diff options
Diffstat (limited to 'thirdparty/basis_universal/basisu_resampler.cpp')
-rw-r--r-- | thirdparty/basis_universal/basisu_resampler.cpp | 852 |
1 files changed, 852 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/basisu_resampler.cpp b/thirdparty/basis_universal/basisu_resampler.cpp new file mode 100644 index 0000000000..e193ce83ff --- /dev/null +++ b/thirdparty/basis_universal/basisu_resampler.cpp @@ -0,0 +1,852 @@ +// basisu_resampler.cpp +// Copyright (C) 2019 Binomial LLC. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include "basisu_resampler.h" +#include "basisu_resampler_filters.h" + +#ifndef max +#define max(a, b) (((a) > (b)) ? (a) : (b)) +#endif + +#ifndef min +#define min(a, b) (((a) < (b)) ? (a) : (b)) +#endif + +#define RESAMPLER_DEBUG 0 + +namespace basisu +{ + static inline int resampler_range_check(int v, int h) + { + BASISU_NOTE_UNUSED(h); + assert((v >= 0) && (v < h)); + return v; + } + + // Float to int cast with truncation. + static inline int cast_to_int(Resample_Real i) + { + return (int)i; + } + + // Ensure that the contributing source sample is within bounds. If not, reflect, clamp, or wrap. + int Resampler::reflect(const int j, const int src_x, const Boundary_Op boundary_op) + { + int n; + + if (j < 0) + { + if (boundary_op == BOUNDARY_REFLECT) + { + n = -j; + + if (n >= src_x) + n = src_x - 1; + } + else if (boundary_op == BOUNDARY_WRAP) + n = posmod(j, src_x); + else + n = 0; + } + else if (j >= src_x) + { + if (boundary_op == BOUNDARY_REFLECT) + { + n = (src_x - j) + (src_x - 1); + + if (n < 0) + n = 0; + } + else if (boundary_op == BOUNDARY_WRAP) + n = posmod(j, src_x); + else + n = src_x - 1; + } + else + n = j; + + return n; + } + + // The make_clist() method generates, for all destination samples, + // the list of all source samples with non-zero weighted contributions. + Resampler::Contrib_List * Resampler::make_clist( + int src_x, int dst_x, Boundary_Op boundary_op, + Resample_Real(*Pfilter)(Resample_Real), + Resample_Real filter_support, + Resample_Real filter_scale, + Resample_Real src_ofs) + { + struct Contrib_Bounds + { + // The center of the range in DISCRETE coordinates (pixel center = 0.0f). + Resample_Real center; + int left, right; + }; + + int i, j, k, n, left, right; + Resample_Real total_weight; + Resample_Real xscale, center, half_width, weight; + Contrib_List* Pcontrib; + Contrib* Pcpool; + Contrib* Pcpool_next; + Contrib_Bounds* Pcontrib_bounds; + + if ((Pcontrib = (Contrib_List*)calloc(dst_x, sizeof(Contrib_List))) == NULL) + return NULL; + + Pcontrib_bounds = (Contrib_Bounds*)calloc(dst_x, sizeof(Contrib_Bounds)); + if (!Pcontrib_bounds) + { + free(Pcontrib); + return (NULL); + } + + const Resample_Real oo_filter_scale = 1.0f / filter_scale; + + const Resample_Real NUDGE = 0.5f; + xscale = dst_x / (Resample_Real)src_x; + + if (xscale < 1.0f) + { + int total; + (void)total; + + // Handle case when there are fewer destination samples than source samples (downsampling/minification). + + // stretched half width of filter + half_width = (filter_support / xscale) * filter_scale; + + // Find the range of source sample(s) that will contribute to each destination sample. + + for (i = 0, n = 0; i < dst_x; i++) + { + // Convert from discrete to continuous coordinates, scale, then convert back to discrete. + center = ((Resample_Real)i + NUDGE) / xscale; + center -= NUDGE; + center += src_ofs; + + left = cast_to_int((Resample_Real)floor(center - half_width)); + right = cast_to_int((Resample_Real)ceil(center + half_width)); + + Pcontrib_bounds[i].center = center; + Pcontrib_bounds[i].left = left; + Pcontrib_bounds[i].right = right; + + n += (right - left + 1); + } + + // Allocate memory for contributors. + + if ((n == 0) || ((Pcpool = (Contrib*)calloc(n, sizeof(Contrib))) == NULL)) + { + free(Pcontrib); + free(Pcontrib_bounds); + return NULL; + } + total = n; + + Pcpool_next = Pcpool; + + // Create the list of source samples which contribute to each destination sample. + + for (i = 0; i < dst_x; i++) + { + int max_k = -1; + Resample_Real max_w = -1e+20f; + + center = Pcontrib_bounds[i].center; + left = Pcontrib_bounds[i].left; + right = Pcontrib_bounds[i].right; + + Pcontrib[i].n = 0; + Pcontrib[i].p = Pcpool_next; + Pcpool_next += (right - left + 1); + assert((Pcpool_next - Pcpool) <= total); + + total_weight = 0; + + for (j = left; j <= right; j++) + total_weight += (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale); + const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight); + + total_weight = 0; + +#if RESAMPLER_DEBUG + printf("%i: ", i); +#endif + + for (j = left; j <= right; j++) + { + weight = (*Pfilter)((center - (Resample_Real)j) * xscale * oo_filter_scale) * norm; + if (weight == 0.0f) + continue; + + n = reflect(j, src_x, boundary_op); + +#if RESAMPLER_DEBUG + printf("%i(%f), ", n, weight); +#endif + + // Increment the number of source samples which contribute to the current destination sample. + + k = Pcontrib[i].n++; + + Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */ + Pcontrib[i].p[k].weight = weight; /* store src sample weight */ + + total_weight += weight; /* total weight of all contributors */ + + if (weight > max_w) + { + max_w = weight; + max_k = k; + } + } + +#if RESAMPLER_DEBUG + printf("\n\n"); +#endif + + //assert(Pcontrib[i].n); + //assert(max_k != -1); + if ((max_k == -1) || (Pcontrib[i].n == 0)) + { + free(Pcpool); + free(Pcontrib); + free(Pcontrib_bounds); + return NULL; + } + + if (total_weight != 1.0f) + Pcontrib[i].p[max_k].weight += 1.0f - total_weight; + } + } + else + { + // Handle case when there are more destination samples than source samples (upsampling). + + half_width = filter_support * filter_scale; + + // Find the source sample(s) that contribute to each destination sample. + + for (i = 0, n = 0; i < dst_x; i++) + { + // Convert from discrete to continuous coordinates, scale, then convert back to discrete. + center = ((Resample_Real)i + NUDGE) / xscale; + center -= NUDGE; + center += src_ofs; + + left = cast_to_int((Resample_Real)floor(center - half_width)); + right = cast_to_int((Resample_Real)ceil(center + half_width)); + + Pcontrib_bounds[i].center = center; + Pcontrib_bounds[i].left = left; + Pcontrib_bounds[i].right = right; + + n += (right - left + 1); + } + + /* Allocate memory for contributors. */ + + int total = n; + if ((total == 0) || ((Pcpool = (Contrib*)calloc(total, sizeof(Contrib))) == NULL)) + { + free(Pcontrib); + free(Pcontrib_bounds); + return NULL; + } + + Pcpool_next = Pcpool; + + // Create the list of source samples which contribute to each destination sample. + + for (i = 0; i < dst_x; i++) + { + int max_k = -1; + Resample_Real max_w = -1e+20f; + + center = Pcontrib_bounds[i].center; + left = Pcontrib_bounds[i].left; + right = Pcontrib_bounds[i].right; + + Pcontrib[i].n = 0; + Pcontrib[i].p = Pcpool_next; + Pcpool_next += (right - left + 1); + assert((Pcpool_next - Pcpool) <= total); + + total_weight = 0; + for (j = left; j <= right; j++) + total_weight += (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale); + + const Resample_Real norm = static_cast<Resample_Real>(1.0f / total_weight); + + total_weight = 0; + +#if RESAMPLER_DEBUG + printf("%i: ", i); +#endif + + for (j = left; j <= right; j++) + { + weight = (*Pfilter)((center - (Resample_Real)j) * oo_filter_scale) * norm; + if (weight == 0.0f) + continue; + + n = reflect(j, src_x, boundary_op); + +#if RESAMPLER_DEBUG + printf("%i(%f), ", n, weight); +#endif + + // Increment the number of source samples which contribute to the current destination sample. + + k = Pcontrib[i].n++; + + Pcontrib[i].p[k].pixel = (unsigned short)n; /* store src sample number */ + Pcontrib[i].p[k].weight = weight; /* store src sample weight */ + + total_weight += weight; /* total weight of all contributors */ + + if (weight > max_w) + { + max_w = weight; + max_k = k; + } + } + +#if RESAMPLER_DEBUG + printf("\n\n"); +#endif + + //assert(Pcontrib[i].n); + //assert(max_k != -1); + + if ((max_k == -1) || (Pcontrib[i].n == 0)) + { + free(Pcpool); + free(Pcontrib); + free(Pcontrib_bounds); + return NULL; + } + + if (total_weight != 1.0f) + Pcontrib[i].p[max_k].weight += 1.0f - total_weight; + } + } + +#if RESAMPLER_DEBUG + printf("*******\n"); +#endif + + free(Pcontrib_bounds); + + return Pcontrib; + } + + void Resampler::resample_x(Sample * Pdst, const Sample * Psrc) + { + assert(Pdst); + assert(Psrc); + + int i, j; + Sample total; + Contrib_List* Pclist = m_Pclist_x; + Contrib* p; + + for (i = m_resample_dst_x; i > 0; i--, Pclist++) + { +#if BASISU_RESAMPLER_DEBUG_OPS + total_ops += Pclist->n; +#endif + + for (j = Pclist->n, p = Pclist->p, total = 0; j > 0; j--, p++) + total += Psrc[p->pixel] * p->weight; + + *Pdst++ = total; + } + } + + void Resampler::scale_y_mov(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x) + { + int i; + +#if BASISU_RESAMPLER_DEBUG_OPS + total_ops += dst_x; +#endif + + // Not += because temp buf wasn't cleared. + for (i = dst_x; i > 0; i--) + * Ptmp++ = *Psrc++ * weight; + } + + void Resampler::scale_y_add(Sample * Ptmp, const Sample * Psrc, Resample_Real weight, int dst_x) + { +#if BASISU_RESAMPLER_DEBUG_OPS + total_ops += dst_x; +#endif + + for (int i = dst_x; i > 0; i--) + (*Ptmp++) += *Psrc++ * weight; + } + + void Resampler::clamp(Sample * Pdst, int n) + { + while (n > 0) + { + Sample x = *Pdst; + *Pdst++ = clamp_sample(x); + n--; + } + } + + void Resampler::resample_y(Sample * Pdst) + { + int i, j; + Sample* Psrc; + Contrib_List* Pclist = &m_Pclist_y[m_cur_dst_y]; + + Sample* Ptmp = m_delay_x_resample ? m_Ptmp_buf : Pdst; + assert(Ptmp); + + /* Process each contributor. */ + + for (i = 0; i < Pclist->n; i++) + { + // locate the contributor's location in the scan buffer -- the contributor must always be found! + for (j = 0; j < MAX_SCAN_BUF_SIZE; j++) + if (m_Pscan_buf->scan_buf_y[j] == Pclist->p[i].pixel) + break; + + assert(j < MAX_SCAN_BUF_SIZE); + + Psrc = m_Pscan_buf->scan_buf_l[j]; + + if (!i) + scale_y_mov(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x); + else + scale_y_add(Ptmp, Psrc, Pclist->p[i].weight, m_intermediate_x); + + /* If this source line doesn't contribute to any + * more destination lines then mark the scanline buffer slot + * which holds this source line as free. + * (The max. number of slots used depends on the Y + * axis sampling factor and the scaled filter width.) + */ + + if (--m_Psrc_y_count[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] == 0) + { + m_Psrc_y_flag[resampler_range_check(Pclist->p[i].pixel, m_resample_src_y)] = false; + m_Pscan_buf->scan_buf_y[j] = -1; + } + } + + /* Now generate the destination line */ + + if (m_delay_x_resample) // Was X resampling delayed until after Y resampling? + { + assert(Pdst != Ptmp); + resample_x(Pdst, Ptmp); + } + else + { + assert(Pdst == Ptmp); + } + + if (m_lo < m_hi) + clamp(Pdst, m_resample_dst_x); + } + + bool Resampler::put_line(const Sample * Psrc) + { + int i; + + if (m_cur_src_y >= m_resample_src_y) + return false; + + /* Does this source line contribute + * to any destination line? if not, + * exit now. + */ + + if (!m_Psrc_y_count[resampler_range_check(m_cur_src_y, m_resample_src_y)]) + { + m_cur_src_y++; + return true; + } + + /* Find an empty slot in the scanline buffer. (FIXME: Perf. is terrible here with extreme scaling ratios.) */ + + for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) + if (m_Pscan_buf->scan_buf_y[i] == -1) + break; + + /* If the buffer is full, exit with an error. */ + + if (i == MAX_SCAN_BUF_SIZE) + { + m_status = STATUS_SCAN_BUFFER_FULL; + return false; + } + + m_Psrc_y_flag[resampler_range_check(m_cur_src_y, m_resample_src_y)] = true; + m_Pscan_buf->scan_buf_y[i] = m_cur_src_y; + + /* Does this slot have any memory allocated to it? */ + + if (!m_Pscan_buf->scan_buf_l[i]) + { + if ((m_Pscan_buf->scan_buf_l[i] = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL) + { + m_status = STATUS_OUT_OF_MEMORY; + return false; + } + } + + // Resampling on the X axis first? + if (m_delay_x_resample) + { + assert(m_intermediate_x == m_resample_src_x); + + // Y-X resampling order + memcpy(m_Pscan_buf->scan_buf_l[i], Psrc, m_intermediate_x * sizeof(Sample)); + } + else + { + assert(m_intermediate_x == m_resample_dst_x); + + // X-Y resampling order + resample_x(m_Pscan_buf->scan_buf_l[i], Psrc); + } + + m_cur_src_y++; + + return true; + } + + const Resampler::Sample* Resampler::get_line() + { + int i; + + /* If all the destination lines have been + * generated, then always return NULL. + */ + + if (m_cur_dst_y == m_resample_dst_y) + return NULL; + + /* Check to see if all the required + * contributors are present, if not, + * return NULL. + */ + + for (i = 0; i < m_Pclist_y[m_cur_dst_y].n; i++) + if (!m_Psrc_y_flag[resampler_range_check(m_Pclist_y[m_cur_dst_y].p[i].pixel, m_resample_src_y)]) + return NULL; + + resample_y(m_Pdst_buf); + + m_cur_dst_y++; + + return m_Pdst_buf; + } + + Resampler::~Resampler() + { + int i; + +#if BASISU_RESAMPLER_DEBUG_OPS + printf("actual ops: %i\n", total_ops); +#endif + + free(m_Pdst_buf); + m_Pdst_buf = NULL; + + if (m_Ptmp_buf) + { + free(m_Ptmp_buf); + m_Ptmp_buf = NULL; + } + + /* Don't deallocate a contibutor list + * if the user passed us one of their own. + */ + + if ((m_Pclist_x) && (!m_clist_x_forced)) + { + free(m_Pclist_x->p); + free(m_Pclist_x); + m_Pclist_x = NULL; + } + + if ((m_Pclist_y) && (!m_clist_y_forced)) + { + free(m_Pclist_y->p); + free(m_Pclist_y); + m_Pclist_y = NULL; + } + + free(m_Psrc_y_count); + m_Psrc_y_count = NULL; + + free(m_Psrc_y_flag); + m_Psrc_y_flag = NULL; + + if (m_Pscan_buf) + { + for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) + free(m_Pscan_buf->scan_buf_l[i]); + + free(m_Pscan_buf); + m_Pscan_buf = NULL; + } + } + + void Resampler::restart() + { + if (STATUS_OKAY != m_status) + return; + + m_cur_src_y = m_cur_dst_y = 0; + + int i, j; + for (i = 0; i < m_resample_src_y; i++) + { + m_Psrc_y_count[i] = 0; + m_Psrc_y_flag[i] = false; + } + + for (i = 0; i < m_resample_dst_y; i++) + { + for (j = 0; j < m_Pclist_y[i].n; j++) + m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++; + } + + for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) + { + m_Pscan_buf->scan_buf_y[i] = -1; + + free(m_Pscan_buf->scan_buf_l[i]); + m_Pscan_buf->scan_buf_l[i] = NULL; + } + } + + Resampler::Resampler(int src_x, int src_y, + int dst_x, int dst_y, + Boundary_Op boundary_op, + Resample_Real sample_low, Resample_Real sample_high, + const char* Pfilter_name, + Contrib_List * Pclist_x, + Contrib_List * Pclist_y, + Resample_Real filter_x_scale, + Resample_Real filter_y_scale, + Resample_Real src_x_ofs, + Resample_Real src_y_ofs) + { + int i, j; + Resample_Real support, (*func)(Resample_Real); + + assert(src_x > 0); + assert(src_y > 0); + assert(dst_x > 0); + assert(dst_y > 0); + +#if BASISU_RESAMPLER_DEBUG_OPS + total_ops = 0; +#endif + + m_lo = sample_low; + m_hi = sample_high; + + m_delay_x_resample = false; + m_intermediate_x = 0; + m_Pdst_buf = NULL; + m_Ptmp_buf = NULL; + m_clist_x_forced = false; + m_Pclist_x = NULL; + m_clist_y_forced = false; + m_Pclist_y = NULL; + m_Psrc_y_count = NULL; + m_Psrc_y_flag = NULL; + m_Pscan_buf = NULL; + m_status = STATUS_OKAY; + + m_resample_src_x = src_x; + m_resample_src_y = src_y; + m_resample_dst_x = dst_x; + m_resample_dst_y = dst_y; + + m_boundary_op = boundary_op; + + if ((m_Pdst_buf = (Sample*)malloc(m_resample_dst_x * sizeof(Sample))) == NULL) + { + m_status = STATUS_OUT_OF_MEMORY; + return; + } + + // Find the specified filter. + + if (Pfilter_name == NULL) + Pfilter_name = BASISU_RESAMPLER_DEFAULT_FILTER; + + for (i = 0; i < g_num_resample_filters; i++) + if (strcmp(Pfilter_name, g_resample_filters[i].name) == 0) + break; + + if (i == g_num_resample_filters) + { + m_status = STATUS_BAD_FILTER_NAME; + return; + } + + func = g_resample_filters[i].func; + support = g_resample_filters[i].support; + + /* Create contributor lists, unless the user supplied custom lists. */ + + if (!Pclist_x) + { + m_Pclist_x = make_clist(m_resample_src_x, m_resample_dst_x, m_boundary_op, func, support, filter_x_scale, src_x_ofs); + if (!m_Pclist_x) + { + m_status = STATUS_OUT_OF_MEMORY; + return; + } + } + else + { + m_Pclist_x = Pclist_x; + m_clist_x_forced = true; + } + + if (!Pclist_y) + { + m_Pclist_y = make_clist(m_resample_src_y, m_resample_dst_y, m_boundary_op, func, support, filter_y_scale, src_y_ofs); + if (!m_Pclist_y) + { + m_status = STATUS_OUT_OF_MEMORY; + return; + } + } + else + { + m_Pclist_y = Pclist_y; + m_clist_y_forced = true; + } + + if ((m_Psrc_y_count = (int*)calloc(m_resample_src_y, sizeof(int))) == NULL) + { + m_status = STATUS_OUT_OF_MEMORY; + return; + } + + if ((m_Psrc_y_flag = (unsigned char*)calloc(m_resample_src_y, sizeof(unsigned char))) == NULL) + { + m_status = STATUS_OUT_OF_MEMORY; + return; + } + + // Count how many times each source line contributes to a destination line. + + for (i = 0; i < m_resample_dst_y; i++) + for (j = 0; j < m_Pclist_y[i].n; j++) + m_Psrc_y_count[resampler_range_check(m_Pclist_y[i].p[j].pixel, m_resample_src_y)]++; + + if ((m_Pscan_buf = (Scan_Buf*)malloc(sizeof(Scan_Buf))) == NULL) + { + m_status = STATUS_OUT_OF_MEMORY; + return; + } + + for (i = 0; i < MAX_SCAN_BUF_SIZE; i++) + { + m_Pscan_buf->scan_buf_y[i] = -1; + m_Pscan_buf->scan_buf_l[i] = NULL; + } + + m_cur_src_y = m_cur_dst_y = 0; + { + // Determine which axis to resample first by comparing the number of multiplies required + // for each possibility. + int x_ops = count_ops(m_Pclist_x, m_resample_dst_x); + int y_ops = count_ops(m_Pclist_y, m_resample_dst_y); + + // Hack 10/2000: Weight Y axis ops a little more than X axis ops. + // (Y axis ops use more cache resources.) + int xy_ops = x_ops * m_resample_src_y + + (4 * y_ops * m_resample_dst_x) / 3; + + int yx_ops = (4 * y_ops * m_resample_src_x) / 3 + + x_ops * m_resample_dst_y; + +#if BASISU_RESAMPLER_DEBUG_OPS + printf("src: %i %i\n", m_resample_src_x, m_resample_src_y); + printf("dst: %i %i\n", m_resample_dst_x, m_resample_dst_y); + printf("x_ops: %i\n", x_ops); + printf("y_ops: %i\n", y_ops); + printf("xy_ops: %i\n", xy_ops); + printf("yx_ops: %i\n", yx_ops); +#endif + + // Now check which resample order is better. In case of a tie, choose the order + // which buffers the least amount of data. + if ((xy_ops > yx_ops) || + ((xy_ops == yx_ops) && (m_resample_src_x < m_resample_dst_x))) + { + m_delay_x_resample = true; + m_intermediate_x = m_resample_src_x; + } + else + { + m_delay_x_resample = false; + m_intermediate_x = m_resample_dst_x; + } +#if BASISU_RESAMPLER_DEBUG_OPS + printf("delaying: %i\n", m_delay_x_resample); +#endif + } + + if (m_delay_x_resample) + { + if ((m_Ptmp_buf = (Sample*)malloc(m_intermediate_x * sizeof(Sample))) == NULL) + { + m_status = STATUS_OUT_OF_MEMORY; + return; + } + } + } + + void Resampler::get_clists(Contrib_List * *ptr_clist_x, Contrib_List * *ptr_clist_y) + { + if (ptr_clist_x) + * ptr_clist_x = m_Pclist_x; + + if (ptr_clist_y) + * ptr_clist_y = m_Pclist_y; + } + + int Resampler::get_filter_num() + { + return g_num_resample_filters; + } + + const char* Resampler::get_filter_name(int filter_num) + { + if ((filter_num < 0) || (filter_num >= g_num_resample_filters)) + return NULL; + else + return g_resample_filters[filter_num].name; + } + +} // namespace basisu |