodies.
- void calculateAngleInfo();
-
-
+ void calculateAngleInfo();
public:
-
B3_DECLARE_ALIGNED_ALLOCATOR();
-
- b3Generic6DofConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB ,bool useLinearReferenceFrameA,const b3RigidBodyData* bodies);
-
+
+ b3Generic6DofConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB, bool useLinearReferenceFrameA, const b3RigidBodyData* bodies);
+
//! Calcs global transform of the offsets
/*!
Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
\sa b3Generic6DofConstraint.getCalculatedTransformA , b3Generic6DofConstraint.getCalculatedTransformB, b3Generic6DofConstraint.calculateAngleInfo
*/
- void calculateTransforms(const b3Transform& transA,const b3Transform& transB,const b3RigidBodyData* bodies);
+ void calculateTransforms(const b3Transform& transA, const b3Transform& transB, const b3RigidBodyData* bodies);
void calculateTransforms(const b3RigidBodyData* bodies);
//! Gets the global transform of the offset for body A
- /*!
+ /*!
\sa b3Generic6DofConstraint.getFrameOffsetA, b3Generic6DofConstraint.getFrameOffsetB, b3Generic6DofConstraint.calculateAngleInfo.
*/
- const b3Transform & getCalculatedTransformA() const
- {
- return m_calculatedTransformA;
- }
+ const b3Transform& getCalculatedTransformA() const
+ {
+ return m_calculatedTransformA;
+ }
- //! Gets the global transform of the offset for body B
- /*!
+ //! Gets the global transform of the offset for body B
+ /*!
\sa b3Generic6DofConstraint.getFrameOffsetA, b3Generic6DofConstraint.getFrameOffsetB, b3Generic6DofConstraint.calculateAngleInfo.
*/
- const b3Transform & getCalculatedTransformB() const
- {
- return m_calculatedTransformB;
- }
-
- const b3Transform & getFrameOffsetA() const
- {
- return m_frameInA;
- }
-
- const b3Transform & getFrameOffsetB() const
- {
- return m_frameInB;
- }
-
-
- b3Transform & getFrameOffsetA()
- {
- return m_frameInA;
- }
+ const b3Transform& getCalculatedTransformB() const
+ {
+ return m_calculatedTransformB;
+ }
- b3Transform & getFrameOffsetB()
- {
- return m_frameInB;
- }
+ const b3Transform& getFrameOffsetA() const
+ {
+ return m_frameInA;
+ }
+ const b3Transform& getFrameOffsetB() const
+ {
+ return m_frameInB;
+ }
+ b3Transform& getFrameOffsetA()
+ {
+ return m_frameInA;
+ }
- virtual void getInfo1 (b3ConstraintInfo1* info,const b3RigidBodyData* bodies);
+ b3Transform& getFrameOffsetB()
+ {
+ return m_frameInB;
+ }
- void getInfo1NonVirtual (b3ConstraintInfo1* info,const b3RigidBodyData* bodies);
+ virtual void getInfo1(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies);
- virtual void getInfo2 (b3ConstraintInfo2* info,const b3RigidBodyData* bodies);
+ void getInfo1NonVirtual(b3ConstraintInfo1 * info, const b3RigidBodyData* bodies);
- void getInfo2NonVirtual (b3ConstraintInfo2* info,const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB,const b3RigidBodyData* bodies);
+ virtual void getInfo2(b3ConstraintInfo2 * info, const b3RigidBodyData* bodies);
+ void getInfo2NonVirtual(b3ConstraintInfo2 * info, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB, const b3RigidBodyData* bodies);
- void updateRHS(b3Scalar timeStep);
+ void updateRHS(b3Scalar timeStep);
//! Get the rotation axis in global coordinates
- b3Vector3 getAxis(int axis_index) const;
+ b3Vector3 getAxis(int axis_index) const;
- //! Get the relative Euler angle
- /*!
+ //! Get the relative Euler angle
+ /*!
\pre b3Generic6DofConstraint::calculateTransforms() must be called previously.
*/
- b3Scalar getAngle(int axis_index) const;
+ b3Scalar getAngle(int axis_index) const;
//! Get the relative position of the constraint pivot
- /*!
+ /*!
\pre b3Generic6DofConstraint::calculateTransforms() must be called previously.
*/
b3Scalar getRelativePivotPosition(int axis_index) const;
- void setFrames(const b3Transform & frameA, const b3Transform & frameB, const b3RigidBodyData* bodies);
+ void setFrames(const b3Transform& frameA, const b3Transform& frameB, const b3RigidBodyData* bodies);
//! Test angular limit.
/*!
Calculates angular correction and returns true if limit needs to be corrected.
\pre b3Generic6DofConstraint::calculateTransforms() must be called previously.
*/
- bool testAngularLimitMotor(int axis_index);
+ bool testAngularLimitMotor(int axis_index);
- void setLinearLowerLimit(const b3Vector3& linearLower)
- {
- m_linearLimits.m_lowerLimit = linearLower;
- }
+ void setLinearLowerLimit(const b3Vector3& linearLower)
+ {
+ m_linearLimits.m_lowerLimit = linearLower;
+ }
- void getLinearLowerLimit(b3Vector3& linearLower)
+ void getLinearLowerLimit(b3Vector3 & linearLower)
{
linearLower = m_linearLimits.m_lowerLimit;
}
- void setLinearUpperLimit(const b3Vector3& linearUpper)
+ void setLinearUpperLimit(const b3Vector3& linearUpper)
{
m_linearLimits.m_upperLimit = linearUpper;
}
- void getLinearUpperLimit(b3Vector3& linearUpper)
+ void getLinearUpperLimit(b3Vector3 & linearUpper)
{
linearUpper = m_linearLimits.m_upperLimit;
}
- void setAngularLowerLimit(const b3Vector3& angularLower)
- {
- for(int i = 0; i < 3; i++)
+ void setAngularLowerLimit(const b3Vector3& angularLower)
+ {
+ for (int i = 0; i < 3; i++)
m_angularLimits[i].m_loLimit = b3NormalizeAngle(angularLower[i]);
- }
+ }
- void getAngularLowerLimit(b3Vector3& angularLower)
+ void getAngularLowerLimit(b3Vector3 & angularLower)
{
- for(int i = 0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
angularLower[i] = m_angularLimits[i].m_loLimit;
}
- void setAngularUpperLimit(const b3Vector3& angularUpper)
- {
- for(int i = 0; i < 3; i++)
+ void setAngularUpperLimit(const b3Vector3& angularUpper)
+ {
+ for (int i = 0; i < 3; i++)
m_angularLimits[i].m_hiLimit = b3NormalizeAngle(angularUpper[i]);
- }
+ }
- void getAngularUpperLimit(b3Vector3& angularUpper)
+ void getAngularUpperLimit(b3Vector3 & angularUpper)
{
- for(int i = 0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
angularUpper[i] = m_angularLimits[i].m_hiLimit;
}
//! Retrieves the angular limit informacion
- b3RotationalLimitMotor * getRotationalLimitMotor(int index)
- {
- return &m_angularLimits[index];
- }
-
- //! Retrieves the limit informacion
- b3TranslationalLimitMotor * getTranslationalLimitMotor()
- {
- return &m_linearLimits;
- }
-
- //first 3 are linear, next 3 are angular
- void setLimit(int axis, b3Scalar lo, b3Scalar hi)
- {
- if(axis<3)
- {
- m_linearLimits.m_lowerLimit[axis] = lo;
- m_linearLimits.m_upperLimit[axis] = hi;
- }
- else
- {
+ b3RotationalLimitMotor* getRotationalLimitMotor(int index)
+ {
+ return &m_angularLimits[index];
+ }
+
+ //! Retrieves the limit informacion
+ b3TranslationalLimitMotor* getTranslationalLimitMotor()
+ {
+ return &m_linearLimits;
+ }
+
+ //first 3 are linear, next 3 are angular
+ void setLimit(int axis, b3Scalar lo, b3Scalar hi)
+ {
+ if (axis < 3)
+ {
+ m_linearLimits.m_lowerLimit[axis] = lo;
+ m_linearLimits.m_upperLimit[axis] = hi;
+ }
+ else
+ {
lo = b3NormalizeAngle(lo);
hi = b3NormalizeAngle(hi);
- m_angularLimits[axis-3].m_loLimit = lo;
- m_angularLimits[axis-3].m_hiLimit = hi;
- }
- }
+ m_angularLimits[axis - 3].m_loLimit = lo;
+ m_angularLimits[axis - 3].m_hiLimit = hi;
+ }
+ }
//! Test limit
/*!
@@ -510,41 +486,32 @@ public:
- limited means upper > lower
- limitIndex: first 3 are linear, next 3 are angular
*/
- bool isLimited(int limitIndex)
- {
- if(limitIndex<3)
- {
+ bool isLimited(int limitIndex)
+ {
+ if (limitIndex < 3)
+ {
return m_linearLimits.isLimited(limitIndex);
+ }
+ return m_angularLimits[limitIndex - 3].isLimited();
+ }
- }
- return m_angularLimits[limitIndex-3].isLimited();
- }
-
- virtual void calcAnchorPos(const b3RigidBodyData* bodies); // overridable
+ virtual void calcAnchorPos(const b3RigidBodyData* bodies); // overridable
- int get_limit_motor_info2( b3RotationalLimitMotor * limot,
- const b3Transform& transA,const b3Transform& transB,const b3Vector3& linVelA,const b3Vector3& linVelB,const b3Vector3& angVelA,const b3Vector3& angVelB,
- b3ConstraintInfo2 *info, int row, b3Vector3& ax1, int rotational, int rotAllowed = false);
+ int get_limit_motor_info2(b3RotationalLimitMotor * limot,
+ const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB,
+ b3ConstraintInfo2* info, int row, b3Vector3& ax1, int rotational, int rotAllowed = false);
// access for UseFrameOffset
bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; }
void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
- ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
- virtual void setParam(int num, b3Scalar value, int axis = -1);
+ virtual void setParam(int num, b3Scalar value, int axis = -1);
///return the local value of parameter
- virtual b3Scalar getParam(int num, int axis = -1) const;
-
- void setAxis( const b3Vector3& axis1, const b3Vector3& axis2,const b3RigidBodyData* bodies);
+ virtual b3Scalar getParam(int num, int axis = -1) const;
-
-
-
+ void setAxis(const b3Vector3& axis1, const b3Vector3& axis2, const b3RigidBodyData* bodies);
};
-
-
-
-
-#endif //B3_GENERIC_6DOF_CONSTRAINT_H
+#endif //B3_GENERIC_6DOF_CONSTRAINT_H