summaryrefslogtreecommitdiff
path: root/thirdparty/basis_universal/transcoder/basisu_containers.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/basis_universal/transcoder/basisu_containers.h')
-rw-r--r--thirdparty/basis_universal/transcoder/basisu_containers.h1908
1 files changed, 1908 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/transcoder/basisu_containers.h b/thirdparty/basis_universal/transcoder/basisu_containers.h
new file mode 100644
index 0000000000..1ca4bab307
--- /dev/null
+++ b/thirdparty/basis_universal/transcoder/basisu_containers.h
@@ -0,0 +1,1908 @@
+// basisu_containers.h
+#pragma once
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <assert.h>
+#include <algorithm>
+
+#if defined(__linux__) && !defined(ANDROID)
+// Only for malloc_usable_size() in basisu_containers_impl.h
+#include <malloc.h>
+#define HAS_MALLOC_USABLE_SIZE 1
+#endif
+
+#ifdef _MSC_VER
+#define BASISU_FORCE_INLINE __forceinline
+#else
+#define BASISU_FORCE_INLINE inline
+#endif
+
+namespace basisu
+{
+ enum { cInvalidIndex = -1 };
+
+ namespace helpers
+ {
+ inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); }
+ inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); }
+ template<class T> const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; }
+ template<class T> const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; }
+
+ inline uint32_t floor_log2i(uint32_t v)
+ {
+ uint32_t l = 0;
+ while (v > 1U)
+ {
+ v >>= 1;
+ l++;
+ }
+ return l;
+ }
+
+ inline uint32_t next_pow2(uint32_t val)
+ {
+ val--;
+ val |= val >> 16;
+ val |= val >> 8;
+ val |= val >> 4;
+ val |= val >> 2;
+ val |= val >> 1;
+ return val + 1;
+ }
+
+ inline uint64_t next_pow2(uint64_t val)
+ {
+ val--;
+ val |= val >> 32;
+ val |= val >> 16;
+ val |= val >> 8;
+ val |= val >> 4;
+ val |= val >> 2;
+ val |= val >> 1;
+ return val + 1;
+ }
+ } // namespace helpers
+
+ template <typename T>
+ inline T* construct(T* p)
+ {
+ return new (static_cast<void*>(p)) T;
+ }
+
+ template <typename T, typename U>
+ inline T* construct(T* p, const U& init)
+ {
+ return new (static_cast<void*>(p)) T(init);
+ }
+
+ template <typename T>
+ inline void construct_array(T* p, size_t n)
+ {
+ T* q = p + n;
+ for (; p != q; ++p)
+ new (static_cast<void*>(p)) T;
+ }
+
+ template <typename T, typename U>
+ inline void construct_array(T* p, size_t n, const U& init)
+ {
+ T* q = p + n;
+ for (; p != q; ++p)
+ new (static_cast<void*>(p)) T(init);
+ }
+
+ template <typename T>
+ inline void destruct(T* p)
+ {
+ (void)p;
+ p->~T();
+ }
+
+ template <typename T> inline void destruct_array(T* p, size_t n)
+ {
+ T* q = p + n;
+ for (; p != q; ++p)
+ p->~T();
+ }
+
+ template<typename T> struct int_traits { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; };
+
+ template<> struct int_traits<int8_t> { enum { cMin = INT8_MIN, cMax = INT8_MAX, cSigned = true }; };
+ template<> struct int_traits<int16_t> { enum { cMin = INT16_MIN, cMax = INT16_MAX, cSigned = true }; };
+ template<> struct int_traits<int32_t> { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; };
+
+ template<> struct int_traits<uint8_t> { enum { cMin = 0, cMax = UINT8_MAX, cSigned = false }; };
+ template<> struct int_traits<uint16_t> { enum { cMin = 0, cMax = UINT16_MAX, cSigned = false }; };
+ template<> struct int_traits<uint32_t> { enum { cMin = 0, cMax = UINT32_MAX, cSigned = false }; };
+
+ template<typename T>
+ struct scalar_type
+ {
+ enum { cFlag = false };
+ static inline void construct(T* p) { basisu::construct(p); }
+ static inline void construct(T* p, const T& init) { basisu::construct(p, init); }
+ static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); }
+ static inline void destruct(T* p) { basisu::destruct(p); }
+ static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); }
+ };
+
+ template<typename T> struct scalar_type<T*>
+ {
+ enum { cFlag = true };
+ static inline void construct(T** p) { memset(p, 0, sizeof(T*)); }
+ static inline void construct(T** p, T* init) { *p = init; }
+ static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); }
+ static inline void destruct(T** p) { p; }
+ static inline void destruct_array(T** p, size_t n) { p, n; }
+ };
+
+#define BASISU_DEFINE_BUILT_IN_TYPE(X) \
+ template<> struct scalar_type<X> { \
+ enum { cFlag = true }; \
+ static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \
+ static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \
+ static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \
+ static inline void destruct(X* p) { p; } \
+ static inline void destruct_array(X* p, size_t n) { p, n; } };
+
+ BASISU_DEFINE_BUILT_IN_TYPE(bool)
+ BASISU_DEFINE_BUILT_IN_TYPE(char)
+ BASISU_DEFINE_BUILT_IN_TYPE(unsigned char)
+ BASISU_DEFINE_BUILT_IN_TYPE(short)
+ BASISU_DEFINE_BUILT_IN_TYPE(unsigned short)
+ BASISU_DEFINE_BUILT_IN_TYPE(int)
+ BASISU_DEFINE_BUILT_IN_TYPE(unsigned int)
+ BASISU_DEFINE_BUILT_IN_TYPE(long)
+ BASISU_DEFINE_BUILT_IN_TYPE(unsigned long)
+#ifdef __GNUC__
+ BASISU_DEFINE_BUILT_IN_TYPE(long long)
+ BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long)
+#else
+ BASISU_DEFINE_BUILT_IN_TYPE(__int64)
+ BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64)
+#endif
+ BASISU_DEFINE_BUILT_IN_TYPE(float)
+ BASISU_DEFINE_BUILT_IN_TYPE(double)
+ BASISU_DEFINE_BUILT_IN_TYPE(long double)
+
+#undef BASISU_DEFINE_BUILT_IN_TYPE
+
+ template<typename T>
+ struct bitwise_movable { enum { cFlag = false }; };
+
+#define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable<Q> { enum { cFlag = true }; };
+
+ template<typename T>
+ struct bitwise_copyable { enum { cFlag = false }; };
+
+#define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable<Q> { enum { cFlag = true }; };
+
+#define BASISU_IS_POD(T) __is_pod(T)
+
+#define BASISU_IS_SCALAR_TYPE(T) (scalar_type<T>::cFlag)
+
+#if defined(__GNUC__) && __GNUC__<5
+ #define BASISU_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
+#else
+ #define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
+#endif
+
+// TODO: clean this up
+#define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || (bitwise_copyable<T>::cFlag))
+
+#define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable<T>::cFlag))
+
+#define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type<T>::cFlag) && (!__is_pod(T)))
+
+ typedef char(&yes_t)[1];
+ typedef char(&no_t)[2];
+
+ template <class U> yes_t class_test(int U::*);
+ template <class U> no_t class_test(...);
+
+ template <class T> struct is_class
+ {
+ enum { value = (sizeof(class_test<T>(0)) == sizeof(yes_t)) };
+ };
+
+ template <typename T> struct is_pointer
+ {
+ enum { value = false };
+ };
+
+ template <typename T> struct is_pointer<T*>
+ {
+ enum { value = true };
+ };
+
+ struct empty_type { };
+
+ BASISU_DEFINE_BITWISE_COPYABLE(empty_type);
+ BASISU_DEFINE_BITWISE_MOVABLE(empty_type);
+
+ template<typename T> struct rel_ops
+ {
+ friend bool operator!=(const T& x, const T& y) { return (!(x == y)); }
+ friend bool operator> (const T& x, const T& y) { return (y < x); }
+ friend bool operator<=(const T& x, const T& y) { return (!(y < x)); }
+ friend bool operator>=(const T& x, const T& y) { return (!(x < y)); }
+ };
+
+ struct elemental_vector
+ {
+ void* m_p;
+ uint32_t m_size;
+ uint32_t m_capacity;
+
+ typedef void (*object_mover)(void* pDst, void* pSrc, uint32_t num);
+
+ bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, uint32_t element_size, object_mover pRelocate, bool nofail);
+ };
+
+ template<typename T>
+ class vector : public rel_ops< vector<T> >
+ {
+ public:
+ typedef T* iterator;
+ typedef const T* const_iterator;
+ typedef T value_type;
+ typedef T& reference;
+ typedef const T& const_reference;
+ typedef T* pointer;
+ typedef const T* const_pointer;
+
+ inline vector() :
+ m_p(NULL),
+ m_size(0),
+ m_capacity(0)
+ {
+ }
+
+ inline vector(uint32_t n, const T& init) :
+ m_p(NULL),
+ m_size(0),
+ m_capacity(0)
+ {
+ increase_capacity(n, false);
+ construct_array(m_p, n, init);
+ m_size = n;
+ }
+
+ inline vector(const vector& other) :
+ m_p(NULL),
+ m_size(0),
+ m_capacity(0)
+ {
+ increase_capacity(other.m_size, false);
+
+ m_size = other.m_size;
+
+ if (BASISU_IS_BITWISE_COPYABLE(T))
+ memcpy(m_p, other.m_p, m_size * sizeof(T));
+ else
+ {
+ T* pDst = m_p;
+ const T* pSrc = other.m_p;
+ for (uint32_t i = m_size; i > 0; i--)
+ construct(pDst++, *pSrc++);
+ }
+ }
+
+ inline explicit vector(size_t size) :
+ m_p(NULL),
+ m_size(0),
+ m_capacity(0)
+ {
+ resize(size);
+ }
+
+ inline ~vector()
+ {
+ if (m_p)
+ {
+ scalar_type<T>::destruct_array(m_p, m_size);
+ free(m_p);
+ }
+ }
+
+ inline vector& operator= (const vector& other)
+ {
+ if (this == &other)
+ return *this;
+
+ if (m_capacity >= other.m_size)
+ resize(0);
+ else
+ {
+ clear();
+ increase_capacity(other.m_size, false);
+ }
+
+ if (BASISU_IS_BITWISE_COPYABLE(T))
+ memcpy(m_p, other.m_p, other.m_size * sizeof(T));
+ else
+ {
+ T* pDst = m_p;
+ const T* pSrc = other.m_p;
+ for (uint32_t i = other.m_size; i > 0; i--)
+ construct(pDst++, *pSrc++);
+ }
+
+ m_size = other.m_size;
+
+ return *this;
+ }
+
+ BASISU_FORCE_INLINE const T* begin() const { return m_p; }
+ BASISU_FORCE_INLINE T* begin() { return m_p; }
+
+ BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; }
+ BASISU_FORCE_INLINE T* end() { return m_p + m_size; }
+
+ BASISU_FORCE_INLINE bool empty() const { return !m_size; }
+ BASISU_FORCE_INLINE uint32_t size() const { return m_size; }
+ BASISU_FORCE_INLINE uint32_t size_in_bytes() const { return m_size * sizeof(T); }
+ BASISU_FORCE_INLINE uint32_t capacity() const { return m_capacity; }
+
+ // operator[] will assert on out of range indices, but in final builds there is (and will never be) any range checking on this method.
+ //BASISU_FORCE_INLINE const T& operator[] (uint32_t i) const { assert(i < m_size); return m_p[i]; }
+ //BASISU_FORCE_INLINE T& operator[] (uint32_t i) { assert(i < m_size); return m_p[i]; }
+
+ BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; }
+ BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; }
+
+ // at() always includes range checking, even in final builds, unlike operator [].
+ // The first element is returned if the index is out of range.
+ BASISU_FORCE_INLINE const T& at(size_t i) const { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; }
+ BASISU_FORCE_INLINE T& at(size_t i) { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; }
+
+ BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; }
+ BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; }
+
+ BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; }
+ BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; }
+
+ BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; }
+ BASISU_FORCE_INLINE T* get_ptr() { return m_p; }
+
+ BASISU_FORCE_INLINE const T* data() const { return m_p; }
+ BASISU_FORCE_INLINE T* data() { return m_p; }
+
+ // clear() sets the container to empty, then frees the allocated block.
+ inline void clear()
+ {
+ if (m_p)
+ {
+ scalar_type<T>::destruct_array(m_p, m_size);
+ free(m_p);
+ m_p = NULL;
+ m_size = 0;
+ m_capacity = 0;
+ }
+ }
+
+ inline void clear_no_destruction()
+ {
+ if (m_p)
+ {
+ free(m_p);
+ m_p = NULL;
+ m_size = 0;
+ m_capacity = 0;
+ }
+ }
+
+ inline void reserve(size_t new_capacity_size_t)
+ {
+ if (new_capacity_size_t > UINT32_MAX)
+ {
+ assert(0);
+ return;
+ }
+
+ uint32_t new_capacity = (uint32_t)new_capacity_size_t;
+
+ if (new_capacity > m_capacity)
+ increase_capacity(new_capacity, false);
+ else if (new_capacity < m_capacity)
+ {
+ // Must work around the lack of a "decrease_capacity()" method.
+ // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize.
+ vector tmp;
+ tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false);
+ tmp = *this;
+ swap(tmp);
+ }
+ }
+
+ inline bool try_reserve(size_t new_capacity_size_t)
+ {
+ if (new_capacity_size_t > UINT32_MAX)
+ {
+ assert(0);
+ return false;
+ }
+
+ uint32_t new_capacity = (uint32_t)new_capacity_size_t;
+
+ if (new_capacity > m_capacity)
+ {
+ if (!increase_capacity(new_capacity, false))
+ return false;
+ }
+ else if (new_capacity < m_capacity)
+ {
+ // Must work around the lack of a "decrease_capacity()" method.
+ // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize.
+ vector tmp;
+ tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false);
+ tmp = *this;
+ swap(tmp);
+ }
+
+ return true;
+ }
+
+ // resize(0) sets the container to empty, but does not free the allocated block.
+ inline void resize(size_t new_size_size_t, bool grow_hint = false)
+ {
+ if (new_size_size_t > UINT32_MAX)
+ {
+ assert(0);
+ return;
+ }
+
+ uint32_t new_size = (uint32_t)new_size_size_t;
+
+ if (m_size != new_size)
+ {
+ if (new_size < m_size)
+ scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
+ else
+ {
+ if (new_size > m_capacity)
+ increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint);
+
+ scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
+ }
+
+ m_size = new_size;
+ }
+ }
+
+ inline bool try_resize(size_t new_size_size_t, bool grow_hint = false)
+ {
+ if (new_size_size_t > UINT32_MAX)
+ {
+ assert(0);
+ return false;
+ }
+
+ uint32_t new_size = (uint32_t)new_size_size_t;
+
+ if (m_size != new_size)
+ {
+ if (new_size < m_size)
+ scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
+ else
+ {
+ if (new_size > m_capacity)
+ {
+ if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true))
+ return false;
+ }
+
+ scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
+ }
+
+ m_size = new_size;
+ }
+
+ return true;
+ }
+
+ // If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future).
+ // Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494
+ inline void reset()
+ {
+ if (m_size >= (m_capacity >> 1))
+ resize(0);
+ else
+ clear();
+ }
+
+ inline T* enlarge(uint32_t i)
+ {
+ uint32_t cur_size = m_size;
+ resize(cur_size + i, true);
+ return get_ptr() + cur_size;
+ }
+
+ inline T* try_enlarge(uint32_t i)
+ {
+ uint32_t cur_size = m_size;
+ if (!try_resize(cur_size + i, true))
+ return NULL;
+ return get_ptr() + cur_size;
+ }
+
+ BASISU_FORCE_INLINE void push_back(const T& obj)
+ {
+ assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
+
+ if (m_size >= m_capacity)
+ increase_capacity(m_size + 1, true);
+
+ scalar_type<T>::construct(m_p + m_size, obj);
+ m_size++;
+ }
+
+ inline bool try_push_back(const T& obj)
+ {
+ assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
+
+ if (m_size >= m_capacity)
+ {
+ if (!increase_capacity(m_size + 1, true, true))
+ return false;
+ }
+
+ scalar_type<T>::construct(m_p + m_size, obj);
+ m_size++;
+
+ return true;
+ }
+
+ inline void push_back_value(T obj)
+ {
+ if (m_size >= m_capacity)
+ increase_capacity(m_size + 1, true);
+
+ scalar_type<T>::construct(m_p + m_size, obj);
+ m_size++;
+ }
+
+ inline void pop_back()
+ {
+ assert(m_size);
+
+ if (m_size)
+ {
+ m_size--;
+ scalar_type<T>::destruct(&m_p[m_size]);
+ }
+ }
+
+ inline void insert(uint32_t index, const T* p, uint32_t n)
+ {
+ assert(index <= m_size);
+ if (!n)
+ return;
+
+ const uint32_t orig_size = m_size;
+ resize(m_size + n, true);
+
+ const uint32_t num_to_move = orig_size - index;
+
+ if (BASISU_IS_BITWISE_COPYABLE(T))
+ {
+ // This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction.
+ memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move);
+ }
+ else
+ {
+ const T* pSrc = m_p + orig_size - 1;
+ T* pDst = const_cast<T*>(pSrc) + n;
+
+ for (uint32_t i = 0; i < num_to_move; i++)
+ {
+ assert((pDst - m_p) < (int)m_size);
+ *pDst-- = *pSrc--;
+ }
+ }
+
+ T* pDst = m_p + index;
+
+ if (BASISU_IS_BITWISE_COPYABLE(T))
+ {
+ // This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction.
+ memcpy(pDst, p, sizeof(T) * n);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < n; i++)
+ {
+ assert((pDst - m_p) < (int)m_size);
+ *pDst++ = *p++;
+ }
+ }
+ }
+
+ inline void insert(T* p, const T& obj)
+ {
+ int64_t ofs = p - begin();
+ if ((ofs < 0) || (ofs > UINT32_MAX))
+ {
+ assert(0);
+ return;
+ }
+
+ insert((uint32_t)ofs, &obj, 1);
+ }
+
+ // push_front() isn't going to be very fast - it's only here for usability.
+ inline void push_front(const T& obj)
+ {
+ insert(0, &obj, 1);
+ }
+
+ vector& append(const vector& other)
+ {
+ if (other.m_size)
+ insert(m_size, &other[0], other.m_size);
+ return *this;
+ }
+
+ vector& append(const T* p, uint32_t n)
+ {
+ if (n)
+ insert(m_size, p, n);
+ return *this;
+ }
+
+ inline void erase(uint32_t start, uint32_t n)
+ {
+ assert((start + n) <= m_size);
+ if ((start + n) > m_size)
+ return;
+
+ if (!n)
+ return;
+
+ const uint32_t num_to_move = m_size - (start + n);
+
+ T* pDst = m_p + start;
+
+ const T* pSrc = m_p + start + n;
+
+ if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T))
+ {
+ // This test is overly cautious.
+ if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T)))
+ {
+ // Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed.
+ // First destroy the erased objects.
+ scalar_type<T>::destruct_array(pDst, n);
+ }
+
+ // Copy "down" the objects to preserve, filling in the empty slots.
+ memmove(pDst, pSrc, num_to_move * sizeof(T));
+ }
+ else
+ {
+ // Type is not bitwise copyable or movable.
+ // Move them down one at a time by using the equals operator, and destroying anything that's left over at the end.
+ T* pDst_end = pDst + num_to_move;
+ while (pDst != pDst_end)
+ *pDst++ = *pSrc++;
+
+ scalar_type<T>::destruct_array(pDst_end, n);
+ }
+
+ m_size -= n;
+ }
+
+ inline void erase(uint32_t index)
+ {
+ erase(index, 1);
+ }
+
+ inline void erase(T* p)
+ {
+ assert((p >= m_p) && (p < (m_p + m_size)));
+ erase(static_cast<uint32_t>(p - m_p));
+ }
+
+ inline void erase(T *pFirst, T *pEnd)
+ {
+ assert(pFirst <= pEnd);
+ assert(pFirst >= begin() && pFirst <= end());
+ assert(pEnd >= begin() && pEnd <= end());
+
+ int64_t ofs = pFirst - begin();
+ if ((ofs < 0) || (ofs > UINT32_MAX))
+ {
+ assert(0);
+ return;
+ }
+
+ int64_t n = pEnd - pFirst;
+ if ((n < 0) || (n > UINT32_MAX))
+ {
+ assert(0);
+ return;
+ }
+
+ erase((uint32_t)ofs, (uint32_t)n);
+ }
+
+ void erase_unordered(uint32_t index)
+ {
+ assert(index < m_size);
+
+ if ((index + 1) < m_size)
+ (*this)[index] = back();
+
+ pop_back();
+ }
+
+ inline bool operator== (const vector& rhs) const
+ {
+ if (m_size != rhs.m_size)
+ return false;
+ else if (m_size)
+ {
+ if (scalar_type<T>::cFlag)
+ return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0;
+ else
+ {
+ const T* pSrc = m_p;
+ const T* pDst = rhs.m_p;
+ for (uint32_t i = m_size; i; i--)
+ if (!(*pSrc++ == *pDst++))
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ inline bool operator< (const vector& rhs) const
+ {
+ const uint32_t min_size = helpers::minimum(m_size, rhs.m_size);
+
+ const T* pSrc = m_p;
+ const T* pSrc_end = m_p + min_size;
+ const T* pDst = rhs.m_p;
+
+ while ((pSrc < pSrc_end) && (*pSrc == *pDst))
+ {
+ pSrc++;
+ pDst++;
+ }
+
+ if (pSrc < pSrc_end)
+ return *pSrc < *pDst;
+
+ return m_size < rhs.m_size;
+ }
+
+ inline void swap(vector& other)
+ {
+ std::swap(m_p, other.m_p);
+ std::swap(m_size, other.m_size);
+ std::swap(m_capacity, other.m_capacity);
+ }
+
+ inline void sort()
+ {
+ std::sort(begin(), end());
+ }
+
+ inline void unique()
+ {
+ if (!empty())
+ {
+ sort();
+
+ resize(std::unique(begin(), end()) - begin());
+ }
+ }
+
+ inline void reverse()
+ {
+ uint32_t j = m_size >> 1;
+ for (uint32_t i = 0; i < j; i++)
+ std::swap(m_p[i], m_p[m_size - 1 - i]);
+ }
+
+ inline int find(const T& key) const
+ {
+ const T* p = m_p;
+ const T* p_end = m_p + m_size;
+
+ uint32_t index = 0;
+
+ while (p != p_end)
+ {
+ if (key == *p)
+ return index;
+
+ p++;
+ index++;
+ }
+
+ return cInvalidIndex;
+ }
+
+ inline int find_sorted(const T& key) const
+ {
+ if (m_size)
+ {
+ // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice.
+ int i = ((m_size + 1) >> 1) - 1;
+ int m = m_size;
+
+ for (; ; )
+ {
+ assert(i >= 0 && i < (int)m_size);
+ const T* pKey_i = m_p + i;
+ int cmp = key < *pKey_i;
+#if defined(_DEBUG) || defined(DEBUG)
+ int cmp2 = *pKey_i < key;
+ assert((cmp != cmp2) || (key == *pKey_i));
+#endif
+ if ((!cmp) && (key == *pKey_i)) return i;
+ m >>= 1;
+ if (!m) break;
+ cmp = -cmp;
+ i += (((m + 1) >> 1) ^ cmp) - cmp;
+ if (i < 0)
+ break;
+
+ assert(i >= 0 && i < (int)m_size);
+ pKey_i = m_p + i;
+ cmp = key < *pKey_i;
+#if defined(_DEBUG) || defined(DEBUG)
+ cmp2 = *pKey_i < key;
+ assert((cmp != cmp2) || (key == *pKey_i));
+#endif
+ if ((!cmp) && (key == *pKey_i)) return i;
+ m >>= 1;
+ if (!m) break;
+ cmp = -cmp;
+ i += (((m + 1) >> 1) ^ cmp) - cmp;
+ if (i < 0)
+ break;
+ }
+ }
+
+ return cInvalidIndex;
+ }
+
+ template<typename Q>
+ inline int find_sorted(const T& key, Q less_than) const
+ {
+ if (m_size)
+ {
+ // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice.
+ int i = ((m_size + 1) >> 1) - 1;
+ int m = m_size;
+
+ for (; ; )
+ {
+ assert(i >= 0 && i < (int)m_size);
+ const T* pKey_i = m_p + i;
+ int cmp = less_than(key, *pKey_i);
+ if ((!cmp) && (!less_than(*pKey_i, key))) return i;
+ m >>= 1;
+ if (!m) break;
+ cmp = -cmp;
+ i += (((m + 1) >> 1) ^ cmp) - cmp;
+ if (i < 0)
+ break;
+
+ assert(i >= 0 && i < (int)m_size);
+ pKey_i = m_p + i;
+ cmp = less_than(key, *pKey_i);
+ if ((!cmp) && (!less_than(*pKey_i, key))) return i;
+ m >>= 1;
+ if (!m) break;
+ cmp = -cmp;
+ i += (((m + 1) >> 1) ^ cmp) - cmp;
+ if (i < 0)
+ break;
+ }
+ }
+
+ return cInvalidIndex;
+ }
+
+ inline uint32_t count_occurences(const T& key) const
+ {
+ uint32_t c = 0;
+
+ const T* p = m_p;
+ const T* p_end = m_p + m_size;
+
+ while (p != p_end)
+ {
+ if (key == *p)
+ c++;
+
+ p++;
+ }
+
+ return c;
+ }
+
+ inline void set_all(const T& o)
+ {
+ if ((sizeof(T) == 1) && (scalar_type<T>::cFlag))
+ memset(m_p, *reinterpret_cast<const uint8_t*>(&o), m_size);
+ else
+ {
+ T* pDst = m_p;
+ T* pDst_end = pDst + m_size;
+ while (pDst != pDst_end)
+ *pDst++ = o;
+ }
+ }
+
+ // Caller assumes ownership of the heap block associated with the container. Container is cleared.
+ inline void* assume_ownership()
+ {
+ T* p = m_p;
+ m_p = NULL;
+ m_size = 0;
+ m_capacity = 0;
+ return p;
+ }
+
+ // Caller is granting ownership of the indicated heap block.
+ // Block must have size constructed elements, and have enough room for capacity elements.
+ inline bool grant_ownership(T* p, uint32_t size, uint32_t capacity)
+ {
+ // To to prevent the caller from obviously shooting themselves in the foot.
+ if (((p + capacity) > m_p) && (p < (m_p + m_capacity)))
+ {
+ // Can grant ownership of a block inside the container itself!
+ assert(0);
+ return false;
+ }
+
+ if (size > capacity)
+ {
+ assert(0);
+ return false;
+ }
+
+ if (!p)
+ {
+ if (capacity)
+ {
+ assert(0);
+ return false;
+ }
+ }
+ else if (!capacity)
+ {
+ assert(0);
+ return false;
+ }
+
+ clear();
+ m_p = p;
+ m_size = size;
+ m_capacity = capacity;
+ return true;
+ }
+
+ private:
+ T* m_p;
+ uint32_t m_size;
+ uint32_t m_capacity;
+
+ template<typename Q> struct is_vector { enum { cFlag = false }; };
+ template<typename Q> struct is_vector< vector<Q> > { enum { cFlag = true }; };
+
+ static void object_mover(void* pDst_void, void* pSrc_void, uint32_t num)
+ {
+ T* pSrc = static_cast<T*>(pSrc_void);
+ T* const pSrc_end = pSrc + num;
+ T* pDst = static_cast<T*>(pDst_void);
+
+ while (pSrc != pSrc_end)
+ {
+ // placement new
+ new (static_cast<void*>(pDst)) T(*pSrc);
+ pSrc->~T();
+ ++pSrc;
+ ++pDst;
+ }
+ }
+
+ inline bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, bool nofail = false)
+ {
+ return reinterpret_cast<elemental_vector*>(this)->increase_capacity(
+ min_new_capacity, grow_hint, sizeof(T),
+ (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector<T>::cFlag)) ? NULL : object_mover, nofail);
+ }
+ };
+
+ template<typename T> struct bitwise_movable< vector<T> > { enum { cFlag = true }; };
+
+ // Hash map
+
+ template <typename T>
+ struct hasher
+ {
+ inline size_t operator() (const T& key) const { return static_cast<size_t>(key); }
+ };
+
+ template <typename T>
+ struct equal_to
+ {
+ inline bool operator()(const T& a, const T& b) const { return a == b; }
+ };
+
+ // Important: The Hasher and Equals objects must be bitwise movable!
+ template<typename Key, typename Value = empty_type, typename Hasher = hasher<Key>, typename Equals = equal_to<Key> >
+ class hash_map
+ {
+ public:
+ class iterator;
+ class const_iterator;
+
+ private:
+ friend class iterator;
+ friend class const_iterator;
+
+ enum state
+ {
+ cStateInvalid = 0,
+ cStateValid = 1
+ };
+
+ enum
+ {
+ cMinHashSize = 4U
+ };
+
+ public:
+ typedef hash_map<Key, Value, Hasher, Equals> hash_map_type;
+ typedef std::pair<Key, Value> value_type;
+ typedef Key key_type;
+ typedef Value referent_type;
+ typedef Hasher hasher_type;
+ typedef Equals equals_type;
+
+ hash_map() :
+ m_hash_shift(32), m_num_valid(0), m_grow_threshold(0)
+ {
+ }
+
+ hash_map(const hash_map& other) :
+ m_values(other.m_values),
+ m_hash_shift(other.m_hash_shift),
+ m_hasher(other.m_hasher),
+ m_equals(other.m_equals),
+ m_num_valid(other.m_num_valid),
+ m_grow_threshold(other.m_grow_threshold)
+ {
+ }
+
+ hash_map& operator= (const hash_map& other)
+ {
+ if (this == &other)
+ return *this;
+
+ clear();
+
+ m_values = other.m_values;
+ m_hash_shift = other.m_hash_shift;
+ m_num_valid = other.m_num_valid;
+ m_grow_threshold = other.m_grow_threshold;
+ m_hasher = other.m_hasher;
+ m_equals = other.m_equals;
+
+ return *this;
+ }
+
+ inline ~hash_map()
+ {
+ clear();
+ }
+
+ const Equals& get_equals() const { return m_equals; }
+ Equals& get_equals() { return m_equals; }
+
+ void set_equals(const Equals& equals) { m_equals = equals; }
+
+ const Hasher& get_hasher() const { return m_hasher; }
+ Hasher& get_hasher() { return m_hasher; }
+
+ void set_hasher(const Hasher& hasher) { m_hasher = hasher; }
+
+ inline void clear()
+ {
+ if (!m_values.empty())
+ {
+ if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
+ {
+ node* p = &get_node(0);
+ node* p_end = p + m_values.size();
+
+ uint32_t num_remaining = m_num_valid;
+ while (p != p_end)
+ {
+ if (p->state)
+ {
+ destruct_value_type(p);
+ num_remaining--;
+ if (!num_remaining)
+ break;
+ }
+
+ p++;
+ }
+ }
+
+ m_values.clear_no_destruction();
+
+ m_hash_shift = 32;
+ m_num_valid = 0;
+ m_grow_threshold = 0;
+ }
+ }
+
+ inline void reset()
+ {
+ if (!m_num_valid)
+ return;
+
+ if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
+ {
+ node* p = &get_node(0);
+ node* p_end = p + m_values.size();
+
+ uint32_t num_remaining = m_num_valid;
+ while (p != p_end)
+ {
+ if (p->state)
+ {
+ destruct_value_type(p);
+ p->state = cStateInvalid;
+
+ num_remaining--;
+ if (!num_remaining)
+ break;
+ }
+
+ p++;
+ }
+ }
+ else if (sizeof(node) <= 32)
+ {
+ memset(&m_values[0], 0, m_values.size_in_bytes());
+ }
+ else
+ {
+ node* p = &get_node(0);
+ node* p_end = p + m_values.size();
+
+ uint32_t num_remaining = m_num_valid;
+ while (p != p_end)
+ {
+ if (p->state)
+ {
+ p->state = cStateInvalid;
+
+ num_remaining--;
+ if (!num_remaining)
+ break;
+ }
+
+ p++;
+ }
+ }
+
+ m_num_valid = 0;
+ }
+
+ inline uint32_t size()
+ {
+ return m_num_valid;
+ }
+
+ inline uint32_t get_table_size()
+ {
+ return m_values.size();
+ }
+
+ inline bool empty()
+ {
+ return !m_num_valid;
+ }
+
+ inline void reserve(uint32_t new_capacity)
+ {
+ uint64_t new_hash_size = helpers::maximum(1U, new_capacity);
+
+ new_hash_size = new_hash_size * 2ULL;
+
+ if (!helpers::is_power_of_2(new_hash_size))
+ new_hash_size = helpers::next_pow2(new_hash_size);
+
+ new_hash_size = helpers::maximum<uint64_t>(cMinHashSize, new_hash_size);
+
+ new_hash_size = helpers::minimum<uint64_t>(0x80000000UL, new_hash_size);
+
+ if (new_hash_size > m_values.size())
+ rehash((uint32_t)new_hash_size);
+ }
+
+ class iterator
+ {
+ friend class hash_map<Key, Value, Hasher, Equals>;
+ friend class hash_map<Key, Value, Hasher, Equals>::const_iterator;
+
+ public:
+ inline iterator() : m_pTable(NULL), m_index(0) { }
+ inline iterator(hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { }
+ inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
+
+ inline iterator& operator= (const iterator& other)
+ {
+ m_pTable = other.m_pTable;
+ m_index = other.m_index;
+ return *this;
+ }
+
+ // post-increment
+ inline iterator operator++(int)
+ {
+ iterator result(*this);
+ ++*this;
+ return result;
+ }
+
+ // pre-increment
+ inline iterator& operator++()
+ {
+ probe();
+ return *this;
+ }
+
+ inline value_type& operator*() const { return *get_cur(); }
+ inline value_type* operator->() const { return get_cur(); }
+
+ inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
+ inline bool operator != (const iterator& b) const { return !(*this == b); }
+ inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
+ inline bool operator != (const const_iterator& b) const { return !(*this == b); }
+
+ private:
+ hash_map_type* m_pTable;
+ uint32_t m_index;
+
+ inline value_type* get_cur() const
+ {
+ assert(m_pTable && (m_index < m_pTable->m_values.size()));
+ assert(m_pTable->get_node_state(m_index) == cStateValid);
+
+ return &m_pTable->get_node(m_index);
+ }
+
+ inline void probe()
+ {
+ assert(m_pTable);
+ m_index = m_pTable->find_next(m_index);
+ }
+ };
+
+ class const_iterator
+ {
+ friend class hash_map<Key, Value, Hasher, Equals>;
+ friend class hash_map<Key, Value, Hasher, Equals>::iterator;
+
+ public:
+ inline const_iterator() : m_pTable(NULL), m_index(0) { }
+ inline const_iterator(const hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { }
+ inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
+ inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
+
+ inline const_iterator& operator= (const const_iterator& other)
+ {
+ m_pTable = other.m_pTable;
+ m_index = other.m_index;
+ return *this;
+ }
+
+ inline const_iterator& operator= (const iterator& other)
+ {
+ m_pTable = other.m_pTable;
+ m_index = other.m_index;
+ return *this;
+ }
+
+ // post-increment
+ inline const_iterator operator++(int)
+ {
+ const_iterator result(*this);
+ ++*this;
+ return result;
+ }
+
+ // pre-increment
+ inline const_iterator& operator++()
+ {
+ probe();
+ return *this;
+ }
+
+ inline const value_type& operator*() const { return *get_cur(); }
+ inline const value_type* operator->() const { return get_cur(); }
+
+ inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
+ inline bool operator != (const const_iterator& b) const { return !(*this == b); }
+ inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
+ inline bool operator != (const iterator& b) const { return !(*this == b); }
+
+ private:
+ const hash_map_type* m_pTable;
+ uint32_t m_index;
+
+ inline const value_type* get_cur() const
+ {
+ assert(m_pTable && (m_index < m_pTable->m_values.size()));
+ assert(m_pTable->get_node_state(m_index) == cStateValid);
+
+ return &m_pTable->get_node(m_index);
+ }
+
+ inline void probe()
+ {
+ assert(m_pTable);
+ m_index = m_pTable->find_next(m_index);
+ }
+ };
+
+ inline const_iterator begin() const
+ {
+ if (!m_num_valid)
+ return end();
+
+ return const_iterator(*this, find_next(UINT32_MAX));
+ }
+
+ inline const_iterator end() const
+ {
+ return const_iterator(*this, m_values.size());
+ }
+
+ inline iterator begin()
+ {
+ if (!m_num_valid)
+ return end();
+
+ return iterator(*this, find_next(UINT32_MAX));
+ }
+
+ inline iterator end()
+ {
+ return iterator(*this, m_values.size());
+ }
+
+ // insert_result.first will always point to inserted key/value (or the already existing key/value).
+ // insert_resutt.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value).
+ typedef std::pair<iterator, bool> insert_result;
+
+ inline insert_result insert(const Key& k, const Value& v = Value())
+ {
+ insert_result result;
+ if (!insert_no_grow(result, k, v))
+ {
+ grow();
+
+ // This must succeed.
+ if (!insert_no_grow(result, k, v))
+ {
+ fprintf(stderr, "insert() failed");
+ abort();
+ }
+ }
+
+ return result;
+ }
+
+ inline insert_result insert(const value_type& v)
+ {
+ return insert(v.first, v.second);
+ }
+
+ inline const_iterator find(const Key& k) const
+ {
+ return const_iterator(*this, find_index(k));
+ }
+
+ inline iterator find(const Key& k)
+ {
+ return iterator(*this, find_index(k));
+ }
+
+ inline bool erase(const Key& k)
+ {
+ uint32_t i = find_index(k);
+
+ if (i >= m_values.size())
+ return false;
+
+ node* pDst = &get_node(i);
+ destruct_value_type(pDst);
+ pDst->state = cStateInvalid;
+
+ m_num_valid--;
+
+ for (; ; )
+ {
+ uint32_t r, j = i;
+
+ node* pSrc = pDst;
+
+ do
+ {
+ if (!i)
+ {
+ i = m_values.size() - 1;
+ pSrc = &get_node(i);
+ }
+ else
+ {
+ i--;
+ pSrc--;
+ }
+
+ if (!pSrc->state)
+ return true;
+
+ r = hash_key(pSrc->first);
+
+ } while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r));
+
+ move_node(pDst, pSrc);
+
+ pDst = pSrc;
+ }
+ }
+
+ inline void swap(hash_map_type& other)
+ {
+ m_values.swap(other.m_values);
+ std::swap(m_hash_shift, other.m_hash_shift);
+ std::swap(m_num_valid, other.m_num_valid);
+ std::swap(m_grow_threshold, other.m_grow_threshold);
+ std::swap(m_hasher, other.m_hasher);
+ std::swap(m_equals, other.m_equals);
+ }
+
+ private:
+ struct node : public value_type
+ {
+ uint8_t state;
+ };
+
+ static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v)
+ {
+ if (BASISU_IS_BITWISE_COPYABLE(Key))
+ memcpy(&pDst->first, &k, sizeof(Key));
+ else
+ scalar_type<Key>::construct(&pDst->first, k);
+
+ if (BASISU_IS_BITWISE_COPYABLE(Value))
+ memcpy(&pDst->second, &v, sizeof(Value));
+ else
+ scalar_type<Value>::construct(&pDst->second, v);
+ }
+
+ static inline void construct_value_type(value_type* pDst, const value_type* pSrc)
+ {
+ if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value)))
+ {
+ memcpy(pDst, pSrc, sizeof(value_type));
+ }
+ else
+ {
+ if (BASISU_IS_BITWISE_COPYABLE(Key))
+ memcpy(&pDst->first, &pSrc->first, sizeof(Key));
+ else
+ scalar_type<Key>::construct(&pDst->first, pSrc->first);
+
+ if (BASISU_IS_BITWISE_COPYABLE(Value))
+ memcpy(&pDst->second, &pSrc->second, sizeof(Value));
+ else
+ scalar_type<Value>::construct(&pDst->second, pSrc->second);
+ }
+ }
+
+ static inline void destruct_value_type(value_type* p)
+ {
+ scalar_type<Key>::destruct(&p->first);
+ scalar_type<Value>::destruct(&p->second);
+ }
+
+ // Moves *pSrc to *pDst efficiently.
+ // pDst should NOT be constructed on entry.
+ static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true)
+ {
+ assert(!pDst->state);
+
+ if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
+ {
+ memcpy(pDst, pSrc, sizeof(node));
+ }
+ else
+ {
+ if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key))
+ memcpy(&pDst->first, &pSrc->first, sizeof(Key));
+ else
+ {
+ scalar_type<Key>::construct(&pDst->first, pSrc->first);
+ scalar_type<Key>::destruct(&pSrc->first);
+ }
+
+ if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
+ memcpy(&pDst->second, &pSrc->second, sizeof(Value));
+ else
+ {
+ scalar_type<Value>::construct(&pDst->second, pSrc->second);
+ scalar_type<Value>::destruct(&pSrc->second);
+ }
+
+ pDst->state = cStateValid;
+ }
+
+ if (update_src_state)
+ pSrc->state = cStateInvalid;
+ }
+
+ struct raw_node
+ {
+ inline raw_node()
+ {
+ node* p = reinterpret_cast<node*>(this);
+ p->state = cStateInvalid;
+ }
+
+ inline ~raw_node()
+ {
+ node* p = reinterpret_cast<node*>(this);
+ if (p->state)
+ hash_map_type::destruct_value_type(p);
+ }
+
+ inline raw_node(const raw_node& other)
+ {
+ node* pDst = reinterpret_cast<node*>(this);
+ const node* pSrc = reinterpret_cast<const node*>(&other);
+
+ if (pSrc->state)
+ {
+ hash_map_type::construct_value_type(pDst, pSrc);
+ pDst->state = cStateValid;
+ }
+ else
+ pDst->state = cStateInvalid;
+ }
+
+ inline raw_node& operator= (const raw_node& rhs)
+ {
+ if (this == &rhs)
+ return *this;
+
+ node* pDst = reinterpret_cast<node*>(this);
+ const node* pSrc = reinterpret_cast<const node*>(&rhs);
+
+ if (pSrc->state)
+ {
+ if (pDst->state)
+ {
+ pDst->first = pSrc->first;
+ pDst->second = pSrc->second;
+ }
+ else
+ {
+ hash_map_type::construct_value_type(pDst, pSrc);
+ pDst->state = cStateValid;
+ }
+ }
+ else if (pDst->state)
+ {
+ hash_map_type::destruct_value_type(pDst);
+ pDst->state = cStateInvalid;
+ }
+
+ return *this;
+ }
+
+ uint8_t m_bits[sizeof(node)];
+ };
+
+ typedef basisu::vector<raw_node> node_vector;
+
+ node_vector m_values;
+ uint32_t m_hash_shift;
+
+ Hasher m_hasher;
+ Equals m_equals;
+
+ uint32_t m_num_valid;
+
+ uint32_t m_grow_threshold;
+
+ inline uint32_t hash_key(const Key& k) const
+ {
+ assert((1U << (32U - m_hash_shift)) == m_values.size());
+
+ uint32_t hash = static_cast<uint32_t>(m_hasher(k));
+
+ // Fibonacci hashing
+ hash = (2654435769U * hash) >> m_hash_shift;
+
+ assert(hash < m_values.size());
+ return hash;
+ }
+
+ inline const node& get_node(uint32_t index) const
+ {
+ return *reinterpret_cast<const node*>(&m_values[index]);
+ }
+
+ inline node& get_node(uint32_t index)
+ {
+ return *reinterpret_cast<node*>(&m_values[index]);
+ }
+
+ inline state get_node_state(uint32_t index) const
+ {
+ return static_cast<state>(get_node(index).state);
+ }
+
+ inline void set_node_state(uint32_t index, bool valid)
+ {
+ get_node(index).state = valid;
+ }
+
+ inline void grow()
+ {
+ uint64_t n = m_values.size() * 3ULL; // was * 2
+
+ if (!helpers::is_power_of_2(n))
+ n = helpers::next_pow2(n);
+
+ if (n > 0x80000000UL)
+ n = 0x80000000UL;
+
+ rehash(helpers::maximum<uint32_t>(cMinHashSize, (uint32_t)n));
+ }
+
+ inline void rehash(uint32_t new_hash_size)
+ {
+ assert(new_hash_size >= m_num_valid);
+ assert(helpers::is_power_of_2(new_hash_size));
+
+ if ((new_hash_size < m_num_valid) || (new_hash_size == m_values.size()))
+ return;
+
+ hash_map new_map;
+ new_map.m_values.resize(new_hash_size);
+ new_map.m_hash_shift = 32U - helpers::floor_log2i(new_hash_size);
+ assert(new_hash_size == (1U << (32U - new_map.m_hash_shift)));
+ new_map.m_grow_threshold = UINT_MAX;
+
+ node* pNode = reinterpret_cast<node*>(m_values.begin());
+ node* pNode_end = pNode + m_values.size();
+
+ while (pNode != pNode_end)
+ {
+ if (pNode->state)
+ {
+ new_map.move_into(pNode);
+
+ if (new_map.m_num_valid == m_num_valid)
+ break;
+ }
+
+ pNode++;
+ }
+
+ new_map.m_grow_threshold = (new_hash_size + 1U) >> 1U;
+
+ m_values.clear_no_destruction();
+ m_hash_shift = 32;
+
+ swap(new_map);
+ }
+
+ inline uint32_t find_next(uint32_t index) const
+ {
+ index++;
+
+ if (index >= m_values.size())
+ return index;
+
+ const node* pNode = &get_node(index);
+
+ for (; ; )
+ {
+ if (pNode->state)
+ break;
+
+ if (++index >= m_values.size())
+ break;
+
+ pNode++;
+ }
+
+ return index;
+ }
+
+ inline uint32_t find_index(const Key& k) const
+ {
+ if (m_num_valid)
+ {
+ uint32_t index = hash_key(k);
+ const node* pNode = &get_node(index);
+
+ if (pNode->state)
+ {
+ if (m_equals(pNode->first, k))
+ return index;
+
+ const uint32_t orig_index = index;
+
+ for (; ; )
+ {
+ if (!index)
+ {
+ index = m_values.size() - 1;
+ pNode = &get_node(index);
+ }
+ else
+ {
+ index--;
+ pNode--;
+ }
+
+ if (index == orig_index)
+ break;
+
+ if (!pNode->state)
+ break;
+
+ if (m_equals(pNode->first, k))
+ return index;
+ }
+ }
+ }
+
+ return m_values.size();
+ }
+
+ inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v = Value())
+ {
+ if (!m_values.size())
+ return false;
+
+ uint32_t index = hash_key(k);
+ node* pNode = &get_node(index);
+
+ if (pNode->state)
+ {
+ if (m_equals(pNode->first, k))
+ {
+ result.first = iterator(*this, index);
+ result.second = false;
+ return true;
+ }
+
+ const uint32_t orig_index = index;
+
+ for (; ; )
+ {
+ if (!index)
+ {
+ index = m_values.size() - 1;
+ pNode = &get_node(index);
+ }
+ else
+ {
+ index--;
+ pNode--;
+ }
+
+ if (orig_index == index)
+ return false;
+
+ if (!pNode->state)
+ break;
+
+ if (m_equals(pNode->first, k))
+ {
+ result.first = iterator(*this, index);
+ result.second = false;
+ return true;
+ }
+ }
+ }
+
+ if (m_num_valid >= m_grow_threshold)
+ return false;
+
+ construct_value_type(pNode, k, v);
+
+ pNode->state = cStateValid;
+
+ m_num_valid++;
+ assert(m_num_valid <= m_values.size());
+
+ result.first = iterator(*this, index);
+ result.second = true;
+
+ return true;
+ }
+
+ inline void move_into(node* pNode)
+ {
+ uint32_t index = hash_key(pNode->first);
+ node* pDst_node = &get_node(index);
+
+ if (pDst_node->state)
+ {
+ const uint32_t orig_index = index;
+
+ for (; ; )
+ {
+ if (!index)
+ {
+ index = m_values.size() - 1;
+ pDst_node = &get_node(index);
+ }
+ else
+ {
+ index--;
+ pDst_node--;
+ }
+
+ if (index == orig_index)
+ {
+ assert(false);
+ return;
+ }
+
+ if (!pDst_node->state)
+ break;
+ }
+ }
+
+ move_node(pDst_node, pNode, false);
+
+ m_num_valid++;
+ }
+ };
+
+ template<typename Key, typename Value, typename Hasher, typename Equals>
+ struct bitwise_movable< hash_map<Key, Value, Hasher, Equals> > { enum { cFlag = true }; };
+
+#if BASISU_HASHMAP_TEST
+ extern void hash_map_test();
+#endif
+
+} // namespace basisu
+
+namespace std
+{
+ template<typename T>
+ inline void swap(basisu::vector<T>& a, basisu::vector<T>& b)
+ {
+ a.swap(b);
+ }
+
+ template<typename Key, typename Value, typename Hasher, typename Equals>
+ inline void swap(basisu::hash_map<Key, Value, Hasher, Equals>& a, basisu::hash_map<Key, Value, Hasher, Equals>& b)
+ {
+ a.swap(b);
+ }
+
+} // namespace std