diff options
Diffstat (limited to 'thirdparty/basis_universal/transcoder/basisu_containers.h')
-rw-r--r-- | thirdparty/basis_universal/transcoder/basisu_containers.h | 1908 |
1 files changed, 1908 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/transcoder/basisu_containers.h b/thirdparty/basis_universal/transcoder/basisu_containers.h new file mode 100644 index 0000000000..1ca4bab307 --- /dev/null +++ b/thirdparty/basis_universal/transcoder/basisu_containers.h @@ -0,0 +1,1908 @@ +// basisu_containers.h +#pragma once +#include <stdlib.h> +#include <stdio.h> +#include <stdint.h> +#include <assert.h> +#include <algorithm> + +#if defined(__linux__) && !defined(ANDROID) +// Only for malloc_usable_size() in basisu_containers_impl.h +#include <malloc.h> +#define HAS_MALLOC_USABLE_SIZE 1 +#endif + +#ifdef _MSC_VER +#define BASISU_FORCE_INLINE __forceinline +#else +#define BASISU_FORCE_INLINE inline +#endif + +namespace basisu +{ + enum { cInvalidIndex = -1 }; + + namespace helpers + { + inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); } + inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); } + template<class T> const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; } + template<class T> const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; } + + inline uint32_t floor_log2i(uint32_t v) + { + uint32_t l = 0; + while (v > 1U) + { + v >>= 1; + l++; + } + return l; + } + + inline uint32_t next_pow2(uint32_t val) + { + val--; + val |= val >> 16; + val |= val >> 8; + val |= val >> 4; + val |= val >> 2; + val |= val >> 1; + return val + 1; + } + + inline uint64_t next_pow2(uint64_t val) + { + val--; + val |= val >> 32; + val |= val >> 16; + val |= val >> 8; + val |= val >> 4; + val |= val >> 2; + val |= val >> 1; + return val + 1; + } + } // namespace helpers + + template <typename T> + inline T* construct(T* p) + { + return new (static_cast<void*>(p)) T; + } + + template <typename T, typename U> + inline T* construct(T* p, const U& init) + { + return new (static_cast<void*>(p)) T(init); + } + + template <typename T> + inline void construct_array(T* p, size_t n) + { + T* q = p + n; + for (; p != q; ++p) + new (static_cast<void*>(p)) T; + } + + template <typename T, typename U> + inline void construct_array(T* p, size_t n, const U& init) + { + T* q = p + n; + for (; p != q; ++p) + new (static_cast<void*>(p)) T(init); + } + + template <typename T> + inline void destruct(T* p) + { + (void)p; + p->~T(); + } + + template <typename T> inline void destruct_array(T* p, size_t n) + { + T* q = p + n; + for (; p != q; ++p) + p->~T(); + } + + template<typename T> struct int_traits { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; + + template<> struct int_traits<int8_t> { enum { cMin = INT8_MIN, cMax = INT8_MAX, cSigned = true }; }; + template<> struct int_traits<int16_t> { enum { cMin = INT16_MIN, cMax = INT16_MAX, cSigned = true }; }; + template<> struct int_traits<int32_t> { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; + + template<> struct int_traits<uint8_t> { enum { cMin = 0, cMax = UINT8_MAX, cSigned = false }; }; + template<> struct int_traits<uint16_t> { enum { cMin = 0, cMax = UINT16_MAX, cSigned = false }; }; + template<> struct int_traits<uint32_t> { enum { cMin = 0, cMax = UINT32_MAX, cSigned = false }; }; + + template<typename T> + struct scalar_type + { + enum { cFlag = false }; + static inline void construct(T* p) { basisu::construct(p); } + static inline void construct(T* p, const T& init) { basisu::construct(p, init); } + static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); } + static inline void destruct(T* p) { basisu::destruct(p); } + static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); } + }; + + template<typename T> struct scalar_type<T*> + { + enum { cFlag = true }; + static inline void construct(T** p) { memset(p, 0, sizeof(T*)); } + static inline void construct(T** p, T* init) { *p = init; } + static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); } + static inline void destruct(T** p) { p; } + static inline void destruct_array(T** p, size_t n) { p, n; } + }; + +#define BASISU_DEFINE_BUILT_IN_TYPE(X) \ + template<> struct scalar_type<X> { \ + enum { cFlag = true }; \ + static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \ + static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \ + static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \ + static inline void destruct(X* p) { p; } \ + static inline void destruct_array(X* p, size_t n) { p, n; } }; + + BASISU_DEFINE_BUILT_IN_TYPE(bool) + BASISU_DEFINE_BUILT_IN_TYPE(char) + BASISU_DEFINE_BUILT_IN_TYPE(unsigned char) + BASISU_DEFINE_BUILT_IN_TYPE(short) + BASISU_DEFINE_BUILT_IN_TYPE(unsigned short) + BASISU_DEFINE_BUILT_IN_TYPE(int) + BASISU_DEFINE_BUILT_IN_TYPE(unsigned int) + BASISU_DEFINE_BUILT_IN_TYPE(long) + BASISU_DEFINE_BUILT_IN_TYPE(unsigned long) +#ifdef __GNUC__ + BASISU_DEFINE_BUILT_IN_TYPE(long long) + BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long) +#else + BASISU_DEFINE_BUILT_IN_TYPE(__int64) + BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64) +#endif + BASISU_DEFINE_BUILT_IN_TYPE(float) + BASISU_DEFINE_BUILT_IN_TYPE(double) + BASISU_DEFINE_BUILT_IN_TYPE(long double) + +#undef BASISU_DEFINE_BUILT_IN_TYPE + + template<typename T> + struct bitwise_movable { enum { cFlag = false }; }; + +#define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable<Q> { enum { cFlag = true }; }; + + template<typename T> + struct bitwise_copyable { enum { cFlag = false }; }; + +#define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable<Q> { enum { cFlag = true }; }; + +#define BASISU_IS_POD(T) __is_pod(T) + +#define BASISU_IS_SCALAR_TYPE(T) (scalar_type<T>::cFlag) + +#if defined(__GNUC__) && __GNUC__<5 + #define BASISU_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) +#else + #define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value +#endif + +// TODO: clean this up +#define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || (bitwise_copyable<T>::cFlag)) + +#define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable<T>::cFlag)) + +#define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type<T>::cFlag) && (!__is_pod(T))) + + typedef char(&yes_t)[1]; + typedef char(&no_t)[2]; + + template <class U> yes_t class_test(int U::*); + template <class U> no_t class_test(...); + + template <class T> struct is_class + { + enum { value = (sizeof(class_test<T>(0)) == sizeof(yes_t)) }; + }; + + template <typename T> struct is_pointer + { + enum { value = false }; + }; + + template <typename T> struct is_pointer<T*> + { + enum { value = true }; + }; + + struct empty_type { }; + + BASISU_DEFINE_BITWISE_COPYABLE(empty_type); + BASISU_DEFINE_BITWISE_MOVABLE(empty_type); + + template<typename T> struct rel_ops + { + friend bool operator!=(const T& x, const T& y) { return (!(x == y)); } + friend bool operator> (const T& x, const T& y) { return (y < x); } + friend bool operator<=(const T& x, const T& y) { return (!(y < x)); } + friend bool operator>=(const T& x, const T& y) { return (!(x < y)); } + }; + + struct elemental_vector + { + void* m_p; + uint32_t m_size; + uint32_t m_capacity; + + typedef void (*object_mover)(void* pDst, void* pSrc, uint32_t num); + + bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, uint32_t element_size, object_mover pRelocate, bool nofail); + }; + + template<typename T> + class vector : public rel_ops< vector<T> > + { + public: + typedef T* iterator; + typedef const T* const_iterator; + typedef T value_type; + typedef T& reference; + typedef const T& const_reference; + typedef T* pointer; + typedef const T* const_pointer; + + inline vector() : + m_p(NULL), + m_size(0), + m_capacity(0) + { + } + + inline vector(uint32_t n, const T& init) : + m_p(NULL), + m_size(0), + m_capacity(0) + { + increase_capacity(n, false); + construct_array(m_p, n, init); + m_size = n; + } + + inline vector(const vector& other) : + m_p(NULL), + m_size(0), + m_capacity(0) + { + increase_capacity(other.m_size, false); + + m_size = other.m_size; + + if (BASISU_IS_BITWISE_COPYABLE(T)) + memcpy(m_p, other.m_p, m_size * sizeof(T)); + else + { + T* pDst = m_p; + const T* pSrc = other.m_p; + for (uint32_t i = m_size; i > 0; i--) + construct(pDst++, *pSrc++); + } + } + + inline explicit vector(size_t size) : + m_p(NULL), + m_size(0), + m_capacity(0) + { + resize(size); + } + + inline ~vector() + { + if (m_p) + { + scalar_type<T>::destruct_array(m_p, m_size); + free(m_p); + } + } + + inline vector& operator= (const vector& other) + { + if (this == &other) + return *this; + + if (m_capacity >= other.m_size) + resize(0); + else + { + clear(); + increase_capacity(other.m_size, false); + } + + if (BASISU_IS_BITWISE_COPYABLE(T)) + memcpy(m_p, other.m_p, other.m_size * sizeof(T)); + else + { + T* pDst = m_p; + const T* pSrc = other.m_p; + for (uint32_t i = other.m_size; i > 0; i--) + construct(pDst++, *pSrc++); + } + + m_size = other.m_size; + + return *this; + } + + BASISU_FORCE_INLINE const T* begin() const { return m_p; } + BASISU_FORCE_INLINE T* begin() { return m_p; } + + BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; } + BASISU_FORCE_INLINE T* end() { return m_p + m_size; } + + BASISU_FORCE_INLINE bool empty() const { return !m_size; } + BASISU_FORCE_INLINE uint32_t size() const { return m_size; } + BASISU_FORCE_INLINE uint32_t size_in_bytes() const { return m_size * sizeof(T); } + BASISU_FORCE_INLINE uint32_t capacity() const { return m_capacity; } + + // operator[] will assert on out of range indices, but in final builds there is (and will never be) any range checking on this method. + //BASISU_FORCE_INLINE const T& operator[] (uint32_t i) const { assert(i < m_size); return m_p[i]; } + //BASISU_FORCE_INLINE T& operator[] (uint32_t i) { assert(i < m_size); return m_p[i]; } + + BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; } + BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; } + + // at() always includes range checking, even in final builds, unlike operator []. + // The first element is returned if the index is out of range. + BASISU_FORCE_INLINE const T& at(size_t i) const { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } + BASISU_FORCE_INLINE T& at(size_t i) { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } + + BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; } + BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; } + + BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; } + BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; } + + BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; } + BASISU_FORCE_INLINE T* get_ptr() { return m_p; } + + BASISU_FORCE_INLINE const T* data() const { return m_p; } + BASISU_FORCE_INLINE T* data() { return m_p; } + + // clear() sets the container to empty, then frees the allocated block. + inline void clear() + { + if (m_p) + { + scalar_type<T>::destruct_array(m_p, m_size); + free(m_p); + m_p = NULL; + m_size = 0; + m_capacity = 0; + } + } + + inline void clear_no_destruction() + { + if (m_p) + { + free(m_p); + m_p = NULL; + m_size = 0; + m_capacity = 0; + } + } + + inline void reserve(size_t new_capacity_size_t) + { + if (new_capacity_size_t > UINT32_MAX) + { + assert(0); + return; + } + + uint32_t new_capacity = (uint32_t)new_capacity_size_t; + + if (new_capacity > m_capacity) + increase_capacity(new_capacity, false); + else if (new_capacity < m_capacity) + { + // Must work around the lack of a "decrease_capacity()" method. + // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. + vector tmp; + tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); + tmp = *this; + swap(tmp); + } + } + + inline bool try_reserve(size_t new_capacity_size_t) + { + if (new_capacity_size_t > UINT32_MAX) + { + assert(0); + return false; + } + + uint32_t new_capacity = (uint32_t)new_capacity_size_t; + + if (new_capacity > m_capacity) + { + if (!increase_capacity(new_capacity, false)) + return false; + } + else if (new_capacity < m_capacity) + { + // Must work around the lack of a "decrease_capacity()" method. + // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. + vector tmp; + tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); + tmp = *this; + swap(tmp); + } + + return true; + } + + // resize(0) sets the container to empty, but does not free the allocated block. + inline void resize(size_t new_size_size_t, bool grow_hint = false) + { + if (new_size_size_t > UINT32_MAX) + { + assert(0); + return; + } + + uint32_t new_size = (uint32_t)new_size_size_t; + + if (m_size != new_size) + { + if (new_size < m_size) + scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size); + else + { + if (new_size > m_capacity) + increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint); + + scalar_type<T>::construct_array(m_p + m_size, new_size - m_size); + } + + m_size = new_size; + } + } + + inline bool try_resize(size_t new_size_size_t, bool grow_hint = false) + { + if (new_size_size_t > UINT32_MAX) + { + assert(0); + return false; + } + + uint32_t new_size = (uint32_t)new_size_size_t; + + if (m_size != new_size) + { + if (new_size < m_size) + scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size); + else + { + if (new_size > m_capacity) + { + if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true)) + return false; + } + + scalar_type<T>::construct_array(m_p + m_size, new_size - m_size); + } + + m_size = new_size; + } + + return true; + } + + // If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future). + // Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494 + inline void reset() + { + if (m_size >= (m_capacity >> 1)) + resize(0); + else + clear(); + } + + inline T* enlarge(uint32_t i) + { + uint32_t cur_size = m_size; + resize(cur_size + i, true); + return get_ptr() + cur_size; + } + + inline T* try_enlarge(uint32_t i) + { + uint32_t cur_size = m_size; + if (!try_resize(cur_size + i, true)) + return NULL; + return get_ptr() + cur_size; + } + + BASISU_FORCE_INLINE void push_back(const T& obj) + { + assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); + + if (m_size >= m_capacity) + increase_capacity(m_size + 1, true); + + scalar_type<T>::construct(m_p + m_size, obj); + m_size++; + } + + inline bool try_push_back(const T& obj) + { + assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); + + if (m_size >= m_capacity) + { + if (!increase_capacity(m_size + 1, true, true)) + return false; + } + + scalar_type<T>::construct(m_p + m_size, obj); + m_size++; + + return true; + } + + inline void push_back_value(T obj) + { + if (m_size >= m_capacity) + increase_capacity(m_size + 1, true); + + scalar_type<T>::construct(m_p + m_size, obj); + m_size++; + } + + inline void pop_back() + { + assert(m_size); + + if (m_size) + { + m_size--; + scalar_type<T>::destruct(&m_p[m_size]); + } + } + + inline void insert(uint32_t index, const T* p, uint32_t n) + { + assert(index <= m_size); + if (!n) + return; + + const uint32_t orig_size = m_size; + resize(m_size + n, true); + + const uint32_t num_to_move = orig_size - index; + + if (BASISU_IS_BITWISE_COPYABLE(T)) + { + // This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction. + memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move); + } + else + { + const T* pSrc = m_p + orig_size - 1; + T* pDst = const_cast<T*>(pSrc) + n; + + for (uint32_t i = 0; i < num_to_move; i++) + { + assert((pDst - m_p) < (int)m_size); + *pDst-- = *pSrc--; + } + } + + T* pDst = m_p + index; + + if (BASISU_IS_BITWISE_COPYABLE(T)) + { + // This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction. + memcpy(pDst, p, sizeof(T) * n); + } + else + { + for (uint32_t i = 0; i < n; i++) + { + assert((pDst - m_p) < (int)m_size); + *pDst++ = *p++; + } + } + } + + inline void insert(T* p, const T& obj) + { + int64_t ofs = p - begin(); + if ((ofs < 0) || (ofs > UINT32_MAX)) + { + assert(0); + return; + } + + insert((uint32_t)ofs, &obj, 1); + } + + // push_front() isn't going to be very fast - it's only here for usability. + inline void push_front(const T& obj) + { + insert(0, &obj, 1); + } + + vector& append(const vector& other) + { + if (other.m_size) + insert(m_size, &other[0], other.m_size); + return *this; + } + + vector& append(const T* p, uint32_t n) + { + if (n) + insert(m_size, p, n); + return *this; + } + + inline void erase(uint32_t start, uint32_t n) + { + assert((start + n) <= m_size); + if ((start + n) > m_size) + return; + + if (!n) + return; + + const uint32_t num_to_move = m_size - (start + n); + + T* pDst = m_p + start; + + const T* pSrc = m_p + start + n; + + if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T)) + { + // This test is overly cautious. + if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T))) + { + // Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed. + // First destroy the erased objects. + scalar_type<T>::destruct_array(pDst, n); + } + + // Copy "down" the objects to preserve, filling in the empty slots. + memmove(pDst, pSrc, num_to_move * sizeof(T)); + } + else + { + // Type is not bitwise copyable or movable. + // Move them down one at a time by using the equals operator, and destroying anything that's left over at the end. + T* pDst_end = pDst + num_to_move; + while (pDst != pDst_end) + *pDst++ = *pSrc++; + + scalar_type<T>::destruct_array(pDst_end, n); + } + + m_size -= n; + } + + inline void erase(uint32_t index) + { + erase(index, 1); + } + + inline void erase(T* p) + { + assert((p >= m_p) && (p < (m_p + m_size))); + erase(static_cast<uint32_t>(p - m_p)); + } + + inline void erase(T *pFirst, T *pEnd) + { + assert(pFirst <= pEnd); + assert(pFirst >= begin() && pFirst <= end()); + assert(pEnd >= begin() && pEnd <= end()); + + int64_t ofs = pFirst - begin(); + if ((ofs < 0) || (ofs > UINT32_MAX)) + { + assert(0); + return; + } + + int64_t n = pEnd - pFirst; + if ((n < 0) || (n > UINT32_MAX)) + { + assert(0); + return; + } + + erase((uint32_t)ofs, (uint32_t)n); + } + + void erase_unordered(uint32_t index) + { + assert(index < m_size); + + if ((index + 1) < m_size) + (*this)[index] = back(); + + pop_back(); + } + + inline bool operator== (const vector& rhs) const + { + if (m_size != rhs.m_size) + return false; + else if (m_size) + { + if (scalar_type<T>::cFlag) + return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0; + else + { + const T* pSrc = m_p; + const T* pDst = rhs.m_p; + for (uint32_t i = m_size; i; i--) + if (!(*pSrc++ == *pDst++)) + return false; + } + } + + return true; + } + + inline bool operator< (const vector& rhs) const + { + const uint32_t min_size = helpers::minimum(m_size, rhs.m_size); + + const T* pSrc = m_p; + const T* pSrc_end = m_p + min_size; + const T* pDst = rhs.m_p; + + while ((pSrc < pSrc_end) && (*pSrc == *pDst)) + { + pSrc++; + pDst++; + } + + if (pSrc < pSrc_end) + return *pSrc < *pDst; + + return m_size < rhs.m_size; + } + + inline void swap(vector& other) + { + std::swap(m_p, other.m_p); + std::swap(m_size, other.m_size); + std::swap(m_capacity, other.m_capacity); + } + + inline void sort() + { + std::sort(begin(), end()); + } + + inline void unique() + { + if (!empty()) + { + sort(); + + resize(std::unique(begin(), end()) - begin()); + } + } + + inline void reverse() + { + uint32_t j = m_size >> 1; + for (uint32_t i = 0; i < j; i++) + std::swap(m_p[i], m_p[m_size - 1 - i]); + } + + inline int find(const T& key) const + { + const T* p = m_p; + const T* p_end = m_p + m_size; + + uint32_t index = 0; + + while (p != p_end) + { + if (key == *p) + return index; + + p++; + index++; + } + + return cInvalidIndex; + } + + inline int find_sorted(const T& key) const + { + if (m_size) + { + // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. + int i = ((m_size + 1) >> 1) - 1; + int m = m_size; + + for (; ; ) + { + assert(i >= 0 && i < (int)m_size); + const T* pKey_i = m_p + i; + int cmp = key < *pKey_i; +#if defined(_DEBUG) || defined(DEBUG) + int cmp2 = *pKey_i < key; + assert((cmp != cmp2) || (key == *pKey_i)); +#endif + if ((!cmp) && (key == *pKey_i)) return i; + m >>= 1; + if (!m) break; + cmp = -cmp; + i += (((m + 1) >> 1) ^ cmp) - cmp; + if (i < 0) + break; + + assert(i >= 0 && i < (int)m_size); + pKey_i = m_p + i; + cmp = key < *pKey_i; +#if defined(_DEBUG) || defined(DEBUG) + cmp2 = *pKey_i < key; + assert((cmp != cmp2) || (key == *pKey_i)); +#endif + if ((!cmp) && (key == *pKey_i)) return i; + m >>= 1; + if (!m) break; + cmp = -cmp; + i += (((m + 1) >> 1) ^ cmp) - cmp; + if (i < 0) + break; + } + } + + return cInvalidIndex; + } + + template<typename Q> + inline int find_sorted(const T& key, Q less_than) const + { + if (m_size) + { + // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. + int i = ((m_size + 1) >> 1) - 1; + int m = m_size; + + for (; ; ) + { + assert(i >= 0 && i < (int)m_size); + const T* pKey_i = m_p + i; + int cmp = less_than(key, *pKey_i); + if ((!cmp) && (!less_than(*pKey_i, key))) return i; + m >>= 1; + if (!m) break; + cmp = -cmp; + i += (((m + 1) >> 1) ^ cmp) - cmp; + if (i < 0) + break; + + assert(i >= 0 && i < (int)m_size); + pKey_i = m_p + i; + cmp = less_than(key, *pKey_i); + if ((!cmp) && (!less_than(*pKey_i, key))) return i; + m >>= 1; + if (!m) break; + cmp = -cmp; + i += (((m + 1) >> 1) ^ cmp) - cmp; + if (i < 0) + break; + } + } + + return cInvalidIndex; + } + + inline uint32_t count_occurences(const T& key) const + { + uint32_t c = 0; + + const T* p = m_p; + const T* p_end = m_p + m_size; + + while (p != p_end) + { + if (key == *p) + c++; + + p++; + } + + return c; + } + + inline void set_all(const T& o) + { + if ((sizeof(T) == 1) && (scalar_type<T>::cFlag)) + memset(m_p, *reinterpret_cast<const uint8_t*>(&o), m_size); + else + { + T* pDst = m_p; + T* pDst_end = pDst + m_size; + while (pDst != pDst_end) + *pDst++ = o; + } + } + + // Caller assumes ownership of the heap block associated with the container. Container is cleared. + inline void* assume_ownership() + { + T* p = m_p; + m_p = NULL; + m_size = 0; + m_capacity = 0; + return p; + } + + // Caller is granting ownership of the indicated heap block. + // Block must have size constructed elements, and have enough room for capacity elements. + inline bool grant_ownership(T* p, uint32_t size, uint32_t capacity) + { + // To to prevent the caller from obviously shooting themselves in the foot. + if (((p + capacity) > m_p) && (p < (m_p + m_capacity))) + { + // Can grant ownership of a block inside the container itself! + assert(0); + return false; + } + + if (size > capacity) + { + assert(0); + return false; + } + + if (!p) + { + if (capacity) + { + assert(0); + return false; + } + } + else if (!capacity) + { + assert(0); + return false; + } + + clear(); + m_p = p; + m_size = size; + m_capacity = capacity; + return true; + } + + private: + T* m_p; + uint32_t m_size; + uint32_t m_capacity; + + template<typename Q> struct is_vector { enum { cFlag = false }; }; + template<typename Q> struct is_vector< vector<Q> > { enum { cFlag = true }; }; + + static void object_mover(void* pDst_void, void* pSrc_void, uint32_t num) + { + T* pSrc = static_cast<T*>(pSrc_void); + T* const pSrc_end = pSrc + num; + T* pDst = static_cast<T*>(pDst_void); + + while (pSrc != pSrc_end) + { + // placement new + new (static_cast<void*>(pDst)) T(*pSrc); + pSrc->~T(); + ++pSrc; + ++pDst; + } + } + + inline bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, bool nofail = false) + { + return reinterpret_cast<elemental_vector*>(this)->increase_capacity( + min_new_capacity, grow_hint, sizeof(T), + (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector<T>::cFlag)) ? NULL : object_mover, nofail); + } + }; + + template<typename T> struct bitwise_movable< vector<T> > { enum { cFlag = true }; }; + + // Hash map + + template <typename T> + struct hasher + { + inline size_t operator() (const T& key) const { return static_cast<size_t>(key); } + }; + + template <typename T> + struct equal_to + { + inline bool operator()(const T& a, const T& b) const { return a == b; } + }; + + // Important: The Hasher and Equals objects must be bitwise movable! + template<typename Key, typename Value = empty_type, typename Hasher = hasher<Key>, typename Equals = equal_to<Key> > + class hash_map + { + public: + class iterator; + class const_iterator; + + private: + friend class iterator; + friend class const_iterator; + + enum state + { + cStateInvalid = 0, + cStateValid = 1 + }; + + enum + { + cMinHashSize = 4U + }; + + public: + typedef hash_map<Key, Value, Hasher, Equals> hash_map_type; + typedef std::pair<Key, Value> value_type; + typedef Key key_type; + typedef Value referent_type; + typedef Hasher hasher_type; + typedef Equals equals_type; + + hash_map() : + m_hash_shift(32), m_num_valid(0), m_grow_threshold(0) + { + } + + hash_map(const hash_map& other) : + m_values(other.m_values), + m_hash_shift(other.m_hash_shift), + m_hasher(other.m_hasher), + m_equals(other.m_equals), + m_num_valid(other.m_num_valid), + m_grow_threshold(other.m_grow_threshold) + { + } + + hash_map& operator= (const hash_map& other) + { + if (this == &other) + return *this; + + clear(); + + m_values = other.m_values; + m_hash_shift = other.m_hash_shift; + m_num_valid = other.m_num_valid; + m_grow_threshold = other.m_grow_threshold; + m_hasher = other.m_hasher; + m_equals = other.m_equals; + + return *this; + } + + inline ~hash_map() + { + clear(); + } + + const Equals& get_equals() const { return m_equals; } + Equals& get_equals() { return m_equals; } + + void set_equals(const Equals& equals) { m_equals = equals; } + + const Hasher& get_hasher() const { return m_hasher; } + Hasher& get_hasher() { return m_hasher; } + + void set_hasher(const Hasher& hasher) { m_hasher = hasher; } + + inline void clear() + { + if (!m_values.empty()) + { + if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) + { + node* p = &get_node(0); + node* p_end = p + m_values.size(); + + uint32_t num_remaining = m_num_valid; + while (p != p_end) + { + if (p->state) + { + destruct_value_type(p); + num_remaining--; + if (!num_remaining) + break; + } + + p++; + } + } + + m_values.clear_no_destruction(); + + m_hash_shift = 32; + m_num_valid = 0; + m_grow_threshold = 0; + } + } + + inline void reset() + { + if (!m_num_valid) + return; + + if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) + { + node* p = &get_node(0); + node* p_end = p + m_values.size(); + + uint32_t num_remaining = m_num_valid; + while (p != p_end) + { + if (p->state) + { + destruct_value_type(p); + p->state = cStateInvalid; + + num_remaining--; + if (!num_remaining) + break; + } + + p++; + } + } + else if (sizeof(node) <= 32) + { + memset(&m_values[0], 0, m_values.size_in_bytes()); + } + else + { + node* p = &get_node(0); + node* p_end = p + m_values.size(); + + uint32_t num_remaining = m_num_valid; + while (p != p_end) + { + if (p->state) + { + p->state = cStateInvalid; + + num_remaining--; + if (!num_remaining) + break; + } + + p++; + } + } + + m_num_valid = 0; + } + + inline uint32_t size() + { + return m_num_valid; + } + + inline uint32_t get_table_size() + { + return m_values.size(); + } + + inline bool empty() + { + return !m_num_valid; + } + + inline void reserve(uint32_t new_capacity) + { + uint64_t new_hash_size = helpers::maximum(1U, new_capacity); + + new_hash_size = new_hash_size * 2ULL; + + if (!helpers::is_power_of_2(new_hash_size)) + new_hash_size = helpers::next_pow2(new_hash_size); + + new_hash_size = helpers::maximum<uint64_t>(cMinHashSize, new_hash_size); + + new_hash_size = helpers::minimum<uint64_t>(0x80000000UL, new_hash_size); + + if (new_hash_size > m_values.size()) + rehash((uint32_t)new_hash_size); + } + + class iterator + { + friend class hash_map<Key, Value, Hasher, Equals>; + friend class hash_map<Key, Value, Hasher, Equals>::const_iterator; + + public: + inline iterator() : m_pTable(NULL), m_index(0) { } + inline iterator(hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } + inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } + + inline iterator& operator= (const iterator& other) + { + m_pTable = other.m_pTable; + m_index = other.m_index; + return *this; + } + + // post-increment + inline iterator operator++(int) + { + iterator result(*this); + ++*this; + return result; + } + + // pre-increment + inline iterator& operator++() + { + probe(); + return *this; + } + + inline value_type& operator*() const { return *get_cur(); } + inline value_type* operator->() const { return get_cur(); } + + inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } + inline bool operator != (const iterator& b) const { return !(*this == b); } + inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } + inline bool operator != (const const_iterator& b) const { return !(*this == b); } + + private: + hash_map_type* m_pTable; + uint32_t m_index; + + inline value_type* get_cur() const + { + assert(m_pTable && (m_index < m_pTable->m_values.size())); + assert(m_pTable->get_node_state(m_index) == cStateValid); + + return &m_pTable->get_node(m_index); + } + + inline void probe() + { + assert(m_pTable); + m_index = m_pTable->find_next(m_index); + } + }; + + class const_iterator + { + friend class hash_map<Key, Value, Hasher, Equals>; + friend class hash_map<Key, Value, Hasher, Equals>::iterator; + + public: + inline const_iterator() : m_pTable(NULL), m_index(0) { } + inline const_iterator(const hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } + inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } + inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } + + inline const_iterator& operator= (const const_iterator& other) + { + m_pTable = other.m_pTable; + m_index = other.m_index; + return *this; + } + + inline const_iterator& operator= (const iterator& other) + { + m_pTable = other.m_pTable; + m_index = other.m_index; + return *this; + } + + // post-increment + inline const_iterator operator++(int) + { + const_iterator result(*this); + ++*this; + return result; + } + + // pre-increment + inline const_iterator& operator++() + { + probe(); + return *this; + } + + inline const value_type& operator*() const { return *get_cur(); } + inline const value_type* operator->() const { return get_cur(); } + + inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } + inline bool operator != (const const_iterator& b) const { return !(*this == b); } + inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } + inline bool operator != (const iterator& b) const { return !(*this == b); } + + private: + const hash_map_type* m_pTable; + uint32_t m_index; + + inline const value_type* get_cur() const + { + assert(m_pTable && (m_index < m_pTable->m_values.size())); + assert(m_pTable->get_node_state(m_index) == cStateValid); + + return &m_pTable->get_node(m_index); + } + + inline void probe() + { + assert(m_pTable); + m_index = m_pTable->find_next(m_index); + } + }; + + inline const_iterator begin() const + { + if (!m_num_valid) + return end(); + + return const_iterator(*this, find_next(UINT32_MAX)); + } + + inline const_iterator end() const + { + return const_iterator(*this, m_values.size()); + } + + inline iterator begin() + { + if (!m_num_valid) + return end(); + + return iterator(*this, find_next(UINT32_MAX)); + } + + inline iterator end() + { + return iterator(*this, m_values.size()); + } + + // insert_result.first will always point to inserted key/value (or the already existing key/value). + // insert_resutt.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value). + typedef std::pair<iterator, bool> insert_result; + + inline insert_result insert(const Key& k, const Value& v = Value()) + { + insert_result result; + if (!insert_no_grow(result, k, v)) + { + grow(); + + // This must succeed. + if (!insert_no_grow(result, k, v)) + { + fprintf(stderr, "insert() failed"); + abort(); + } + } + + return result; + } + + inline insert_result insert(const value_type& v) + { + return insert(v.first, v.second); + } + + inline const_iterator find(const Key& k) const + { + return const_iterator(*this, find_index(k)); + } + + inline iterator find(const Key& k) + { + return iterator(*this, find_index(k)); + } + + inline bool erase(const Key& k) + { + uint32_t i = find_index(k); + + if (i >= m_values.size()) + return false; + + node* pDst = &get_node(i); + destruct_value_type(pDst); + pDst->state = cStateInvalid; + + m_num_valid--; + + for (; ; ) + { + uint32_t r, j = i; + + node* pSrc = pDst; + + do + { + if (!i) + { + i = m_values.size() - 1; + pSrc = &get_node(i); + } + else + { + i--; + pSrc--; + } + + if (!pSrc->state) + return true; + + r = hash_key(pSrc->first); + + } while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)); + + move_node(pDst, pSrc); + + pDst = pSrc; + } + } + + inline void swap(hash_map_type& other) + { + m_values.swap(other.m_values); + std::swap(m_hash_shift, other.m_hash_shift); + std::swap(m_num_valid, other.m_num_valid); + std::swap(m_grow_threshold, other.m_grow_threshold); + std::swap(m_hasher, other.m_hasher); + std::swap(m_equals, other.m_equals); + } + + private: + struct node : public value_type + { + uint8_t state; + }; + + static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v) + { + if (BASISU_IS_BITWISE_COPYABLE(Key)) + memcpy(&pDst->first, &k, sizeof(Key)); + else + scalar_type<Key>::construct(&pDst->first, k); + + if (BASISU_IS_BITWISE_COPYABLE(Value)) + memcpy(&pDst->second, &v, sizeof(Value)); + else + scalar_type<Value>::construct(&pDst->second, v); + } + + static inline void construct_value_type(value_type* pDst, const value_type* pSrc) + { + if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value))) + { + memcpy(pDst, pSrc, sizeof(value_type)); + } + else + { + if (BASISU_IS_BITWISE_COPYABLE(Key)) + memcpy(&pDst->first, &pSrc->first, sizeof(Key)); + else + scalar_type<Key>::construct(&pDst->first, pSrc->first); + + if (BASISU_IS_BITWISE_COPYABLE(Value)) + memcpy(&pDst->second, &pSrc->second, sizeof(Value)); + else + scalar_type<Value>::construct(&pDst->second, pSrc->second); + } + } + + static inline void destruct_value_type(value_type* p) + { + scalar_type<Key>::destruct(&p->first); + scalar_type<Value>::destruct(&p->second); + } + + // Moves *pSrc to *pDst efficiently. + // pDst should NOT be constructed on entry. + static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true) + { + assert(!pDst->state); + + if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) + { + memcpy(pDst, pSrc, sizeof(node)); + } + else + { + if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key)) + memcpy(&pDst->first, &pSrc->first, sizeof(Key)); + else + { + scalar_type<Key>::construct(&pDst->first, pSrc->first); + scalar_type<Key>::destruct(&pSrc->first); + } + + if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) + memcpy(&pDst->second, &pSrc->second, sizeof(Value)); + else + { + scalar_type<Value>::construct(&pDst->second, pSrc->second); + scalar_type<Value>::destruct(&pSrc->second); + } + + pDst->state = cStateValid; + } + + if (update_src_state) + pSrc->state = cStateInvalid; + } + + struct raw_node + { + inline raw_node() + { + node* p = reinterpret_cast<node*>(this); + p->state = cStateInvalid; + } + + inline ~raw_node() + { + node* p = reinterpret_cast<node*>(this); + if (p->state) + hash_map_type::destruct_value_type(p); + } + + inline raw_node(const raw_node& other) + { + node* pDst = reinterpret_cast<node*>(this); + const node* pSrc = reinterpret_cast<const node*>(&other); + + if (pSrc->state) + { + hash_map_type::construct_value_type(pDst, pSrc); + pDst->state = cStateValid; + } + else + pDst->state = cStateInvalid; + } + + inline raw_node& operator= (const raw_node& rhs) + { + if (this == &rhs) + return *this; + + node* pDst = reinterpret_cast<node*>(this); + const node* pSrc = reinterpret_cast<const node*>(&rhs); + + if (pSrc->state) + { + if (pDst->state) + { + pDst->first = pSrc->first; + pDst->second = pSrc->second; + } + else + { + hash_map_type::construct_value_type(pDst, pSrc); + pDst->state = cStateValid; + } + } + else if (pDst->state) + { + hash_map_type::destruct_value_type(pDst); + pDst->state = cStateInvalid; + } + + return *this; + } + + uint8_t m_bits[sizeof(node)]; + }; + + typedef basisu::vector<raw_node> node_vector; + + node_vector m_values; + uint32_t m_hash_shift; + + Hasher m_hasher; + Equals m_equals; + + uint32_t m_num_valid; + + uint32_t m_grow_threshold; + + inline uint32_t hash_key(const Key& k) const + { + assert((1U << (32U - m_hash_shift)) == m_values.size()); + + uint32_t hash = static_cast<uint32_t>(m_hasher(k)); + + // Fibonacci hashing + hash = (2654435769U * hash) >> m_hash_shift; + + assert(hash < m_values.size()); + return hash; + } + + inline const node& get_node(uint32_t index) const + { + return *reinterpret_cast<const node*>(&m_values[index]); + } + + inline node& get_node(uint32_t index) + { + return *reinterpret_cast<node*>(&m_values[index]); + } + + inline state get_node_state(uint32_t index) const + { + return static_cast<state>(get_node(index).state); + } + + inline void set_node_state(uint32_t index, bool valid) + { + get_node(index).state = valid; + } + + inline void grow() + { + uint64_t n = m_values.size() * 3ULL; // was * 2 + + if (!helpers::is_power_of_2(n)) + n = helpers::next_pow2(n); + + if (n > 0x80000000UL) + n = 0x80000000UL; + + rehash(helpers::maximum<uint32_t>(cMinHashSize, (uint32_t)n)); + } + + inline void rehash(uint32_t new_hash_size) + { + assert(new_hash_size >= m_num_valid); + assert(helpers::is_power_of_2(new_hash_size)); + + if ((new_hash_size < m_num_valid) || (new_hash_size == m_values.size())) + return; + + hash_map new_map; + new_map.m_values.resize(new_hash_size); + new_map.m_hash_shift = 32U - helpers::floor_log2i(new_hash_size); + assert(new_hash_size == (1U << (32U - new_map.m_hash_shift))); + new_map.m_grow_threshold = UINT_MAX; + + node* pNode = reinterpret_cast<node*>(m_values.begin()); + node* pNode_end = pNode + m_values.size(); + + while (pNode != pNode_end) + { + if (pNode->state) + { + new_map.move_into(pNode); + + if (new_map.m_num_valid == m_num_valid) + break; + } + + pNode++; + } + + new_map.m_grow_threshold = (new_hash_size + 1U) >> 1U; + + m_values.clear_no_destruction(); + m_hash_shift = 32; + + swap(new_map); + } + + inline uint32_t find_next(uint32_t index) const + { + index++; + + if (index >= m_values.size()) + return index; + + const node* pNode = &get_node(index); + + for (; ; ) + { + if (pNode->state) + break; + + if (++index >= m_values.size()) + break; + + pNode++; + } + + return index; + } + + inline uint32_t find_index(const Key& k) const + { + if (m_num_valid) + { + uint32_t index = hash_key(k); + const node* pNode = &get_node(index); + + if (pNode->state) + { + if (m_equals(pNode->first, k)) + return index; + + const uint32_t orig_index = index; + + for (; ; ) + { + if (!index) + { + index = m_values.size() - 1; + pNode = &get_node(index); + } + else + { + index--; + pNode--; + } + + if (index == orig_index) + break; + + if (!pNode->state) + break; + + if (m_equals(pNode->first, k)) + return index; + } + } + } + + return m_values.size(); + } + + inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v = Value()) + { + if (!m_values.size()) + return false; + + uint32_t index = hash_key(k); + node* pNode = &get_node(index); + + if (pNode->state) + { + if (m_equals(pNode->first, k)) + { + result.first = iterator(*this, index); + result.second = false; + return true; + } + + const uint32_t orig_index = index; + + for (; ; ) + { + if (!index) + { + index = m_values.size() - 1; + pNode = &get_node(index); + } + else + { + index--; + pNode--; + } + + if (orig_index == index) + return false; + + if (!pNode->state) + break; + + if (m_equals(pNode->first, k)) + { + result.first = iterator(*this, index); + result.second = false; + return true; + } + } + } + + if (m_num_valid >= m_grow_threshold) + return false; + + construct_value_type(pNode, k, v); + + pNode->state = cStateValid; + + m_num_valid++; + assert(m_num_valid <= m_values.size()); + + result.first = iterator(*this, index); + result.second = true; + + return true; + } + + inline void move_into(node* pNode) + { + uint32_t index = hash_key(pNode->first); + node* pDst_node = &get_node(index); + + if (pDst_node->state) + { + const uint32_t orig_index = index; + + for (; ; ) + { + if (!index) + { + index = m_values.size() - 1; + pDst_node = &get_node(index); + } + else + { + index--; + pDst_node--; + } + + if (index == orig_index) + { + assert(false); + return; + } + + if (!pDst_node->state) + break; + } + } + + move_node(pDst_node, pNode, false); + + m_num_valid++; + } + }; + + template<typename Key, typename Value, typename Hasher, typename Equals> + struct bitwise_movable< hash_map<Key, Value, Hasher, Equals> > { enum { cFlag = true }; }; + +#if BASISU_HASHMAP_TEST + extern void hash_map_test(); +#endif + +} // namespace basisu + +namespace std +{ + template<typename T> + inline void swap(basisu::vector<T>& a, basisu::vector<T>& b) + { + a.swap(b); + } + + template<typename Key, typename Value, typename Hasher, typename Equals> + inline void swap(basisu::hash_map<Key, Value, Hasher, Equals>& a, basisu::hash_map<Key, Value, Hasher, Equals>& b) + { + a.swap(b); + } + +} // namespace std |