summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp')
-rw-r--r--thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp737
1 files changed, 0 insertions, 737 deletions
diff --git a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp b/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp
deleted file mode 100644
index 0d5bb2014b..0000000000
--- a/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp
+++ /dev/null
@@ -1,737 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-/*
-2007-09-09
-Refactored by Francisco Le?n
-email: projectileman@yahoo.com
-http://gimpact.sf.net
-*/
-
-#include "b3Generic6DofConstraint.h"
-#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
-
-#include "Bullet3Common/b3TransformUtil.h"
-#include "Bullet3Common/b3TransformUtil.h"
-#include <new>
-
-#define D6_USE_OBSOLETE_METHOD false
-#define D6_USE_FRAME_OFFSET true
-
-b3Generic6DofConstraint::b3Generic6DofConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB, bool useLinearReferenceFrameA, const b3RigidBodyData* bodies)
- : b3TypedConstraint(B3_D6_CONSTRAINT_TYPE, rbA, rbB), m_frameInA(frameInA), m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA), m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), m_flags(0)
-{
- calculateTransforms(bodies);
-}
-
-#define GENERIC_D6_DISABLE_WARMSTARTING 1
-
-b3Scalar btGetMatrixElem(const b3Matrix3x3& mat, int index);
-b3Scalar btGetMatrixElem(const b3Matrix3x3& mat, int index)
-{
- int i = index % 3;
- int j = index / 3;
- return mat[i][j];
-}
-
-///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
-bool matrixToEulerXYZ(const b3Matrix3x3& mat, b3Vector3& xyz);
-bool matrixToEulerXYZ(const b3Matrix3x3& mat, b3Vector3& xyz)
-{
- // // rot = cy*cz -cy*sz sy
- // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
- //
-
- b3Scalar fi = btGetMatrixElem(mat, 2);
- if (fi < b3Scalar(1.0f))
- {
- if (fi > b3Scalar(-1.0f))
- {
- xyz[0] = b3Atan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 8));
- xyz[1] = b3Asin(btGetMatrixElem(mat, 2));
- xyz[2] = b3Atan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
- return true;
- }
- else
- {
- // WARNING. Not unique. XA - ZA = -atan2(r10,r11)
- xyz[0] = -b3Atan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
- xyz[1] = -B3_HALF_PI;
- xyz[2] = b3Scalar(0.0);
- return false;
- }
- }
- else
- {
- // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
- xyz[0] = b3Atan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
- xyz[1] = B3_HALF_PI;
- xyz[2] = 0.0;
- }
- return false;
-}
-
-//////////////////////////// b3RotationalLimitMotor ////////////////////////////////////
-
-int b3RotationalLimitMotor::testLimitValue(b3Scalar test_value)
-{
- if (m_loLimit > m_hiLimit)
- {
- m_currentLimit = 0; //Free from violation
- return 0;
- }
- if (test_value < m_loLimit)
- {
- m_currentLimit = 1; //low limit violation
- m_currentLimitError = test_value - m_loLimit;
- if (m_currentLimitError > B3_PI)
- m_currentLimitError -= B3_2_PI;
- else if (m_currentLimitError < -B3_PI)
- m_currentLimitError += B3_2_PI;
- return 1;
- }
- else if (test_value > m_hiLimit)
- {
- m_currentLimit = 2; //High limit violation
- m_currentLimitError = test_value - m_hiLimit;
- if (m_currentLimitError > B3_PI)
- m_currentLimitError -= B3_2_PI;
- else if (m_currentLimitError < -B3_PI)
- m_currentLimitError += B3_2_PI;
- return 2;
- };
-
- m_currentLimit = 0; //Free from violation
- return 0;
-}
-
-//////////////////////////// End b3RotationalLimitMotor ////////////////////////////////////
-
-//////////////////////////// b3TranslationalLimitMotor ////////////////////////////////////
-
-int b3TranslationalLimitMotor::testLimitValue(int limitIndex, b3Scalar test_value)
-{
- b3Scalar loLimit = m_lowerLimit[limitIndex];
- b3Scalar hiLimit = m_upperLimit[limitIndex];
- if (loLimit > hiLimit)
- {
- m_currentLimit[limitIndex] = 0; //Free from violation
- m_currentLimitError[limitIndex] = b3Scalar(0.f);
- return 0;
- }
-
- if (test_value < loLimit)
- {
- m_currentLimit[limitIndex] = 2; //low limit violation
- m_currentLimitError[limitIndex] = test_value - loLimit;
- return 2;
- }
- else if (test_value > hiLimit)
- {
- m_currentLimit[limitIndex] = 1; //High limit violation
- m_currentLimitError[limitIndex] = test_value - hiLimit;
- return 1;
- };
-
- m_currentLimit[limitIndex] = 0; //Free from violation
- m_currentLimitError[limitIndex] = b3Scalar(0.f);
- return 0;
-}
-
-//////////////////////////// b3TranslationalLimitMotor ////////////////////////////////////
-
-void b3Generic6DofConstraint::calculateAngleInfo()
-{
- b3Matrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse() * m_calculatedTransformB.getBasis();
- matrixToEulerXYZ(relative_frame, m_calculatedAxisAngleDiff);
- // in euler angle mode we do not actually constrain the angular velocity
- // along the axes axis[0] and axis[2] (although we do use axis[1]) :
- //
- // to get constrain w2-w1 along ...not
- // ------ --------------------- ------
- // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
- // d(angle[1])/dt = 0 ax[1]
- // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
- //
- // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
- // to prove the result for angle[0], write the expression for angle[0] from
- // GetInfo1 then take the derivative. to prove this for angle[2] it is
- // easier to take the euler rate expression for d(angle[2])/dt with respect
- // to the components of w and set that to 0.
- b3Vector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
- b3Vector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
-
- m_calculatedAxis[1] = axis2.cross(axis0);
- m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
- m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
-
- m_calculatedAxis[0].normalize();
- m_calculatedAxis[1].normalize();
- m_calculatedAxis[2].normalize();
-}
-
-static b3Transform getCenterOfMassTransform(const b3RigidBodyData& body)
-{
- b3Transform tr(body.m_quat, body.m_pos);
- return tr;
-}
-
-void b3Generic6DofConstraint::calculateTransforms(const b3RigidBodyData* bodies)
-{
- b3Transform transA;
- b3Transform transB;
- transA = getCenterOfMassTransform(bodies[m_rbA]);
- transB = getCenterOfMassTransform(bodies[m_rbB]);
- calculateTransforms(transA, transB, bodies);
-}
-
-void b3Generic6DofConstraint::calculateTransforms(const b3Transform& transA, const b3Transform& transB, const b3RigidBodyData* bodies)
-{
- m_calculatedTransformA = transA * m_frameInA;
- m_calculatedTransformB = transB * m_frameInB;
- calculateLinearInfo();
- calculateAngleInfo();
- if (m_useOffsetForConstraintFrame)
- { // get weight factors depending on masses
- b3Scalar miA = bodies[m_rbA].m_invMass;
- b3Scalar miB = bodies[m_rbB].m_invMass;
- m_hasStaticBody = (miA < B3_EPSILON) || (miB < B3_EPSILON);
- b3Scalar miS = miA + miB;
- if (miS > b3Scalar(0.f))
- {
- m_factA = miB / miS;
- }
- else
- {
- m_factA = b3Scalar(0.5f);
- }
- m_factB = b3Scalar(1.0f) - m_factA;
- }
-}
-
-bool b3Generic6DofConstraint::testAngularLimitMotor(int axis_index)
-{
- b3Scalar angle = m_calculatedAxisAngleDiff[axis_index];
- angle = b3AdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
- m_angularLimits[axis_index].m_currentPosition = angle;
- //test limits
- m_angularLimits[axis_index].testLimitValue(angle);
- return m_angularLimits[axis_index].needApplyTorques();
-}
-
-void b3Generic6DofConstraint::getInfo1(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
-{
- //prepare constraint
- calculateTransforms(getCenterOfMassTransform(bodies[m_rbA]), getCenterOfMassTransform(bodies[m_rbB]), bodies);
- info->m_numConstraintRows = 0;
- info->nub = 6;
- int i;
- //test linear limits
- for (i = 0; i < 3; i++)
- {
- if (m_linearLimits.needApplyForce(i))
- {
- info->m_numConstraintRows++;
- info->nub--;
- }
- }
- //test angular limits
- for (i = 0; i < 3; i++)
- {
- if (testAngularLimitMotor(i))
- {
- info->m_numConstraintRows++;
- info->nub--;
- }
- }
- // printf("info->m_numConstraintRows=%d\n",info->m_numConstraintRows);
-}
-
-void b3Generic6DofConstraint::getInfo1NonVirtual(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
-{
- //pre-allocate all 6
- info->m_numConstraintRows = 6;
- info->nub = 0;
-}
-
-void b3Generic6DofConstraint::getInfo2(b3ConstraintInfo2* info, const b3RigidBodyData* bodies)
-{
- b3Transform transA = getCenterOfMassTransform(bodies[m_rbA]);
- b3Transform transB = getCenterOfMassTransform(bodies[m_rbB]);
- const b3Vector3& linVelA = bodies[m_rbA].m_linVel;
- const b3Vector3& linVelB = bodies[m_rbB].m_linVel;
- const b3Vector3& angVelA = bodies[m_rbA].m_angVel;
- const b3Vector3& angVelB = bodies[m_rbB].m_angVel;
-
- if (m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
- else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
-}
-
-void b3Generic6DofConstraint::getInfo2NonVirtual(b3ConstraintInfo2* info, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB, const b3RigidBodyData* bodies)
-{
- //prepare constraint
- calculateTransforms(transA, transB, bodies);
-
- int i;
- for (i = 0; i < 3; i++)
- {
- testAngularLimitMotor(i);
- }
-
- if (m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
- else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
-}
-
-int b3Generic6DofConstraint::setLinearLimits(b3ConstraintInfo2* info, int row, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB)
-{
- // int row = 0;
- //solve linear limits
- b3RotationalLimitMotor limot;
- for (int i = 0; i < 3; i++)
- {
- if (m_linearLimits.needApplyForce(i))
- { // re-use rotational motor code
- limot.m_bounce = b3Scalar(0.f);
- limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
- limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
- limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
- limot.m_damping = m_linearLimits.m_damping;
- limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
- limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
- limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
- limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
- limot.m_maxLimitForce = b3Scalar(0.f);
- limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
- limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
- b3Vector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
- int flags = m_flags >> (i * B3_6DOF_FLAGS_AXIS_SHIFT);
- limot.m_normalCFM = (flags & B3_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
- limot.m_stopCFM = (flags & B3_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
- limot.m_stopERP = (flags & B3_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
- if (m_useOffsetForConstraintFrame)
- {
- int indx1 = (i + 1) % 3;
- int indx2 = (i + 2) % 3;
- int rotAllowed = 1; // rotations around orthos to current axis
- if (m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
- {
- rotAllowed = 0;
- }
- row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
- }
- else
- {
- row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0);
- }
- }
- }
- return row;
-}
-
-int b3Generic6DofConstraint::setAngularLimits(b3ConstraintInfo2* info, int row_offset, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB)
-{
- b3Generic6DofConstraint* d6constraint = this;
- int row = row_offset;
- //solve angular limits
- for (int i = 0; i < 3; i++)
- {
- if (d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
- {
- b3Vector3 axis = d6constraint->getAxis(i);
- int flags = m_flags >> ((i + 3) * B3_6DOF_FLAGS_AXIS_SHIFT);
- if (!(flags & B3_6DOF_FLAGS_CFM_NORM))
- {
- m_angularLimits[i].m_normalCFM = info->cfm[0];
- }
- if (!(flags & B3_6DOF_FLAGS_CFM_STOP))
- {
- m_angularLimits[i].m_stopCFM = info->cfm[0];
- }
- if (!(flags & B3_6DOF_FLAGS_ERP_STOP))
- {
- m_angularLimits[i].m_stopERP = info->erp;
- }
- row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
- transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
- }
- }
-
- return row;
-}
-
-void b3Generic6DofConstraint::updateRHS(b3Scalar timeStep)
-{
- (void)timeStep;
-}
-
-void b3Generic6DofConstraint::setFrames(const b3Transform& frameA, const b3Transform& frameB, const b3RigidBodyData* bodies)
-{
- m_frameInA = frameA;
- m_frameInB = frameB;
-
- calculateTransforms(bodies);
-}
-
-b3Vector3 b3Generic6DofConstraint::getAxis(int axis_index) const
-{
- return m_calculatedAxis[axis_index];
-}
-
-b3Scalar b3Generic6DofConstraint::getRelativePivotPosition(int axisIndex) const
-{
- return m_calculatedLinearDiff[axisIndex];
-}
-
-b3Scalar b3Generic6DofConstraint::getAngle(int axisIndex) const
-{
- return m_calculatedAxisAngleDiff[axisIndex];
-}
-
-void b3Generic6DofConstraint::calcAnchorPos(const b3RigidBodyData* bodies)
-{
- b3Scalar imA = bodies[m_rbA].m_invMass;
- b3Scalar imB = bodies[m_rbB].m_invMass;
- b3Scalar weight;
- if (imB == b3Scalar(0.0))
- {
- weight = b3Scalar(1.0);
- }
- else
- {
- weight = imA / (imA + imB);
- }
- const b3Vector3& pA = m_calculatedTransformA.getOrigin();
- const b3Vector3& pB = m_calculatedTransformB.getOrigin();
- m_AnchorPos = pA * weight + pB * (b3Scalar(1.0) - weight);
- return;
-}
-
-void b3Generic6DofConstraint::calculateLinearInfo()
-{
- m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
- m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
- for (int i = 0; i < 3; i++)
- {
- m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
- m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
- }
-}
-
-int b3Generic6DofConstraint::get_limit_motor_info2(
- b3RotationalLimitMotor* limot,
- const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB,
- b3ConstraintInfo2* info, int row, b3Vector3& ax1, int rotational, int rotAllowed)
-{
- int srow = row * info->rowskip;
- bool powered = limot->m_enableMotor;
- int limit = limot->m_currentLimit;
- if (powered || limit)
- { // if the joint is powered, or has joint limits, add in the extra row
- b3Scalar* J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
- b3Scalar* J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
- if (J1)
- {
- J1[srow + 0] = ax1[0];
- J1[srow + 1] = ax1[1];
- J1[srow + 2] = ax1[2];
- }
- if (J2)
- {
- J2[srow + 0] = -ax1[0];
- J2[srow + 1] = -ax1[1];
- J2[srow + 2] = -ax1[2];
- }
- if ((!rotational))
- {
- if (m_useOffsetForConstraintFrame)
- {
- b3Vector3 tmpA, tmpB, relA, relB;
- // get vector from bodyB to frameB in WCS
- relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
- // get its projection to constraint axis
- b3Vector3 projB = ax1 * relB.dot(ax1);
- // get vector directed from bodyB to constraint axis (and orthogonal to it)
- b3Vector3 orthoB = relB - projB;
- // same for bodyA
- relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
- b3Vector3 projA = ax1 * relA.dot(ax1);
- b3Vector3 orthoA = relA - projA;
- // get desired offset between frames A and B along constraint axis
- b3Scalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError;
- // desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
- b3Vector3 totalDist = projA + ax1 * desiredOffs - projB;
- // get offset vectors relA and relB
- relA = orthoA + totalDist * m_factA;
- relB = orthoB - totalDist * m_factB;
- tmpA = relA.cross(ax1);
- tmpB = relB.cross(ax1);
- if (m_hasStaticBody && (!rotAllowed))
- {
- tmpA *= m_factA;
- tmpB *= m_factB;
- }
- int i;
- for (i = 0; i < 3; i++) info->m_J1angularAxis[srow + i] = tmpA[i];
- for (i = 0; i < 3; i++) info->m_J2angularAxis[srow + i] = -tmpB[i];
- }
- else
- {
- b3Vector3 ltd; // Linear Torque Decoupling vector
- b3Vector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
- ltd = c.cross(ax1);
- info->m_J1angularAxis[srow + 0] = ltd[0];
- info->m_J1angularAxis[srow + 1] = ltd[1];
- info->m_J1angularAxis[srow + 2] = ltd[2];
-
- c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
- ltd = -c.cross(ax1);
- info->m_J2angularAxis[srow + 0] = ltd[0];
- info->m_J2angularAxis[srow + 1] = ltd[1];
- info->m_J2angularAxis[srow + 2] = ltd[2];
- }
- }
- // if we're limited low and high simultaneously, the joint motor is
- // ineffective
- if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
- info->m_constraintError[srow] = b3Scalar(0.f);
- if (powered)
- {
- info->cfm[srow] = limot->m_normalCFM;
- if (!limit)
- {
- b3Scalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
-
- b3Scalar mot_fact = getMotorFactor(limot->m_currentPosition,
- limot->m_loLimit,
- limot->m_hiLimit,
- tag_vel,
- info->fps * limot->m_stopERP);
- info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
- info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
- info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
- }
- }
- if (limit)
- {
- b3Scalar k = info->fps * limot->m_stopERP;
- if (!rotational)
- {
- info->m_constraintError[srow] += k * limot->m_currentLimitError;
- }
- else
- {
- info->m_constraintError[srow] += -k * limot->m_currentLimitError;
- }
- info->cfm[srow] = limot->m_stopCFM;
- if (limot->m_loLimit == limot->m_hiLimit)
- { // limited low and high simultaneously
- info->m_lowerLimit[srow] = -B3_INFINITY;
- info->m_upperLimit[srow] = B3_INFINITY;
- }
- else
- {
- if (limit == 1)
- {
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = B3_INFINITY;
- }
- else
- {
- info->m_lowerLimit[srow] = -B3_INFINITY;
- info->m_upperLimit[srow] = 0;
- }
- // deal with bounce
- if (limot->m_bounce > 0)
- {
- // calculate joint velocity
- b3Scalar vel;
- if (rotational)
- {
- vel = angVelA.dot(ax1);
- //make sure that if no body -> angVelB == zero vec
- // if (body1)
- vel -= angVelB.dot(ax1);
- }
- else
- {
- vel = linVelA.dot(ax1);
- //make sure that if no body -> angVelB == zero vec
- // if (body1)
- vel -= linVelB.dot(ax1);
- }
- // only apply bounce if the velocity is incoming, and if the
- // resulting c[] exceeds what we already have.
- if (limit == 1)
- {
- if (vel < 0)
- {
- b3Scalar newc = -limot->m_bounce * vel;
- if (newc > info->m_constraintError[srow])
- info->m_constraintError[srow] = newc;
- }
- }
- else
- {
- if (vel > 0)
- {
- b3Scalar newc = -limot->m_bounce * vel;
- if (newc < info->m_constraintError[srow])
- info->m_constraintError[srow] = newc;
- }
- }
- }
- }
- }
- return 1;
- }
- else
- return 0;
-}
-
-///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
-///If no axis is provided, it uses the default axis for this constraint.
-void b3Generic6DofConstraint::setParam(int num, b3Scalar value, int axis)
-{
- if ((axis >= 0) && (axis < 3))
- {
- switch (num)
- {
- case B3_CONSTRAINT_STOP_ERP:
- m_linearLimits.m_stopERP[axis] = value;
- m_flags |= B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case B3_CONSTRAINT_STOP_CFM:
- m_linearLimits.m_stopCFM[axis] = value;
- m_flags |= B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case B3_CONSTRAINT_CFM:
- m_linearLimits.m_normalCFM[axis] = value;
- m_flags |= B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
- break;
- default:
- b3AssertConstrParams(0);
- }
- }
- else if ((axis >= 3) && (axis < 6))
- {
- switch (num)
- {
- case B3_CONSTRAINT_STOP_ERP:
- m_angularLimits[axis - 3].m_stopERP = value;
- m_flags |= B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case B3_CONSTRAINT_STOP_CFM:
- m_angularLimits[axis - 3].m_stopCFM = value;
- m_flags |= B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case B3_CONSTRAINT_CFM:
- m_angularLimits[axis - 3].m_normalCFM = value;
- m_flags |= B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
- break;
- default:
- b3AssertConstrParams(0);
- }
- }
- else
- {
- b3AssertConstrParams(0);
- }
-}
-
-///return the local value of parameter
-b3Scalar b3Generic6DofConstraint::getParam(int num, int axis) const
-{
- b3Scalar retVal = 0;
- if ((axis >= 0) && (axis < 3))
- {
- switch (num)
- {
- case B3_CONSTRAINT_STOP_ERP:
- b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_linearLimits.m_stopERP[axis];
- break;
- case B3_CONSTRAINT_STOP_CFM:
- b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_linearLimits.m_stopCFM[axis];
- break;
- case B3_CONSTRAINT_CFM:
- b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_linearLimits.m_normalCFM[axis];
- break;
- default:
- b3AssertConstrParams(0);
- }
- }
- else if ((axis >= 3) && (axis < 6))
- {
- switch (num)
- {
- case B3_CONSTRAINT_STOP_ERP:
- b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_angularLimits[axis - 3].m_stopERP;
- break;
- case B3_CONSTRAINT_STOP_CFM:
- b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_angularLimits[axis - 3].m_stopCFM;
- break;
- case B3_CONSTRAINT_CFM:
- b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_angularLimits[axis - 3].m_normalCFM;
- break;
- default:
- b3AssertConstrParams(0);
- }
- }
- else
- {
- b3AssertConstrParams(0);
- }
- return retVal;
-}
-
-void b3Generic6DofConstraint::setAxis(const b3Vector3& axis1, const b3Vector3& axis2, const b3RigidBodyData* bodies)
-{
- b3Vector3 zAxis = axis1.normalized();
- b3Vector3 yAxis = axis2.normalized();
- b3Vector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
-
- b3Transform frameInW;
- frameInW.setIdentity();
- frameInW.getBasis().setValue(xAxis[0], yAxis[0], zAxis[0],
- xAxis[1], yAxis[1], zAxis[1],
- xAxis[2], yAxis[2], zAxis[2]);
-
- // now get constraint frame in local coordinate systems
- m_frameInA = getCenterOfMassTransform(bodies[m_rbA]).inverse() * frameInW;
- m_frameInB = getCenterOfMassTransform(bodies[m_rbB]).inverse() * frameInW;
-
- calculateTransforms(bodies);
-}