summaryrefslogtreecommitdiff
path: root/thirdparty/basis_universal/basisu_resampler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/basis_universal/basisu_resampler.cpp')
-rw-r--r--thirdparty/basis_universal/basisu_resampler.cpp852
1 files changed, 852 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/basisu_resampler.cpp b/thirdparty/basis_universal/basisu_resampler.cpp
new file mode 100644
index 0000000000..e193ce83ff
--- /dev/null
+++ b/thirdparty/basis_universal/basisu_resampler.cpp
@@ -0,0 +1,852 @@
+// basisu_resampler.cpp
+// Copyright (C) 2019 Binomial LLC. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+#include "basisu_resampler.h"
+#include "basisu_resampler_filters.h"
+
+#ifndef max
+#define max(a, b) (((a) > (b)) ? (a) : (b))
+#endif
+
+#ifndef min
+#define min(a, b) (((a) < (b)) ? (a) : (b))
+#endif
+
+#define RESAMPLER_DEBUG 0
+
+namespace basisu
+{
+ static inline int resampler_range_check(int v, int h)
+ {
+ BASISU_NOTE_UNUSED(h);
+ assert((v >= 0) && (v < h));
+ return v;
+ }
+
+ // Float to int cast with truncation.
+ static inline int cast_to_int(Resample_Real i)
+ {
+ return (int)i;
+ }
+
+ // Ensure that the contributing source sample is within bounds. If not, reflect, clamp, or wrap.
+ int Resampler::reflect(const int j, const int src_x, const Boundary_Op boundary_op)
+ {
+ int n;
+
+ if (j < 0)
+ {
+ if (boundary_op == BOUNDARY_REFLECT)
+ {
+ n = -j;
+
+ if (n >= src_x)
+ n = src_x - 1;
+ }
+ else if (boundary_op == BOUNDARY_WRAP)
+ n = posmod(j, src_x);
+ else
+ n = 0;
+ }
+ else if (j >= src_x)
+ {
+ if (boundary_op == BOUNDARY_REFLECT)
+ {
+ n = (src_x - j) + (src_x - 1);
+
+ if (n < 0)
+ n = 0;
+ }
+ else if (boundary_op == BOUNDARY_WRAP)
+ n = posmod(j, src_x);
+ else
+ n = src_x - 1;
+ }
+ else
+ n = j;
+
+ return n;
+ }
+
+ // The make_clist() method generates, for all destination samples,
+ // the list of all source samples with non-zero weighted contributions.
+ Resampler::Contrib_List * Resampler::make_clist(
+ int src_x, int dst_x, Boundary_Op boundary_op,
+ Resample_Real(*Pfilter)(Resample_Real),
+ Resample_Real filter_support,
+ Resample_Real filter_scale,
+ Resample_Real src_ofs)
+ {
+ struct Contrib_Bounds
+ {
+ // The center of the range in DISCRETE coordinates (pixel center = 0.0f).
+ Resample_Real center;
+ int left, right;
+ };
+
+ int i, j, k, n, left, right;
+ Resample_Real total_weight;
+ Resample_Real xscale, center, half_width, weight;
+ Contrib_List* Pcontrib;
+ Contrib* Pcpool;
+ Contrib* Pcpool_next;
+ Contrib_Bounds* Pcontrib_bounds;
+
+ if ((Pcontrib = (Contrib_List*)calloc(dst_x, sizeof(Contrib_List))) == NULL)
+ return NULL;
+
+ Pcontrib_bounds = (Contrib_Bounds*)calloc(dst_x, sizeof(Contrib_Bounds));
+ if (!Pcontrib_bounds)
+ {
+ free(Pcontrib);
+ return (NULL);
+ }
+
+ const Resample_Real oo_filter_scale = 1.0f / filter_scale;
+
+ const Resample_Real NUDGE = 0.5f;
+ xscale = dst_x / (Resample_Real)src_x;
+
+ if (xscale < 1.0f)
+ {
+ int total;
+ (void)total;
+
+ // Handle case when there are fewer destination samples than source samples (downsampling/minification).
+
+ // stretched half width of filter
+ half_width = (filter_support / xscale) * filter_scale;
+
+ // Find the range of source sample(s) that will contribute to each destination sample.
+
+ for (i = 0, n = 0; i < dst_x; i++)
+ {
+ // Convert from discrete to continuous coordinates, scale, then convert back to discrete.
+ center = ((Resample_Real)i + NUDGE) / xscale;
+ center -= NUDGE;
+ center += src_ofs;
+
+ left = cast_to_int((Resample_Real)floor(center - half_width));
+ right = cast_to_int((Resample_Real)ceil(center + half_width));
+
+ Pcontrib_bounds[i].center = center;
+ Pcontrib_bounds[i].left = left;
+ Pcontrib_bounds[i].right = right;
+
+ n += (right - left + 1);
+ }
+
+ // Allocate memory for contributors.
+
+ if ((n == 0) || ((Pcpool = (Contrib*)calloc(n, sizeof(Contrib))) == NULL))
+ {
+ free(Pcontrib);
+ free(Pcontrib_bounds);
+ return NULL;
+ }
+ total = n;
+
+ Pcpool_next = Pcpool;
+
+ // Create the list of source samples which contribute to each destination sample.
+
+ for (i = 0; i < dst_x; i++)
+ {
+ int max_k = -1;
+ Resample_Real max_w = -1e+20f;
+
+ center = Pcontrib_bounds[i].center;
+ left = Pcontrib_bounds[i].left;
+ right = Pcontrib_bounds[i].right;
+
+ Pcontrib[i].n = 0;
+ Pcontrib[i].p = Pcpool_next;
+ Pcpool_next += (right - left + 1);
+ assert((Pcpool_next - Pcpool) <= total);
+
+ total_weight = 0;
+
+ for (j = left; j <= right; j++)
+ total_weight += (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale);
+ const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight);
+
+ total_weight = 0;
+
+#if RESAMPLER_DEBUG
+ printf("%i: ", i);
+#endif
+
+ for (j = left; j <= right; j++)
+ {
+ weight = (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale) * norm;
+ if (weight == 0.0f)
+ continue;
+
+ n = reflect(j, src_x, boundary_op);
+
+#if RESAMPLER_DEBUG
+ printf("%i(%f), ", n, weight);
+#endif
+
+ // Increment the number of source samples which contribute to the current destination sample.
+
+ k = Pcontrib[i].n++;
+
+ Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */
+ Pcontrib[i].p[k].weight = weight; /* store src sample weight */
+
+ total_weight += weight; /* total weight of all contributors */
+
+ if (weight > max_w)
+ {
+ max_w = weight;
+ max_k = k;
+ }
+ }
+
+#if RESAMPLER_DEBUG
+ printf("\n\n");
+#endif
+
+ //assert(Pcontrib[i].n);
+ //assert(max_k != -1);
+ if ((max_k == -1) || (Pcontrib[i].n == 0))
+ {
+ free(Pcpool);
+ free(Pcontrib);
+ free(Pcontrib_bounds);
+ return NULL;
+ }
+
+ if (total_weight != 1.0f)
+ Pcontrib[i].p[max_k].weight += 1.0f - total_weight;
+ }
+ }
+ else
+ {
+ // Handle case when there are more destination samples than source samples (upsampling).
+
+ half_width = filter_support * filter_scale;
+
+ // Find the source sample(s) that contribute to each destination sample.
+
+ for (i = 0, n = 0; i < dst_x; i++)
+ {
+ // Convert from discrete to continuous coordinates, scale, then convert back to discrete.
+ center = ((Resample_Real)i + NUDGE) / xscale;
+ center -= NUDGE;
+ center += src_ofs;
+
+ left = cast_to_int((Resample_Real)floor(center - half_width));
+ right = cast_to_int((Resample_Real)ceil(center + half_width));
+
+ Pcontrib_bounds[i].center = center;
+ Pcontrib_bounds[i].left = left;
+ Pcontrib_bounds[i].right = right;
+
+ n += (right - left + 1);
+ }
+
+ /* Allocate memory for contributors. */
+
+ int total = n;
+ if ((total == 0) || ((Pcpool = (Contrib*)calloc(total, sizeof(Contrib))) == NULL))
+ {
+ free(Pcontrib);
+ free(Pcontrib_bounds);
+ return NULL;
+ }
+
+ Pcpool_next = Pcpool;
+
+ // Create the list of source samples which contribute to each destination sample.
+
+ for (i = 0; i < dst_x; i++)
+ {
+ int max_k = -1;
+ Resample_Real max_w = -1e+20f;
+
+ center = Pcontrib_bounds[i].center;
+ left = Pcontrib_bounds[i].left;
+ right = Pcontrib_bounds[i].right;
+
+ Pcontrib[i].n = 0;
+ Pcontrib[i].p = Pcpool_next;
+ Pcpool_next += (right - left + 1);
+ assert((Pcpool_next - Pcpool) <= total);
+
+ total_weight = 0;
+ for (j = left; j <= right; j++)
+ total_weight += (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale);
+
+ const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight);
+
+ total_weight = 0;
+
+#if RESAMPLER_DEBUG
+ printf("%i: ", i);
+#endif
+
+ for (j = left; j <= right; j++)
+ {
+ weight = (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale) * norm;
+ if (weight == 0.0f)
+ continue;
+
+ n = reflect(j, src_x, boundary_op);
+
+#if RESAMPLER_DEBUG
+ printf("%i(%f), ", n, weight);
+#endif
+
+ // Increment the number of source samples which contribute to the current destination sample.
+
+ k = Pcontrib[i].n++;
+
+ Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */
+ Pcontrib[i].p[k].weight = weight; /* store src sample weight */
+
+ total_weight += weight; /* total weight of all contributors */
+
+ if (weight > max_w)
+ {
+ max_w = weight;
+ max_k = k;
+ }
+ }
+
+#if RESAMPLER_DEBUG
+ printf("\n\n");
+#endif
+
+ //assert(Pcontrib[i].n);
+ //assert(max_k != -1);
+
+ if ((max_k == -1) || (Pcontrib[i].n == 0))
+ {
+ free(Pcpool);
+ free(Pcontrib);
+ free(Pcontrib_bounds);
+ return NULL;
+ }
+
+ if (total_weight != 1.0f)
+ Pcontrib[i].p[max_k].weight += 1.0f - total_weight;
+ }
+ }
+
+#if RESAMPLER_DEBUG
+ printf("*******\n");
+#endif
+
+ free(Pcontrib_bounds);
+
+ return Pcontrib;
+ }
+
+ void Resampler::resample_x(Sample * Pdst, const Sample * Psrc)
+ {
+ assert(Pdst);
+ assert(Psrc);
+
+ int i, j;
+ Sample total;
+ Contrib_List* Pclist = m_Pclist_x;
+ Contrib* p;
+
+ for (i = m_resample_dst_x; i > 0; i--, Pclist++)
+ {
+#if BASISU_RESAMPLER_DEBUG_OPS
+ total_ops += Pclist->n;
+#endif
+
+ for (j = Pclist->n, p = Pclist->p, total = 0; j > 0; j--, p++)
+ total += Psrc[p->pixel] * p->weight;
+
+ *Pdst++ = total;
+ }
+ }
+
+ void Resampler::scale_y_mov(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x)
+ {
+ int i;
+
+#if BASISU_RESAMPLER_DEBUG_OPS
+ total_ops += dst_x;
+#endif
+
+ // Not += because temp buf wasn't cleared.
+ for (i = dst_x; i > 0; i--)
+ * Ptmp++ = *Psrc++ * weight;
+ }
+
+ void Resampler::scale_y_add(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x)
+ {
+#if BASISU_RESAMPLER_DEBUG_OPS
+ total_ops += dst_x;
+#endif
+
+ for (int i = dst_x; i > 0; i--)
+ (*Ptmp++) += *Psrc++ * weight;
+ }
+
+ void Resampler::clamp(Sample * Pdst, int n)
+ {
+ while (n > 0)
+ {
+ Sample x = *Pdst;
+ *Pdst++ = clamp_sample(x);
+ n--;
+ }
+ }
+
+ void Resampler::resample_y(Sample * Pdst)
+ {
+ int i, j;
+ Sample* Psrc;
+ Contrib_List* Pclist = &m_Pclist_y[m_cur_dst_y];
+
+ Sample* Ptmp = m_delay_x_resample ? m_Ptmp_buf : Pdst;
+ assert(Ptmp);
+
+ /* Process each contributor. */
+
+ for (i = 0; i < Pclist->n; i++)
+ {
+ // locate the contributor's location in the scan buffer -- the contributor must always be found!
+ for (j = 0; j < MAX_SCAN_BUF_SIZE; j++)
+ if (m_Pscan_buf->scan_buf_y[j] == Pclist->p[i].pixel)
+ break;
+
+ assert(j < MAX_SCAN_BUF_SIZE);
+
+ Psrc = m_Pscan_buf->scan_buf_l[j];
+
+ if (!i)
+ scale_y_mov(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x);
+ else
+ scale_y_add(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x);
+
+ /* If this source line doesn't contribute to any
+ * more destination lines then mark the scanline buffer slot
+ * which holds this source line as free.
+ * (The max. number of slots used depends on the Y
+ * axis sampling factor and the scaled filter width.)
+ */
+
+ if (--m_Psrc_y_count[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] == 0)
+ {
+ m_Psrc_y_flag[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] = false;
+ m_Pscan_buf->scan_buf_y[j] = -1;
+ }
+ }
+
+ /* Now generate the destination line */
+
+ if (m_delay_x_resample) // Was X resampling delayed until after Y resampling?
+ {
+ assert(Pdst != Ptmp);
+ resample_x(Pdst, Ptmp);
+ }
+ else
+ {
+ assert(Pdst == Ptmp);
+ }
+
+ if (m_lo < m_hi)
+ clamp(Pdst, m_resample_dst_x);
+ }
+
+ bool Resampler::put_line(const Sample * Psrc)
+ {
+ int i;
+
+ if (m_cur_src_y >= m_resample_src_y)
+ return false;
+
+ /* Does this source line contribute
+ * to any destination line? if not,
+ * exit now.
+ */
+
+ if (!m_Psrc_y_count[resampler_range_check(m_cur_src_y, m_resample_src_y)])
+ {
+ m_cur_src_y++;
+ return true;
+ }
+
+ /* Find an empty slot in the scanline buffer. (FIXME: Perf. is terrible here with extreme scaling ratios.) */
+
+ for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
+ if (m_Pscan_buf->scan_buf_y[i] == -1)
+ break;
+
+ /* If the buffer is full, exit with an error. */
+
+ if (i == MAX_SCAN_BUF_SIZE)
+ {
+ m_status = STATUS_SCAN_BUFFER_FULL;
+ return false;
+ }
+
+ m_Psrc_y_flag[resampler_range_check(m_cur_src_y, m_resample_src_y)] = true;
+ m_Pscan_buf->scan_buf_y[i] = m_cur_src_y;
+
+ /* Does this slot have any memory allocated to it? */
+
+ if (!m_Pscan_buf->scan_buf_l[i])
+ {
+ if ((m_Pscan_buf->scan_buf_l[i] = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return false;
+ }
+ }
+
+ // Resampling on the X axis first?
+ if (m_delay_x_resample)
+ {
+ assert(m_intermediate_x == m_resample_src_x);
+
+ // Y-X resampling order
+ memcpy(m_Pscan_buf->scan_buf_l[i], Psrc, m_intermediate_x * sizeof(Sample));
+ }
+ else
+ {
+ assert(m_intermediate_x == m_resample_dst_x);
+
+ // X-Y resampling order
+ resample_x(m_Pscan_buf->scan_buf_l[i], Psrc);
+ }
+
+ m_cur_src_y++;
+
+ return true;
+ }
+
+ const Resampler::Sample* Resampler::get_line()
+ {
+ int i;
+
+ /* If all the destination lines have been
+ * generated, then always return NULL.
+ */
+
+ if (m_cur_dst_y == m_resample_dst_y)
+ return NULL;
+
+ /* Check to see if all the required
+ * contributors are present, if not,
+ * return NULL.
+ */
+
+ for (i = 0; i < m_Pclist_y[m_cur_dst_y].n; i++)
+ if (!m_Psrc_y_flag[resampler_range_check(m_Pclist_y[m_cur_dst_y].p[i].pixel, m_resample_src_y)])
+ return NULL;
+
+ resample_y(m_Pdst_buf);
+
+ m_cur_dst_y++;
+
+ return m_Pdst_buf;
+ }
+
+ Resampler::~Resampler()
+ {
+ int i;
+
+#if BASISU_RESAMPLER_DEBUG_OPS
+ printf("actual ops: %i\n", total_ops);
+#endif
+
+ free(m_Pdst_buf);
+ m_Pdst_buf = NULL;
+
+ if (m_Ptmp_buf)
+ {
+ free(m_Ptmp_buf);
+ m_Ptmp_buf = NULL;
+ }
+
+ /* Don't deallocate a contibutor list
+ * if the user passed us one of their own.
+ */
+
+ if ((m_Pclist_x) && (!m_clist_x_forced))
+ {
+ free(m_Pclist_x->p);
+ free(m_Pclist_x);
+ m_Pclist_x = NULL;
+ }
+
+ if ((m_Pclist_y) && (!m_clist_y_forced))
+ {
+ free(m_Pclist_y->p);
+ free(m_Pclist_y);
+ m_Pclist_y = NULL;
+ }
+
+ free(m_Psrc_y_count);
+ m_Psrc_y_count = NULL;
+
+ free(m_Psrc_y_flag);
+ m_Psrc_y_flag = NULL;
+
+ if (m_Pscan_buf)
+ {
+ for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
+ free(m_Pscan_buf->scan_buf_l[i]);
+
+ free(m_Pscan_buf);
+ m_Pscan_buf = NULL;
+ }
+ }
+
+ void Resampler::restart()
+ {
+ if (STATUS_OKAY != m_status)
+ return;
+
+ m_cur_src_y = m_cur_dst_y = 0;
+
+ int i, j;
+ for (i = 0; i < m_resample_src_y; i++)
+ {
+ m_Psrc_y_count[i] = 0;
+ m_Psrc_y_flag[i] = false;
+ }
+
+ for (i = 0; i < m_resample_dst_y; i++)
+ {
+ for (j = 0; j < m_Pclist_y[i].n; j++)
+ m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++;
+ }
+
+ for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
+ {
+ m_Pscan_buf->scan_buf_y[i] = -1;
+
+ free(m_Pscan_buf->scan_buf_l[i]);
+ m_Pscan_buf->scan_buf_l[i] = NULL;
+ }
+ }
+
+ Resampler::Resampler(int src_x, int src_y,
+ int dst_x, int dst_y,
+ Boundary_Op boundary_op,
+ Resample_Real sample_low, Resample_Real sample_high,
+ const char* Pfilter_name,
+ Contrib_List * Pclist_x,
+ Contrib_List * Pclist_y,
+ Resample_Real filter_x_scale,
+ Resample_Real filter_y_scale,
+ Resample_Real src_x_ofs,
+ Resample_Real src_y_ofs)
+ {
+ int i, j;
+ Resample_Real support, (*func)(Resample_Real);
+
+ assert(src_x > 0);
+ assert(src_y > 0);
+ assert(dst_x > 0);
+ assert(dst_y > 0);
+
+#if BASISU_RESAMPLER_DEBUG_OPS
+ total_ops = 0;
+#endif
+
+ m_lo = sample_low;
+ m_hi = sample_high;
+
+ m_delay_x_resample = false;
+ m_intermediate_x = 0;
+ m_Pdst_buf = NULL;
+ m_Ptmp_buf = NULL;
+ m_clist_x_forced = false;
+ m_Pclist_x = NULL;
+ m_clist_y_forced = false;
+ m_Pclist_y = NULL;
+ m_Psrc_y_count = NULL;
+ m_Psrc_y_flag = NULL;
+ m_Pscan_buf = NULL;
+ m_status = STATUS_OKAY;
+
+ m_resample_src_x = src_x;
+ m_resample_src_y = src_y;
+ m_resample_dst_x = dst_x;
+ m_resample_dst_y = dst_y;
+
+ m_boundary_op = boundary_op;
+
+ if ((m_Pdst_buf = (Sample*)malloc(m_resample_dst_x * sizeof(Sample))) == NULL)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return;
+ }
+
+ // Find the specified filter.
+
+ if (Pfilter_name == NULL)
+ Pfilter_name = BASISU_RESAMPLER_DEFAULT_FILTER;
+
+ for (i = 0; i < g_num_resample_filters; i++)
+ if (strcmp(Pfilter_name, g_resample_filters[i].name) == 0)
+ break;
+
+ if (i == g_num_resample_filters)
+ {
+ m_status = STATUS_BAD_FILTER_NAME;
+ return;
+ }
+
+ func = g_resample_filters[i].func;
+ support = g_resample_filters[i].support;
+
+ /* Create contributor lists, unless the user supplied custom lists. */
+
+ if (!Pclist_x)
+ {
+ m_Pclist_x = make_clist(m_resample_src_x, m_resample_dst_x, m_boundary_op, func, support, filter_x_scale, src_x_ofs);
+ if (!m_Pclist_x)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return;
+ }
+ }
+ else
+ {
+ m_Pclist_x = Pclist_x;
+ m_clist_x_forced = true;
+ }
+
+ if (!Pclist_y)
+ {
+ m_Pclist_y = make_clist(m_resample_src_y, m_resample_dst_y, m_boundary_op, func, support, filter_y_scale, src_y_ofs);
+ if (!m_Pclist_y)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return;
+ }
+ }
+ else
+ {
+ m_Pclist_y = Pclist_y;
+ m_clist_y_forced = true;
+ }
+
+ if ((m_Psrc_y_count = (int*)calloc(m_resample_src_y, sizeof(int))) == NULL)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return;
+ }
+
+ if ((m_Psrc_y_flag = (unsigned char*)calloc(m_resample_src_y, sizeof(unsigned char))) == NULL)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return;
+ }
+
+ // Count how many times each source line contributes to a destination line.
+
+ for (i = 0; i < m_resample_dst_y; i++)
+ for (j = 0; j < m_Pclist_y[i].n; j++)
+ m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++;
+
+ if ((m_Pscan_buf = (Scan_Buf*)malloc(sizeof(Scan_Buf))) == NULL)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return;
+ }
+
+ for (i = 0; i < MAX_SCAN_BUF_SIZE; i++)
+ {
+ m_Pscan_buf->scan_buf_y[i] = -1;
+ m_Pscan_buf->scan_buf_l[i] = NULL;
+ }
+
+ m_cur_src_y = m_cur_dst_y = 0;
+ {
+ // Determine which axis to resample first by comparing the number of multiplies required
+ // for each possibility.
+ int x_ops = count_ops(m_Pclist_x, m_resample_dst_x);
+ int y_ops = count_ops(m_Pclist_y, m_resample_dst_y);
+
+ // Hack 10/2000: Weight Y axis ops a little more than X axis ops.
+ // (Y axis ops use more cache resources.)
+ int xy_ops = x_ops * m_resample_src_y +
+ (4 * y_ops * m_resample_dst_x) / 3;
+
+ int yx_ops = (4 * y_ops * m_resample_src_x) / 3 +
+ x_ops * m_resample_dst_y;
+
+#if BASISU_RESAMPLER_DEBUG_OPS
+ printf("src: %i %i\n", m_resample_src_x, m_resample_src_y);
+ printf("dst: %i %i\n", m_resample_dst_x, m_resample_dst_y);
+ printf("x_ops: %i\n", x_ops);
+ printf("y_ops: %i\n", y_ops);
+ printf("xy_ops: %i\n", xy_ops);
+ printf("yx_ops: %i\n", yx_ops);
+#endif
+
+ // Now check which resample order is better. In case of a tie, choose the order
+ // which buffers the least amount of data.
+ if ((xy_ops > yx_ops) ||
+ ((xy_ops == yx_ops) && (m_resample_src_x < m_resample_dst_x)))
+ {
+ m_delay_x_resample = true;
+ m_intermediate_x = m_resample_src_x;
+ }
+ else
+ {
+ m_delay_x_resample = false;
+ m_intermediate_x = m_resample_dst_x;
+ }
+#if BASISU_RESAMPLER_DEBUG_OPS
+ printf("delaying: %i\n", m_delay_x_resample);
+#endif
+ }
+
+ if (m_delay_x_resample)
+ {
+ if ((m_Ptmp_buf = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL)
+ {
+ m_status = STATUS_OUT_OF_MEMORY;
+ return;
+ }
+ }
+ }
+
+ void Resampler::get_clists(Contrib_List * *ptr_clist_x, Contrib_List * *ptr_clist_y)
+ {
+ if (ptr_clist_x)
+ * ptr_clist_x = m_Pclist_x;
+
+ if (ptr_clist_y)
+ * ptr_clist_y = m_Pclist_y;
+ }
+
+ int Resampler::get_filter_num()
+ {
+ return g_num_resample_filters;
+ }
+
+ const char* Resampler::get_filter_name(int filter_num)
+ {
+ if ((filter_num < 0) || (filter_num >= g_num_resample_filters))
+ return NULL;
+ else
+ return g_resample_filters[filter_num].name;
+ }
+
+} // namespace basisu