diff options
Diffstat (limited to 'thirdparty/basis_universal/encoder/cppspmd_math.h')
-rw-r--r-- | thirdparty/basis_universal/encoder/cppspmd_math.h | 725 |
1 files changed, 725 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/encoder/cppspmd_math.h b/thirdparty/basis_universal/encoder/cppspmd_math.h new file mode 100644 index 0000000000..e7b3202b8e --- /dev/null +++ b/thirdparty/basis_universal/encoder/cppspmd_math.h @@ -0,0 +1,725 @@ +// Do not include this header directly. +// +// Copyright 2020-2021 Binomial LLC +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// The general goal of these vectorized estimated math functions is scalability/performance. +// There are explictly no checks NaN's/Inf's on the input arguments. There are no assertions either. +// These are fast estimate functions - if you need more than that, use stdlib. Please do a proper +// engineering analysis before relying on them. +// I have chosen functions written by others, ported them to CppSPMD, then measured their abs/rel errors. +// I compared each to the ones in DirectXMath and stdlib's for accuracy/performance. + +CPPSPMD_FORCE_INLINE vfloat fmod_inv(const vfloat& a, const vfloat& b, const vfloat& b_inv) +{ + vfloat c = frac(abs(a * b_inv)) * abs(b); + return spmd_ternaryf(a < 0, -c, c); +} + +CPPSPMD_FORCE_INLINE vfloat fmod_inv_p(const vfloat& a, const vfloat& b, const vfloat& b_inv) +{ + return frac(a * b_inv) * b; +} + +// Avoids dividing by zero or very small values. +CPPSPMD_FORCE_INLINE vfloat safe_div(vfloat a, vfloat b, float fDivThresh = 1e-7f) +{ + return a / spmd_ternaryf( abs(b) > fDivThresh, b, spmd_ternaryf(b < 0.0f, -fDivThresh, fDivThresh) ); +} + +/* + clang 9.0.0 for win /fp:precise release + f range: 0.0000000000001250 10000000000.0000000000000000, vals: 1073741824 + + log2_est(): + max abs err: 0.0000023076808731 + max rel err: 0.0000000756678881 + avg abs err: 0.0000007535452724 + avg rel err: 0.0000000235117843 + + XMVectorLog2(): + max abs err: 0.0000023329709933 + max rel err: 0.0000000826961046 + avg abs err: 0.0000007564889684 + avg rel err: 0.0000000236051899 + + std::log2f(): + max abs err: 0.0000020265979401 + max rel err: 0.0000000626647654 + avg abs err: 0.0000007494445227 + avg rel err: 0.0000000233800985 +*/ + +// See https://tech.ebayinc.com/engineering/fast-approximate-logarithms-part-iii-the-formulas/ +inline vfloat spmd_kernel::log2_est(vfloat v) +{ + vfloat signif, fexp; + + // Just clamp to a very small value, instead of checking for invalid inputs. + vfloat x = max(v, 2.2e-38f); + + /* + * Assume IEEE representation, which is sgn(1):exp(8):frac(23) + * representing (1+frac)*2^(exp-127). Call 1+frac the significand + */ + + // get exponent + vint ux1_i = cast_vfloat_to_vint(x); + + vint exp = VUINT_SHIFT_RIGHT(ux1_i & 0x7F800000, 23); + + // actual exponent is exp-127, will subtract 127 later + + vint ux2_i; + vfloat ux2_f; + + vint greater = ux1_i & 0x00400000; // true if signif > 1.5 + SPMD_SIF(greater != 0) + { + // signif >= 1.5 so need to divide by 2. Accomplish this by stuffing exp = 126 which corresponds to an exponent of -1 + store_all(ux2_i, (ux1_i & 0x007FFFFF) | 0x3f000000); + + store_all(ux2_f, cast_vint_to_vfloat(ux2_i)); + + // 126 instead of 127 compensates for division by 2 + store_all(fexp, vfloat(exp - 126)); + } + SPMD_SELSE(greater != 0) + { + // get signif by stuffing exp = 127 which corresponds to an exponent of 0 + store(ux2_i, (ux1_i & 0x007FFFFF) | 0x3f800000); + + store(ux2_f, cast_vint_to_vfloat(ux2_i)); + + store(fexp, vfloat(exp - 127)); + } + SPMD_SENDIF + + store_all(signif, ux2_f); + store_all(signif, signif - 1.0f); + + const float a = 0.1501692f, b = 3.4226132f, c = 5.0225057f, d = 4.1130283f, e = 3.4813372f; + + vfloat xm1 = signif; + vfloat xm1sqr = xm1 * xm1; + + return fexp + ((a * (xm1sqr * xm1) + b * xm1sqr + c * xm1) / (xm1sqr + d * xm1 + e)); + + // fma lowers accuracy for SSE4.1 - no idea why (compiler reordering?) + //return fexp + ((vfma(a, (xm1sqr * xm1), vfma(b, xm1sqr, c * xm1))) / (xm1sqr + vfma(d, xm1, e))); +} + +// Uses log2_est(), so this function must be <= the precision of that. +inline vfloat spmd_kernel::log_est(vfloat v) +{ + return log2_est(v) * 0.693147181f; +} + +CPPSPMD_FORCE_INLINE void spmd_kernel::reduce_expb(vfloat& arg, vfloat& two_int_a, vint& adjustment) +{ + // Assume we're using equation (2) + store_all(adjustment, 0); + + // integer part of the input argument + vint int_arg = (vint)arg; + + // if frac(arg) is in [0.5, 1.0]... + SPMD_SIF((arg - int_arg) > 0.5f) + { + store(adjustment, 1); + + // then change it to [0.0, 0.5] + store(arg, arg - 0.5f); + } + SPMD_SENDIF + + // arg == just the fractional part + store_all(arg, arg - (vfloat)int_arg); + + // Now compute 2** (int) arg. + store_all(int_arg, min(int_arg + 127, 254)); + + store_all(two_int_a, cast_vint_to_vfloat(VINT_SHIFT_LEFT(int_arg, 23))); +} + +/* + clang 9.0.0 for win /fp:precise release + f range : -50.0000000000000000 49.9999940395355225, vals : 16777216 + + exp2_est(): + Total passed near - zero check : 16777216 + Total sign diffs : 0 + max abs err: 1668910609.7500000000000000 + max rel err: 0.0000015642030031 + avg abs err: 10793794.4007573910057545 + avg rel err: 0.0000003890893282 + + XMVectorExp2(): + Total passed near-zero check: 16777216 + Total sign diffs: 0 + max abs err: 1665552836.8750000000000000 + max rel err: 0.0000114674862370 + avg abs err: 10771868.2627860084176064 + avg rel err: 0.0000011218880770 + + std::exp2f(): + Total passed near-zero check: 16777216 + Total sign diffs: 0 + max abs err: 1591636585.6250000000000000 + max rel err: 0.0000014849731018 + avg abs err: 10775800.3204844966530800 + avg rel err: 0.0000003851496422 +*/ + +// http://www.ganssle.com/item/approximations-c-code-exponentiation-log.htm +inline vfloat spmd_kernel::exp2_est(vfloat arg) +{ + SPMD_BEGIN_CALL + + const vfloat P00 = +7.2152891521493f; + const vfloat P01 = +0.0576900723731f; + const vfloat Q00 = +20.8189237930062f; + const vfloat Q01 = +1.0f; + const vfloat sqrt2 = 1.4142135623730950488f; // sqrt(2) for scaling + + vfloat result = 0.0f; + + // Return 0 if arg is too large. + // We're not introducing inf/nan's into calculations, or risk doing so by returning huge default values. + SPMD_IF(abs(arg) > 126.0f) + { + spmd_return(); + } + SPMD_END_IF + + // 2**(int(a)) + vfloat two_int_a; + + // set to 1 by reduce_expb + vint adjustment; + + // 0 if arg is +; 1 if negative + vint negative = 0; + + // If the input is negative, invert it. At the end we'll take the reciprocal, since n**(-1) = 1/(n**x). + SPMD_SIF(arg < 0.0f) + { + store(arg, -arg); + store(negative, 1); + } + SPMD_SENDIF + + store_all(arg, min(arg, 126.0f)); + + // reduce to [0.0, 0.5] + reduce_expb(arg, two_int_a, adjustment); + + // The format of the polynomial is: + // answer=(Q(x**2) + x*P(x**2))/(Q(x**2) - x*P(x**2)) + // + // The following computes the polynomial in several steps: + + // Q(x**2) + vfloat Q = vfma(Q01, (arg * arg), Q00); + + // x*P(x**2) + vfloat x_P = arg * (vfma(P01, arg * arg, P00)); + + vfloat answer = (Q + x_P) / (Q - x_P); + + // Now correct for the scaling factor of 2**(int(a)) + store_all(answer, answer * two_int_a); + + // If the result had a fractional part > 0.5, correct for that + store_all(answer, spmd_ternaryf(adjustment != 0, answer * sqrt2, answer)); + + // Correct for a negative input + SPMD_SIF(negative != 0) + { + store(answer, 1.0f / answer); + } + SPMD_SENDIF + + store(result, answer); + + return result; +} + +inline vfloat spmd_kernel::exp_est(vfloat arg) +{ + // e^x = exp2(x / log_base_e(2)) + // constant is 1.0/(log(2)/log(e)) or 1/log(2) + return exp2_est(arg * 1.44269504f); +} + +inline vfloat spmd_kernel::pow_est(vfloat arg1, vfloat arg2) +{ + return exp_est(log_est(arg1) * arg2); +} + +/* + clang 9.0.0 for win /fp:precise release + Total near-zero: 144, output above near-zero tresh: 30 + Total near-zero avg: 0.0000067941016621 max: 0.0000134706497192 + Total near-zero sign diffs: 5 + Total passed near-zero check: 16777072 + Total sign diffs: 5 + max abs err: 0.0000031375306036 + max rel err: 0.1140846017075028 + avg abs err: 0.0000003026226621 + avg rel err: 0.0000033564977623 +*/ + +// Math from this web page: http://developer.download.nvidia.com/cg/sin.html +// This is ~2x slower than sin_est() or cos_est(), and less accurate, but I'm keeping it here for comparison purposes to help validate/sanity check sin_est() and cos_est(). +inline vfloat spmd_kernel::sincos_est_a(vfloat a, bool sin_flag) +{ + const float c0_x = 0.0f, c0_y = 0.5f, c0_z = 1.0f; + const float c1_x = 0.25f, c1_y = -9.0f, c1_z = 0.75f, c1_w = 0.159154943091f; + const float c2_x = 24.9808039603f, c2_y = -24.9808039603f, c2_z = -60.1458091736f, c2_w = 60.1458091736f; + const float c3_x = 85.4537887573f, c3_y = -85.4537887573f, c3_z = -64.9393539429f, c3_w = 64.9393539429f; + const float c4_x = 19.7392082214f, c4_y = -19.7392082214f, c4_z = -1.0f, c4_w = 1.0f; + + vfloat r0_x, r0_y, r0_z, r1_x, r1_y, r1_z, r2_x, r2_y, r2_z; + + store_all(r1_x, sin_flag ? vfms(c1_w, a, c1_x) : c1_w * a); + + store_all(r1_y, frac(r1_x)); + + store_all(r2_x, (vfloat)(r1_y < c1_x)); + + store_all(r2_y, (vfloat)(r1_y >= c1_y)); + store_all(r2_z, (vfloat)(r1_y >= c1_z)); + + store_all(r2_y, vfma(r2_x, c4_z, vfma(r2_y, c4_w, r2_z * c4_z))); + + store_all(r0_x, c0_x - r1_y); + store_all(r0_y, c0_y - r1_y); + store_all(r0_z, c0_z - r1_y); + + store_all(r0_x, r0_x * r0_x); + store_all(r0_y, r0_y * r0_y); + store_all(r0_z, r0_z * r0_z); + + store_all(r1_x, vfma(c2_x, r0_x, c2_z)); + store_all(r1_y, vfma(c2_y, r0_y, c2_w)); + store_all(r1_z, vfma(c2_x, r0_z, c2_z)); + + store_all(r1_x, vfma(r1_x, r0_x, c3_x)); + store_all(r1_y, vfma(r1_y, r0_y, c3_y)); + store_all(r1_z, vfma(r1_z, r0_z, c3_x)); + + store_all(r1_x, vfma(r1_x, r0_x, c3_z)); + store_all(r1_y, vfma(r1_y, r0_y, c3_w)); + store_all(r1_z, vfma(r1_z, r0_z, c3_z)); + + store_all(r1_x, vfma(r1_x, r0_x, c4_x)); + store_all(r1_y, vfma(r1_y, r0_y, c4_y)); + store_all(r1_z, vfma(r1_z, r0_z, c4_x)); + + store_all(r1_x, vfma(r1_x, r0_x, c4_z)); + store_all(r1_y, vfma(r1_y, r0_y, c4_w)); + store_all(r1_z, vfma(r1_z, r0_z, c4_z)); + + store_all(r0_x, vfnma(r1_x, r2_x, vfnma(r1_y, r2_y, r1_z * -r2_z))); + + return r0_x; +} + +// positive values only +CPPSPMD_FORCE_INLINE vfloat spmd_kernel::recip_est1(const vfloat& q) +{ + //const int mag = 0x7EF312AC; // 2 NR iters, 3 is 0x7EEEEBB3 + const int mag = 0x7EF311C3; + const float fMinThresh = .0000125f; + + vfloat l = spmd_ternaryf(q >= fMinThresh, q, cast_vint_to_vfloat(vint(mag))); + + vint x_l = vint(mag) - cast_vfloat_to_vint(l); + + vfloat rcp_l = cast_vint_to_vfloat(x_l); + + return rcp_l * vfnma(rcp_l, q, 2.0f); +} + +CPPSPMD_FORCE_INLINE vfloat spmd_kernel::recip_est1_pn(const vfloat& t) +{ + //const int mag = 0x7EF312AC; // 2 NR iters, 3 is 0x7EEEEBB3 + const int mag = 0x7EF311C3; + const float fMinThresh = .0000125f; + + vfloat s = sign(t); + vfloat q = abs(t); + + vfloat l = spmd_ternaryf(q >= fMinThresh, q, cast_vint_to_vfloat(vint(mag))); + + vint x_l = vint(mag) - cast_vfloat_to_vint(l); + + vfloat rcp_l = cast_vint_to_vfloat(x_l); + + return rcp_l * vfnma(rcp_l, q, 2.0f) * s; +} + +// https://basesandframes.files.wordpress.com/2020/04/even_faster_math_functions_green_2020.pdf +// https://github.com/hcs0/Hackers-Delight/blob/master/rsqrt.c.txt +CPPSPMD_FORCE_INLINE vfloat spmd_kernel::rsqrt_est1(vfloat x0) +{ + vfloat xhalf = 0.5f * x0; + vfloat x = cast_vint_to_vfloat(vint(0x5F375A82) - (VINT_SHIFT_RIGHT(cast_vfloat_to_vint(x0), 1))); + return x * vfnma(xhalf * x, x, 1.5008909f); +} + +CPPSPMD_FORCE_INLINE vfloat spmd_kernel::rsqrt_est2(vfloat x0) +{ + vfloat xhalf = 0.5f * x0; + vfloat x = cast_vint_to_vfloat(vint(0x5F37599E) - (VINT_SHIFT_RIGHT(cast_vfloat_to_vint(x0), 1))); + vfloat x1 = x * vfnma(xhalf * x, x, 1.5); + vfloat x2 = x1 * vfnma(xhalf * x1, x1, 1.5); + return x2; +} + +// Math from: http://developer.download.nvidia.com/cg/atan2.html +// TODO: Needs more validation, parameter checking. +CPPSPMD_FORCE_INLINE vfloat spmd_kernel::atan2_est(vfloat y, vfloat x) +{ + vfloat t1 = abs(y); + vfloat t3 = abs(x); + + vfloat t0 = max(t3, t1); + store_all(t1, min(t3, t1)); + + store_all(t3, t1 / t0); + + vfloat t4 = t3 * t3; + store_all(t0, vfma(-0.013480470f, t4, 0.057477314f)); + store_all(t0, vfms(t0, t4, 0.121239071f)); + store_all(t0, vfma(t0, t4, 0.195635925f)); + store_all(t0, vfms(t0, t4, 0.332994597f)); + store_all(t0, vfma(t0, t4, 0.999995630f)); + store_all(t3, t0 * t3); + + store_all(t3, spmd_ternaryf(abs(y) > abs(x), vfloat(1.570796327f) - t3, t3)); + + store_all(t3, spmd_ternaryf(x < 0.0f, vfloat(3.141592654f) - t3, t3)); + store_all(t3, spmd_ternaryf(y < 0.0f, -t3, t3)); + + return t3; +} + +/* + clang 9.0.0 for win /fp:precise release + Tested range: -25.1327412287183449 25.1327382326621169, vals : 16777216 + Skipped angles near 90/270 within +- .001 radians. + Near-zero threshold: .0000125f + Near-zero output above check threshold: 1e-6f + + Total near-zero: 144, output above near-zero tresh: 20 + Total near-zero avg: 0.0000067510751968 max: 0.0000133514404297 + Total near-zero sign diffs: 5 + Total passed near-zero check: 16766400 + Total sign diffs: 5 + max abs err: 1.4982600811139264 + max rel err: 0.1459155900188041 + avg rel err: 0.0000054659502568 + + XMVectorTan() precise: + Total near-zero: 144, output above near-zero tresh: 18 + Total near-zero avg: 0.0000067641216186 max: 0.0000133524126795 + Total near-zero sign diffs: 0 + Total passed near-zero check: 16766400 + Total sign diffs: 0 + max abs err: 1.9883573246424930 + max rel err: 0.1459724171926864 + avg rel err: 0.0000054965766843 + + std::tanf(): + Total near-zero: 144, output above near-zero tresh: 0 + Total near-zero avg: 0.0000067116930779 max: 0.0000127713074107 + Total near-zero sign diffs: 11 + Total passed near-zero check: 16766400 + Total sign diffs: 11 + max abs err: 0.8989131818294709 + max rel err: 0.0573181403173166 + avg rel err: 0.0000030791301203 + + Originally from: + http://www.ganssle.com/approx.htm +*/ + +CPPSPMD_FORCE_INLINE vfloat spmd_kernel::tan82(vfloat x) +{ + // Original double version was 8.2 digits + //double c1 = 211.849369664121f, c2 = -12.5288887278448f, c3 = 269.7350131214121f, c4 = -71.4145309347748f; + // Tuned float constants for lower avg rel error (without using FMA3): + const float c1 = 211.849350f, c2 = -12.5288887f, c3 = 269.734985f, c4 = -71.4145203f; + vfloat x2 = x * x; + return (x * (vfma(c2, x2, c1)) / (vfma(x2, (c4 + x2), c3))); +} + +// Don't call this for angles close to 90/270!. +inline vfloat spmd_kernel::tan_est(vfloat x) +{ + const float fPi = 3.141592653589793f, fOneOverPi = 0.3183098861837907f; + CPPSPMD_DECL(const uint8_t, s_table0[16]) = { 128 + 0, 128 + 2, 128 + -2, 128 + 4, 128 + 0, 128 + 2, 128 + -2, 128 + 4, 128 + 0, 128 + 2, 128 + -2, 128 + 4, 128 + 0, 128 + 2, 128 + -2, 128 + 4 }; + + vint table = init_lookup4(s_table0); // a load + vint sgn = cast_vfloat_to_vint(x) & 0x80000000; + + store_all(x, abs(x)); + vfloat orig_x = x; + + vfloat q = x * fOneOverPi; + store_all(x, q - floor(q)); + + vfloat x4 = x * 4.0f; + vint octant = (vint)(x4); + + vfloat x0 = spmd_ternaryf((octant & 1) != 0, -x4, x4); + + vint k = table_lookup4_8(octant, table) & 0xFF; // a shuffle + + vfloat bias = (vfloat)k + -128.0f; + vfloat y = x0 + bias; + + vfloat z = tan82(y); + + vfloat r; + + vbool octant_one_or_two = (octant == 1) || (octant == 2); + + // SPMD optimization - skip costly divide if we can + if (spmd_any(octant_one_or_two)) + { + const float fDivThresh = .4371e-7f; + vfloat one_over_z = 1.0f / spmd_ternaryf(abs(z) > fDivThresh, z, spmd_ternaryf(z < 0.0f, -fDivThresh, fDivThresh)); + + vfloat b = spmd_ternaryf(octant_one_or_two, one_over_z, z); + store_all(r, spmd_ternaryf((octant & 2) != 0, -b, b)); + } + else + { + store_all(r, spmd_ternaryf(octant == 0, z, -z)); + } + + // Small angle approximation, to decrease the max rel error near Pi. + SPMD_SIF(x >= (1.0f - .0003125f*4.0f)) + { + store(r, vfnma(floor(q) + 1.0f, fPi, orig_x)); + } + SPMD_SENDIF + + return cast_vint_to_vfloat(cast_vfloat_to_vint(r) ^ sgn); +} + +inline void spmd_kernel::seed_rand(rand_context& x, vint seed) +{ + store(x.a, 0xf1ea5eed); + store(x.b, seed ^ 0xd8487b1f); + store(x.c, seed ^ 0xdbadef9a); + store(x.d, seed); + for (int i = 0; i < 20; ++i) + (void)get_randu(x); +} + +// https://burtleburtle.net/bob/rand/smallprng.html +// Returns 32-bit unsigned random numbers. +inline vint spmd_kernel::get_randu(rand_context& x) +{ + vint e = x.a - VINT_ROT(x.b, 27); + store(x.a, x.b ^ VINT_ROT(x.c, 17)); + store(x.b, x.c + x.d); + store(x.c, x.d + e); + store(x.d, e + x.a); + return x.d; +} + +// Returns random numbers between [low, high), or low if low >= high +inline vint spmd_kernel::get_randi(rand_context& x, vint low, vint high) +{ + vint rnd = get_randu(x); + + vint range = high - low; + + vint rnd_range = mulhiu(rnd, range); + + return spmd_ternaryi(low < high, low + rnd_range, low); +} + +// Returns random numbers between [low, high), or low if low >= high +inline vfloat spmd_kernel::get_randf(rand_context& x, vfloat low, vfloat high) +{ + vint rndi = get_randu(x) & 0x7fffff; + + vfloat rnd = (vfloat)(rndi) * (1.0f / 8388608.0f); + + return spmd_ternaryf(low < high, vfma(high - low, rnd, low), low); +} + +CPPSPMD_FORCE_INLINE void spmd_kernel::init_reverse_bits(vint& tab1, vint& tab2) +{ + const uint8_t tab1_bytes[16] = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 }; + const uint8_t tab2_bytes[16] = { 0, 8 << 4, 4 << 4, 12 << 4, 2 << 4, 10 << 4, 6 << 4, 14 << 4, 1 << 4, 9 << 4, 5 << 4, 13 << 4, 3 << 4, 11 << 4, 7 << 4, 15 << 4 }; + store_all(tab1, init_lookup4(tab1_bytes)); + store_all(tab2, init_lookup4(tab2_bytes)); +} + +CPPSPMD_FORCE_INLINE vint spmd_kernel::reverse_bits(vint k, vint tab1, vint tab2) +{ + vint r0 = table_lookup4_8(k & 0x7F7F7F7F, tab2); + vint r1 = table_lookup4_8(VUINT_SHIFT_RIGHT(k, 4) & 0x7F7F7F7F, tab1); + vint r3 = r0 | r1; + return byteswap(r3); +} + +CPPSPMD_FORCE_INLINE vint spmd_kernel::count_leading_zeros(vint x) +{ + CPPSPMD_DECL(const uint8_t, s_tab[16]) = { 0, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 }; + + vint tab = init_lookup4(s_tab); + + //x <= 0x0000ffff + vbool c0 = (x & 0xFFFF0000) == 0; + vint n0 = spmd_ternaryi(c0, 16, 0); + vint x0 = spmd_ternaryi(c0, VINT_SHIFT_LEFT(x, 16), x); + + //x <= 0x00ffffff + vbool c1 = (x0 & 0xFF000000) == 0; + vint n1 = spmd_ternaryi(c1, n0 + 8, n0); + vint x1 = spmd_ternaryi(c1, VINT_SHIFT_LEFT(x0, 8), x0); + + //x <= 0x0fffffff + vbool c2 = (x1 & 0xF0000000) == 0; + vint n2 = spmd_ternaryi(c2, n1 + 4, n1); + vint x2 = spmd_ternaryi(c2, VINT_SHIFT_LEFT(x1, 4), x1); + + return table_lookup4_8(VUINT_SHIFT_RIGHT(x2, 28), tab) + n2; +} + +CPPSPMD_FORCE_INLINE vint spmd_kernel::count_leading_zeros_alt(vint x) +{ + //x <= 0x0000ffff + vbool c0 = (x & 0xFFFF0000) == 0; + vint n0 = spmd_ternaryi(c0, 16, 0); + vint x0 = spmd_ternaryi(c0, VINT_SHIFT_LEFT(x, 16), x); + + //x <= 0x00ffffff + vbool c1 = (x0 & 0xFF000000) == 0; + vint n1 = spmd_ternaryi(c1, n0 + 8, n0); + vint x1 = spmd_ternaryi(c1, VINT_SHIFT_LEFT(x0, 8), x0); + + //x <= 0x0fffffff + vbool c2 = (x1 & 0xF0000000) == 0; + vint n2 = spmd_ternaryi(c2, n1 + 4, n1); + vint x2 = spmd_ternaryi(c2, VINT_SHIFT_LEFT(x1, 4), x1); + + // x <= 0x3fffffff + vbool c3 = (x2 & 0xC0000000) == 0; + vint n3 = spmd_ternaryi(c3, n2 + 2, n2); + vint x3 = spmd_ternaryi(c3, VINT_SHIFT_LEFT(x2, 2), x2); + + // x <= 0x7fffffff + vbool c4 = (x3 & 0x80000000) == 0; + return spmd_ternaryi(c4, n3 + 1, n3); +} + +CPPSPMD_FORCE_INLINE vint spmd_kernel::count_trailing_zeros(vint x) +{ + // cast the least significant bit in v to a float + vfloat f = (vfloat)(x & -x); + + // extract exponent and adjust + return VUINT_SHIFT_RIGHT(cast_vfloat_to_vint(f), 23) - 0x7F; +} + +CPPSPMD_FORCE_INLINE vint spmd_kernel::count_set_bits(vint x) +{ + vint v = x - (VUINT_SHIFT_RIGHT(x, 1) & 0x55555555); + vint v1 = (v & 0x33333333) + (VUINT_SHIFT_RIGHT(v, 2) & 0x33333333); + return VUINT_SHIFT_RIGHT(((v1 + VUINT_SHIFT_RIGHT(v1, 4) & 0xF0F0F0F) * 0x1010101), 24); +} + +CPPSPMD_FORCE_INLINE vint cmple_epu16(const vint &a, const vint &b) +{ + return cmpeq_epi16(subs_epu16(a, b), vint(0)); +} + +CPPSPMD_FORCE_INLINE vint cmpge_epu16(const vint &a, const vint &b) +{ + return cmple_epu16(b, a); +} + +CPPSPMD_FORCE_INLINE vint cmpgt_epu16(const vint &a, const vint &b) +{ + return andnot(cmpeq_epi16(a, b), cmple_epu16(b, a)); +} + +CPPSPMD_FORCE_INLINE vint cmplt_epu16(const vint &a, const vint &b) +{ + return cmpgt_epu16(b, a); +} + +CPPSPMD_FORCE_INLINE vint cmpge_epi16(const vint &a, const vint &b) +{ + return cmpeq_epi16(a, b) | cmpgt_epi16(a, b); +} + +CPPSPMD_FORCE_INLINE vint cmple_epi16(const vint &a, const vint &b) +{ + return cmpge_epi16(b, a); +} + +void spmd_kernel::print_vint(vint v) +{ + for (uint32_t i = 0; i < PROGRAM_COUNT; i++) + printf("%i ", extract(v, i)); + printf("\n"); +} + +void spmd_kernel::print_vbool(vbool v) +{ + for (uint32_t i = 0; i < PROGRAM_COUNT; i++) + printf("%i ", extract(v, i) ? 1 : 0); + printf("\n"); +} + +void spmd_kernel::print_vint_hex(vint v) +{ + for (uint32_t i = 0; i < PROGRAM_COUNT; i++) + printf("0x%X ", extract(v, i)); + printf("\n"); +} + +void spmd_kernel::print_active_lanes(const char *pPrefix) +{ + CPPSPMD_DECL(int, flags[PROGRAM_COUNT]); + memset(flags, 0, sizeof(flags)); + storeu_linear(flags, vint(1)); + + if (pPrefix) + printf("%s", pPrefix); + + for (uint32_t i = 0; i < PROGRAM_COUNT; i++) + { + if (flags[i]) + printf("%u ", i); + } + printf("\n"); +} + +void spmd_kernel::print_vfloat(vfloat v) +{ + for (uint32_t i = 0; i < PROGRAM_COUNT; i++) + printf("%f ", extract(v, i)); + printf("\n"); +} |