diff options
Diffstat (limited to 'thirdparty/basis_universal/encoder/basisu_enc.cpp')
| -rw-r--r-- | thirdparty/basis_universal/encoder/basisu_enc.cpp | 2139 | 
1 files changed, 2139 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/encoder/basisu_enc.cpp b/thirdparty/basis_universal/encoder/basisu_enc.cpp new file mode 100644 index 0000000000..f02fb62c11 --- /dev/null +++ b/thirdparty/basis_universal/encoder/basisu_enc.cpp @@ -0,0 +1,2139 @@ +// basisu_enc.cpp +// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +//    http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include "basisu_enc.h" +#include "lodepng.h" +#include "basisu_resampler.h" +#include "basisu_resampler_filters.h" +#include "basisu_etc.h" +#include "../transcoder/basisu_transcoder.h" +#include "basisu_bc7enc.h" +#include "apg_bmp.h" +#include "jpgd.h" +#include <vector> + +#if defined(_WIN32) +// For QueryPerformanceCounter/QueryPerformanceFrequency +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#endif + +namespace basisu +{ +	uint64_t interval_timer::g_init_ticks, interval_timer::g_freq; +	double interval_timer::g_timer_freq; +#if BASISU_SUPPORT_SSE +	bool g_cpu_supports_sse41; +#endif + +	uint8_t g_hamming_dist[256] = +	{ +		0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, +		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, +		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, +		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, +		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, +		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, +		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, +		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, +		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, +		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, +		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, +		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, +		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, +		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, +		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, +		4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 +	}; + +	// This is a Public Domain 8x8 font from here: +	// https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h +	const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8] =  +	{ +	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},	// U+0020 ( ) +	 { 0x18, 0x3C, 0x3C, 0x18, 0x18, 0x00, 0x18, 0x00},   // U+0021 (!) +	 { 0x36, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+0022 (") +	 { 0x36, 0x36, 0x7F, 0x36, 0x7F, 0x36, 0x36, 0x00},   // U+0023 (#) +	 { 0x0C, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x0C, 0x00},   // U+0024 ($) +	 { 0x00, 0x63, 0x33, 0x18, 0x0C, 0x66, 0x63, 0x00},   // U+0025 (%) +	 { 0x1C, 0x36, 0x1C, 0x6E, 0x3B, 0x33, 0x6E, 0x00},   // U+0026 (&) +	 { 0x06, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+0027 (') +	 { 0x18, 0x0C, 0x06, 0x06, 0x06, 0x0C, 0x18, 0x00},   // U+0028 (() +	 { 0x06, 0x0C, 0x18, 0x18, 0x18, 0x0C, 0x06, 0x00},   // U+0029 ()) +	 { 0x00, 0x66, 0x3C, 0xFF, 0x3C, 0x66, 0x00, 0x00},   // U+002A (*) +	 { 0x00, 0x0C, 0x0C, 0x3F, 0x0C, 0x0C, 0x00, 0x00},   // U+002B (+) +	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x06},   // U+002C (,) +	 { 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00},   // U+002D (-) +	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x00},   // U+002E (.) +	 { 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00},   // U+002F (/) +	 { 0x3E, 0x63, 0x73, 0x7B, 0x6F, 0x67, 0x3E, 0x00},   // U+0030 (0) +	 { 0x0C, 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x3F, 0x00},   // U+0031 (1) +	 { 0x1E, 0x33, 0x30, 0x1C, 0x06, 0x33, 0x3F, 0x00},   // U+0032 (2) +	 { 0x1E, 0x33, 0x30, 0x1C, 0x30, 0x33, 0x1E, 0x00},   // U+0033 (3) +	 { 0x38, 0x3C, 0x36, 0x33, 0x7F, 0x30, 0x78, 0x00},   // U+0034 (4) +	 { 0x3F, 0x03, 0x1F, 0x30, 0x30, 0x33, 0x1E, 0x00},   // U+0035 (5) +	 { 0x1C, 0x06, 0x03, 0x1F, 0x33, 0x33, 0x1E, 0x00},   // U+0036 (6) +	 { 0x3F, 0x33, 0x30, 0x18, 0x0C, 0x0C, 0x0C, 0x00},   // U+0037 (7) +	 { 0x1E, 0x33, 0x33, 0x1E, 0x33, 0x33, 0x1E, 0x00},   // U+0038 (8) +	 { 0x1E, 0x33, 0x33, 0x3E, 0x30, 0x18, 0x0E, 0x00},   // U+0039 (9) +	 { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x00},   // U+003A (:) +	 { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x06},   // U+003B (;) +	 { 0x18, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x18, 0x00},   // U+003C (<) +	 { 0x00, 0x00, 0x3F, 0x00, 0x00, 0x3F, 0x00, 0x00},   // U+003D (=) +	 { 0x06, 0x0C, 0x18, 0x30, 0x18, 0x0C, 0x06, 0x00},   // U+003E (>) +	 { 0x1E, 0x33, 0x30, 0x18, 0x0C, 0x00, 0x0C, 0x00},   // U+003F (?) +	 { 0x3E, 0x63, 0x7B, 0x7B, 0x7B, 0x03, 0x1E, 0x00},   // U+0040 (@) +	 { 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00},   // U+0041 (A) +	 { 0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00},   // U+0042 (B) +	 { 0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00},   // U+0043 (C) +	 { 0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00},   // U+0044 (D) +	 { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00},   // U+0045 (E) +	 { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x06, 0x0F, 0x00},   // U+0046 (F) +	 { 0x3C, 0x66, 0x03, 0x03, 0x73, 0x66, 0x7C, 0x00},   // U+0047 (G) +	 { 0x33, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x33, 0x00},   // U+0048 (H) +	 { 0x1E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+0049 (I) +	 { 0x78, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E, 0x00},   // U+004A (J) +	 { 0x67, 0x66, 0x36, 0x1E, 0x36, 0x66, 0x67, 0x00},   // U+004B (K) +	 { 0x0F, 0x06, 0x06, 0x06, 0x46, 0x66, 0x7F, 0x00},   // U+004C (L) +	 { 0x63, 0x77, 0x7F, 0x7F, 0x6B, 0x63, 0x63, 0x00},   // U+004D (M) +	 { 0x63, 0x67, 0x6F, 0x7B, 0x73, 0x63, 0x63, 0x00},   // U+004E (N) +	 { 0x1C, 0x36, 0x63, 0x63, 0x63, 0x36, 0x1C, 0x00},   // U+004F (O) +	 { 0x3F, 0x66, 0x66, 0x3E, 0x06, 0x06, 0x0F, 0x00},   // U+0050 (P) +	 { 0x1E, 0x33, 0x33, 0x33, 0x3B, 0x1E, 0x38, 0x00},   // U+0051 (Q) +	 { 0x3F, 0x66, 0x66, 0x3E, 0x36, 0x66, 0x67, 0x00},   // U+0052 (R) +	 { 0x1E, 0x33, 0x07, 0x0E, 0x38, 0x33, 0x1E, 0x00},   // U+0053 (S) +	 { 0x3F, 0x2D, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+0054 (T) +	 { 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x3F, 0x00},   // U+0055 (U) +	 { 0x33, 0x33, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00},   // U+0056 (V) +	 { 0x63, 0x63, 0x63, 0x6B, 0x7F, 0x77, 0x63, 0x00},   // U+0057 (W) +	 { 0x63, 0x63, 0x36, 0x1C, 0x1C, 0x36, 0x63, 0x00},   // U+0058 (X) +	 { 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x0C, 0x1E, 0x00},   // U+0059 (Y) +	 { 0x7F, 0x63, 0x31, 0x18, 0x4C, 0x66, 0x7F, 0x00},   // U+005A (Z) +	 { 0x1E, 0x06, 0x06, 0x06, 0x06, 0x06, 0x1E, 0x00},   // U+005B ([) +	 { 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x40, 0x00},   // U+005C (\) +	 { 0x1E, 0x18, 0x18, 0x18, 0x18, 0x18, 0x1E, 0x00},   // U+005D (]) +	 { 0x08, 0x1C, 0x36, 0x63, 0x00, 0x00, 0x00, 0x00},   // U+005E (^) +	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF},   // U+005F (_) +	 { 0x0C, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+0060 (`) +	 { 0x00, 0x00, 0x1E, 0x30, 0x3E, 0x33, 0x6E, 0x00},   // U+0061 (a) +	 { 0x07, 0x06, 0x06, 0x3E, 0x66, 0x66, 0x3B, 0x00},   // U+0062 (b) +	 { 0x00, 0x00, 0x1E, 0x33, 0x03, 0x33, 0x1E, 0x00},   // U+0063 (c) +	 { 0x38, 0x30, 0x30, 0x3e, 0x33, 0x33, 0x6E, 0x00},   // U+0064 (d) +	 { 0x00, 0x00, 0x1E, 0x33, 0x3f, 0x03, 0x1E, 0x00},   // U+0065 (e) +	 { 0x1C, 0x36, 0x06, 0x0f, 0x06, 0x06, 0x0F, 0x00},   // U+0066 (f) +	 { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x1F},   // U+0067 (g) +	 { 0x07, 0x06, 0x36, 0x6E, 0x66, 0x66, 0x67, 0x00},   // U+0068 (h) +	 { 0x0C, 0x00, 0x0E, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+0069 (i) +	 { 0x30, 0x00, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E},   // U+006A (j) +	 { 0x07, 0x06, 0x66, 0x36, 0x1E, 0x36, 0x67, 0x00},   // U+006B (k) +	 { 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+006C (l) +	 { 0x00, 0x00, 0x33, 0x7F, 0x7F, 0x6B, 0x63, 0x00},   // U+006D (m) +	 { 0x00, 0x00, 0x1F, 0x33, 0x33, 0x33, 0x33, 0x00},   // U+006E (n) +	 { 0x00, 0x00, 0x1E, 0x33, 0x33, 0x33, 0x1E, 0x00},   // U+006F (o) +	 { 0x00, 0x00, 0x3B, 0x66, 0x66, 0x3E, 0x06, 0x0F},   // U+0070 (p) +	 { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x78},   // U+0071 (q) +	 { 0x00, 0x00, 0x3B, 0x6E, 0x66, 0x06, 0x0F, 0x00},   // U+0072 (r) +	 { 0x00, 0x00, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x00},   // U+0073 (s) +	 { 0x08, 0x0C, 0x3E, 0x0C, 0x0C, 0x2C, 0x18, 0x00},   // U+0074 (t) +	 { 0x00, 0x00, 0x33, 0x33, 0x33, 0x33, 0x6E, 0x00},   // U+0075 (u) +	 { 0x00, 0x00, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00},   // U+0076 (v) +	 { 0x00, 0x00, 0x63, 0x6B, 0x7F, 0x7F, 0x36, 0x00},   // U+0077 (w) +	 { 0x00, 0x00, 0x63, 0x36, 0x1C, 0x36, 0x63, 0x00},   // U+0078 (x) +	 { 0x00, 0x00, 0x33, 0x33, 0x33, 0x3E, 0x30, 0x1F},   // U+0079 (y) +	 { 0x00, 0x00, 0x3F, 0x19, 0x0C, 0x26, 0x3F, 0x00},   // U+007A (z) +	 { 0x38, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, 0x38, 0x00},   // U+007B ({) +	 { 0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00},   // U+007C (|) +	 { 0x07, 0x0C, 0x0C, 0x38, 0x0C, 0x0C, 0x07, 0x00},   // U+007D (}) +	 { 0x6E, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+007E (~) +	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}    // U+007F +	}; +			 +	// Encoder library initialization (just call once at startup) +	void basisu_encoder_init() +	{ +		detect_sse41(); + +		basist::basisu_transcoder_init(); +		pack_etc1_solid_color_init(); +		//uastc_init(); +		bc7enc_compress_block_init(); // must be after uastc_init() +	} + +	void error_printf(const char *pFmt, ...) +	{ +		char buf[2048]; + +		va_list args; +		va_start(args, pFmt); +#ifdef _WIN32		 +		vsprintf_s(buf, sizeof(buf), pFmt, args); +#else +		vsnprintf(buf, sizeof(buf), pFmt, args); +#endif +		va_end(args); + +		fprintf(stderr, "ERROR: %s", buf); +	} + +#if defined(_WIN32) +	inline void query_counter(timer_ticks* pTicks) +	{ +		QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks)); +	} +	inline void query_counter_frequency(timer_ticks* pTicks) +	{ +		QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks)); +	} +#elif defined(__APPLE__) +#include <sys/time.h> +	inline void query_counter(timer_ticks* pTicks) +	{ +		struct timeval cur_time; +		gettimeofday(&cur_time, NULL); +		*pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); +	} +	inline void query_counter_frequency(timer_ticks* pTicks) +	{ +		*pTicks = 1000000; +	} +#elif defined(__GNUC__) +#include <sys/timex.h> +	inline void query_counter(timer_ticks* pTicks) +	{ +		struct timeval cur_time; +		gettimeofday(&cur_time, NULL); +		*pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); +	} +	inline void query_counter_frequency(timer_ticks* pTicks) +	{ +		*pTicks = 1000000; +	} +#else +#error TODO +#endif +				 +	interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false) +	{ +		if (!g_timer_freq) +			init(); +	} + +	void interval_timer::start() +	{ +		query_counter(&m_start_time); +		m_started = true; +		m_stopped = false; +	} + +	void interval_timer::stop() +	{ +		assert(m_started); +		query_counter(&m_stop_time); +		m_stopped = true; +	} + +	double interval_timer::get_elapsed_secs() const +	{ +		assert(m_started); +		if (!m_started) +			return 0; + +		timer_ticks stop_time = m_stop_time; +		if (!m_stopped) +			query_counter(&stop_time); + +		timer_ticks delta = stop_time - m_start_time; +		return delta * g_timer_freq; +	} +		 +	void interval_timer::init() +	{ +		if (!g_timer_freq) +		{ +			query_counter_frequency(&g_freq); +			g_timer_freq = 1.0f / g_freq; +			query_counter(&g_init_ticks); +		} +	} + +	timer_ticks interval_timer::get_ticks() +	{ +		if (!g_timer_freq) +			init(); +		timer_ticks ticks; +		query_counter(&ticks); +		return ticks - g_init_ticks; +	} + +	double interval_timer::ticks_to_secs(timer_ticks ticks) +	{ +		if (!g_timer_freq) +			init(); +		return ticks * g_timer_freq; +	} +		 +	const uint32_t MAX_32BIT_ALLOC_SIZE = 250000000; + +	bool load_bmp(const char* pFilename, image& img) +	{ +		int w = 0, h = 0; +		unsigned int n_chans = 0; +		unsigned char* pImage_data = apg_bmp_read(pFilename, &w, &h, &n_chans); +				 +		if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4))) +		{ +			error_printf("Failed loading .BMP image \"%s\"!\n", pFilename); + +			if (pImage_data) +				apg_bmp_free(pImage_data); +						 +			return false; +		} + +		if (sizeof(void *) == sizeof(uint32_t)) +		{ +			if ((w * h * n_chans) > MAX_32BIT_ALLOC_SIZE) +			{ +				error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); + +				if (pImage_data) +					apg_bmp_free(pImage_data); + +				return false; +			} +		} +		 +		img.resize(w, h); + +		const uint8_t *pSrc = pImage_data; +		for (int y = 0; y < h; y++) +		{ +			color_rgba *pDst = &img(0, y); + +			for (int x = 0; x < w; x++) +			{ +				pDst->r = pSrc[0]; +				pDst->g = pSrc[1]; +				pDst->b = pSrc[2]; +				pDst->a = (n_chans == 3) ? 255 : pSrc[3]; + +				pSrc += n_chans; +				++pDst; +			} +		} + +		apg_bmp_free(pImage_data); + +		return true; +	} +		 +	bool load_tga(const char* pFilename, image& img) +	{ +		int w = 0, h = 0, n_chans = 0; +		uint8_t* pImage_data = read_tga(pFilename, w, h, n_chans); +				 +		if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4))) +		{ +			error_printf("Failed loading .TGA image \"%s\"!\n", pFilename); + +			if (pImage_data) +				free(pImage_data); +						 +			return false; +		} + +		if (sizeof(void *) == sizeof(uint32_t)) +		{ +			if ((w * h * n_chans) > MAX_32BIT_ALLOC_SIZE) +			{ +				error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); + +				if (pImage_data) +					free(pImage_data); + +				return false; +			} +		} +		 +		img.resize(w, h); + +		const uint8_t *pSrc = pImage_data; +		for (int y = 0; y < h; y++) +		{ +			color_rgba *pDst = &img(0, y); + +			for (int x = 0; x < w; x++) +			{ +				pDst->r = pSrc[0]; +				pDst->g = pSrc[1]; +				pDst->b = pSrc[2]; +				pDst->a = (n_chans == 3) ? 255 : pSrc[3]; + +				pSrc += n_chans; +				++pDst; +			} +		} + +		free(pImage_data); + +		return true; +	} + +	bool load_png(const uint8_t *pBuf, size_t buf_size, image &img, const char *pFilename) +	{ +		if (!buf_size) +			return false; + +		unsigned err = 0, w = 0, h = 0; + +		if (sizeof(void*) == sizeof(uint32_t)) +		{ +			// Inspect the image first on 32-bit builds, to see if the image would require too much memory. +			lodepng::State state; +			err = lodepng_inspect(&w, &h, &state, pBuf, buf_size); +			if ((err != 0) || (!w) || (!h)) +				return false; + +			const uint32_t exepected_alloc_size = w * h * sizeof(uint32_t); + +			// If the file is too large on 32-bit builds then just bail now, to prevent causing a memory exception. +			if (exepected_alloc_size >= MAX_32BIT_ALLOC_SIZE) +			{ +				error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", (pFilename != nullptr) ? pFilename : "<memory>", w, h); +				return false; +			} + +			w = h = 0; +		} + +		std::vector<uint8_t> out; +		err = lodepng::decode(out, w, h, pBuf, buf_size); +		if ((err != 0) || (!w) || (!h)) +			return false; + +		if (out.size() != (w * h * 4)) +			return false; + +		img.resize(w, h); + +		memcpy(img.get_ptr(), &out[0], out.size()); + +		return true; +	} +		 +	bool load_png(const char* pFilename, image& img) +	{ +		std::vector<uint8_t> buffer; +		unsigned err = lodepng::load_file(buffer, std::string(pFilename)); +		if (err) +			return false; + + +		return load_png(buffer.data(), buffer.size(), img, pFilename); +	} + +	bool load_jpg(const char *pFilename, image& img) +	{ +		int width = 0, height = 0, actual_comps = 0; +		uint8_t *pImage_data = jpgd::decompress_jpeg_image_from_file(pFilename, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagLinearChromaFiltering); +		if (!pImage_data) +			return false; +		 +		img.init(pImage_data, width, height, 4); +		 +		free(pImage_data); + +		return true; +	} + +	bool load_image(const char* pFilename, image& img) +	{ +		std::string ext(string_get_extension(std::string(pFilename))); + +		if (ext.length() == 0) +			return false; + +		const char *pExt = ext.c_str(); + +		if (strcasecmp(pExt, "png") == 0) +			return load_png(pFilename, img); +		if (strcasecmp(pExt, "bmp") == 0) +			return load_bmp(pFilename, img); +		if (strcasecmp(pExt, "tga") == 0) +			return load_tga(pFilename, img); +		if ( (strcasecmp(pExt, "jpg") == 0) || (strcasecmp(pExt, "jfif") == 0) || (strcasecmp(pExt, "jpeg") == 0) ) +			return load_jpg(pFilename, img); + +		return false; +	} +	 +	bool save_png(const char* pFilename, const image &img, uint32_t image_save_flags, uint32_t grayscale_comp) +	{ +		if (!img.get_total_pixels()) +			return false; + +		const uint32_t MAX_PNG_IMAGE_DIM = 32768; +		if ((img.get_width() > MAX_PNG_IMAGE_DIM) || (img.get_height() > MAX_PNG_IMAGE_DIM)) +			return false; + +		std::vector<uint8_t> out; +		unsigned err = 0; +				 +		if (image_save_flags & cImageSaveGrayscale) +		{ +			uint8_vec g_pixels(img.get_width() * img.get_height()); +			uint8_t *pDst = &g_pixels[0]; + +			for (uint32_t y = 0; y < img.get_height(); y++) +				for (uint32_t x = 0; x < img.get_width(); x++) +					*pDst++ = img(x, y)[grayscale_comp]; + +			err = lodepng::encode(out, (const uint8_t*)&g_pixels[0], img.get_width(), img.get_height(), LCT_GREY, 8); +		} +		else +		{ +			bool has_alpha = img.has_alpha(); +			if ((!has_alpha) || ((image_save_flags & cImageSaveIgnoreAlpha) != 0)) +			{ +				const uint64_t total_bytes = (uint64_t)img.get_width() * 3U * (uint64_t)img.get_height(); +				if (total_bytes > INT_MAX) +					return false; +				uint8_vec rgb_pixels(static_cast<size_t>(total_bytes)); +				uint8_t *pDst = &rgb_pixels[0]; +								 +				for (uint32_t y = 0; y < img.get_height(); y++) +				{ +					for (uint32_t x = 0; x < img.get_width(); x++) +					{ +						const color_rgba& c = img(x, y); +						pDst[0] = c.r; +						pDst[1] = c.g; +						pDst[2] = c.b; +						pDst += 3; +					} +				} + +				err = lodepng::encode(out, (const uint8_t*)& rgb_pixels[0], img.get_width(), img.get_height(), LCT_RGB, 8); +			} +			else +			{ +				err = lodepng::encode(out, (const uint8_t*)img.get_ptr(), img.get_width(), img.get_height(), LCT_RGBA, 8); +			} +		} + +		err = lodepng::save_file(out, std::string(pFilename)); +		if (err) +			return false; + +		return true; +	} +		 +	bool read_file_to_vec(const char* pFilename, uint8_vec& data) +	{ +		FILE* pFile = nullptr; +#ifdef _WIN32 +		fopen_s(&pFile, pFilename, "rb"); +#else +		pFile = fopen(pFilename, "rb"); +#endif +		if (!pFile) +			return false; +				 +		fseek(pFile, 0, SEEK_END); +#ifdef _WIN32 +		int64_t filesize = _ftelli64(pFile); +#else +		int64_t filesize = ftello(pFile); +#endif +		if (filesize < 0) +		{ +			fclose(pFile); +			return false; +		} +		fseek(pFile, 0, SEEK_SET); + +		if (sizeof(size_t) == sizeof(uint32_t)) +		{ +			if (filesize > 0x70000000) +			{ +				// File might be too big to load safely in one alloc +				fclose(pFile); +				return false; +			} +		} + +		if (!data.try_resize((size_t)filesize)) +		{ +			fclose(pFile); +			return false; +		} + +		if (filesize) +		{ +			if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize) +			{ +				fclose(pFile); +				return false; +			} +		} + +		fclose(pFile); +		return true; +	} + +	bool write_data_to_file(const char* pFilename, const void* pData, size_t len) +	{ +		FILE* pFile = nullptr; +#ifdef _WIN32 +		fopen_s(&pFile, pFilename, "wb"); +#else +		pFile = fopen(pFilename, "wb"); +#endif +		if (!pFile) +			return false; + +		if (len) +		{ +			if (fwrite(pData, 1, len, pFile) != len) +			{ +				fclose(pFile); +				return false; +			} +		} + +		return fclose(pFile) != EOF; +	} + +	float linear_to_srgb(float l) +	{ +		assert(l >= 0.0f && l <= 1.0f); +		if (l < .0031308f) +			return saturate(l * 12.92f); +		else +			return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f); +	} + +	float srgb_to_linear(float s) +	{ +		assert(s >= 0.0f && s <= 1.0f); +		if (s < .04045f) +			return saturate(s * (1.0f/12.92f)); +		else +			return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f)); +	} + +	bool image_resample(const image &src, image &dst, bool srgb, +		const char *pFilter, float filter_scale,  +		bool wrapping, +		uint32_t first_comp, uint32_t num_comps) +	{ +		assert((first_comp + num_comps) <= 4); + +		const int cMaxComps = 4; +				 +		const uint32_t src_w = src.get_width(), src_h = src.get_height(); +		const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); +				 +		if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) +		{ +			printf("Image is too large!\n"); +			return false; +		} + +		if (!src_w || !src_h || !dst_w || !dst_h) +			return false; +				 +		if ((num_comps < 1) || (num_comps > cMaxComps)) +			return false; +				 +		if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) +		{ +			printf("Image is too large!\n"); +			return false; +		} + +		if ((src_w == dst_w) && (src_h == dst_h)) +		{ +			dst = src; +			return true; +		} + +		float srgb_to_linear_table[256]; +		if (srgb) +		{ +			for (int i = 0; i < 256; ++i) +				srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f)); +		} + +		const int LINEAR_TO_SRGB_TABLE_SIZE = 8192; +		uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE]; + +		if (srgb) +		{ +			for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i) +				linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255); +		} + +		std::vector<float> samples[cMaxComps]; +		Resampler *resamplers[cMaxComps]; +		 +		resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, +			wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, +			pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); +		samples[0].resize(src_w); + +		for (uint32_t i = 1; i < num_comps; ++i) +		{ +			resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, +				wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, +				pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); +			samples[i].resize(src_w); +		} + +		uint32_t dst_y = 0; + +		for (uint32_t src_y = 0; src_y < src_h; ++src_y) +		{ +			const color_rgba *pSrc = &src(0, src_y); + +			// Put source lines into resampler(s) +			for (uint32_t x = 0; x < src_w; ++x) +			{ +				for (uint32_t c = 0; c < num_comps; ++c) +				{ +					const uint32_t comp_index = first_comp + c; +					const uint32_t v = (*pSrc)[comp_index]; + +					if (!srgb || (comp_index == 3)) +						samples[c][x] = v * (1.0f / 255.0f); +					else +						samples[c][x] = srgb_to_linear_table[v]; +				} + +				pSrc++; +			} + +			for (uint32_t c = 0; c < num_comps; ++c) +			{ +				if (!resamplers[c]->put_line(&samples[c][0])) +				{ +					for (uint32_t i = 0; i < num_comps; i++) +						delete resamplers[i]; +					return false; +				} +			} + +			// Now retrieve any output lines +			for (;;) +			{ +				uint32_t c; +				for (c = 0; c < num_comps; ++c) +				{ +					const uint32_t comp_index = first_comp + c; + +					const float *pOutput_samples = resamplers[c]->get_line(); +					if (!pOutput_samples) +						break; + +					const bool linear_flag = !srgb || (comp_index == 3); +					 +					color_rgba *pDst = &dst(0, dst_y); + +					for (uint32_t x = 0; x < dst_w; x++) +					{ +						// TODO: Add dithering +						if (linear_flag) +						{ +							int j = (int)(255.0f * pOutput_samples[x] + .5f); +							(*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255); +						} +						else +						{ +							int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f); +							(*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)]; +						} + +						pDst++; +					} +				} +				if (c < num_comps) +					break; + +				++dst_y; +			} +		} + +		for (uint32_t i = 0; i < num_comps; ++i) +			delete resamplers[i]; + +		return true; +	} + +	void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms) +	{ +		// See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen +		if (!num_syms) +			return; + +		if (1 == num_syms) +		{ +			A[0].m_key = 1; +			return; +		} +		 +		A[0].m_key += A[1].m_key; +		 +		int s = 2, r = 0, next; +		for (next = 1; next < (num_syms - 1); ++next) +		{ +			if ((s >= num_syms) || (A[r].m_key < A[s].m_key)) +			{ +				A[next].m_key = A[r].m_key; +				A[r].m_key = next; +				++r; +			} +			else +			{ +				A[next].m_key = A[s].m_key; +				++s; +			} + +			if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key)) +			{ +				A[next].m_key = A[next].m_key + A[r].m_key; +				A[r].m_key = next; +				++r; +			} +			else +			{ +				A[next].m_key = A[next].m_key + A[s].m_key; +				++s; +			} +		} +		A[num_syms - 2].m_key = 0; + +		for (next = num_syms - 3; next >= 0; --next) +		{ +			A[next].m_key = 1 + A[A[next].m_key].m_key; +		} + +		int num_avail = 1, num_used = 0, depth = 0; +		r = num_syms - 2; +		next = num_syms - 1; +		while (num_avail > 0) +		{ +			for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r ) +				; + +			for ( ; num_avail > num_used; --next, --num_avail) +				A[next].m_key = depth; + +			num_avail = 2 * num_used; +			num_used = 0; +			++depth; +		} +	} + +	void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) +	{ +		int i; +		uint32_t total = 0; +		if (code_list_len <= 1) +			return; + +		for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++) +			pNum_codes[max_code_size] += pNum_codes[i]; + +		for (i = max_code_size; i > 0; i--) +			total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); + +		while (total != (1UL << max_code_size)) +		{ +			pNum_codes[max_code_size]--; +			for (i = max_code_size - 1; i > 0; i--) +			{ +				if (pNum_codes[i]) +				{ +					pNum_codes[i]--; +					pNum_codes[i + 1] += 2; +					break; +				} +			} + +			total--; +		} +	} + +	sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1) +	{ +		uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; +		sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; + +		clear_obj(hist); + +		for (i = 0; i < num_syms; i++) +		{ +			uint32_t freq = pSyms0[i].m_key; +			 +			// We scale all input frequencies to 16-bits. +			assert(freq <= UINT16_MAX); + +			hist[freq & 0xFF]++; +			hist[256 + ((freq >> 8) & 0xFF)]++; +		} + +		while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) +			total_passes--; + +		for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) +		{ +			const uint32_t *pHist = &hist[pass << 8]; +			uint32_t offsets[256], cur_ofs = 0; +			for (i = 0; i < 256; i++) +			{ +				offsets[i] = cur_ofs; +				cur_ofs += pHist[i]; +			} + +			for (i = 0; i < num_syms; i++) +				pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; + +			sym_freq *t = pCur_syms; +			pCur_syms = pNew_syms; +			pNew_syms = t; +		} + +		return pCur_syms; +	} + +	bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size) +	{ +		if (max_code_size > cHuffmanMaxSupportedCodeSize) +			return false; +		if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) +			return false; + +		uint32_t total_used_syms = 0; +		for (uint32_t i = 0; i < num_syms; i++) +			if (pFreq[i]) +				total_used_syms++; + +		if (!total_used_syms) +			return false; + +		std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms); +		for (uint32_t i = 0, j = 0; i < num_syms; i++) +		{ +			if (pFreq[i]) +			{ +				sym_freq0[j].m_key = pFreq[i]; +				sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i); +			} +		} + +		sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]); + +		canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms); + +		int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1]; +		clear_obj(num_codes); + +		for (uint32_t i = 0; i < total_used_syms; i++) +		{ +			if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize) +				return false; + +			num_codes[pSym_freq[i].m_key]++; +		} + +		canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size); + +		m_code_sizes.resize(0); +		m_code_sizes.resize(num_syms); + +		m_codes.resize(0); +		m_codes.resize(num_syms); + +		for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++) +			for (uint32_t l = num_codes[i]; l > 0; l--) +				m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i); + +		uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1]; + +		next_code[1] = 0; +		for (uint32_t j = 0, i = 2; i <= max_code_size; i++) +			next_code[i] = j = ((j + num_codes[i - 1]) << 1); + +		for (uint32_t i = 0; i < num_syms; i++) +		{ +			uint32_t rev_code = 0, code, code_size; +			if ((code_size = m_code_sizes[i]) == 0) +				continue; +			if (code_size > cHuffmanMaxSupportedInternalCodeSize) +				return false; +			code = next_code[code_size]++; +			for (uint32_t l = code_size; l > 0; l--, code >>= 1) +				rev_code = (rev_code << 1) | (code & 1); +			m_codes[i] = static_cast<uint16_t>(rev_code); +		} + +		return true; +	} + +	bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size) +	{ +		if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) +			return false; + +		uint16_vec sym_freq(num_syms); + +		uint32_t max_freq = 0; +		for (uint32_t i = 0; i < num_syms; i++) +			max_freq = maximum(max_freq, pSym_freq[i]); + +		if (max_freq < UINT16_MAX) +		{ +			for (uint32_t i = 0; i < num_syms; i++) +				sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]); +		} +		else +		{ +			for (uint32_t i = 0; i < num_syms; i++) +			{ +				if (pSym_freq[i]) +				{ +					uint32_t f = static_cast<uint32_t>((static_cast<uint64_t>(pSym_freq[i]) * 65534U + (max_freq >> 1)) / max_freq); +					sym_freq[i] = static_cast<uint16_t>(clamp<uint32_t>(f, 1, 65534)); +				} +			} +		} + +		return init(num_syms, &sym_freq[0], max_code_size); +	} + +	void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len) +	{ +		if (run_size) +		{ +			if (run_size < cHuffmanSmallRepeatSizeMin) +			{ +				while (run_size--) +					syms.push_back(static_cast<uint16_t>(len)); +			} +			else if (run_size <= cHuffmanSmallRepeatSizeMax) +			{ +				syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6))); +			} +			else +			{ +				assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax)); +				syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6))); +			} +		} + +		run_size = 0; +	} + +	void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size) +	{ +		if (run_size) +		{ +			if (run_size < cHuffmanSmallZeroRunSizeMin) +			{ +				while (run_size--) +					syms.push_back(0); +			} +			else if (run_size <= cHuffmanSmallZeroRunSizeMax) +			{ +				syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6))); +			} +			else +			{ +				assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax)); +				syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6))); +			} +		} + +		run_size = 0; +	} + +	uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab) +	{ +		const uint64_t start_bits = m_total_bits; + +		const uint8_vec &code_sizes = tab.get_code_sizes(); + +		uint32_t total_used = tab.get_total_used_codes(); +		put_bits(total_used, cHuffmanMaxSymsLog2); +			 +		if (!total_used) +			return 0; + +		uint16_vec syms; +		syms.reserve(total_used + 16); + +		uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0; + +		for (uint32_t i = 0; i <= total_used; ++i) +		{ +			const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i]; +			assert((code_len == 0xFF) || (code_len <= 16)); + +			if (code_len) +			{ +				end_zero_run(syms, zero_run_size); + +				if (code_len != prev_code_len) +				{ +					end_nonzero_run(syms, nonzero_run_size, prev_code_len); +					if (code_len != 0xFF) +						syms.push_back(static_cast<uint16_t>(code_len)); +				} +				else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax) +					end_nonzero_run(syms, nonzero_run_size, prev_code_len); +			} +			else +			{ +				end_nonzero_run(syms, nonzero_run_size, prev_code_len); + +				if (++zero_run_size == cHuffmanBigZeroRunSizeMax) +					end_zero_run(syms, zero_run_size); +			} + +			prev_code_len = code_len; +		} + +		histogram h(cHuffmanTotalCodelengthCodes); +		for (uint32_t i = 0; i < syms.size(); i++) +			h.inc(syms[i] & 63); + +		huffman_encoding_table ct; +		if (!ct.init(h, 7)) +			return 0; + +		assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes); + +		uint32_t total_codelength_codes; +		for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--) +			if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]]) +				break; + +		assert(total_codelength_codes); + +		put_bits(total_codelength_codes, 5); +		for (uint32_t i = 0; i < total_codelength_codes; i++) +			put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3); + +		for (uint32_t i = 0; i < syms.size(); ++i) +		{ +			const uint32_t l = syms[i] & 63, e = syms[i] >> 6; + +			put_code(l, ct); +				 +			if (l == cHuffmanSmallZeroRunCode) +				put_bits(e, cHuffmanSmallZeroRunExtraBits); +			else if (l == cHuffmanBigZeroRunCode) +				put_bits(e, cHuffmanBigZeroRunExtraBits); +			else if (l == cHuffmanSmallRepeatCode) +				put_bits(e, cHuffmanSmallRepeatExtraBits); +			else if (l == cHuffmanBigRepeatCode) +				put_bits(e, cHuffmanBigRepeatExtraBits); +		} + +		return (uint32_t)(m_total_bits - start_bits); +	} + +	bool huffman_test(int rand_seed) +	{ +		histogram h(19); + +		// Feed in a fibonacci sequence to force large codesizes +		h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3; +		h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21; +		h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144; +		h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987; +		h[16] += 1597; h[17] += 2584; h[18] += 4181; + +		huffman_encoding_table etab; +		etab.init(h, 16); +		 +		{ +			bitwise_coder c; +			c.init(1024); + +			c.emit_huffman_table(etab); +			for (int i = 0; i < 19; i++) +				c.put_code(i, etab); + +			c.flush(); + +			basist::bitwise_decoder d; +			d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size())); + +			basist::huffman_decoding_table dtab; +			bool success = d.read_huffman_table(dtab); +			if (!success) +			{ +				assert(0); +				printf("Failure 5\n"); +				return false; +			} + +			for (uint32_t i = 0; i < 19; i++) +			{ +				uint32_t s = d.decode_huffman(dtab); +				if (s != i) +				{ +					assert(0); +					printf("Failure 5\n"); +					return false; +				} +			} +		} + +		basisu::rand r; +		r.seed(rand_seed); + +		for (int iter = 0; iter < 500000; iter++) +		{ +			printf("%u\n", iter); + +			uint32_t max_sym = r.irand(0, 8193); +			uint32_t num_codes = r.irand(1, 10000); +			uint_vec syms(num_codes); + +			for (uint32_t i = 0; i < num_codes; i++) +			{ +				if (r.bit()) +					syms[i] = r.irand(0, max_sym); +				else +				{ +					int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f); +					s = basisu::clamp<int>(s, 0, max_sym); + +					syms[i] = s; +				} + +			} + +			histogram h1(max_sym + 1); +			for (uint32_t i = 0; i < num_codes; i++) +				h1[syms[i]]++; + +			huffman_encoding_table etab2; +			if (!etab2.init(h1, 16)) +			{ +				assert(0); +				printf("Failed 0\n"); +				return false; +			} + +			bitwise_coder c; +			c.init(1024); + +			c.emit_huffman_table(etab2); + +			for (uint32_t i = 0; i < num_codes; i++) +				c.put_code(syms[i], etab2); + +			c.flush(); + +			basist::bitwise_decoder d; +			d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size()); + +			basist::huffman_decoding_table dtab; +			bool success = d.read_huffman_table(dtab); +			if (!success) +			{ +				assert(0); +				printf("Failed 2\n"); +				return false; +			} + +			for (uint32_t i = 0; i < num_codes; i++) +			{ +				uint32_t s = d.decode_huffman(dtab); +				if (s != syms[i]) +				{ +					assert(0); +					printf("Failed 4\n"); +					return false; +				} +			} + +		} +		return true; +	} + +	void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) +	{ +		assert((num_syms > 0) && (num_indices > 0)); +		assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f)); + +		clear(); + +		m_remap_table.resize(num_syms); +		m_entries_picked.reserve(num_syms); +		m_total_count_to_picked.resize(num_syms); + +		if (num_indices <= 1) +			return; + +		prepare_hist(num_syms, num_indices, pIndices); +		find_initial(num_syms); + +		while (m_entries_to_do.size()) +		{ +			// Find the best entry to move into the picked list. +			uint32_t best_entry; +			double best_count; +			find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight); + +			// We now have chosen an entry to place in the picked list, now determine which side it goes on. +			const uint32_t entry_to_move = m_entries_to_do[best_entry]; +								 +			float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight); +								 +			// Put entry_to_move either on the "left" or "right" side of the picked entries +			if (side <= 0) +				m_entries_picked.push_back(entry_to_move); +			else +				m_entries_picked.insert(m_entries_picked.begin(), entry_to_move); + +			// Erase best_entry from the todo list +			m_entries_to_do.erase(m_entries_to_do.begin() + best_entry); + +			// We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry +			for (uint32_t i = 0; i < m_entries_to_do.size(); i++) +				m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms); +		} + +		for (uint32_t i = 0; i < num_syms; i++) +			m_remap_table[m_entries_picked[i]] = i; +	} + +	void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices) +	{ +		m_hist.resize(0); +		m_hist.resize(num_syms * num_syms); + +		for (uint32_t i = 0; i < num_indices; i++) +		{ +			const uint32_t idx = pIndices[i]; +			inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms); +			inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms); +		} +	} + +	void palette_index_reorderer::find_initial(uint32_t num_syms) +	{ +		uint32_t max_count = 0, max_index = 0; +		for (uint32_t i = 0; i < num_syms * num_syms; i++) +			if (m_hist[i] > max_count) +				max_count = m_hist[i], max_index = i; + +		uint32_t a = max_index / num_syms, b = max_index % num_syms; + +		m_entries_picked.push_back(a); +		m_entries_picked.push_back(b); + +		for (uint32_t i = 0; i < num_syms; i++) +			if ((i != b) && (i != a)) +				m_entries_to_do.push_back(i); + +		for (uint32_t i = 0; i < m_entries_to_do.size(); i++) +			for (uint32_t j = 0; j < m_entries_picked.size(); j++) +				m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms); +	} + +	void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) +	{ +		best_entry = 0; +		best_count = 0; + +		for (uint32_t i = 0; i < m_entries_to_do.size(); i++) +		{ +			const uint32_t u = m_entries_to_do[i]; +			double total_count = m_total_count_to_picked[u]; + +			if (pDist_func) +			{ +				float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx)); +				assert((w >= 0.0f) && (w <= 1.0f)); +				total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w); +			} + +			if (total_count <= best_count) +				continue; + +			best_entry = i; +			best_count = total_count; +		} +	} + +	float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) +	{ +		float which_side = 0; + +		int l_count = 0, r_count = 0; +		for (uint32_t j = 0; j < m_entries_picked.size(); j++) +		{ +			const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1)); +			which_side += static_cast<float>(r * count); +			if (r >= 0) +				l_count += r * count; +			else +				r_count += -r * count; +		} + +		if (pDist_func) +		{ +			float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx)); +			float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx)); +			which_side = w_left * l_count - w_right * r_count; +		} +		return which_side; +	} + +	void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma) +	{ +		assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); + +		const uint32_t width = basisu::minimum(a.get_width(), b.get_width()); +		const uint32_t height = basisu::minimum(a.get_height(), b.get_height()); + +		double hist[256]; +		clear_obj(hist); + +		for (uint32_t y = 0; y < height; y++) +		{ +			for (uint32_t x = 0; x < width; x++) +			{ +				const color_rgba &ca = a(x, y), &cb = b(x, y); + +				if (total_chans) +				{ +					for (uint32_t c = 0; c < total_chans; c++) +						hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++; +				} +				else +				{ +					if (use_601_luma) +						hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++; +					else +						hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++; +				} +			} +		} + +		m_max = 0; +		double sum = 0.0f, sum2 = 0.0f; +		for (uint32_t i = 0; i < 256; i++) +		{ +			if (hist[i]) +			{ +				m_max = basisu::maximum<float>(m_max, (float)i); +				double v = i * hist[i]; +				sum += v; +				sum2 += i * v; +			} +		} + +		double total_values = (double)width * (double)height; +		if (avg_comp_error) +			total_values *= (double)clamp<uint32_t>(total_chans, 1, 4); + +		m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0); +		m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f); +		m_rms = (float)sqrt(m_mean_squared); +		m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0f, 0.0f, 100.0f) : 100.0f; +	} + +	void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed) +	{ +		rand r(seed); + +		uint8_t *pDst = static_cast<uint8_t *>(pBuf); + +		while (size >= sizeof(uint32_t)) +		{ +			*(uint32_t *)pDst = r.urand32(); +			pDst += sizeof(uint32_t); +			size -= sizeof(uint32_t); +		} + +		while (size) +		{ +			*pDst++ = r.byte(); +			size--; +		} +	} + +	uint32_t hash_hsieh(const uint8_t *pBuf, size_t len) +	{ +		if (!pBuf || !len)  +			return 0; + +		uint32_t h = static_cast<uint32_t>(len); + +		const uint32_t bytes_left = len & 3; +		len >>= 2; + +		while (len--) +		{ +			const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf); + +			h += pWords[0]; +			 +			const uint32_t t = (pWords[1] << 11) ^ h; +			h = (h << 16) ^ t; +			 +			pBuf += sizeof(uint32_t); +			 +			h += h >> 11; +		} + +		switch (bytes_left) +		{ +		case 1:  +			h += *reinterpret_cast<const signed char*>(pBuf); +			h ^= h << 10; +			h += h >> 1; +			break; +		case 2:  +			h += *reinterpret_cast<const uint16_t *>(pBuf); +			h ^= h << 11; +			h += h >> 17; +			break; +		case 3: +			h += *reinterpret_cast<const uint16_t *>(pBuf); +			h ^= h << 16; +			h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18; +			h += h >> 11; +			break; +		default: +			break; +		} +		 +		h ^= h << 3; +		h += h >> 5; +		h ^= h << 4; +		h += h >> 17; +		h ^= h << 25; +		h += h >> 6; + +		return h; +	} + +	job_pool::job_pool(uint32_t num_threads) :  +		m_num_active_jobs(0), +		m_kill_flag(false) +	{ +		assert(num_threads >= 1U); + +		debug_printf("job_pool::job_pool: %u total threads\n", num_threads); + +		if (num_threads > 1) +		{ +			m_threads.resize(num_threads - 1); + +			for (int i = 0; i < ((int)num_threads - 1); i++) +			   m_threads[i] = std::thread([this, i] { job_thread(i); }); +		} +	} + +	job_pool::~job_pool() +	{ +		debug_printf("job_pool::~job_pool\n"); +		 +		// Notify all workers that they need to die right now. +		m_kill_flag = true; +		 +		m_has_work.notify_all(); + +		// Wait for all workers to die. +		for (uint32_t i = 0; i < m_threads.size(); i++) +			m_threads[i].join(); +	} +				 +	void job_pool::add_job(const std::function<void()>& job) +	{ +		std::unique_lock<std::mutex> lock(m_mutex); + +		m_queue.emplace_back(job); + +		const size_t queue_size = m_queue.size(); + +		lock.unlock(); + +		if (queue_size > 1) +			m_has_work.notify_one(); +	} + +	void job_pool::add_job(std::function<void()>&& job) +	{ +		std::unique_lock<std::mutex> lock(m_mutex); + +		m_queue.emplace_back(std::move(job)); +						 +		const size_t queue_size = m_queue.size(); + +		lock.unlock(); + +		if (queue_size > 1) +		{ +			m_has_work.notify_one(); +		} +	} + +	void job_pool::wait_for_all() +	{ +		std::unique_lock<std::mutex> lock(m_mutex); + +		// Drain the job queue on the calling thread. +		while (!m_queue.empty()) +		{ +			std::function<void()> job(m_queue.back()); +			m_queue.pop_back(); + +			lock.unlock(); + +			job(); + +			lock.lock(); +		} + +		// The queue is empty, now wait for all active jobs to finish up. +		m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } ); +	} + +	void job_pool::job_thread(uint32_t index) +	{ +		debug_printf("job_pool::job_thread: starting %u\n", index); +		 +		while (true) +		{ +			std::unique_lock<std::mutex> lock(m_mutex); + +			// Wait for any jobs to be issued. +			m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } ); + +			// Check to see if we're supposed to exit. +			if (m_kill_flag) +				break; + +			// Get the job and execute it. +			std::function<void()> job(m_queue.back()); +			m_queue.pop_back(); + +			++m_num_active_jobs; + +			lock.unlock(); + +			job(); + +			lock.lock(); + +			--m_num_active_jobs; + +			// Now check if there are no more jobs remaining.  +			const bool all_done = m_queue.empty() && !m_num_active_jobs; +			 +			lock.unlock(); + +			if (all_done) +				m_no_more_jobs.notify_all(); +		} + +		debug_printf("job_pool::job_thread: exiting\n"); +	} + +	// .TGA image loading +	#pragma pack(push) +	#pragma pack(1) +	struct tga_header +	{ +		uint8_t			m_id_len; +		uint8_t			m_cmap; +		uint8_t			m_type; +		packed_uint<2>	m_cmap_first; +		packed_uint<2> m_cmap_len; +		uint8_t			m_cmap_bpp; +		packed_uint<2> m_x_org; +		packed_uint<2> m_y_org; +		packed_uint<2> m_width; +		packed_uint<2> m_height; +		uint8_t			m_depth; +		uint8_t			m_desc; +	}; +	#pragma pack(pop) + +	const uint32_t MAX_TGA_IMAGE_SIZE = 16384; + +	enum tga_image_type +	{ +		cITPalettized = 1, +		cITRGB = 2, +		cITGrayscale = 3 +	}; + +	uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans) +	{ +		width = 0; +		height = 0; +		n_chans = 0; + +		if (buf_size <= sizeof(tga_header)) +			return nullptr; + +		const tga_header &hdr = *reinterpret_cast<const tga_header *>(pBuf); + +		if ((!hdr.m_width) || (!hdr.m_height) || (hdr.m_width > MAX_TGA_IMAGE_SIZE) || (hdr.m_height > MAX_TGA_IMAGE_SIZE)) +			return nullptr; + +		if (hdr.m_desc >> 6) +			return nullptr; + +		// Simple validation +		if ((hdr.m_cmap != 0) && (hdr.m_cmap != 1)) +			return nullptr; +		 +		if (hdr.m_cmap) +		{ +			if ((hdr.m_cmap_bpp == 0) || (hdr.m_cmap_bpp > 32)) +				return nullptr; + +			// Nobody implements CMapFirst correctly, so we're not supporting it. Never seen it used, either. +			if (hdr.m_cmap_first != 0) +				return nullptr; +		} + +		const bool x_flipped = (hdr.m_desc & 0x10) != 0; +		const bool y_flipped = (hdr.m_desc & 0x20) == 0; + +		bool rle_flag = false; +		int file_image_type = hdr.m_type; +		if (file_image_type > 8) +		{ +			file_image_type -= 8; +			rle_flag = true; +		} + +		const tga_image_type image_type = static_cast<tga_image_type>(file_image_type); + +		switch (file_image_type) +		{ +		case cITRGB: +			if (hdr.m_depth == 8) +				return nullptr; +			break; +		case cITPalettized: +			if ((hdr.m_depth != 8) || (hdr.m_cmap != 1) || (hdr.m_cmap_len == 0)) +				return nullptr; +			break; +		case cITGrayscale: +			if ((hdr.m_cmap != 0) || (hdr.m_cmap_len != 0)) +				return nullptr; +			if ((hdr.m_depth != 8) && (hdr.m_depth != 16)) +				return nullptr; +			break; +		default: +			return nullptr; +		} + +		uint32_t tga_bytes_per_pixel = 0; + +		switch (hdr.m_depth) +		{ +		case 32: +			tga_bytes_per_pixel = 4; +			n_chans = 4; +			break; +		case 24: +			tga_bytes_per_pixel = 3; +			n_chans = 3; +			break; +		case 16: +		case 15: +			tga_bytes_per_pixel = 2; +			// For compatibility with stb_image_write.h +			n_chans = ((file_image_type == cITGrayscale) && (hdr.m_depth == 16)) ? 4 : 3; +			break; +		case 8: +			tga_bytes_per_pixel = 1; +			// For palettized RGBA support, which both FreeImage and stb_image support. +			n_chans = ((file_image_type == cITPalettized) && (hdr.m_cmap_bpp == 32)) ? 4 : 3; +			break; +		default: +			return nullptr; +		} + +		const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel; + +		const uint8_t *pSrc = pBuf + sizeof(tga_header); +		uint32_t bytes_remaining = buf_size - sizeof(tga_header); + +		if (hdr.m_id_len) +		{ +			if (bytes_remaining < hdr.m_id_len) +				return nullptr; +			pSrc += hdr.m_id_len; +			bytes_remaining += hdr.m_id_len; +		} + +		color_rgba pal[256]; +		for (uint32_t i = 0; i < 256; i++) +			pal[i].set(0, 0, 0, 255); + +		if ((hdr.m_cmap) && (hdr.m_cmap_len)) +		{ +			if (image_type == cITPalettized) +			{ +				// Note I cannot find any files using 32bpp palettes in the wild (never seen any in ~30 years). +				if ( ((hdr.m_cmap_bpp != 32) && (hdr.m_cmap_bpp != 24) && (hdr.m_cmap_bpp != 15) && (hdr.m_cmap_bpp != 16)) || (hdr.m_cmap_len > 256) ) +					return nullptr; + +				if (hdr.m_cmap_bpp == 32) +				{ +					const uint32_t pal_size = hdr.m_cmap_len * 4; +					if (bytes_remaining < pal_size) +						return nullptr; + +					for (uint32_t i = 0; i < hdr.m_cmap_len; i++) +					{ +						pal[i].r = pSrc[i * 4 + 2]; +						pal[i].g = pSrc[i * 4 + 1]; +						pal[i].b = pSrc[i * 4 + 0]; +						pal[i].a = pSrc[i * 4 + 3]; +					} + +					bytes_remaining -= pal_size; +					pSrc += pal_size; +				} +				else if (hdr.m_cmap_bpp == 24) +				{ +					const uint32_t pal_size = hdr.m_cmap_len * 3; +					if (bytes_remaining < pal_size) +						return nullptr; + +					for (uint32_t i = 0; i < hdr.m_cmap_len; i++) +					{ +						pal[i].r = pSrc[i * 3 + 2]; +						pal[i].g = pSrc[i * 3 + 1]; +						pal[i].b = pSrc[i * 3 + 0]; +						pal[i].a = 255; +					} + +					bytes_remaining -= pal_size; +					pSrc += pal_size; +				} +				else +				{ +					const uint32_t pal_size = hdr.m_cmap_len * 2; +					if (bytes_remaining < pal_size) +						return nullptr; + +					for (uint32_t i = 0; i < hdr.m_cmap_len; i++) +					{ +						const uint32_t v = pSrc[i * 2 + 0] | (pSrc[i * 2 + 1] << 8); + +						pal[i].r = (((v >> 10) & 31) * 255 + 15) / 31; +						pal[i].g = (((v >> 5) & 31) * 255 + 15) / 31; +						pal[i].b = ((v & 31) * 255 + 15) / 31; +						pal[i].a = 255; +					} + +					bytes_remaining -= pal_size; +					pSrc += pal_size; +				} +			} +			else +			{ +				const uint32_t bytes_to_skip = (hdr.m_cmap_bpp >> 3) * hdr.m_cmap_len; +				if (bytes_remaining < bytes_to_skip) +					return nullptr; +				pSrc += bytes_to_skip; +				bytes_remaining += bytes_to_skip; +			} +		} +		 +		width = hdr.m_width; +		height = hdr.m_height; + +		const uint32_t source_pitch = width * tga_bytes_per_pixel; +		const uint32_t dest_pitch = width * n_chans; +		 +		uint8_t *pImage = (uint8_t *)malloc(dest_pitch * height); +		if (!pImage) +			return nullptr; + +		std::vector<uint8_t> input_line_buf; +		if (rle_flag) +			input_line_buf.resize(source_pitch); + +		int run_type = 0, run_remaining = 0; +		uint8_t run_pixel[4]; +		memset(run_pixel, 0, sizeof(run_pixel)); + +		for (int y = 0; y < height; y++) +		{ +			const uint8_t *pLine_data; + +			if (rle_flag) +			{ +				int pixels_remaining = width; +				uint8_t *pDst = &input_line_buf[0]; + +				do  +				{ +					if (!run_remaining) +					{ +						if (bytes_remaining < 1) +						{ +							free(pImage); +							return nullptr; +						} + +						int v = *pSrc++; +						bytes_remaining--; + +						run_type = v & 0x80; +						run_remaining = (v & 0x7F) + 1; + +						if (run_type) +						{ +							if (bytes_remaining < tga_bytes_per_pixel) +							{ +								free(pImage); +								return nullptr; +							} + +							memcpy(run_pixel, pSrc, tga_bytes_per_pixel); +							pSrc += tga_bytes_per_pixel; +							bytes_remaining -= tga_bytes_per_pixel; +						} +					} + +					const uint32_t n = basisu::minimum<uint32_t>(pixels_remaining, run_remaining); +					pixels_remaining -= n; +					run_remaining -= n; + +					if (run_type) +					{ +						for (uint32_t i = 0; i < n; i++) +							for (uint32_t j = 0; j < tga_bytes_per_pixel; j++) +								*pDst++ = run_pixel[j]; +					} +					else +					{ +						const uint32_t bytes_wanted = n * tga_bytes_per_pixel; + +						if (bytes_remaining < bytes_wanted) +						{ +							free(pImage); +							return nullptr; +						} + +						memcpy(pDst, pSrc, bytes_wanted); +						pDst += bytes_wanted; + +						pSrc += bytes_wanted; +						bytes_remaining -= bytes_wanted; +					} + +				} while (pixels_remaining); + +				assert((pDst - &input_line_buf[0]) == width * tga_bytes_per_pixel); + +				pLine_data = &input_line_buf[0]; +			} +			else +			{ +				if (bytes_remaining < source_pitch) +				{ +					free(pImage); +					return nullptr; +				} + +				pLine_data = pSrc; +				bytes_remaining -= source_pitch; +				pSrc += source_pitch; +			} + +			// Convert to 24bpp RGB or 32bpp RGBA. +			uint8_t *pDst = pImage + (y_flipped ? (height - 1 - y) : y) * dest_pitch + (x_flipped ? (width - 1) * n_chans : 0); +			const int dst_stride = x_flipped ? -((int)n_chans) : n_chans; + +			switch (hdr.m_depth) +			{ +			case 32: +				assert(tga_bytes_per_pixel == 4 && n_chans == 4); +				for (int i = 0; i < width; i++, pLine_data += 4, pDst += dst_stride) +				{ +					pDst[0] = pLine_data[2]; +					pDst[1] = pLine_data[1]; +					pDst[2] = pLine_data[0]; +					pDst[3] = pLine_data[3]; +				} +				break; +			case 24: +				assert(tga_bytes_per_pixel == 3 && n_chans == 3); +				for (int i = 0; i < width; i++, pLine_data += 3, pDst += dst_stride) +				{ +					pDst[0] = pLine_data[2]; +					pDst[1] = pLine_data[1]; +					pDst[2] = pLine_data[0]; +				} +				break; +			case 16: +			case 15: +				if (image_type == cITRGB) +				{ +					assert(tga_bytes_per_pixel == 2 && n_chans == 3); +					for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) +					{ +						const uint32_t v = pLine_data[0] | (pLine_data[1] << 8); +						pDst[0] = (((v >> 10) & 31) * 255 + 15) / 31; +						pDst[1] = (((v >> 5) & 31) * 255 + 15) / 31; +						pDst[2] = ((v & 31) * 255 + 15) / 31; +					} +				} +				else +				{ +					assert(image_type == cITGrayscale && tga_bytes_per_pixel == 2 && n_chans == 4); +					for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) +					{ +						pDst[0] = pLine_data[0]; +						pDst[1] = pLine_data[0]; +						pDst[2] = pLine_data[0]; +						pDst[3] = pLine_data[1]; +					} +				} +				break; +			case 8: +				assert(tga_bytes_per_pixel == 1); +				if (image_type == cITPalettized) +				{ +					if (hdr.m_cmap_bpp == 32) +					{ +						assert(n_chans == 4); +						for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) +						{ +							const uint32_t c = *pLine_data; +							pDst[0] = pal[c].r; +							pDst[1] = pal[c].g; +							pDst[2] = pal[c].b; +							pDst[3] = pal[c].a; +						} +					} +					else +					{ +						assert(n_chans == 3); +						for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) +						{ +							const uint32_t c = *pLine_data; +							pDst[0] = pal[c].r; +							pDst[1] = pal[c].g; +							pDst[2] = pal[c].b; +						} +					} +				} +				else +				{ +					assert(n_chans == 3); +					for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) +					{ +						const uint8_t c = *pLine_data; +						pDst[0] = c; +						pDst[1] = c; +						pDst[2] = c; +					} +				} +				break; +			default: +				assert(0); +				break; +			} +		} // y + +		return pImage; +	} + +	uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans) +	{ +		width = height = n_chans = 0; + +		uint8_vec filedata; +		if (!read_file_to_vec(pFilename, filedata)) +			return nullptr; + +		if (!filedata.size() || (filedata.size() > UINT32_MAX)) +			return nullptr; +		 +		return read_tga(&filedata[0], (uint32_t)filedata.size(), width, height, n_chans); +	} + +	void image::debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t scale_x, uint32_t scale_y, const color_rgba& fg, const color_rgba* pBG, bool alpha_only, const char* pFmt, ...) +	{ +		char buf[2048]; + +		va_list args; +		va_start(args, pFmt); +#ifdef _WIN32		 +		vsprintf_s(buf, sizeof(buf), pFmt, args); +#else +		vsnprintf(buf, sizeof(buf), pFmt, args); +#endif +		va_end(args); + +		const char* p = buf; + +		const uint32_t orig_x_ofs = x_ofs; + +		while (*p) +		{ +			uint8_t c = *p++; +			if ((c < 32) || (c > 127)) +				c = '.'; + +			const uint8_t* pGlpyh = &g_debug_font8x8_basic[c - 32][0]; + +			for (uint32_t y = 0; y < 8; y++) +			{ +				uint32_t row_bits = pGlpyh[y]; +				for (uint32_t x = 0; x < 8; x++) +				{ +					const uint32_t q = row_bits & (1 << x); +										 +					const color_rgba* pColor = q ? &fg : pBG; +					if (!pColor) +						continue; + +					if (alpha_only) +						fill_box_alpha(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); +					else +						fill_box(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); +				} +			} + +			x_ofs += 8 * scale_x; +			if ((x_ofs + 8 * scale_x) > m_width) +			{ +				x_ofs = orig_x_ofs; +				y_ofs += 8 * scale_y; +			} +		} +	} +		 +} // namespace basisu  |