summaryrefslogtreecommitdiff
path: root/thirdparty/basis_universal/encoder/basisu_enc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/basis_universal/encoder/basisu_enc.cpp')
-rw-r--r--thirdparty/basis_universal/encoder/basisu_enc.cpp2139
1 files changed, 2139 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/encoder/basisu_enc.cpp b/thirdparty/basis_universal/encoder/basisu_enc.cpp
new file mode 100644
index 0000000000..f02fb62c11
--- /dev/null
+++ b/thirdparty/basis_universal/encoder/basisu_enc.cpp
@@ -0,0 +1,2139 @@
+// basisu_enc.cpp
+// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#include "basisu_enc.h"
+#include "lodepng.h"
+#include "basisu_resampler.h"
+#include "basisu_resampler_filters.h"
+#include "basisu_etc.h"
+#include "../transcoder/basisu_transcoder.h"
+#include "basisu_bc7enc.h"
+#include "apg_bmp.h"
+#include "jpgd.h"
+#include <vector>
+
+#if defined(_WIN32)
+// For QueryPerformanceCounter/QueryPerformanceFrequency
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#endif
+
+namespace basisu
+{
+ uint64_t interval_timer::g_init_ticks, interval_timer::g_freq;
+ double interval_timer::g_timer_freq;
+#if BASISU_SUPPORT_SSE
+ bool g_cpu_supports_sse41;
+#endif
+
+ uint8_t g_hamming_dist[256] =
+ {
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
+ };
+
+ // This is a Public Domain 8x8 font from here:
+ // https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h
+ const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8] =
+ {
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0020 ( )
+ { 0x18, 0x3C, 0x3C, 0x18, 0x18, 0x00, 0x18, 0x00}, // U+0021 (!)
+ { 0x36, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0022 (")
+ { 0x36, 0x36, 0x7F, 0x36, 0x7F, 0x36, 0x36, 0x00}, // U+0023 (#)
+ { 0x0C, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x0C, 0x00}, // U+0024 ($)
+ { 0x00, 0x63, 0x33, 0x18, 0x0C, 0x66, 0x63, 0x00}, // U+0025 (%)
+ { 0x1C, 0x36, 0x1C, 0x6E, 0x3B, 0x33, 0x6E, 0x00}, // U+0026 (&)
+ { 0x06, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0027 (')
+ { 0x18, 0x0C, 0x06, 0x06, 0x06, 0x0C, 0x18, 0x00}, // U+0028 (()
+ { 0x06, 0x0C, 0x18, 0x18, 0x18, 0x0C, 0x06, 0x00}, // U+0029 ())
+ { 0x00, 0x66, 0x3C, 0xFF, 0x3C, 0x66, 0x00, 0x00}, // U+002A (*)
+ { 0x00, 0x0C, 0x0C, 0x3F, 0x0C, 0x0C, 0x00, 0x00}, // U+002B (+)
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+002C (,)
+ { 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00}, // U+002D (-)
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+002E (.)
+ { 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00}, // U+002F (/)
+ { 0x3E, 0x63, 0x73, 0x7B, 0x6F, 0x67, 0x3E, 0x00}, // U+0030 (0)
+ { 0x0C, 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x3F, 0x00}, // U+0031 (1)
+ { 0x1E, 0x33, 0x30, 0x1C, 0x06, 0x33, 0x3F, 0x00}, // U+0032 (2)
+ { 0x1E, 0x33, 0x30, 0x1C, 0x30, 0x33, 0x1E, 0x00}, // U+0033 (3)
+ { 0x38, 0x3C, 0x36, 0x33, 0x7F, 0x30, 0x78, 0x00}, // U+0034 (4)
+ { 0x3F, 0x03, 0x1F, 0x30, 0x30, 0x33, 0x1E, 0x00}, // U+0035 (5)
+ { 0x1C, 0x06, 0x03, 0x1F, 0x33, 0x33, 0x1E, 0x00}, // U+0036 (6)
+ { 0x3F, 0x33, 0x30, 0x18, 0x0C, 0x0C, 0x0C, 0x00}, // U+0037 (7)
+ { 0x1E, 0x33, 0x33, 0x1E, 0x33, 0x33, 0x1E, 0x00}, // U+0038 (8)
+ { 0x1E, 0x33, 0x33, 0x3E, 0x30, 0x18, 0x0E, 0x00}, // U+0039 (9)
+ { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+003A (:)
+ { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+003B (;)
+ { 0x18, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x18, 0x00}, // U+003C (<)
+ { 0x00, 0x00, 0x3F, 0x00, 0x00, 0x3F, 0x00, 0x00}, // U+003D (=)
+ { 0x06, 0x0C, 0x18, 0x30, 0x18, 0x0C, 0x06, 0x00}, // U+003E (>)
+ { 0x1E, 0x33, 0x30, 0x18, 0x0C, 0x00, 0x0C, 0x00}, // U+003F (?)
+ { 0x3E, 0x63, 0x7B, 0x7B, 0x7B, 0x03, 0x1E, 0x00}, // U+0040 (@)
+ { 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00}, // U+0041 (A)
+ { 0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00}, // U+0042 (B)
+ { 0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00}, // U+0043 (C)
+ { 0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00}, // U+0044 (D)
+ { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00}, // U+0045 (E)
+ { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x06, 0x0F, 0x00}, // U+0046 (F)
+ { 0x3C, 0x66, 0x03, 0x03, 0x73, 0x66, 0x7C, 0x00}, // U+0047 (G)
+ { 0x33, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x33, 0x00}, // U+0048 (H)
+ { 0x1E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0049 (I)
+ { 0x78, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E, 0x00}, // U+004A (J)
+ { 0x67, 0x66, 0x36, 0x1E, 0x36, 0x66, 0x67, 0x00}, // U+004B (K)
+ { 0x0F, 0x06, 0x06, 0x06, 0x46, 0x66, 0x7F, 0x00}, // U+004C (L)
+ { 0x63, 0x77, 0x7F, 0x7F, 0x6B, 0x63, 0x63, 0x00}, // U+004D (M)
+ { 0x63, 0x67, 0x6F, 0x7B, 0x73, 0x63, 0x63, 0x00}, // U+004E (N)
+ { 0x1C, 0x36, 0x63, 0x63, 0x63, 0x36, 0x1C, 0x00}, // U+004F (O)
+ { 0x3F, 0x66, 0x66, 0x3E, 0x06, 0x06, 0x0F, 0x00}, // U+0050 (P)
+ { 0x1E, 0x33, 0x33, 0x33, 0x3B, 0x1E, 0x38, 0x00}, // U+0051 (Q)
+ { 0x3F, 0x66, 0x66, 0x3E, 0x36, 0x66, 0x67, 0x00}, // U+0052 (R)
+ { 0x1E, 0x33, 0x07, 0x0E, 0x38, 0x33, 0x1E, 0x00}, // U+0053 (S)
+ { 0x3F, 0x2D, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0054 (T)
+ { 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x3F, 0x00}, // U+0055 (U)
+ { 0x33, 0x33, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0056 (V)
+ { 0x63, 0x63, 0x63, 0x6B, 0x7F, 0x77, 0x63, 0x00}, // U+0057 (W)
+ { 0x63, 0x63, 0x36, 0x1C, 0x1C, 0x36, 0x63, 0x00}, // U+0058 (X)
+ { 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x0C, 0x1E, 0x00}, // U+0059 (Y)
+ { 0x7F, 0x63, 0x31, 0x18, 0x4C, 0x66, 0x7F, 0x00}, // U+005A (Z)
+ { 0x1E, 0x06, 0x06, 0x06, 0x06, 0x06, 0x1E, 0x00}, // U+005B ([)
+ { 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x40, 0x00}, // U+005C (\)
+ { 0x1E, 0x18, 0x18, 0x18, 0x18, 0x18, 0x1E, 0x00}, // U+005D (])
+ { 0x08, 0x1C, 0x36, 0x63, 0x00, 0x00, 0x00, 0x00}, // U+005E (^)
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF}, // U+005F (_)
+ { 0x0C, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0060 (`)
+ { 0x00, 0x00, 0x1E, 0x30, 0x3E, 0x33, 0x6E, 0x00}, // U+0061 (a)
+ { 0x07, 0x06, 0x06, 0x3E, 0x66, 0x66, 0x3B, 0x00}, // U+0062 (b)
+ { 0x00, 0x00, 0x1E, 0x33, 0x03, 0x33, 0x1E, 0x00}, // U+0063 (c)
+ { 0x38, 0x30, 0x30, 0x3e, 0x33, 0x33, 0x6E, 0x00}, // U+0064 (d)
+ { 0x00, 0x00, 0x1E, 0x33, 0x3f, 0x03, 0x1E, 0x00}, // U+0065 (e)
+ { 0x1C, 0x36, 0x06, 0x0f, 0x06, 0x06, 0x0F, 0x00}, // U+0066 (f)
+ { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0067 (g)
+ { 0x07, 0x06, 0x36, 0x6E, 0x66, 0x66, 0x67, 0x00}, // U+0068 (h)
+ { 0x0C, 0x00, 0x0E, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0069 (i)
+ { 0x30, 0x00, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E}, // U+006A (j)
+ { 0x07, 0x06, 0x66, 0x36, 0x1E, 0x36, 0x67, 0x00}, // U+006B (k)
+ { 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+006C (l)
+ { 0x00, 0x00, 0x33, 0x7F, 0x7F, 0x6B, 0x63, 0x00}, // U+006D (m)
+ { 0x00, 0x00, 0x1F, 0x33, 0x33, 0x33, 0x33, 0x00}, // U+006E (n)
+ { 0x00, 0x00, 0x1E, 0x33, 0x33, 0x33, 0x1E, 0x00}, // U+006F (o)
+ { 0x00, 0x00, 0x3B, 0x66, 0x66, 0x3E, 0x06, 0x0F}, // U+0070 (p)
+ { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x78}, // U+0071 (q)
+ { 0x00, 0x00, 0x3B, 0x6E, 0x66, 0x06, 0x0F, 0x00}, // U+0072 (r)
+ { 0x00, 0x00, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x00}, // U+0073 (s)
+ { 0x08, 0x0C, 0x3E, 0x0C, 0x0C, 0x2C, 0x18, 0x00}, // U+0074 (t)
+ { 0x00, 0x00, 0x33, 0x33, 0x33, 0x33, 0x6E, 0x00}, // U+0075 (u)
+ { 0x00, 0x00, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0076 (v)
+ { 0x00, 0x00, 0x63, 0x6B, 0x7F, 0x7F, 0x36, 0x00}, // U+0077 (w)
+ { 0x00, 0x00, 0x63, 0x36, 0x1C, 0x36, 0x63, 0x00}, // U+0078 (x)
+ { 0x00, 0x00, 0x33, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0079 (y)
+ { 0x00, 0x00, 0x3F, 0x19, 0x0C, 0x26, 0x3F, 0x00}, // U+007A (z)
+ { 0x38, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, 0x38, 0x00}, // U+007B ({)
+ { 0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00}, // U+007C (|)
+ { 0x07, 0x0C, 0x0C, 0x38, 0x0C, 0x0C, 0x07, 0x00}, // U+007D (})
+ { 0x6E, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+007E (~)
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} // U+007F
+ };
+
+ // Encoder library initialization (just call once at startup)
+ void basisu_encoder_init()
+ {
+ detect_sse41();
+
+ basist::basisu_transcoder_init();
+ pack_etc1_solid_color_init();
+ //uastc_init();
+ bc7enc_compress_block_init(); // must be after uastc_init()
+ }
+
+ void error_printf(const char *pFmt, ...)
+ {
+ char buf[2048];
+
+ va_list args;
+ va_start(args, pFmt);
+#ifdef _WIN32
+ vsprintf_s(buf, sizeof(buf), pFmt, args);
+#else
+ vsnprintf(buf, sizeof(buf), pFmt, args);
+#endif
+ va_end(args);
+
+ fprintf(stderr, "ERROR: %s", buf);
+ }
+
+#if defined(_WIN32)
+ inline void query_counter(timer_ticks* pTicks)
+ {
+ QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks));
+ }
+ inline void query_counter_frequency(timer_ticks* pTicks)
+ {
+ QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks));
+ }
+#elif defined(__APPLE__)
+#include <sys/time.h>
+ inline void query_counter(timer_ticks* pTicks)
+ {
+ struct timeval cur_time;
+ gettimeofday(&cur_time, NULL);
+ *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
+ }
+ inline void query_counter_frequency(timer_ticks* pTicks)
+ {
+ *pTicks = 1000000;
+ }
+#elif defined(__GNUC__)
+#include <sys/timex.h>
+ inline void query_counter(timer_ticks* pTicks)
+ {
+ struct timeval cur_time;
+ gettimeofday(&cur_time, NULL);
+ *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
+ }
+ inline void query_counter_frequency(timer_ticks* pTicks)
+ {
+ *pTicks = 1000000;
+ }
+#else
+#error TODO
+#endif
+
+ interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false)
+ {
+ if (!g_timer_freq)
+ init();
+ }
+
+ void interval_timer::start()
+ {
+ query_counter(&m_start_time);
+ m_started = true;
+ m_stopped = false;
+ }
+
+ void interval_timer::stop()
+ {
+ assert(m_started);
+ query_counter(&m_stop_time);
+ m_stopped = true;
+ }
+
+ double interval_timer::get_elapsed_secs() const
+ {
+ assert(m_started);
+ if (!m_started)
+ return 0;
+
+ timer_ticks stop_time = m_stop_time;
+ if (!m_stopped)
+ query_counter(&stop_time);
+
+ timer_ticks delta = stop_time - m_start_time;
+ return delta * g_timer_freq;
+ }
+
+ void interval_timer::init()
+ {
+ if (!g_timer_freq)
+ {
+ query_counter_frequency(&g_freq);
+ g_timer_freq = 1.0f / g_freq;
+ query_counter(&g_init_ticks);
+ }
+ }
+
+ timer_ticks interval_timer::get_ticks()
+ {
+ if (!g_timer_freq)
+ init();
+ timer_ticks ticks;
+ query_counter(&ticks);
+ return ticks - g_init_ticks;
+ }
+
+ double interval_timer::ticks_to_secs(timer_ticks ticks)
+ {
+ if (!g_timer_freq)
+ init();
+ return ticks * g_timer_freq;
+ }
+
+ const uint32_t MAX_32BIT_ALLOC_SIZE = 250000000;
+
+ bool load_bmp(const char* pFilename, image& img)
+ {
+ int w = 0, h = 0;
+ unsigned int n_chans = 0;
+ unsigned char* pImage_data = apg_bmp_read(pFilename, &w, &h, &n_chans);
+
+ if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4)))
+ {
+ error_printf("Failed loading .BMP image \"%s\"!\n", pFilename);
+
+ if (pImage_data)
+ apg_bmp_free(pImage_data);
+
+ return false;
+ }
+
+ if (sizeof(void *) == sizeof(uint32_t))
+ {
+ if ((w * h * n_chans) > MAX_32BIT_ALLOC_SIZE)
+ {
+ error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h);
+
+ if (pImage_data)
+ apg_bmp_free(pImage_data);
+
+ return false;
+ }
+ }
+
+ img.resize(w, h);
+
+ const uint8_t *pSrc = pImage_data;
+ for (int y = 0; y < h; y++)
+ {
+ color_rgba *pDst = &img(0, y);
+
+ for (int x = 0; x < w; x++)
+ {
+ pDst->r = pSrc[0];
+ pDst->g = pSrc[1];
+ pDst->b = pSrc[2];
+ pDst->a = (n_chans == 3) ? 255 : pSrc[3];
+
+ pSrc += n_chans;
+ ++pDst;
+ }
+ }
+
+ apg_bmp_free(pImage_data);
+
+ return true;
+ }
+
+ bool load_tga(const char* pFilename, image& img)
+ {
+ int w = 0, h = 0, n_chans = 0;
+ uint8_t* pImage_data = read_tga(pFilename, w, h, n_chans);
+
+ if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4)))
+ {
+ error_printf("Failed loading .TGA image \"%s\"!\n", pFilename);
+
+ if (pImage_data)
+ free(pImage_data);
+
+ return false;
+ }
+
+ if (sizeof(void *) == sizeof(uint32_t))
+ {
+ if ((w * h * n_chans) > MAX_32BIT_ALLOC_SIZE)
+ {
+ error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h);
+
+ if (pImage_data)
+ free(pImage_data);
+
+ return false;
+ }
+ }
+
+ img.resize(w, h);
+
+ const uint8_t *pSrc = pImage_data;
+ for (int y = 0; y < h; y++)
+ {
+ color_rgba *pDst = &img(0, y);
+
+ for (int x = 0; x < w; x++)
+ {
+ pDst->r = pSrc[0];
+ pDst->g = pSrc[1];
+ pDst->b = pSrc[2];
+ pDst->a = (n_chans == 3) ? 255 : pSrc[3];
+
+ pSrc += n_chans;
+ ++pDst;
+ }
+ }
+
+ free(pImage_data);
+
+ return true;
+ }
+
+ bool load_png(const uint8_t *pBuf, size_t buf_size, image &img, const char *pFilename)
+ {
+ if (!buf_size)
+ return false;
+
+ unsigned err = 0, w = 0, h = 0;
+
+ if (sizeof(void*) == sizeof(uint32_t))
+ {
+ // Inspect the image first on 32-bit builds, to see if the image would require too much memory.
+ lodepng::State state;
+ err = lodepng_inspect(&w, &h, &state, pBuf, buf_size);
+ if ((err != 0) || (!w) || (!h))
+ return false;
+
+ const uint32_t exepected_alloc_size = w * h * sizeof(uint32_t);
+
+ // If the file is too large on 32-bit builds then just bail now, to prevent causing a memory exception.
+ if (exepected_alloc_size >= MAX_32BIT_ALLOC_SIZE)
+ {
+ error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", (pFilename != nullptr) ? pFilename : "<memory>", w, h);
+ return false;
+ }
+
+ w = h = 0;
+ }
+
+ std::vector<uint8_t> out;
+ err = lodepng::decode(out, w, h, pBuf, buf_size);
+ if ((err != 0) || (!w) || (!h))
+ return false;
+
+ if (out.size() != (w * h * 4))
+ return false;
+
+ img.resize(w, h);
+
+ memcpy(img.get_ptr(), &out[0], out.size());
+
+ return true;
+ }
+
+ bool load_png(const char* pFilename, image& img)
+ {
+ std::vector<uint8_t> buffer;
+ unsigned err = lodepng::load_file(buffer, std::string(pFilename));
+ if (err)
+ return false;
+
+
+ return load_png(buffer.data(), buffer.size(), img, pFilename);
+ }
+
+ bool load_jpg(const char *pFilename, image& img)
+ {
+ int width = 0, height = 0, actual_comps = 0;
+ uint8_t *pImage_data = jpgd::decompress_jpeg_image_from_file(pFilename, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagLinearChromaFiltering);
+ if (!pImage_data)
+ return false;
+
+ img.init(pImage_data, width, height, 4);
+
+ free(pImage_data);
+
+ return true;
+ }
+
+ bool load_image(const char* pFilename, image& img)
+ {
+ std::string ext(string_get_extension(std::string(pFilename)));
+
+ if (ext.length() == 0)
+ return false;
+
+ const char *pExt = ext.c_str();
+
+ if (strcasecmp(pExt, "png") == 0)
+ return load_png(pFilename, img);
+ if (strcasecmp(pExt, "bmp") == 0)
+ return load_bmp(pFilename, img);
+ if (strcasecmp(pExt, "tga") == 0)
+ return load_tga(pFilename, img);
+ if ( (strcasecmp(pExt, "jpg") == 0) || (strcasecmp(pExt, "jfif") == 0) || (strcasecmp(pExt, "jpeg") == 0) )
+ return load_jpg(pFilename, img);
+
+ return false;
+ }
+
+ bool save_png(const char* pFilename, const image &img, uint32_t image_save_flags, uint32_t grayscale_comp)
+ {
+ if (!img.get_total_pixels())
+ return false;
+
+ const uint32_t MAX_PNG_IMAGE_DIM = 32768;
+ if ((img.get_width() > MAX_PNG_IMAGE_DIM) || (img.get_height() > MAX_PNG_IMAGE_DIM))
+ return false;
+
+ std::vector<uint8_t> out;
+ unsigned err = 0;
+
+ if (image_save_flags & cImageSaveGrayscale)
+ {
+ uint8_vec g_pixels(img.get_width() * img.get_height());
+ uint8_t *pDst = &g_pixels[0];
+
+ for (uint32_t y = 0; y < img.get_height(); y++)
+ for (uint32_t x = 0; x < img.get_width(); x++)
+ *pDst++ = img(x, y)[grayscale_comp];
+
+ err = lodepng::encode(out, (const uint8_t*)&g_pixels[0], img.get_width(), img.get_height(), LCT_GREY, 8);
+ }
+ else
+ {
+ bool has_alpha = img.has_alpha();
+ if ((!has_alpha) || ((image_save_flags & cImageSaveIgnoreAlpha) != 0))
+ {
+ const uint64_t total_bytes = (uint64_t)img.get_width() * 3U * (uint64_t)img.get_height();
+ if (total_bytes > INT_MAX)
+ return false;
+ uint8_vec rgb_pixels(static_cast<size_t>(total_bytes));
+ uint8_t *pDst = &rgb_pixels[0];
+
+ for (uint32_t y = 0; y < img.get_height(); y++)
+ {
+ for (uint32_t x = 0; x < img.get_width(); x++)
+ {
+ const color_rgba& c = img(x, y);
+ pDst[0] = c.r;
+ pDst[1] = c.g;
+ pDst[2] = c.b;
+ pDst += 3;
+ }
+ }
+
+ err = lodepng::encode(out, (const uint8_t*)& rgb_pixels[0], img.get_width(), img.get_height(), LCT_RGB, 8);
+ }
+ else
+ {
+ err = lodepng::encode(out, (const uint8_t*)img.get_ptr(), img.get_width(), img.get_height(), LCT_RGBA, 8);
+ }
+ }
+
+ err = lodepng::save_file(out, std::string(pFilename));
+ if (err)
+ return false;
+
+ return true;
+ }
+
+ bool read_file_to_vec(const char* pFilename, uint8_vec& data)
+ {
+ FILE* pFile = nullptr;
+#ifdef _WIN32
+ fopen_s(&pFile, pFilename, "rb");
+#else
+ pFile = fopen(pFilename, "rb");
+#endif
+ if (!pFile)
+ return false;
+
+ fseek(pFile, 0, SEEK_END);
+#ifdef _WIN32
+ int64_t filesize = _ftelli64(pFile);
+#else
+ int64_t filesize = ftello(pFile);
+#endif
+ if (filesize < 0)
+ {
+ fclose(pFile);
+ return false;
+ }
+ fseek(pFile, 0, SEEK_SET);
+
+ if (sizeof(size_t) == sizeof(uint32_t))
+ {
+ if (filesize > 0x70000000)
+ {
+ // File might be too big to load safely in one alloc
+ fclose(pFile);
+ return false;
+ }
+ }
+
+ if (!data.try_resize((size_t)filesize))
+ {
+ fclose(pFile);
+ return false;
+ }
+
+ if (filesize)
+ {
+ if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize)
+ {
+ fclose(pFile);
+ return false;
+ }
+ }
+
+ fclose(pFile);
+ return true;
+ }
+
+ bool write_data_to_file(const char* pFilename, const void* pData, size_t len)
+ {
+ FILE* pFile = nullptr;
+#ifdef _WIN32
+ fopen_s(&pFile, pFilename, "wb");
+#else
+ pFile = fopen(pFilename, "wb");
+#endif
+ if (!pFile)
+ return false;
+
+ if (len)
+ {
+ if (fwrite(pData, 1, len, pFile) != len)
+ {
+ fclose(pFile);
+ return false;
+ }
+ }
+
+ return fclose(pFile) != EOF;
+ }
+
+ float linear_to_srgb(float l)
+ {
+ assert(l >= 0.0f && l <= 1.0f);
+ if (l < .0031308f)
+ return saturate(l * 12.92f);
+ else
+ return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f);
+ }
+
+ float srgb_to_linear(float s)
+ {
+ assert(s >= 0.0f && s <= 1.0f);
+ if (s < .04045f)
+ return saturate(s * (1.0f/12.92f));
+ else
+ return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f));
+ }
+
+ bool image_resample(const image &src, image &dst, bool srgb,
+ const char *pFilter, float filter_scale,
+ bool wrapping,
+ uint32_t first_comp, uint32_t num_comps)
+ {
+ assert((first_comp + num_comps) <= 4);
+
+ const int cMaxComps = 4;
+
+ const uint32_t src_w = src.get_width(), src_h = src.get_height();
+ const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height();
+
+ if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION)
+ {
+ printf("Image is too large!\n");
+ return false;
+ }
+
+ if (!src_w || !src_h || !dst_w || !dst_h)
+ return false;
+
+ if ((num_comps < 1) || (num_comps > cMaxComps))
+ return false;
+
+ if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION))
+ {
+ printf("Image is too large!\n");
+ return false;
+ }
+
+ if ((src_w == dst_w) && (src_h == dst_h))
+ {
+ dst = src;
+ return true;
+ }
+
+ float srgb_to_linear_table[256];
+ if (srgb)
+ {
+ for (int i = 0; i < 256; ++i)
+ srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f));
+ }
+
+ const int LINEAR_TO_SRGB_TABLE_SIZE = 8192;
+ uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE];
+
+ if (srgb)
+ {
+ for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i)
+ linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255);
+ }
+
+ std::vector<float> samples[cMaxComps];
+ Resampler *resamplers[cMaxComps];
+
+ resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h,
+ wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
+ pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0);
+ samples[0].resize(src_w);
+
+ for (uint32_t i = 1; i < num_comps; ++i)
+ {
+ resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h,
+ wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
+ pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0);
+ samples[i].resize(src_w);
+ }
+
+ uint32_t dst_y = 0;
+
+ for (uint32_t src_y = 0; src_y < src_h; ++src_y)
+ {
+ const color_rgba *pSrc = &src(0, src_y);
+
+ // Put source lines into resampler(s)
+ for (uint32_t x = 0; x < src_w; ++x)
+ {
+ for (uint32_t c = 0; c < num_comps; ++c)
+ {
+ const uint32_t comp_index = first_comp + c;
+ const uint32_t v = (*pSrc)[comp_index];
+
+ if (!srgb || (comp_index == 3))
+ samples[c][x] = v * (1.0f / 255.0f);
+ else
+ samples[c][x] = srgb_to_linear_table[v];
+ }
+
+ pSrc++;
+ }
+
+ for (uint32_t c = 0; c < num_comps; ++c)
+ {
+ if (!resamplers[c]->put_line(&samples[c][0]))
+ {
+ for (uint32_t i = 0; i < num_comps; i++)
+ delete resamplers[i];
+ return false;
+ }
+ }
+
+ // Now retrieve any output lines
+ for (;;)
+ {
+ uint32_t c;
+ for (c = 0; c < num_comps; ++c)
+ {
+ const uint32_t comp_index = first_comp + c;
+
+ const float *pOutput_samples = resamplers[c]->get_line();
+ if (!pOutput_samples)
+ break;
+
+ const bool linear_flag = !srgb || (comp_index == 3);
+
+ color_rgba *pDst = &dst(0, dst_y);
+
+ for (uint32_t x = 0; x < dst_w; x++)
+ {
+ // TODO: Add dithering
+ if (linear_flag)
+ {
+ int j = (int)(255.0f * pOutput_samples[x] + .5f);
+ (*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255);
+ }
+ else
+ {
+ int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f);
+ (*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)];
+ }
+
+ pDst++;
+ }
+ }
+ if (c < num_comps)
+ break;
+
+ ++dst_y;
+ }
+ }
+
+ for (uint32_t i = 0; i < num_comps; ++i)
+ delete resamplers[i];
+
+ return true;
+ }
+
+ void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms)
+ {
+ // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen
+ if (!num_syms)
+ return;
+
+ if (1 == num_syms)
+ {
+ A[0].m_key = 1;
+ return;
+ }
+
+ A[0].m_key += A[1].m_key;
+
+ int s = 2, r = 0, next;
+ for (next = 1; next < (num_syms - 1); ++next)
+ {
+ if ((s >= num_syms) || (A[r].m_key < A[s].m_key))
+ {
+ A[next].m_key = A[r].m_key;
+ A[r].m_key = next;
+ ++r;
+ }
+ else
+ {
+ A[next].m_key = A[s].m_key;
+ ++s;
+ }
+
+ if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key))
+ {
+ A[next].m_key = A[next].m_key + A[r].m_key;
+ A[r].m_key = next;
+ ++r;
+ }
+ else
+ {
+ A[next].m_key = A[next].m_key + A[s].m_key;
+ ++s;
+ }
+ }
+ A[num_syms - 2].m_key = 0;
+
+ for (next = num_syms - 3; next >= 0; --next)
+ {
+ A[next].m_key = 1 + A[A[next].m_key].m_key;
+ }
+
+ int num_avail = 1, num_used = 0, depth = 0;
+ r = num_syms - 2;
+ next = num_syms - 1;
+ while (num_avail > 0)
+ {
+ for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r )
+ ;
+
+ for ( ; num_avail > num_used; --next, --num_avail)
+ A[next].m_key = depth;
+
+ num_avail = 2 * num_used;
+ num_used = 0;
+ ++depth;
+ }
+ }
+
+ void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
+ {
+ int i;
+ uint32_t total = 0;
+ if (code_list_len <= 1)
+ return;
+
+ for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++)
+ pNum_codes[max_code_size] += pNum_codes[i];
+
+ for (i = max_code_size; i > 0; i--)
+ total += (((uint32_t)pNum_codes[i]) << (max_code_size - i));
+
+ while (total != (1UL << max_code_size))
+ {
+ pNum_codes[max_code_size]--;
+ for (i = max_code_size - 1; i > 0; i--)
+ {
+ if (pNum_codes[i])
+ {
+ pNum_codes[i]--;
+ pNum_codes[i + 1] += 2;
+ break;
+ }
+ }
+
+ total--;
+ }
+ }
+
+ sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1)
+ {
+ uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2];
+ sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
+
+ clear_obj(hist);
+
+ for (i = 0; i < num_syms; i++)
+ {
+ uint32_t freq = pSyms0[i].m_key;
+
+ // We scale all input frequencies to 16-bits.
+ assert(freq <= UINT16_MAX);
+
+ hist[freq & 0xFF]++;
+ hist[256 + ((freq >> 8) & 0xFF)]++;
+ }
+
+ while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
+ total_passes--;
+
+ for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
+ {
+ const uint32_t *pHist = &hist[pass << 8];
+ uint32_t offsets[256], cur_ofs = 0;
+ for (i = 0; i < 256; i++)
+ {
+ offsets[i] = cur_ofs;
+ cur_ofs += pHist[i];
+ }
+
+ for (i = 0; i < num_syms; i++)
+ pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
+
+ sym_freq *t = pCur_syms;
+ pCur_syms = pNew_syms;
+ pNew_syms = t;
+ }
+
+ return pCur_syms;
+ }
+
+ bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size)
+ {
+ if (max_code_size > cHuffmanMaxSupportedCodeSize)
+ return false;
+ if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
+ return false;
+
+ uint32_t total_used_syms = 0;
+ for (uint32_t i = 0; i < num_syms; i++)
+ if (pFreq[i])
+ total_used_syms++;
+
+ if (!total_used_syms)
+ return false;
+
+ std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms);
+ for (uint32_t i = 0, j = 0; i < num_syms; i++)
+ {
+ if (pFreq[i])
+ {
+ sym_freq0[j].m_key = pFreq[i];
+ sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i);
+ }
+ }
+
+ sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]);
+
+ canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms);
+
+ int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1];
+ clear_obj(num_codes);
+
+ for (uint32_t i = 0; i < total_used_syms; i++)
+ {
+ if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize)
+ return false;
+
+ num_codes[pSym_freq[i].m_key]++;
+ }
+
+ canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size);
+
+ m_code_sizes.resize(0);
+ m_code_sizes.resize(num_syms);
+
+ m_codes.resize(0);
+ m_codes.resize(num_syms);
+
+ for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++)
+ for (uint32_t l = num_codes[i]; l > 0; l--)
+ m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i);
+
+ uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1];
+
+ next_code[1] = 0;
+ for (uint32_t j = 0, i = 2; i <= max_code_size; i++)
+ next_code[i] = j = ((j + num_codes[i - 1]) << 1);
+
+ for (uint32_t i = 0; i < num_syms; i++)
+ {
+ uint32_t rev_code = 0, code, code_size;
+ if ((code_size = m_code_sizes[i]) == 0)
+ continue;
+ if (code_size > cHuffmanMaxSupportedInternalCodeSize)
+ return false;
+ code = next_code[code_size]++;
+ for (uint32_t l = code_size; l > 0; l--, code >>= 1)
+ rev_code = (rev_code << 1) | (code & 1);
+ m_codes[i] = static_cast<uint16_t>(rev_code);
+ }
+
+ return true;
+ }
+
+ bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size)
+ {
+ if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
+ return false;
+
+ uint16_vec sym_freq(num_syms);
+
+ uint32_t max_freq = 0;
+ for (uint32_t i = 0; i < num_syms; i++)
+ max_freq = maximum(max_freq, pSym_freq[i]);
+
+ if (max_freq < UINT16_MAX)
+ {
+ for (uint32_t i = 0; i < num_syms; i++)
+ sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < num_syms; i++)
+ {
+ if (pSym_freq[i])
+ {
+ uint32_t f = static_cast<uint32_t>((static_cast<uint64_t>(pSym_freq[i]) * 65534U + (max_freq >> 1)) / max_freq);
+ sym_freq[i] = static_cast<uint16_t>(clamp<uint32_t>(f, 1, 65534));
+ }
+ }
+ }
+
+ return init(num_syms, &sym_freq[0], max_code_size);
+ }
+
+ void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len)
+ {
+ if (run_size)
+ {
+ if (run_size < cHuffmanSmallRepeatSizeMin)
+ {
+ while (run_size--)
+ syms.push_back(static_cast<uint16_t>(len));
+ }
+ else if (run_size <= cHuffmanSmallRepeatSizeMax)
+ {
+ syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6)));
+ }
+ else
+ {
+ assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax));
+ syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6)));
+ }
+ }
+
+ run_size = 0;
+ }
+
+ void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size)
+ {
+ if (run_size)
+ {
+ if (run_size < cHuffmanSmallZeroRunSizeMin)
+ {
+ while (run_size--)
+ syms.push_back(0);
+ }
+ else if (run_size <= cHuffmanSmallZeroRunSizeMax)
+ {
+ syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6)));
+ }
+ else
+ {
+ assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax));
+ syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6)));
+ }
+ }
+
+ run_size = 0;
+ }
+
+ uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab)
+ {
+ const uint64_t start_bits = m_total_bits;
+
+ const uint8_vec &code_sizes = tab.get_code_sizes();
+
+ uint32_t total_used = tab.get_total_used_codes();
+ put_bits(total_used, cHuffmanMaxSymsLog2);
+
+ if (!total_used)
+ return 0;
+
+ uint16_vec syms;
+ syms.reserve(total_used + 16);
+
+ uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0;
+
+ for (uint32_t i = 0; i <= total_used; ++i)
+ {
+ const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i];
+ assert((code_len == 0xFF) || (code_len <= 16));
+
+ if (code_len)
+ {
+ end_zero_run(syms, zero_run_size);
+
+ if (code_len != prev_code_len)
+ {
+ end_nonzero_run(syms, nonzero_run_size, prev_code_len);
+ if (code_len != 0xFF)
+ syms.push_back(static_cast<uint16_t>(code_len));
+ }
+ else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax)
+ end_nonzero_run(syms, nonzero_run_size, prev_code_len);
+ }
+ else
+ {
+ end_nonzero_run(syms, nonzero_run_size, prev_code_len);
+
+ if (++zero_run_size == cHuffmanBigZeroRunSizeMax)
+ end_zero_run(syms, zero_run_size);
+ }
+
+ prev_code_len = code_len;
+ }
+
+ histogram h(cHuffmanTotalCodelengthCodes);
+ for (uint32_t i = 0; i < syms.size(); i++)
+ h.inc(syms[i] & 63);
+
+ huffman_encoding_table ct;
+ if (!ct.init(h, 7))
+ return 0;
+
+ assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes);
+
+ uint32_t total_codelength_codes;
+ for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--)
+ if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]])
+ break;
+
+ assert(total_codelength_codes);
+
+ put_bits(total_codelength_codes, 5);
+ for (uint32_t i = 0; i < total_codelength_codes; i++)
+ put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3);
+
+ for (uint32_t i = 0; i < syms.size(); ++i)
+ {
+ const uint32_t l = syms[i] & 63, e = syms[i] >> 6;
+
+ put_code(l, ct);
+
+ if (l == cHuffmanSmallZeroRunCode)
+ put_bits(e, cHuffmanSmallZeroRunExtraBits);
+ else if (l == cHuffmanBigZeroRunCode)
+ put_bits(e, cHuffmanBigZeroRunExtraBits);
+ else if (l == cHuffmanSmallRepeatCode)
+ put_bits(e, cHuffmanSmallRepeatExtraBits);
+ else if (l == cHuffmanBigRepeatCode)
+ put_bits(e, cHuffmanBigRepeatExtraBits);
+ }
+
+ return (uint32_t)(m_total_bits - start_bits);
+ }
+
+ bool huffman_test(int rand_seed)
+ {
+ histogram h(19);
+
+ // Feed in a fibonacci sequence to force large codesizes
+ h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3;
+ h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21;
+ h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144;
+ h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987;
+ h[16] += 1597; h[17] += 2584; h[18] += 4181;
+
+ huffman_encoding_table etab;
+ etab.init(h, 16);
+
+ {
+ bitwise_coder c;
+ c.init(1024);
+
+ c.emit_huffman_table(etab);
+ for (int i = 0; i < 19; i++)
+ c.put_code(i, etab);
+
+ c.flush();
+
+ basist::bitwise_decoder d;
+ d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size()));
+
+ basist::huffman_decoding_table dtab;
+ bool success = d.read_huffman_table(dtab);
+ if (!success)
+ {
+ assert(0);
+ printf("Failure 5\n");
+ return false;
+ }
+
+ for (uint32_t i = 0; i < 19; i++)
+ {
+ uint32_t s = d.decode_huffman(dtab);
+ if (s != i)
+ {
+ assert(0);
+ printf("Failure 5\n");
+ return false;
+ }
+ }
+ }
+
+ basisu::rand r;
+ r.seed(rand_seed);
+
+ for (int iter = 0; iter < 500000; iter++)
+ {
+ printf("%u\n", iter);
+
+ uint32_t max_sym = r.irand(0, 8193);
+ uint32_t num_codes = r.irand(1, 10000);
+ uint_vec syms(num_codes);
+
+ for (uint32_t i = 0; i < num_codes; i++)
+ {
+ if (r.bit())
+ syms[i] = r.irand(0, max_sym);
+ else
+ {
+ int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f);
+ s = basisu::clamp<int>(s, 0, max_sym);
+
+ syms[i] = s;
+ }
+
+ }
+
+ histogram h1(max_sym + 1);
+ for (uint32_t i = 0; i < num_codes; i++)
+ h1[syms[i]]++;
+
+ huffman_encoding_table etab2;
+ if (!etab2.init(h1, 16))
+ {
+ assert(0);
+ printf("Failed 0\n");
+ return false;
+ }
+
+ bitwise_coder c;
+ c.init(1024);
+
+ c.emit_huffman_table(etab2);
+
+ for (uint32_t i = 0; i < num_codes; i++)
+ c.put_code(syms[i], etab2);
+
+ c.flush();
+
+ basist::bitwise_decoder d;
+ d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size());
+
+ basist::huffman_decoding_table dtab;
+ bool success = d.read_huffman_table(dtab);
+ if (!success)
+ {
+ assert(0);
+ printf("Failed 2\n");
+ return false;
+ }
+
+ for (uint32_t i = 0; i < num_codes; i++)
+ {
+ uint32_t s = d.decode_huffman(dtab);
+ if (s != syms[i])
+ {
+ assert(0);
+ printf("Failed 4\n");
+ return false;
+ }
+ }
+
+ }
+ return true;
+ }
+
+ void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
+ {
+ assert((num_syms > 0) && (num_indices > 0));
+ assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f));
+
+ clear();
+
+ m_remap_table.resize(num_syms);
+ m_entries_picked.reserve(num_syms);
+ m_total_count_to_picked.resize(num_syms);
+
+ if (num_indices <= 1)
+ return;
+
+ prepare_hist(num_syms, num_indices, pIndices);
+ find_initial(num_syms);
+
+ while (m_entries_to_do.size())
+ {
+ // Find the best entry to move into the picked list.
+ uint32_t best_entry;
+ double best_count;
+ find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight);
+
+ // We now have chosen an entry to place in the picked list, now determine which side it goes on.
+ const uint32_t entry_to_move = m_entries_to_do[best_entry];
+
+ float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight);
+
+ // Put entry_to_move either on the "left" or "right" side of the picked entries
+ if (side <= 0)
+ m_entries_picked.push_back(entry_to_move);
+ else
+ m_entries_picked.insert(m_entries_picked.begin(), entry_to_move);
+
+ // Erase best_entry from the todo list
+ m_entries_to_do.erase(m_entries_to_do.begin() + best_entry);
+
+ // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry
+ for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
+ m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms);
+ }
+
+ for (uint32_t i = 0; i < num_syms; i++)
+ m_remap_table[m_entries_picked[i]] = i;
+ }
+
+ void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices)
+ {
+ m_hist.resize(0);
+ m_hist.resize(num_syms * num_syms);
+
+ for (uint32_t i = 0; i < num_indices; i++)
+ {
+ const uint32_t idx = pIndices[i];
+ inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms);
+ inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms);
+ }
+ }
+
+ void palette_index_reorderer::find_initial(uint32_t num_syms)
+ {
+ uint32_t max_count = 0, max_index = 0;
+ for (uint32_t i = 0; i < num_syms * num_syms; i++)
+ if (m_hist[i] > max_count)
+ max_count = m_hist[i], max_index = i;
+
+ uint32_t a = max_index / num_syms, b = max_index % num_syms;
+
+ m_entries_picked.push_back(a);
+ m_entries_picked.push_back(b);
+
+ for (uint32_t i = 0; i < num_syms; i++)
+ if ((i != b) && (i != a))
+ m_entries_to_do.push_back(i);
+
+ for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
+ for (uint32_t j = 0; j < m_entries_picked.size(); j++)
+ m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms);
+ }
+
+ void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
+ {
+ best_entry = 0;
+ best_count = 0;
+
+ for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
+ {
+ const uint32_t u = m_entries_to_do[i];
+ double total_count = m_total_count_to_picked[u];
+
+ if (pDist_func)
+ {
+ float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx));
+ assert((w >= 0.0f) && (w <= 1.0f));
+ total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w);
+ }
+
+ if (total_count <= best_count)
+ continue;
+
+ best_entry = i;
+ best_count = total_count;
+ }
+ }
+
+ float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
+ {
+ float which_side = 0;
+
+ int l_count = 0, r_count = 0;
+ for (uint32_t j = 0; j < m_entries_picked.size(); j++)
+ {
+ const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1));
+ which_side += static_cast<float>(r * count);
+ if (r >= 0)
+ l_count += r * count;
+ else
+ r_count += -r * count;
+ }
+
+ if (pDist_func)
+ {
+ float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx));
+ float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx));
+ which_side = w_left * l_count - w_right * r_count;
+ }
+ return which_side;
+ }
+
+ void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma)
+ {
+ assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
+
+ const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
+ const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
+
+ double hist[256];
+ clear_obj(hist);
+
+ for (uint32_t y = 0; y < height; y++)
+ {
+ for (uint32_t x = 0; x < width; x++)
+ {
+ const color_rgba &ca = a(x, y), &cb = b(x, y);
+
+ if (total_chans)
+ {
+ for (uint32_t c = 0; c < total_chans; c++)
+ hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++;
+ }
+ else
+ {
+ if (use_601_luma)
+ hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++;
+ else
+ hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++;
+ }
+ }
+ }
+
+ m_max = 0;
+ double sum = 0.0f, sum2 = 0.0f;
+ for (uint32_t i = 0; i < 256; i++)
+ {
+ if (hist[i])
+ {
+ m_max = basisu::maximum<float>(m_max, (float)i);
+ double v = i * hist[i];
+ sum += v;
+ sum2 += i * v;
+ }
+ }
+
+ double total_values = (double)width * (double)height;
+ if (avg_comp_error)
+ total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
+
+ m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0);
+ m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f);
+ m_rms = (float)sqrt(m_mean_squared);
+ m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0f, 0.0f, 100.0f) : 100.0f;
+ }
+
+ void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed)
+ {
+ rand r(seed);
+
+ uint8_t *pDst = static_cast<uint8_t *>(pBuf);
+
+ while (size >= sizeof(uint32_t))
+ {
+ *(uint32_t *)pDst = r.urand32();
+ pDst += sizeof(uint32_t);
+ size -= sizeof(uint32_t);
+ }
+
+ while (size)
+ {
+ *pDst++ = r.byte();
+ size--;
+ }
+ }
+
+ uint32_t hash_hsieh(const uint8_t *pBuf, size_t len)
+ {
+ if (!pBuf || !len)
+ return 0;
+
+ uint32_t h = static_cast<uint32_t>(len);
+
+ const uint32_t bytes_left = len & 3;
+ len >>= 2;
+
+ while (len--)
+ {
+ const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf);
+
+ h += pWords[0];
+
+ const uint32_t t = (pWords[1] << 11) ^ h;
+ h = (h << 16) ^ t;
+
+ pBuf += sizeof(uint32_t);
+
+ h += h >> 11;
+ }
+
+ switch (bytes_left)
+ {
+ case 1:
+ h += *reinterpret_cast<const signed char*>(pBuf);
+ h ^= h << 10;
+ h += h >> 1;
+ break;
+ case 2:
+ h += *reinterpret_cast<const uint16_t *>(pBuf);
+ h ^= h << 11;
+ h += h >> 17;
+ break;
+ case 3:
+ h += *reinterpret_cast<const uint16_t *>(pBuf);
+ h ^= h << 16;
+ h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18;
+ h += h >> 11;
+ break;
+ default:
+ break;
+ }
+
+ h ^= h << 3;
+ h += h >> 5;
+ h ^= h << 4;
+ h += h >> 17;
+ h ^= h << 25;
+ h += h >> 6;
+
+ return h;
+ }
+
+ job_pool::job_pool(uint32_t num_threads) :
+ m_num_active_jobs(0),
+ m_kill_flag(false)
+ {
+ assert(num_threads >= 1U);
+
+ debug_printf("job_pool::job_pool: %u total threads\n", num_threads);
+
+ if (num_threads > 1)
+ {
+ m_threads.resize(num_threads - 1);
+
+ for (int i = 0; i < ((int)num_threads - 1); i++)
+ m_threads[i] = std::thread([this, i] { job_thread(i); });
+ }
+ }
+
+ job_pool::~job_pool()
+ {
+ debug_printf("job_pool::~job_pool\n");
+
+ // Notify all workers that they need to die right now.
+ m_kill_flag = true;
+
+ m_has_work.notify_all();
+
+ // Wait for all workers to die.
+ for (uint32_t i = 0; i < m_threads.size(); i++)
+ m_threads[i].join();
+ }
+
+ void job_pool::add_job(const std::function<void()>& job)
+ {
+ std::unique_lock<std::mutex> lock(m_mutex);
+
+ m_queue.emplace_back(job);
+
+ const size_t queue_size = m_queue.size();
+
+ lock.unlock();
+
+ if (queue_size > 1)
+ m_has_work.notify_one();
+ }
+
+ void job_pool::add_job(std::function<void()>&& job)
+ {
+ std::unique_lock<std::mutex> lock(m_mutex);
+
+ m_queue.emplace_back(std::move(job));
+
+ const size_t queue_size = m_queue.size();
+
+ lock.unlock();
+
+ if (queue_size > 1)
+ {
+ m_has_work.notify_one();
+ }
+ }
+
+ void job_pool::wait_for_all()
+ {
+ std::unique_lock<std::mutex> lock(m_mutex);
+
+ // Drain the job queue on the calling thread.
+ while (!m_queue.empty())
+ {
+ std::function<void()> job(m_queue.back());
+ m_queue.pop_back();
+
+ lock.unlock();
+
+ job();
+
+ lock.lock();
+ }
+
+ // The queue is empty, now wait for all active jobs to finish up.
+ m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } );
+ }
+
+ void job_pool::job_thread(uint32_t index)
+ {
+ debug_printf("job_pool::job_thread: starting %u\n", index);
+
+ while (true)
+ {
+ std::unique_lock<std::mutex> lock(m_mutex);
+
+ // Wait for any jobs to be issued.
+ m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } );
+
+ // Check to see if we're supposed to exit.
+ if (m_kill_flag)
+ break;
+
+ // Get the job and execute it.
+ std::function<void()> job(m_queue.back());
+ m_queue.pop_back();
+
+ ++m_num_active_jobs;
+
+ lock.unlock();
+
+ job();
+
+ lock.lock();
+
+ --m_num_active_jobs;
+
+ // Now check if there are no more jobs remaining.
+ const bool all_done = m_queue.empty() && !m_num_active_jobs;
+
+ lock.unlock();
+
+ if (all_done)
+ m_no_more_jobs.notify_all();
+ }
+
+ debug_printf("job_pool::job_thread: exiting\n");
+ }
+
+ // .TGA image loading
+ #pragma pack(push)
+ #pragma pack(1)
+ struct tga_header
+ {
+ uint8_t m_id_len;
+ uint8_t m_cmap;
+ uint8_t m_type;
+ packed_uint<2> m_cmap_first;
+ packed_uint<2> m_cmap_len;
+ uint8_t m_cmap_bpp;
+ packed_uint<2> m_x_org;
+ packed_uint<2> m_y_org;
+ packed_uint<2> m_width;
+ packed_uint<2> m_height;
+ uint8_t m_depth;
+ uint8_t m_desc;
+ };
+ #pragma pack(pop)
+
+ const uint32_t MAX_TGA_IMAGE_SIZE = 16384;
+
+ enum tga_image_type
+ {
+ cITPalettized = 1,
+ cITRGB = 2,
+ cITGrayscale = 3
+ };
+
+ uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans)
+ {
+ width = 0;
+ height = 0;
+ n_chans = 0;
+
+ if (buf_size <= sizeof(tga_header))
+ return nullptr;
+
+ const tga_header &hdr = *reinterpret_cast<const tga_header *>(pBuf);
+
+ if ((!hdr.m_width) || (!hdr.m_height) || (hdr.m_width > MAX_TGA_IMAGE_SIZE) || (hdr.m_height > MAX_TGA_IMAGE_SIZE))
+ return nullptr;
+
+ if (hdr.m_desc >> 6)
+ return nullptr;
+
+ // Simple validation
+ if ((hdr.m_cmap != 0) && (hdr.m_cmap != 1))
+ return nullptr;
+
+ if (hdr.m_cmap)
+ {
+ if ((hdr.m_cmap_bpp == 0) || (hdr.m_cmap_bpp > 32))
+ return nullptr;
+
+ // Nobody implements CMapFirst correctly, so we're not supporting it. Never seen it used, either.
+ if (hdr.m_cmap_first != 0)
+ return nullptr;
+ }
+
+ const bool x_flipped = (hdr.m_desc & 0x10) != 0;
+ const bool y_flipped = (hdr.m_desc & 0x20) == 0;
+
+ bool rle_flag = false;
+ int file_image_type = hdr.m_type;
+ if (file_image_type > 8)
+ {
+ file_image_type -= 8;
+ rle_flag = true;
+ }
+
+ const tga_image_type image_type = static_cast<tga_image_type>(file_image_type);
+
+ switch (file_image_type)
+ {
+ case cITRGB:
+ if (hdr.m_depth == 8)
+ return nullptr;
+ break;
+ case cITPalettized:
+ if ((hdr.m_depth != 8) || (hdr.m_cmap != 1) || (hdr.m_cmap_len == 0))
+ return nullptr;
+ break;
+ case cITGrayscale:
+ if ((hdr.m_cmap != 0) || (hdr.m_cmap_len != 0))
+ return nullptr;
+ if ((hdr.m_depth != 8) && (hdr.m_depth != 16))
+ return nullptr;
+ break;
+ default:
+ return nullptr;
+ }
+
+ uint32_t tga_bytes_per_pixel = 0;
+
+ switch (hdr.m_depth)
+ {
+ case 32:
+ tga_bytes_per_pixel = 4;
+ n_chans = 4;
+ break;
+ case 24:
+ tga_bytes_per_pixel = 3;
+ n_chans = 3;
+ break;
+ case 16:
+ case 15:
+ tga_bytes_per_pixel = 2;
+ // For compatibility with stb_image_write.h
+ n_chans = ((file_image_type == cITGrayscale) && (hdr.m_depth == 16)) ? 4 : 3;
+ break;
+ case 8:
+ tga_bytes_per_pixel = 1;
+ // For palettized RGBA support, which both FreeImage and stb_image support.
+ n_chans = ((file_image_type == cITPalettized) && (hdr.m_cmap_bpp == 32)) ? 4 : 3;
+ break;
+ default:
+ return nullptr;
+ }
+
+ const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel;
+
+ const uint8_t *pSrc = pBuf + sizeof(tga_header);
+ uint32_t bytes_remaining = buf_size - sizeof(tga_header);
+
+ if (hdr.m_id_len)
+ {
+ if (bytes_remaining < hdr.m_id_len)
+ return nullptr;
+ pSrc += hdr.m_id_len;
+ bytes_remaining += hdr.m_id_len;
+ }
+
+ color_rgba pal[256];
+ for (uint32_t i = 0; i < 256; i++)
+ pal[i].set(0, 0, 0, 255);
+
+ if ((hdr.m_cmap) && (hdr.m_cmap_len))
+ {
+ if (image_type == cITPalettized)
+ {
+ // Note I cannot find any files using 32bpp palettes in the wild (never seen any in ~30 years).
+ if ( ((hdr.m_cmap_bpp != 32) && (hdr.m_cmap_bpp != 24) && (hdr.m_cmap_bpp != 15) && (hdr.m_cmap_bpp != 16)) || (hdr.m_cmap_len > 256) )
+ return nullptr;
+
+ if (hdr.m_cmap_bpp == 32)
+ {
+ const uint32_t pal_size = hdr.m_cmap_len * 4;
+ if (bytes_remaining < pal_size)
+ return nullptr;
+
+ for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
+ {
+ pal[i].r = pSrc[i * 4 + 2];
+ pal[i].g = pSrc[i * 4 + 1];
+ pal[i].b = pSrc[i * 4 + 0];
+ pal[i].a = pSrc[i * 4 + 3];
+ }
+
+ bytes_remaining -= pal_size;
+ pSrc += pal_size;
+ }
+ else if (hdr.m_cmap_bpp == 24)
+ {
+ const uint32_t pal_size = hdr.m_cmap_len * 3;
+ if (bytes_remaining < pal_size)
+ return nullptr;
+
+ for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
+ {
+ pal[i].r = pSrc[i * 3 + 2];
+ pal[i].g = pSrc[i * 3 + 1];
+ pal[i].b = pSrc[i * 3 + 0];
+ pal[i].a = 255;
+ }
+
+ bytes_remaining -= pal_size;
+ pSrc += pal_size;
+ }
+ else
+ {
+ const uint32_t pal_size = hdr.m_cmap_len * 2;
+ if (bytes_remaining < pal_size)
+ return nullptr;
+
+ for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
+ {
+ const uint32_t v = pSrc[i * 2 + 0] | (pSrc[i * 2 + 1] << 8);
+
+ pal[i].r = (((v >> 10) & 31) * 255 + 15) / 31;
+ pal[i].g = (((v >> 5) & 31) * 255 + 15) / 31;
+ pal[i].b = ((v & 31) * 255 + 15) / 31;
+ pal[i].a = 255;
+ }
+
+ bytes_remaining -= pal_size;
+ pSrc += pal_size;
+ }
+ }
+ else
+ {
+ const uint32_t bytes_to_skip = (hdr.m_cmap_bpp >> 3) * hdr.m_cmap_len;
+ if (bytes_remaining < bytes_to_skip)
+ return nullptr;
+ pSrc += bytes_to_skip;
+ bytes_remaining += bytes_to_skip;
+ }
+ }
+
+ width = hdr.m_width;
+ height = hdr.m_height;
+
+ const uint32_t source_pitch = width * tga_bytes_per_pixel;
+ const uint32_t dest_pitch = width * n_chans;
+
+ uint8_t *pImage = (uint8_t *)malloc(dest_pitch * height);
+ if (!pImage)
+ return nullptr;
+
+ std::vector<uint8_t> input_line_buf;
+ if (rle_flag)
+ input_line_buf.resize(source_pitch);
+
+ int run_type = 0, run_remaining = 0;
+ uint8_t run_pixel[4];
+ memset(run_pixel, 0, sizeof(run_pixel));
+
+ for (int y = 0; y < height; y++)
+ {
+ const uint8_t *pLine_data;
+
+ if (rle_flag)
+ {
+ int pixels_remaining = width;
+ uint8_t *pDst = &input_line_buf[0];
+
+ do
+ {
+ if (!run_remaining)
+ {
+ if (bytes_remaining < 1)
+ {
+ free(pImage);
+ return nullptr;
+ }
+
+ int v = *pSrc++;
+ bytes_remaining--;
+
+ run_type = v & 0x80;
+ run_remaining = (v & 0x7F) + 1;
+
+ if (run_type)
+ {
+ if (bytes_remaining < tga_bytes_per_pixel)
+ {
+ free(pImage);
+ return nullptr;
+ }
+
+ memcpy(run_pixel, pSrc, tga_bytes_per_pixel);
+ pSrc += tga_bytes_per_pixel;
+ bytes_remaining -= tga_bytes_per_pixel;
+ }
+ }
+
+ const uint32_t n = basisu::minimum<uint32_t>(pixels_remaining, run_remaining);
+ pixels_remaining -= n;
+ run_remaining -= n;
+
+ if (run_type)
+ {
+ for (uint32_t i = 0; i < n; i++)
+ for (uint32_t j = 0; j < tga_bytes_per_pixel; j++)
+ *pDst++ = run_pixel[j];
+ }
+ else
+ {
+ const uint32_t bytes_wanted = n * tga_bytes_per_pixel;
+
+ if (bytes_remaining < bytes_wanted)
+ {
+ free(pImage);
+ return nullptr;
+ }
+
+ memcpy(pDst, pSrc, bytes_wanted);
+ pDst += bytes_wanted;
+
+ pSrc += bytes_wanted;
+ bytes_remaining -= bytes_wanted;
+ }
+
+ } while (pixels_remaining);
+
+ assert((pDst - &input_line_buf[0]) == width * tga_bytes_per_pixel);
+
+ pLine_data = &input_line_buf[0];
+ }
+ else
+ {
+ if (bytes_remaining < source_pitch)
+ {
+ free(pImage);
+ return nullptr;
+ }
+
+ pLine_data = pSrc;
+ bytes_remaining -= source_pitch;
+ pSrc += source_pitch;
+ }
+
+ // Convert to 24bpp RGB or 32bpp RGBA.
+ uint8_t *pDst = pImage + (y_flipped ? (height - 1 - y) : y) * dest_pitch + (x_flipped ? (width - 1) * n_chans : 0);
+ const int dst_stride = x_flipped ? -((int)n_chans) : n_chans;
+
+ switch (hdr.m_depth)
+ {
+ case 32:
+ assert(tga_bytes_per_pixel == 4 && n_chans == 4);
+ for (int i = 0; i < width; i++, pLine_data += 4, pDst += dst_stride)
+ {
+ pDst[0] = pLine_data[2];
+ pDst[1] = pLine_data[1];
+ pDst[2] = pLine_data[0];
+ pDst[3] = pLine_data[3];
+ }
+ break;
+ case 24:
+ assert(tga_bytes_per_pixel == 3 && n_chans == 3);
+ for (int i = 0; i < width; i++, pLine_data += 3, pDst += dst_stride)
+ {
+ pDst[0] = pLine_data[2];
+ pDst[1] = pLine_data[1];
+ pDst[2] = pLine_data[0];
+ }
+ break;
+ case 16:
+ case 15:
+ if (image_type == cITRGB)
+ {
+ assert(tga_bytes_per_pixel == 2 && n_chans == 3);
+ for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride)
+ {
+ const uint32_t v = pLine_data[0] | (pLine_data[1] << 8);
+ pDst[0] = (((v >> 10) & 31) * 255 + 15) / 31;
+ pDst[1] = (((v >> 5) & 31) * 255 + 15) / 31;
+ pDst[2] = ((v & 31) * 255 + 15) / 31;
+ }
+ }
+ else
+ {
+ assert(image_type == cITGrayscale && tga_bytes_per_pixel == 2 && n_chans == 4);
+ for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride)
+ {
+ pDst[0] = pLine_data[0];
+ pDst[1] = pLine_data[0];
+ pDst[2] = pLine_data[0];
+ pDst[3] = pLine_data[1];
+ }
+ }
+ break;
+ case 8:
+ assert(tga_bytes_per_pixel == 1);
+ if (image_type == cITPalettized)
+ {
+ if (hdr.m_cmap_bpp == 32)
+ {
+ assert(n_chans == 4);
+ for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
+ {
+ const uint32_t c = *pLine_data;
+ pDst[0] = pal[c].r;
+ pDst[1] = pal[c].g;
+ pDst[2] = pal[c].b;
+ pDst[3] = pal[c].a;
+ }
+ }
+ else
+ {
+ assert(n_chans == 3);
+ for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
+ {
+ const uint32_t c = *pLine_data;
+ pDst[0] = pal[c].r;
+ pDst[1] = pal[c].g;
+ pDst[2] = pal[c].b;
+ }
+ }
+ }
+ else
+ {
+ assert(n_chans == 3);
+ for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
+ {
+ const uint8_t c = *pLine_data;
+ pDst[0] = c;
+ pDst[1] = c;
+ pDst[2] = c;
+ }
+ }
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ } // y
+
+ return pImage;
+ }
+
+ uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans)
+ {
+ width = height = n_chans = 0;
+
+ uint8_vec filedata;
+ if (!read_file_to_vec(pFilename, filedata))
+ return nullptr;
+
+ if (!filedata.size() || (filedata.size() > UINT32_MAX))
+ return nullptr;
+
+ return read_tga(&filedata[0], (uint32_t)filedata.size(), width, height, n_chans);
+ }
+
+ void image::debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t scale_x, uint32_t scale_y, const color_rgba& fg, const color_rgba* pBG, bool alpha_only, const char* pFmt, ...)
+ {
+ char buf[2048];
+
+ va_list args;
+ va_start(args, pFmt);
+#ifdef _WIN32
+ vsprintf_s(buf, sizeof(buf), pFmt, args);
+#else
+ vsnprintf(buf, sizeof(buf), pFmt, args);
+#endif
+ va_end(args);
+
+ const char* p = buf;
+
+ const uint32_t orig_x_ofs = x_ofs;
+
+ while (*p)
+ {
+ uint8_t c = *p++;
+ if ((c < 32) || (c > 127))
+ c = '.';
+
+ const uint8_t* pGlpyh = &g_debug_font8x8_basic[c - 32][0];
+
+ for (uint32_t y = 0; y < 8; y++)
+ {
+ uint32_t row_bits = pGlpyh[y];
+ for (uint32_t x = 0; x < 8; x++)
+ {
+ const uint32_t q = row_bits & (1 << x);
+
+ const color_rgba* pColor = q ? &fg : pBG;
+ if (!pColor)
+ continue;
+
+ if (alpha_only)
+ fill_box_alpha(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor);
+ else
+ fill_box(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor);
+ }
+ }
+
+ x_ofs += 8 * scale_x;
+ if ((x_ofs + 8 * scale_x) > m_width)
+ {
+ x_ofs = orig_x_ofs;
+ y_ofs += 8 * scale_y;
+ }
+ }
+ }
+
+} // namespace basisu