diff options
Diffstat (limited to 'thirdparty/basis_universal/encoder/basisu_enc.cpp')
-rw-r--r-- | thirdparty/basis_universal/encoder/basisu_enc.cpp | 2139 |
1 files changed, 2139 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/encoder/basisu_enc.cpp b/thirdparty/basis_universal/encoder/basisu_enc.cpp new file mode 100644 index 0000000000..f02fb62c11 --- /dev/null +++ b/thirdparty/basis_universal/encoder/basisu_enc.cpp @@ -0,0 +1,2139 @@ +// basisu_enc.cpp +// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include "basisu_enc.h" +#include "lodepng.h" +#include "basisu_resampler.h" +#include "basisu_resampler_filters.h" +#include "basisu_etc.h" +#include "../transcoder/basisu_transcoder.h" +#include "basisu_bc7enc.h" +#include "apg_bmp.h" +#include "jpgd.h" +#include <vector> + +#if defined(_WIN32) +// For QueryPerformanceCounter/QueryPerformanceFrequency +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#endif + +namespace basisu +{ + uint64_t interval_timer::g_init_ticks, interval_timer::g_freq; + double interval_timer::g_timer_freq; +#if BASISU_SUPPORT_SSE + bool g_cpu_supports_sse41; +#endif + + uint8_t g_hamming_dist[256] = + { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 + }; + + // This is a Public Domain 8x8 font from here: + // https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h + const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8] = + { + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0020 ( ) + { 0x18, 0x3C, 0x3C, 0x18, 0x18, 0x00, 0x18, 0x00}, // U+0021 (!) + { 0x36, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0022 (") + { 0x36, 0x36, 0x7F, 0x36, 0x7F, 0x36, 0x36, 0x00}, // U+0023 (#) + { 0x0C, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x0C, 0x00}, // U+0024 ($) + { 0x00, 0x63, 0x33, 0x18, 0x0C, 0x66, 0x63, 0x00}, // U+0025 (%) + { 0x1C, 0x36, 0x1C, 0x6E, 0x3B, 0x33, 0x6E, 0x00}, // U+0026 (&) + { 0x06, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0027 (') + { 0x18, 0x0C, 0x06, 0x06, 0x06, 0x0C, 0x18, 0x00}, // U+0028 (() + { 0x06, 0x0C, 0x18, 0x18, 0x18, 0x0C, 0x06, 0x00}, // U+0029 ()) + { 0x00, 0x66, 0x3C, 0xFF, 0x3C, 0x66, 0x00, 0x00}, // U+002A (*) + { 0x00, 0x0C, 0x0C, 0x3F, 0x0C, 0x0C, 0x00, 0x00}, // U+002B (+) + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+002C (,) + { 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00}, // U+002D (-) + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+002E (.) + { 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00}, // U+002F (/) + { 0x3E, 0x63, 0x73, 0x7B, 0x6F, 0x67, 0x3E, 0x00}, // U+0030 (0) + { 0x0C, 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x3F, 0x00}, // U+0031 (1) + { 0x1E, 0x33, 0x30, 0x1C, 0x06, 0x33, 0x3F, 0x00}, // U+0032 (2) + { 0x1E, 0x33, 0x30, 0x1C, 0x30, 0x33, 0x1E, 0x00}, // U+0033 (3) + { 0x38, 0x3C, 0x36, 0x33, 0x7F, 0x30, 0x78, 0x00}, // U+0034 (4) + { 0x3F, 0x03, 0x1F, 0x30, 0x30, 0x33, 0x1E, 0x00}, // U+0035 (5) + { 0x1C, 0x06, 0x03, 0x1F, 0x33, 0x33, 0x1E, 0x00}, // U+0036 (6) + { 0x3F, 0x33, 0x30, 0x18, 0x0C, 0x0C, 0x0C, 0x00}, // U+0037 (7) + { 0x1E, 0x33, 0x33, 0x1E, 0x33, 0x33, 0x1E, 0x00}, // U+0038 (8) + { 0x1E, 0x33, 0x33, 0x3E, 0x30, 0x18, 0x0E, 0x00}, // U+0039 (9) + { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+003A (:) + { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+003B (;) + { 0x18, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x18, 0x00}, // U+003C (<) + { 0x00, 0x00, 0x3F, 0x00, 0x00, 0x3F, 0x00, 0x00}, // U+003D (=) + { 0x06, 0x0C, 0x18, 0x30, 0x18, 0x0C, 0x06, 0x00}, // U+003E (>) + { 0x1E, 0x33, 0x30, 0x18, 0x0C, 0x00, 0x0C, 0x00}, // U+003F (?) + { 0x3E, 0x63, 0x7B, 0x7B, 0x7B, 0x03, 0x1E, 0x00}, // U+0040 (@) + { 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00}, // U+0041 (A) + { 0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00}, // U+0042 (B) + { 0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00}, // U+0043 (C) + { 0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00}, // U+0044 (D) + { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00}, // U+0045 (E) + { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x06, 0x0F, 0x00}, // U+0046 (F) + { 0x3C, 0x66, 0x03, 0x03, 0x73, 0x66, 0x7C, 0x00}, // U+0047 (G) + { 0x33, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x33, 0x00}, // U+0048 (H) + { 0x1E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0049 (I) + { 0x78, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E, 0x00}, // U+004A (J) + { 0x67, 0x66, 0x36, 0x1E, 0x36, 0x66, 0x67, 0x00}, // U+004B (K) + { 0x0F, 0x06, 0x06, 0x06, 0x46, 0x66, 0x7F, 0x00}, // U+004C (L) + { 0x63, 0x77, 0x7F, 0x7F, 0x6B, 0x63, 0x63, 0x00}, // U+004D (M) + { 0x63, 0x67, 0x6F, 0x7B, 0x73, 0x63, 0x63, 0x00}, // U+004E (N) + { 0x1C, 0x36, 0x63, 0x63, 0x63, 0x36, 0x1C, 0x00}, // U+004F (O) + { 0x3F, 0x66, 0x66, 0x3E, 0x06, 0x06, 0x0F, 0x00}, // U+0050 (P) + { 0x1E, 0x33, 0x33, 0x33, 0x3B, 0x1E, 0x38, 0x00}, // U+0051 (Q) + { 0x3F, 0x66, 0x66, 0x3E, 0x36, 0x66, 0x67, 0x00}, // U+0052 (R) + { 0x1E, 0x33, 0x07, 0x0E, 0x38, 0x33, 0x1E, 0x00}, // U+0053 (S) + { 0x3F, 0x2D, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0054 (T) + { 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x3F, 0x00}, // U+0055 (U) + { 0x33, 0x33, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0056 (V) + { 0x63, 0x63, 0x63, 0x6B, 0x7F, 0x77, 0x63, 0x00}, // U+0057 (W) + { 0x63, 0x63, 0x36, 0x1C, 0x1C, 0x36, 0x63, 0x00}, // U+0058 (X) + { 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x0C, 0x1E, 0x00}, // U+0059 (Y) + { 0x7F, 0x63, 0x31, 0x18, 0x4C, 0x66, 0x7F, 0x00}, // U+005A (Z) + { 0x1E, 0x06, 0x06, 0x06, 0x06, 0x06, 0x1E, 0x00}, // U+005B ([) + { 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x40, 0x00}, // U+005C (\) + { 0x1E, 0x18, 0x18, 0x18, 0x18, 0x18, 0x1E, 0x00}, // U+005D (]) + { 0x08, 0x1C, 0x36, 0x63, 0x00, 0x00, 0x00, 0x00}, // U+005E (^) + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF}, // U+005F (_) + { 0x0C, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0060 (`) + { 0x00, 0x00, 0x1E, 0x30, 0x3E, 0x33, 0x6E, 0x00}, // U+0061 (a) + { 0x07, 0x06, 0x06, 0x3E, 0x66, 0x66, 0x3B, 0x00}, // U+0062 (b) + { 0x00, 0x00, 0x1E, 0x33, 0x03, 0x33, 0x1E, 0x00}, // U+0063 (c) + { 0x38, 0x30, 0x30, 0x3e, 0x33, 0x33, 0x6E, 0x00}, // U+0064 (d) + { 0x00, 0x00, 0x1E, 0x33, 0x3f, 0x03, 0x1E, 0x00}, // U+0065 (e) + { 0x1C, 0x36, 0x06, 0x0f, 0x06, 0x06, 0x0F, 0x00}, // U+0066 (f) + { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0067 (g) + { 0x07, 0x06, 0x36, 0x6E, 0x66, 0x66, 0x67, 0x00}, // U+0068 (h) + { 0x0C, 0x00, 0x0E, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0069 (i) + { 0x30, 0x00, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E}, // U+006A (j) + { 0x07, 0x06, 0x66, 0x36, 0x1E, 0x36, 0x67, 0x00}, // U+006B (k) + { 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+006C (l) + { 0x00, 0x00, 0x33, 0x7F, 0x7F, 0x6B, 0x63, 0x00}, // U+006D (m) + { 0x00, 0x00, 0x1F, 0x33, 0x33, 0x33, 0x33, 0x00}, // U+006E (n) + { 0x00, 0x00, 0x1E, 0x33, 0x33, 0x33, 0x1E, 0x00}, // U+006F (o) + { 0x00, 0x00, 0x3B, 0x66, 0x66, 0x3E, 0x06, 0x0F}, // U+0070 (p) + { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x78}, // U+0071 (q) + { 0x00, 0x00, 0x3B, 0x6E, 0x66, 0x06, 0x0F, 0x00}, // U+0072 (r) + { 0x00, 0x00, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x00}, // U+0073 (s) + { 0x08, 0x0C, 0x3E, 0x0C, 0x0C, 0x2C, 0x18, 0x00}, // U+0074 (t) + { 0x00, 0x00, 0x33, 0x33, 0x33, 0x33, 0x6E, 0x00}, // U+0075 (u) + { 0x00, 0x00, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0076 (v) + { 0x00, 0x00, 0x63, 0x6B, 0x7F, 0x7F, 0x36, 0x00}, // U+0077 (w) + { 0x00, 0x00, 0x63, 0x36, 0x1C, 0x36, 0x63, 0x00}, // U+0078 (x) + { 0x00, 0x00, 0x33, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0079 (y) + { 0x00, 0x00, 0x3F, 0x19, 0x0C, 0x26, 0x3F, 0x00}, // U+007A (z) + { 0x38, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, 0x38, 0x00}, // U+007B ({) + { 0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00}, // U+007C (|) + { 0x07, 0x0C, 0x0C, 0x38, 0x0C, 0x0C, 0x07, 0x00}, // U+007D (}) + { 0x6E, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+007E (~) + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} // U+007F + }; + + // Encoder library initialization (just call once at startup) + void basisu_encoder_init() + { + detect_sse41(); + + basist::basisu_transcoder_init(); + pack_etc1_solid_color_init(); + //uastc_init(); + bc7enc_compress_block_init(); // must be after uastc_init() + } + + void error_printf(const char *pFmt, ...) + { + char buf[2048]; + + va_list args; + va_start(args, pFmt); +#ifdef _WIN32 + vsprintf_s(buf, sizeof(buf), pFmt, args); +#else + vsnprintf(buf, sizeof(buf), pFmt, args); +#endif + va_end(args); + + fprintf(stderr, "ERROR: %s", buf); + } + +#if defined(_WIN32) + inline void query_counter(timer_ticks* pTicks) + { + QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks)); + } + inline void query_counter_frequency(timer_ticks* pTicks) + { + QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks)); + } +#elif defined(__APPLE__) +#include <sys/time.h> + inline void query_counter(timer_ticks* pTicks) + { + struct timeval cur_time; + gettimeofday(&cur_time, NULL); + *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); + } + inline void query_counter_frequency(timer_ticks* pTicks) + { + *pTicks = 1000000; + } +#elif defined(__GNUC__) +#include <sys/timex.h> + inline void query_counter(timer_ticks* pTicks) + { + struct timeval cur_time; + gettimeofday(&cur_time, NULL); + *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); + } + inline void query_counter_frequency(timer_ticks* pTicks) + { + *pTicks = 1000000; + } +#else +#error TODO +#endif + + interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false) + { + if (!g_timer_freq) + init(); + } + + void interval_timer::start() + { + query_counter(&m_start_time); + m_started = true; + m_stopped = false; + } + + void interval_timer::stop() + { + assert(m_started); + query_counter(&m_stop_time); + m_stopped = true; + } + + double interval_timer::get_elapsed_secs() const + { + assert(m_started); + if (!m_started) + return 0; + + timer_ticks stop_time = m_stop_time; + if (!m_stopped) + query_counter(&stop_time); + + timer_ticks delta = stop_time - m_start_time; + return delta * g_timer_freq; + } + + void interval_timer::init() + { + if (!g_timer_freq) + { + query_counter_frequency(&g_freq); + g_timer_freq = 1.0f / g_freq; + query_counter(&g_init_ticks); + } + } + + timer_ticks interval_timer::get_ticks() + { + if (!g_timer_freq) + init(); + timer_ticks ticks; + query_counter(&ticks); + return ticks - g_init_ticks; + } + + double interval_timer::ticks_to_secs(timer_ticks ticks) + { + if (!g_timer_freq) + init(); + return ticks * g_timer_freq; + } + + const uint32_t MAX_32BIT_ALLOC_SIZE = 250000000; + + bool load_bmp(const char* pFilename, image& img) + { + int w = 0, h = 0; + unsigned int n_chans = 0; + unsigned char* pImage_data = apg_bmp_read(pFilename, &w, &h, &n_chans); + + if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4))) + { + error_printf("Failed loading .BMP image \"%s\"!\n", pFilename); + + if (pImage_data) + apg_bmp_free(pImage_data); + + return false; + } + + if (sizeof(void *) == sizeof(uint32_t)) + { + if ((w * h * n_chans) > MAX_32BIT_ALLOC_SIZE) + { + error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); + + if (pImage_data) + apg_bmp_free(pImage_data); + + return false; + } + } + + img.resize(w, h); + + const uint8_t *pSrc = pImage_data; + for (int y = 0; y < h; y++) + { + color_rgba *pDst = &img(0, y); + + for (int x = 0; x < w; x++) + { + pDst->r = pSrc[0]; + pDst->g = pSrc[1]; + pDst->b = pSrc[2]; + pDst->a = (n_chans == 3) ? 255 : pSrc[3]; + + pSrc += n_chans; + ++pDst; + } + } + + apg_bmp_free(pImage_data); + + return true; + } + + bool load_tga(const char* pFilename, image& img) + { + int w = 0, h = 0, n_chans = 0; + uint8_t* pImage_data = read_tga(pFilename, w, h, n_chans); + + if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4))) + { + error_printf("Failed loading .TGA image \"%s\"!\n", pFilename); + + if (pImage_data) + free(pImage_data); + + return false; + } + + if (sizeof(void *) == sizeof(uint32_t)) + { + if ((w * h * n_chans) > MAX_32BIT_ALLOC_SIZE) + { + error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); + + if (pImage_data) + free(pImage_data); + + return false; + } + } + + img.resize(w, h); + + const uint8_t *pSrc = pImage_data; + for (int y = 0; y < h; y++) + { + color_rgba *pDst = &img(0, y); + + for (int x = 0; x < w; x++) + { + pDst->r = pSrc[0]; + pDst->g = pSrc[1]; + pDst->b = pSrc[2]; + pDst->a = (n_chans == 3) ? 255 : pSrc[3]; + + pSrc += n_chans; + ++pDst; + } + } + + free(pImage_data); + + return true; + } + + bool load_png(const uint8_t *pBuf, size_t buf_size, image &img, const char *pFilename) + { + if (!buf_size) + return false; + + unsigned err = 0, w = 0, h = 0; + + if (sizeof(void*) == sizeof(uint32_t)) + { + // Inspect the image first on 32-bit builds, to see if the image would require too much memory. + lodepng::State state; + err = lodepng_inspect(&w, &h, &state, pBuf, buf_size); + if ((err != 0) || (!w) || (!h)) + return false; + + const uint32_t exepected_alloc_size = w * h * sizeof(uint32_t); + + // If the file is too large on 32-bit builds then just bail now, to prevent causing a memory exception. + if (exepected_alloc_size >= MAX_32BIT_ALLOC_SIZE) + { + error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", (pFilename != nullptr) ? pFilename : "<memory>", w, h); + return false; + } + + w = h = 0; + } + + std::vector<uint8_t> out; + err = lodepng::decode(out, w, h, pBuf, buf_size); + if ((err != 0) || (!w) || (!h)) + return false; + + if (out.size() != (w * h * 4)) + return false; + + img.resize(w, h); + + memcpy(img.get_ptr(), &out[0], out.size()); + + return true; + } + + bool load_png(const char* pFilename, image& img) + { + std::vector<uint8_t> buffer; + unsigned err = lodepng::load_file(buffer, std::string(pFilename)); + if (err) + return false; + + + return load_png(buffer.data(), buffer.size(), img, pFilename); + } + + bool load_jpg(const char *pFilename, image& img) + { + int width = 0, height = 0, actual_comps = 0; + uint8_t *pImage_data = jpgd::decompress_jpeg_image_from_file(pFilename, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagLinearChromaFiltering); + if (!pImage_data) + return false; + + img.init(pImage_data, width, height, 4); + + free(pImage_data); + + return true; + } + + bool load_image(const char* pFilename, image& img) + { + std::string ext(string_get_extension(std::string(pFilename))); + + if (ext.length() == 0) + return false; + + const char *pExt = ext.c_str(); + + if (strcasecmp(pExt, "png") == 0) + return load_png(pFilename, img); + if (strcasecmp(pExt, "bmp") == 0) + return load_bmp(pFilename, img); + if (strcasecmp(pExt, "tga") == 0) + return load_tga(pFilename, img); + if ( (strcasecmp(pExt, "jpg") == 0) || (strcasecmp(pExt, "jfif") == 0) || (strcasecmp(pExt, "jpeg") == 0) ) + return load_jpg(pFilename, img); + + return false; + } + + bool save_png(const char* pFilename, const image &img, uint32_t image_save_flags, uint32_t grayscale_comp) + { + if (!img.get_total_pixels()) + return false; + + const uint32_t MAX_PNG_IMAGE_DIM = 32768; + if ((img.get_width() > MAX_PNG_IMAGE_DIM) || (img.get_height() > MAX_PNG_IMAGE_DIM)) + return false; + + std::vector<uint8_t> out; + unsigned err = 0; + + if (image_save_flags & cImageSaveGrayscale) + { + uint8_vec g_pixels(img.get_width() * img.get_height()); + uint8_t *pDst = &g_pixels[0]; + + for (uint32_t y = 0; y < img.get_height(); y++) + for (uint32_t x = 0; x < img.get_width(); x++) + *pDst++ = img(x, y)[grayscale_comp]; + + err = lodepng::encode(out, (const uint8_t*)&g_pixels[0], img.get_width(), img.get_height(), LCT_GREY, 8); + } + else + { + bool has_alpha = img.has_alpha(); + if ((!has_alpha) || ((image_save_flags & cImageSaveIgnoreAlpha) != 0)) + { + const uint64_t total_bytes = (uint64_t)img.get_width() * 3U * (uint64_t)img.get_height(); + if (total_bytes > INT_MAX) + return false; + uint8_vec rgb_pixels(static_cast<size_t>(total_bytes)); + uint8_t *pDst = &rgb_pixels[0]; + + for (uint32_t y = 0; y < img.get_height(); y++) + { + for (uint32_t x = 0; x < img.get_width(); x++) + { + const color_rgba& c = img(x, y); + pDst[0] = c.r; + pDst[1] = c.g; + pDst[2] = c.b; + pDst += 3; + } + } + + err = lodepng::encode(out, (const uint8_t*)& rgb_pixels[0], img.get_width(), img.get_height(), LCT_RGB, 8); + } + else + { + err = lodepng::encode(out, (const uint8_t*)img.get_ptr(), img.get_width(), img.get_height(), LCT_RGBA, 8); + } + } + + err = lodepng::save_file(out, std::string(pFilename)); + if (err) + return false; + + return true; + } + + bool read_file_to_vec(const char* pFilename, uint8_vec& data) + { + FILE* pFile = nullptr; +#ifdef _WIN32 + fopen_s(&pFile, pFilename, "rb"); +#else + pFile = fopen(pFilename, "rb"); +#endif + if (!pFile) + return false; + + fseek(pFile, 0, SEEK_END); +#ifdef _WIN32 + int64_t filesize = _ftelli64(pFile); +#else + int64_t filesize = ftello(pFile); +#endif + if (filesize < 0) + { + fclose(pFile); + return false; + } + fseek(pFile, 0, SEEK_SET); + + if (sizeof(size_t) == sizeof(uint32_t)) + { + if (filesize > 0x70000000) + { + // File might be too big to load safely in one alloc + fclose(pFile); + return false; + } + } + + if (!data.try_resize((size_t)filesize)) + { + fclose(pFile); + return false; + } + + if (filesize) + { + if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize) + { + fclose(pFile); + return false; + } + } + + fclose(pFile); + return true; + } + + bool write_data_to_file(const char* pFilename, const void* pData, size_t len) + { + FILE* pFile = nullptr; +#ifdef _WIN32 + fopen_s(&pFile, pFilename, "wb"); +#else + pFile = fopen(pFilename, "wb"); +#endif + if (!pFile) + return false; + + if (len) + { + if (fwrite(pData, 1, len, pFile) != len) + { + fclose(pFile); + return false; + } + } + + return fclose(pFile) != EOF; + } + + float linear_to_srgb(float l) + { + assert(l >= 0.0f && l <= 1.0f); + if (l < .0031308f) + return saturate(l * 12.92f); + else + return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f); + } + + float srgb_to_linear(float s) + { + assert(s >= 0.0f && s <= 1.0f); + if (s < .04045f) + return saturate(s * (1.0f/12.92f)); + else + return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f)); + } + + bool image_resample(const image &src, image &dst, bool srgb, + const char *pFilter, float filter_scale, + bool wrapping, + uint32_t first_comp, uint32_t num_comps) + { + assert((first_comp + num_comps) <= 4); + + const int cMaxComps = 4; + + const uint32_t src_w = src.get_width(), src_h = src.get_height(); + const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); + + if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) + { + printf("Image is too large!\n"); + return false; + } + + if (!src_w || !src_h || !dst_w || !dst_h) + return false; + + if ((num_comps < 1) || (num_comps > cMaxComps)) + return false; + + if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) + { + printf("Image is too large!\n"); + return false; + } + + if ((src_w == dst_w) && (src_h == dst_h)) + { + dst = src; + return true; + } + + float srgb_to_linear_table[256]; + if (srgb) + { + for (int i = 0; i < 256; ++i) + srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f)); + } + + const int LINEAR_TO_SRGB_TABLE_SIZE = 8192; + uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE]; + + if (srgb) + { + for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i) + linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255); + } + + std::vector<float> samples[cMaxComps]; + Resampler *resamplers[cMaxComps]; + + resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, + wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, + pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); + samples[0].resize(src_w); + + for (uint32_t i = 1; i < num_comps; ++i) + { + resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, + wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, + pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); + samples[i].resize(src_w); + } + + uint32_t dst_y = 0; + + for (uint32_t src_y = 0; src_y < src_h; ++src_y) + { + const color_rgba *pSrc = &src(0, src_y); + + // Put source lines into resampler(s) + for (uint32_t x = 0; x < src_w; ++x) + { + for (uint32_t c = 0; c < num_comps; ++c) + { + const uint32_t comp_index = first_comp + c; + const uint32_t v = (*pSrc)[comp_index]; + + if (!srgb || (comp_index == 3)) + samples[c][x] = v * (1.0f / 255.0f); + else + samples[c][x] = srgb_to_linear_table[v]; + } + + pSrc++; + } + + for (uint32_t c = 0; c < num_comps; ++c) + { + if (!resamplers[c]->put_line(&samples[c][0])) + { + for (uint32_t i = 0; i < num_comps; i++) + delete resamplers[i]; + return false; + } + } + + // Now retrieve any output lines + for (;;) + { + uint32_t c; + for (c = 0; c < num_comps; ++c) + { + const uint32_t comp_index = first_comp + c; + + const float *pOutput_samples = resamplers[c]->get_line(); + if (!pOutput_samples) + break; + + const bool linear_flag = !srgb || (comp_index == 3); + + color_rgba *pDst = &dst(0, dst_y); + + for (uint32_t x = 0; x < dst_w; x++) + { + // TODO: Add dithering + if (linear_flag) + { + int j = (int)(255.0f * pOutput_samples[x] + .5f); + (*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255); + } + else + { + int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f); + (*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)]; + } + + pDst++; + } + } + if (c < num_comps) + break; + + ++dst_y; + } + } + + for (uint32_t i = 0; i < num_comps; ++i) + delete resamplers[i]; + + return true; + } + + void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms) + { + // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen + if (!num_syms) + return; + + if (1 == num_syms) + { + A[0].m_key = 1; + return; + } + + A[0].m_key += A[1].m_key; + + int s = 2, r = 0, next; + for (next = 1; next < (num_syms - 1); ++next) + { + if ((s >= num_syms) || (A[r].m_key < A[s].m_key)) + { + A[next].m_key = A[r].m_key; + A[r].m_key = next; + ++r; + } + else + { + A[next].m_key = A[s].m_key; + ++s; + } + + if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key)) + { + A[next].m_key = A[next].m_key + A[r].m_key; + A[r].m_key = next; + ++r; + } + else + { + A[next].m_key = A[next].m_key + A[s].m_key; + ++s; + } + } + A[num_syms - 2].m_key = 0; + + for (next = num_syms - 3; next >= 0; --next) + { + A[next].m_key = 1 + A[A[next].m_key].m_key; + } + + int num_avail = 1, num_used = 0, depth = 0; + r = num_syms - 2; + next = num_syms - 1; + while (num_avail > 0) + { + for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r ) + ; + + for ( ; num_avail > num_used; --next, --num_avail) + A[next].m_key = depth; + + num_avail = 2 * num_used; + num_used = 0; + ++depth; + } + } + + void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) + { + int i; + uint32_t total = 0; + if (code_list_len <= 1) + return; + + for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++) + pNum_codes[max_code_size] += pNum_codes[i]; + + for (i = max_code_size; i > 0; i--) + total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); + + while (total != (1UL << max_code_size)) + { + pNum_codes[max_code_size]--; + for (i = max_code_size - 1; i > 0; i--) + { + if (pNum_codes[i]) + { + pNum_codes[i]--; + pNum_codes[i + 1] += 2; + break; + } + } + + total--; + } + } + + sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1) + { + uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; + sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; + + clear_obj(hist); + + for (i = 0; i < num_syms; i++) + { + uint32_t freq = pSyms0[i].m_key; + + // We scale all input frequencies to 16-bits. + assert(freq <= UINT16_MAX); + + hist[freq & 0xFF]++; + hist[256 + ((freq >> 8) & 0xFF)]++; + } + + while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) + total_passes--; + + for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) + { + const uint32_t *pHist = &hist[pass << 8]; + uint32_t offsets[256], cur_ofs = 0; + for (i = 0; i < 256; i++) + { + offsets[i] = cur_ofs; + cur_ofs += pHist[i]; + } + + for (i = 0; i < num_syms; i++) + pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; + + sym_freq *t = pCur_syms; + pCur_syms = pNew_syms; + pNew_syms = t; + } + + return pCur_syms; + } + + bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size) + { + if (max_code_size > cHuffmanMaxSupportedCodeSize) + return false; + if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) + return false; + + uint32_t total_used_syms = 0; + for (uint32_t i = 0; i < num_syms; i++) + if (pFreq[i]) + total_used_syms++; + + if (!total_used_syms) + return false; + + std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms); + for (uint32_t i = 0, j = 0; i < num_syms; i++) + { + if (pFreq[i]) + { + sym_freq0[j].m_key = pFreq[i]; + sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i); + } + } + + sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]); + + canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms); + + int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1]; + clear_obj(num_codes); + + for (uint32_t i = 0; i < total_used_syms; i++) + { + if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize) + return false; + + num_codes[pSym_freq[i].m_key]++; + } + + canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size); + + m_code_sizes.resize(0); + m_code_sizes.resize(num_syms); + + m_codes.resize(0); + m_codes.resize(num_syms); + + for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++) + for (uint32_t l = num_codes[i]; l > 0; l--) + m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i); + + uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1]; + + next_code[1] = 0; + for (uint32_t j = 0, i = 2; i <= max_code_size; i++) + next_code[i] = j = ((j + num_codes[i - 1]) << 1); + + for (uint32_t i = 0; i < num_syms; i++) + { + uint32_t rev_code = 0, code, code_size; + if ((code_size = m_code_sizes[i]) == 0) + continue; + if (code_size > cHuffmanMaxSupportedInternalCodeSize) + return false; + code = next_code[code_size]++; + for (uint32_t l = code_size; l > 0; l--, code >>= 1) + rev_code = (rev_code << 1) | (code & 1); + m_codes[i] = static_cast<uint16_t>(rev_code); + } + + return true; + } + + bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size) + { + if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) + return false; + + uint16_vec sym_freq(num_syms); + + uint32_t max_freq = 0; + for (uint32_t i = 0; i < num_syms; i++) + max_freq = maximum(max_freq, pSym_freq[i]); + + if (max_freq < UINT16_MAX) + { + for (uint32_t i = 0; i < num_syms; i++) + sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]); + } + else + { + for (uint32_t i = 0; i < num_syms; i++) + { + if (pSym_freq[i]) + { + uint32_t f = static_cast<uint32_t>((static_cast<uint64_t>(pSym_freq[i]) * 65534U + (max_freq >> 1)) / max_freq); + sym_freq[i] = static_cast<uint16_t>(clamp<uint32_t>(f, 1, 65534)); + } + } + } + + return init(num_syms, &sym_freq[0], max_code_size); + } + + void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len) + { + if (run_size) + { + if (run_size < cHuffmanSmallRepeatSizeMin) + { + while (run_size--) + syms.push_back(static_cast<uint16_t>(len)); + } + else if (run_size <= cHuffmanSmallRepeatSizeMax) + { + syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6))); + } + else + { + assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax)); + syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6))); + } + } + + run_size = 0; + } + + void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size) + { + if (run_size) + { + if (run_size < cHuffmanSmallZeroRunSizeMin) + { + while (run_size--) + syms.push_back(0); + } + else if (run_size <= cHuffmanSmallZeroRunSizeMax) + { + syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6))); + } + else + { + assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax)); + syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6))); + } + } + + run_size = 0; + } + + uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab) + { + const uint64_t start_bits = m_total_bits; + + const uint8_vec &code_sizes = tab.get_code_sizes(); + + uint32_t total_used = tab.get_total_used_codes(); + put_bits(total_used, cHuffmanMaxSymsLog2); + + if (!total_used) + return 0; + + uint16_vec syms; + syms.reserve(total_used + 16); + + uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0; + + for (uint32_t i = 0; i <= total_used; ++i) + { + const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i]; + assert((code_len == 0xFF) || (code_len <= 16)); + + if (code_len) + { + end_zero_run(syms, zero_run_size); + + if (code_len != prev_code_len) + { + end_nonzero_run(syms, nonzero_run_size, prev_code_len); + if (code_len != 0xFF) + syms.push_back(static_cast<uint16_t>(code_len)); + } + else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax) + end_nonzero_run(syms, nonzero_run_size, prev_code_len); + } + else + { + end_nonzero_run(syms, nonzero_run_size, prev_code_len); + + if (++zero_run_size == cHuffmanBigZeroRunSizeMax) + end_zero_run(syms, zero_run_size); + } + + prev_code_len = code_len; + } + + histogram h(cHuffmanTotalCodelengthCodes); + for (uint32_t i = 0; i < syms.size(); i++) + h.inc(syms[i] & 63); + + huffman_encoding_table ct; + if (!ct.init(h, 7)) + return 0; + + assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes); + + uint32_t total_codelength_codes; + for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--) + if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]]) + break; + + assert(total_codelength_codes); + + put_bits(total_codelength_codes, 5); + for (uint32_t i = 0; i < total_codelength_codes; i++) + put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3); + + for (uint32_t i = 0; i < syms.size(); ++i) + { + const uint32_t l = syms[i] & 63, e = syms[i] >> 6; + + put_code(l, ct); + + if (l == cHuffmanSmallZeroRunCode) + put_bits(e, cHuffmanSmallZeroRunExtraBits); + else if (l == cHuffmanBigZeroRunCode) + put_bits(e, cHuffmanBigZeroRunExtraBits); + else if (l == cHuffmanSmallRepeatCode) + put_bits(e, cHuffmanSmallRepeatExtraBits); + else if (l == cHuffmanBigRepeatCode) + put_bits(e, cHuffmanBigRepeatExtraBits); + } + + return (uint32_t)(m_total_bits - start_bits); + } + + bool huffman_test(int rand_seed) + { + histogram h(19); + + // Feed in a fibonacci sequence to force large codesizes + h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3; + h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21; + h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144; + h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987; + h[16] += 1597; h[17] += 2584; h[18] += 4181; + + huffman_encoding_table etab; + etab.init(h, 16); + + { + bitwise_coder c; + c.init(1024); + + c.emit_huffman_table(etab); + for (int i = 0; i < 19; i++) + c.put_code(i, etab); + + c.flush(); + + basist::bitwise_decoder d; + d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size())); + + basist::huffman_decoding_table dtab; + bool success = d.read_huffman_table(dtab); + if (!success) + { + assert(0); + printf("Failure 5\n"); + return false; + } + + for (uint32_t i = 0; i < 19; i++) + { + uint32_t s = d.decode_huffman(dtab); + if (s != i) + { + assert(0); + printf("Failure 5\n"); + return false; + } + } + } + + basisu::rand r; + r.seed(rand_seed); + + for (int iter = 0; iter < 500000; iter++) + { + printf("%u\n", iter); + + uint32_t max_sym = r.irand(0, 8193); + uint32_t num_codes = r.irand(1, 10000); + uint_vec syms(num_codes); + + for (uint32_t i = 0; i < num_codes; i++) + { + if (r.bit()) + syms[i] = r.irand(0, max_sym); + else + { + int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f); + s = basisu::clamp<int>(s, 0, max_sym); + + syms[i] = s; + } + + } + + histogram h1(max_sym + 1); + for (uint32_t i = 0; i < num_codes; i++) + h1[syms[i]]++; + + huffman_encoding_table etab2; + if (!etab2.init(h1, 16)) + { + assert(0); + printf("Failed 0\n"); + return false; + } + + bitwise_coder c; + c.init(1024); + + c.emit_huffman_table(etab2); + + for (uint32_t i = 0; i < num_codes; i++) + c.put_code(syms[i], etab2); + + c.flush(); + + basist::bitwise_decoder d; + d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size()); + + basist::huffman_decoding_table dtab; + bool success = d.read_huffman_table(dtab); + if (!success) + { + assert(0); + printf("Failed 2\n"); + return false; + } + + for (uint32_t i = 0; i < num_codes; i++) + { + uint32_t s = d.decode_huffman(dtab); + if (s != syms[i]) + { + assert(0); + printf("Failed 4\n"); + return false; + } + } + + } + return true; + } + + void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) + { + assert((num_syms > 0) && (num_indices > 0)); + assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f)); + + clear(); + + m_remap_table.resize(num_syms); + m_entries_picked.reserve(num_syms); + m_total_count_to_picked.resize(num_syms); + + if (num_indices <= 1) + return; + + prepare_hist(num_syms, num_indices, pIndices); + find_initial(num_syms); + + while (m_entries_to_do.size()) + { + // Find the best entry to move into the picked list. + uint32_t best_entry; + double best_count; + find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight); + + // We now have chosen an entry to place in the picked list, now determine which side it goes on. + const uint32_t entry_to_move = m_entries_to_do[best_entry]; + + float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight); + + // Put entry_to_move either on the "left" or "right" side of the picked entries + if (side <= 0) + m_entries_picked.push_back(entry_to_move); + else + m_entries_picked.insert(m_entries_picked.begin(), entry_to_move); + + // Erase best_entry from the todo list + m_entries_to_do.erase(m_entries_to_do.begin() + best_entry); + + // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry + for (uint32_t i = 0; i < m_entries_to_do.size(); i++) + m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms); + } + + for (uint32_t i = 0; i < num_syms; i++) + m_remap_table[m_entries_picked[i]] = i; + } + + void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices) + { + m_hist.resize(0); + m_hist.resize(num_syms * num_syms); + + for (uint32_t i = 0; i < num_indices; i++) + { + const uint32_t idx = pIndices[i]; + inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms); + inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms); + } + } + + void palette_index_reorderer::find_initial(uint32_t num_syms) + { + uint32_t max_count = 0, max_index = 0; + for (uint32_t i = 0; i < num_syms * num_syms; i++) + if (m_hist[i] > max_count) + max_count = m_hist[i], max_index = i; + + uint32_t a = max_index / num_syms, b = max_index % num_syms; + + m_entries_picked.push_back(a); + m_entries_picked.push_back(b); + + for (uint32_t i = 0; i < num_syms; i++) + if ((i != b) && (i != a)) + m_entries_to_do.push_back(i); + + for (uint32_t i = 0; i < m_entries_to_do.size(); i++) + for (uint32_t j = 0; j < m_entries_picked.size(); j++) + m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms); + } + + void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) + { + best_entry = 0; + best_count = 0; + + for (uint32_t i = 0; i < m_entries_to_do.size(); i++) + { + const uint32_t u = m_entries_to_do[i]; + double total_count = m_total_count_to_picked[u]; + + if (pDist_func) + { + float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx)); + assert((w >= 0.0f) && (w <= 1.0f)); + total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w); + } + + if (total_count <= best_count) + continue; + + best_entry = i; + best_count = total_count; + } + } + + float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) + { + float which_side = 0; + + int l_count = 0, r_count = 0; + for (uint32_t j = 0; j < m_entries_picked.size(); j++) + { + const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1)); + which_side += static_cast<float>(r * count); + if (r >= 0) + l_count += r * count; + else + r_count += -r * count; + } + + if (pDist_func) + { + float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx)); + float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx)); + which_side = w_left * l_count - w_right * r_count; + } + return which_side; + } + + void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma) + { + assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); + + const uint32_t width = basisu::minimum(a.get_width(), b.get_width()); + const uint32_t height = basisu::minimum(a.get_height(), b.get_height()); + + double hist[256]; + clear_obj(hist); + + for (uint32_t y = 0; y < height; y++) + { + for (uint32_t x = 0; x < width; x++) + { + const color_rgba &ca = a(x, y), &cb = b(x, y); + + if (total_chans) + { + for (uint32_t c = 0; c < total_chans; c++) + hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++; + } + else + { + if (use_601_luma) + hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++; + else + hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++; + } + } + } + + m_max = 0; + double sum = 0.0f, sum2 = 0.0f; + for (uint32_t i = 0; i < 256; i++) + { + if (hist[i]) + { + m_max = basisu::maximum<float>(m_max, (float)i); + double v = i * hist[i]; + sum += v; + sum2 += i * v; + } + } + + double total_values = (double)width * (double)height; + if (avg_comp_error) + total_values *= (double)clamp<uint32_t>(total_chans, 1, 4); + + m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0); + m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f); + m_rms = (float)sqrt(m_mean_squared); + m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0f, 0.0f, 100.0f) : 100.0f; + } + + void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed) + { + rand r(seed); + + uint8_t *pDst = static_cast<uint8_t *>(pBuf); + + while (size >= sizeof(uint32_t)) + { + *(uint32_t *)pDst = r.urand32(); + pDst += sizeof(uint32_t); + size -= sizeof(uint32_t); + } + + while (size) + { + *pDst++ = r.byte(); + size--; + } + } + + uint32_t hash_hsieh(const uint8_t *pBuf, size_t len) + { + if (!pBuf || !len) + return 0; + + uint32_t h = static_cast<uint32_t>(len); + + const uint32_t bytes_left = len & 3; + len >>= 2; + + while (len--) + { + const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf); + + h += pWords[0]; + + const uint32_t t = (pWords[1] << 11) ^ h; + h = (h << 16) ^ t; + + pBuf += sizeof(uint32_t); + + h += h >> 11; + } + + switch (bytes_left) + { + case 1: + h += *reinterpret_cast<const signed char*>(pBuf); + h ^= h << 10; + h += h >> 1; + break; + case 2: + h += *reinterpret_cast<const uint16_t *>(pBuf); + h ^= h << 11; + h += h >> 17; + break; + case 3: + h += *reinterpret_cast<const uint16_t *>(pBuf); + h ^= h << 16; + h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18; + h += h >> 11; + break; + default: + break; + } + + h ^= h << 3; + h += h >> 5; + h ^= h << 4; + h += h >> 17; + h ^= h << 25; + h += h >> 6; + + return h; + } + + job_pool::job_pool(uint32_t num_threads) : + m_num_active_jobs(0), + m_kill_flag(false) + { + assert(num_threads >= 1U); + + debug_printf("job_pool::job_pool: %u total threads\n", num_threads); + + if (num_threads > 1) + { + m_threads.resize(num_threads - 1); + + for (int i = 0; i < ((int)num_threads - 1); i++) + m_threads[i] = std::thread([this, i] { job_thread(i); }); + } + } + + job_pool::~job_pool() + { + debug_printf("job_pool::~job_pool\n"); + + // Notify all workers that they need to die right now. + m_kill_flag = true; + + m_has_work.notify_all(); + + // Wait for all workers to die. + for (uint32_t i = 0; i < m_threads.size(); i++) + m_threads[i].join(); + } + + void job_pool::add_job(const std::function<void()>& job) + { + std::unique_lock<std::mutex> lock(m_mutex); + + m_queue.emplace_back(job); + + const size_t queue_size = m_queue.size(); + + lock.unlock(); + + if (queue_size > 1) + m_has_work.notify_one(); + } + + void job_pool::add_job(std::function<void()>&& job) + { + std::unique_lock<std::mutex> lock(m_mutex); + + m_queue.emplace_back(std::move(job)); + + const size_t queue_size = m_queue.size(); + + lock.unlock(); + + if (queue_size > 1) + { + m_has_work.notify_one(); + } + } + + void job_pool::wait_for_all() + { + std::unique_lock<std::mutex> lock(m_mutex); + + // Drain the job queue on the calling thread. + while (!m_queue.empty()) + { + std::function<void()> job(m_queue.back()); + m_queue.pop_back(); + + lock.unlock(); + + job(); + + lock.lock(); + } + + // The queue is empty, now wait for all active jobs to finish up. + m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } ); + } + + void job_pool::job_thread(uint32_t index) + { + debug_printf("job_pool::job_thread: starting %u\n", index); + + while (true) + { + std::unique_lock<std::mutex> lock(m_mutex); + + // Wait for any jobs to be issued. + m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } ); + + // Check to see if we're supposed to exit. + if (m_kill_flag) + break; + + // Get the job and execute it. + std::function<void()> job(m_queue.back()); + m_queue.pop_back(); + + ++m_num_active_jobs; + + lock.unlock(); + + job(); + + lock.lock(); + + --m_num_active_jobs; + + // Now check if there are no more jobs remaining. + const bool all_done = m_queue.empty() && !m_num_active_jobs; + + lock.unlock(); + + if (all_done) + m_no_more_jobs.notify_all(); + } + + debug_printf("job_pool::job_thread: exiting\n"); + } + + // .TGA image loading + #pragma pack(push) + #pragma pack(1) + struct tga_header + { + uint8_t m_id_len; + uint8_t m_cmap; + uint8_t m_type; + packed_uint<2> m_cmap_first; + packed_uint<2> m_cmap_len; + uint8_t m_cmap_bpp; + packed_uint<2> m_x_org; + packed_uint<2> m_y_org; + packed_uint<2> m_width; + packed_uint<2> m_height; + uint8_t m_depth; + uint8_t m_desc; + }; + #pragma pack(pop) + + const uint32_t MAX_TGA_IMAGE_SIZE = 16384; + + enum tga_image_type + { + cITPalettized = 1, + cITRGB = 2, + cITGrayscale = 3 + }; + + uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans) + { + width = 0; + height = 0; + n_chans = 0; + + if (buf_size <= sizeof(tga_header)) + return nullptr; + + const tga_header &hdr = *reinterpret_cast<const tga_header *>(pBuf); + + if ((!hdr.m_width) || (!hdr.m_height) || (hdr.m_width > MAX_TGA_IMAGE_SIZE) || (hdr.m_height > MAX_TGA_IMAGE_SIZE)) + return nullptr; + + if (hdr.m_desc >> 6) + return nullptr; + + // Simple validation + if ((hdr.m_cmap != 0) && (hdr.m_cmap != 1)) + return nullptr; + + if (hdr.m_cmap) + { + if ((hdr.m_cmap_bpp == 0) || (hdr.m_cmap_bpp > 32)) + return nullptr; + + // Nobody implements CMapFirst correctly, so we're not supporting it. Never seen it used, either. + if (hdr.m_cmap_first != 0) + return nullptr; + } + + const bool x_flipped = (hdr.m_desc & 0x10) != 0; + const bool y_flipped = (hdr.m_desc & 0x20) == 0; + + bool rle_flag = false; + int file_image_type = hdr.m_type; + if (file_image_type > 8) + { + file_image_type -= 8; + rle_flag = true; + } + + const tga_image_type image_type = static_cast<tga_image_type>(file_image_type); + + switch (file_image_type) + { + case cITRGB: + if (hdr.m_depth == 8) + return nullptr; + break; + case cITPalettized: + if ((hdr.m_depth != 8) || (hdr.m_cmap != 1) || (hdr.m_cmap_len == 0)) + return nullptr; + break; + case cITGrayscale: + if ((hdr.m_cmap != 0) || (hdr.m_cmap_len != 0)) + return nullptr; + if ((hdr.m_depth != 8) && (hdr.m_depth != 16)) + return nullptr; + break; + default: + return nullptr; + } + + uint32_t tga_bytes_per_pixel = 0; + + switch (hdr.m_depth) + { + case 32: + tga_bytes_per_pixel = 4; + n_chans = 4; + break; + case 24: + tga_bytes_per_pixel = 3; + n_chans = 3; + break; + case 16: + case 15: + tga_bytes_per_pixel = 2; + // For compatibility with stb_image_write.h + n_chans = ((file_image_type == cITGrayscale) && (hdr.m_depth == 16)) ? 4 : 3; + break; + case 8: + tga_bytes_per_pixel = 1; + // For palettized RGBA support, which both FreeImage and stb_image support. + n_chans = ((file_image_type == cITPalettized) && (hdr.m_cmap_bpp == 32)) ? 4 : 3; + break; + default: + return nullptr; + } + + const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel; + + const uint8_t *pSrc = pBuf + sizeof(tga_header); + uint32_t bytes_remaining = buf_size - sizeof(tga_header); + + if (hdr.m_id_len) + { + if (bytes_remaining < hdr.m_id_len) + return nullptr; + pSrc += hdr.m_id_len; + bytes_remaining += hdr.m_id_len; + } + + color_rgba pal[256]; + for (uint32_t i = 0; i < 256; i++) + pal[i].set(0, 0, 0, 255); + + if ((hdr.m_cmap) && (hdr.m_cmap_len)) + { + if (image_type == cITPalettized) + { + // Note I cannot find any files using 32bpp palettes in the wild (never seen any in ~30 years). + if ( ((hdr.m_cmap_bpp != 32) && (hdr.m_cmap_bpp != 24) && (hdr.m_cmap_bpp != 15) && (hdr.m_cmap_bpp != 16)) || (hdr.m_cmap_len > 256) ) + return nullptr; + + if (hdr.m_cmap_bpp == 32) + { + const uint32_t pal_size = hdr.m_cmap_len * 4; + if (bytes_remaining < pal_size) + return nullptr; + + for (uint32_t i = 0; i < hdr.m_cmap_len; i++) + { + pal[i].r = pSrc[i * 4 + 2]; + pal[i].g = pSrc[i * 4 + 1]; + pal[i].b = pSrc[i * 4 + 0]; + pal[i].a = pSrc[i * 4 + 3]; + } + + bytes_remaining -= pal_size; + pSrc += pal_size; + } + else if (hdr.m_cmap_bpp == 24) + { + const uint32_t pal_size = hdr.m_cmap_len * 3; + if (bytes_remaining < pal_size) + return nullptr; + + for (uint32_t i = 0; i < hdr.m_cmap_len; i++) + { + pal[i].r = pSrc[i * 3 + 2]; + pal[i].g = pSrc[i * 3 + 1]; + pal[i].b = pSrc[i * 3 + 0]; + pal[i].a = 255; + } + + bytes_remaining -= pal_size; + pSrc += pal_size; + } + else + { + const uint32_t pal_size = hdr.m_cmap_len * 2; + if (bytes_remaining < pal_size) + return nullptr; + + for (uint32_t i = 0; i < hdr.m_cmap_len; i++) + { + const uint32_t v = pSrc[i * 2 + 0] | (pSrc[i * 2 + 1] << 8); + + pal[i].r = (((v >> 10) & 31) * 255 + 15) / 31; + pal[i].g = (((v >> 5) & 31) * 255 + 15) / 31; + pal[i].b = ((v & 31) * 255 + 15) / 31; + pal[i].a = 255; + } + + bytes_remaining -= pal_size; + pSrc += pal_size; + } + } + else + { + const uint32_t bytes_to_skip = (hdr.m_cmap_bpp >> 3) * hdr.m_cmap_len; + if (bytes_remaining < bytes_to_skip) + return nullptr; + pSrc += bytes_to_skip; + bytes_remaining += bytes_to_skip; + } + } + + width = hdr.m_width; + height = hdr.m_height; + + const uint32_t source_pitch = width * tga_bytes_per_pixel; + const uint32_t dest_pitch = width * n_chans; + + uint8_t *pImage = (uint8_t *)malloc(dest_pitch * height); + if (!pImage) + return nullptr; + + std::vector<uint8_t> input_line_buf; + if (rle_flag) + input_line_buf.resize(source_pitch); + + int run_type = 0, run_remaining = 0; + uint8_t run_pixel[4]; + memset(run_pixel, 0, sizeof(run_pixel)); + + for (int y = 0; y < height; y++) + { + const uint8_t *pLine_data; + + if (rle_flag) + { + int pixels_remaining = width; + uint8_t *pDst = &input_line_buf[0]; + + do + { + if (!run_remaining) + { + if (bytes_remaining < 1) + { + free(pImage); + return nullptr; + } + + int v = *pSrc++; + bytes_remaining--; + + run_type = v & 0x80; + run_remaining = (v & 0x7F) + 1; + + if (run_type) + { + if (bytes_remaining < tga_bytes_per_pixel) + { + free(pImage); + return nullptr; + } + + memcpy(run_pixel, pSrc, tga_bytes_per_pixel); + pSrc += tga_bytes_per_pixel; + bytes_remaining -= tga_bytes_per_pixel; + } + } + + const uint32_t n = basisu::minimum<uint32_t>(pixels_remaining, run_remaining); + pixels_remaining -= n; + run_remaining -= n; + + if (run_type) + { + for (uint32_t i = 0; i < n; i++) + for (uint32_t j = 0; j < tga_bytes_per_pixel; j++) + *pDst++ = run_pixel[j]; + } + else + { + const uint32_t bytes_wanted = n * tga_bytes_per_pixel; + + if (bytes_remaining < bytes_wanted) + { + free(pImage); + return nullptr; + } + + memcpy(pDst, pSrc, bytes_wanted); + pDst += bytes_wanted; + + pSrc += bytes_wanted; + bytes_remaining -= bytes_wanted; + } + + } while (pixels_remaining); + + assert((pDst - &input_line_buf[0]) == width * tga_bytes_per_pixel); + + pLine_data = &input_line_buf[0]; + } + else + { + if (bytes_remaining < source_pitch) + { + free(pImage); + return nullptr; + } + + pLine_data = pSrc; + bytes_remaining -= source_pitch; + pSrc += source_pitch; + } + + // Convert to 24bpp RGB or 32bpp RGBA. + uint8_t *pDst = pImage + (y_flipped ? (height - 1 - y) : y) * dest_pitch + (x_flipped ? (width - 1) * n_chans : 0); + const int dst_stride = x_flipped ? -((int)n_chans) : n_chans; + + switch (hdr.m_depth) + { + case 32: + assert(tga_bytes_per_pixel == 4 && n_chans == 4); + for (int i = 0; i < width; i++, pLine_data += 4, pDst += dst_stride) + { + pDst[0] = pLine_data[2]; + pDst[1] = pLine_data[1]; + pDst[2] = pLine_data[0]; + pDst[3] = pLine_data[3]; + } + break; + case 24: + assert(tga_bytes_per_pixel == 3 && n_chans == 3); + for (int i = 0; i < width; i++, pLine_data += 3, pDst += dst_stride) + { + pDst[0] = pLine_data[2]; + pDst[1] = pLine_data[1]; + pDst[2] = pLine_data[0]; + } + break; + case 16: + case 15: + if (image_type == cITRGB) + { + assert(tga_bytes_per_pixel == 2 && n_chans == 3); + for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) + { + const uint32_t v = pLine_data[0] | (pLine_data[1] << 8); + pDst[0] = (((v >> 10) & 31) * 255 + 15) / 31; + pDst[1] = (((v >> 5) & 31) * 255 + 15) / 31; + pDst[2] = ((v & 31) * 255 + 15) / 31; + } + } + else + { + assert(image_type == cITGrayscale && tga_bytes_per_pixel == 2 && n_chans == 4); + for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) + { + pDst[0] = pLine_data[0]; + pDst[1] = pLine_data[0]; + pDst[2] = pLine_data[0]; + pDst[3] = pLine_data[1]; + } + } + break; + case 8: + assert(tga_bytes_per_pixel == 1); + if (image_type == cITPalettized) + { + if (hdr.m_cmap_bpp == 32) + { + assert(n_chans == 4); + for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) + { + const uint32_t c = *pLine_data; + pDst[0] = pal[c].r; + pDst[1] = pal[c].g; + pDst[2] = pal[c].b; + pDst[3] = pal[c].a; + } + } + else + { + assert(n_chans == 3); + for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) + { + const uint32_t c = *pLine_data; + pDst[0] = pal[c].r; + pDst[1] = pal[c].g; + pDst[2] = pal[c].b; + } + } + } + else + { + assert(n_chans == 3); + for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) + { + const uint8_t c = *pLine_data; + pDst[0] = c; + pDst[1] = c; + pDst[2] = c; + } + } + break; + default: + assert(0); + break; + } + } // y + + return pImage; + } + + uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans) + { + width = height = n_chans = 0; + + uint8_vec filedata; + if (!read_file_to_vec(pFilename, filedata)) + return nullptr; + + if (!filedata.size() || (filedata.size() > UINT32_MAX)) + return nullptr; + + return read_tga(&filedata[0], (uint32_t)filedata.size(), width, height, n_chans); + } + + void image::debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t scale_x, uint32_t scale_y, const color_rgba& fg, const color_rgba* pBG, bool alpha_only, const char* pFmt, ...) + { + char buf[2048]; + + va_list args; + va_start(args, pFmt); +#ifdef _WIN32 + vsprintf_s(buf, sizeof(buf), pFmt, args); +#else + vsnprintf(buf, sizeof(buf), pFmt, args); +#endif + va_end(args); + + const char* p = buf; + + const uint32_t orig_x_ofs = x_ofs; + + while (*p) + { + uint8_t c = *p++; + if ((c < 32) || (c > 127)) + c = '.'; + + const uint8_t* pGlpyh = &g_debug_font8x8_basic[c - 32][0]; + + for (uint32_t y = 0; y < 8; y++) + { + uint32_t row_bits = pGlpyh[y]; + for (uint32_t x = 0; x < 8; x++) + { + const uint32_t q = row_bits & (1 << x); + + const color_rgba* pColor = q ? &fg : pBG; + if (!pColor) + continue; + + if (alpha_only) + fill_box_alpha(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); + else + fill_box(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); + } + } + + x_ofs += 8 * scale_x; + if ((x_ofs + 8 * scale_x) > m_width) + { + x_ofs = orig_x_ofs; + y_ofs += 8 * scale_y; + } + } + } + +} // namespace basisu |