diff options
Diffstat (limited to 'thirdparty/basis_universal/basisu_enc.cpp')
-rw-r--r-- | thirdparty/basis_universal/basisu_enc.cpp | 1376 |
1 files changed, 1376 insertions, 0 deletions
diff --git a/thirdparty/basis_universal/basisu_enc.cpp b/thirdparty/basis_universal/basisu_enc.cpp new file mode 100644 index 0000000000..7057c65cf8 --- /dev/null +++ b/thirdparty/basis_universal/basisu_enc.cpp @@ -0,0 +1,1376 @@ +// basisu_enc.cpp +// Copyright (C) 2019 Binomial LLC. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include "basisu_enc.h" +#include "lodepng.h" +#include "basisu_resampler.h" +#include "basisu_resampler_filters.h" +#include "basisu_etc.h" +#include "transcoder/basisu_transcoder.h" + +#if defined(_WIN32) +// For QueryPerformanceCounter/QueryPerformanceFrequency +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#endif + +namespace basisu +{ + uint64_t interval_timer::g_init_ticks, interval_timer::g_freq; + double interval_timer::g_timer_freq; + + uint8_t g_hamming_dist[256] = + { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 + }; + + // Encoder library initialization (just call once at startup) + void basisu_encoder_init() + { + basist::basisu_transcoder_init(); + } + + void error_printf(const char *pFmt, ...) + { + char buf[2048]; + + va_list args; + va_start(args, pFmt); +#ifdef _WIN32 + vsprintf_s(buf, sizeof(buf), pFmt, args); +#else + vsnprintf(buf, sizeof(buf), pFmt, args); +#endif + va_end(args); + + fprintf(stderr, "ERROR: %s", buf); + } + +#if defined(_WIN32) + inline void query_counter(timer_ticks* pTicks) + { + QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks)); + } + inline void query_counter_frequency(timer_ticks* pTicks) + { + QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks)); + } +#elif defined(__APPLE__) +#include <sys/time.h> + inline void query_counter(timer_ticks* pTicks) + { + struct timeval cur_time; + gettimeofday(&cur_time, NULL); + *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); + } + inline void query_counter_frequency(timer_ticks* pTicks) + { + *pTicks = 1000000; + } +#elif defined(__GNUC__) +#include <sys/timex.h> + inline void query_counter(timer_ticks* pTicks) + { + struct timeval cur_time; + gettimeofday(&cur_time, NULL); + *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); + } + inline void query_counter_frequency(timer_ticks* pTicks) + { + *pTicks = 1000000; + } +#else +#error TODO +#endif + + interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false) + { + if (!g_timer_freq) + init(); + } + + void interval_timer::start() + { + query_counter(&m_start_time); + m_started = true; + m_stopped = false; + } + + void interval_timer::stop() + { + assert(m_started); + query_counter(&m_stop_time); + m_stopped = true; + } + + double interval_timer::get_elapsed_secs() const + { + assert(m_started); + if (!m_started) + return 0; + + timer_ticks stop_time = m_stop_time; + if (!m_stopped) + query_counter(&stop_time); + + timer_ticks delta = stop_time - m_start_time; + return delta * g_timer_freq; + } + + void interval_timer::init() + { + if (!g_timer_freq) + { + query_counter_frequency(&g_freq); + g_timer_freq = 1.0f / g_freq; + query_counter(&g_init_ticks); + } + } + + timer_ticks interval_timer::get_ticks() + { + if (!g_timer_freq) + init(); + timer_ticks ticks; + query_counter(&ticks); + return ticks - g_init_ticks; + } + + double interval_timer::ticks_to_secs(timer_ticks ticks) + { + if (!g_timer_freq) + init(); + return ticks * g_timer_freq; + } + + bool load_png(const char* pFilename, image& img) + { + std::vector<uint8_t> buffer; + unsigned err = lodepng::load_file(buffer, std::string(pFilename)); + if (err) + return false; + + unsigned w = 0, h = 0; + + if (sizeof(void *) == sizeof(uint32_t)) + { + // Inspect the image first on 32-bit builds, to see if the image would require too much memory. + lodepng::State state; + err = lodepng_inspect(&w, &h, &state, &buffer[0], buffer.size()); + if ((err != 0) || (!w) || (!h)) + return false; + + const uint32_t exepected_alloc_size = w * h * sizeof(uint32_t); + + // If the file is too large on 32-bit builds then just bail now, to prevent causing a memory exception. + const uint32_t MAX_ALLOC_SIZE = 250000000; + if (exepected_alloc_size >= MAX_ALLOC_SIZE) + { + error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); + return false; + } + + w = h = 0; + } + + std::vector<uint8_t> out; + err = lodepng::decode(out, w, h, &buffer[0], buffer.size()); + if ((err != 0) || (!w) || (!h)) + return false; + + if (out.size() != (w * h * 4)) + return false; + + img.resize(w, h); + + memcpy(img.get_ptr(), &out[0], out.size()); + + return true; + } + + bool save_png(const char* pFilename, const image & img, uint32_t image_save_flags, uint32_t grayscale_comp) + { + if (!img.get_total_pixels()) + return false; + + std::vector<uint8_t> out; + unsigned err = 0; + + if (image_save_flags & cImageSaveGrayscale) + { + uint8_vec g_pixels(img.get_width() * img.get_height()); + uint8_t *pDst = &g_pixels[0]; + + for (uint32_t y = 0; y < img.get_height(); y++) + for (uint32_t x = 0; x < img.get_width(); x++) + *pDst++ = img(x, y)[grayscale_comp]; + + err = lodepng::encode(out, (const uint8_t*)& g_pixels[0], img.get_width(), img.get_height(), LCT_GREY, 8); + } + else + { + bool has_alpha = img.has_alpha(); + if ((!has_alpha) || ((image_save_flags & cImageSaveIgnoreAlpha) != 0)) + { + uint8_vec rgb_pixels(img.get_width() * 3 * img.get_height()); + uint8_t *pDst = &rgb_pixels[0]; + + for (uint32_t y = 0; y < img.get_height(); y++) + { + for (uint32_t x = 0; x < img.get_width(); x++) + { + const color_rgba& c = img(x, y); + pDst[0] = c.r; + pDst[1] = c.g; + pDst[2] = c.b; + pDst += 3; + } + } + + err = lodepng::encode(out, (const uint8_t*)& rgb_pixels[0], img.get_width(), img.get_height(), LCT_RGB, 8); + } + else + { + err = lodepng::encode(out, (const uint8_t*)img.get_ptr(), img.get_width(), img.get_height(), LCT_RGBA, 8); + } + } + + err = lodepng::save_file(out, std::string(pFilename)); + if (err) + return false; + + return true; + } + + bool read_file_to_vec(const char* pFilename, uint8_vec& data) + { + FILE* pFile = nullptr; +#ifdef _WIN32 + fopen_s(&pFile, pFilename, "rb"); +#else + pFile = fopen(pFilename, "rb"); +#endif + if (!pFile) + return false; + + fseek(pFile, 0, SEEK_END); +#ifdef _WIN32 + int64_t filesize = _ftelli64(pFile); +#else + int64_t filesize = ftello(pFile); +#endif + if (filesize < 0) + { + fclose(pFile); + return false; + } + fseek(pFile, 0, SEEK_SET); + + if (sizeof(size_t) == sizeof(uint32_t)) + { + if (filesize > 0x70000000) + { + // File might be too big to load safely in one alloc + fclose(pFile); + return false; + } + } + + data.resize((size_t)filesize); + + if (filesize) + { + if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize) + { + fclose(pFile); + return false; + } + } + + fclose(pFile); + return true; + } + + bool write_data_to_file(const char* pFilename, const void* pData, size_t len) + { + FILE* pFile = nullptr; +#ifdef _WIN32 + fopen_s(&pFile, pFilename, "wb"); +#else + pFile = fopen(pFilename, "wb"); +#endif + if (!pFile) + return false; + + if (len) + { + if (fwrite(pData, 1, len, pFile) != len) + { + fclose(pFile); + return false; + } + } + + return fclose(pFile) != EOF; + } + + float linear_to_srgb(float l) + { + assert(l >= 0.0f && l <= 1.0f); + if (l < .0031308f) + return saturate(l * 12.92f); + else + return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f); + } + + float srgb_to_linear(float s) + { + assert(s >= 0.0f && s <= 1.0f); + if (s < .04045f) + return saturate(s * (1.0f/12.92f)); + else + return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f)); + } + + bool image_resample(const image &src, image &dst, bool srgb, + const char *pFilter, float filter_scale, + bool wrapping, + uint32_t first_comp, uint32_t num_comps) + { + assert((first_comp + num_comps) <= 4); + + const int cMaxComps = 4; + + const uint32_t src_w = src.get_width(), src_h = src.get_height(); + const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); + + if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) + { + printf("Image is too large!\n"); + return false; + } + + if (!src_w || !src_h || !dst_w || !dst_h) + return false; + + if ((num_comps < 1) || (num_comps > cMaxComps)) + return false; + + if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) + { + printf("Image is too large!\n"); + return false; + } + + if ((src_w == dst_w) && (src_h == dst_h)) + { + dst = src; + return true; + } + + float srgb_to_linear_table[256]; + if (srgb) + { + for (int i = 0; i < 256; ++i) + srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f)); + } + + const int LINEAR_TO_SRGB_TABLE_SIZE = 8192; + uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE]; + + if (srgb) + { + for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i) + linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255); + } + + std::vector<float> samples[cMaxComps]; + Resampler *resamplers[cMaxComps]; + + resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, + wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, + pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); + samples[0].resize(src_w); + + for (uint32_t i = 1; i < num_comps; ++i) + { + resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, + wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, + pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); + samples[i].resize(src_w); + } + + uint32_t dst_y = 0; + + for (uint32_t src_y = 0; src_y < src_h; ++src_y) + { + const color_rgba *pSrc = &src(0, src_y); + + // Put source lines into resampler(s) + for (uint32_t x = 0; x < src_w; ++x) + { + for (uint32_t c = 0; c < num_comps; ++c) + { + const uint32_t comp_index = first_comp + c; + const uint32_t v = (*pSrc)[comp_index]; + + if (!srgb || (comp_index == 3)) + samples[c][x] = v * (1.0f / 255.0f); + else + samples[c][x] = srgb_to_linear_table[v]; + } + + pSrc++; + } + + for (uint32_t c = 0; c < num_comps; ++c) + { + if (!resamplers[c]->put_line(&samples[c][0])) + { + for (uint32_t i = 0; i < num_comps; i++) + delete resamplers[i]; + return false; + } + } + + // Now retrieve any output lines + for (;;) + { + uint32_t c; + for (c = 0; c < num_comps; ++c) + { + const uint32_t comp_index = first_comp + c; + + const float *pOutput_samples = resamplers[c]->get_line(); + if (!pOutput_samples) + break; + + const bool linear_flag = !srgb || (comp_index == 3); + + color_rgba *pDst = &dst(0, dst_y); + + for (uint32_t x = 0; x < dst_w; x++) + { + // TODO: Add dithering + if (linear_flag) + { + int j = (int)(255.0f * pOutput_samples[x] + .5f); + (*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255); + } + else + { + int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f); + (*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)]; + } + + pDst++; + } + } + if (c < num_comps) + break; + + ++dst_y; + } + } + + for (uint32_t i = 0; i < num_comps; ++i) + delete resamplers[i]; + + return true; + } + + void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms) + { + // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen + if (!num_syms) + return; + + if (1 == num_syms) + { + A[0].m_key = 1; + return; + } + + A[0].m_key += A[1].m_key; + + int s = 2, r = 0, next; + for (next = 1; next < (num_syms - 1); ++next) + { + if ((s >= num_syms) || (A[r].m_key < A[s].m_key)) + { + A[next].m_key = A[r].m_key; + A[r].m_key = static_cast<uint16_t>(next); + ++r; + } + else + { + A[next].m_key = A[s].m_key; + ++s; + } + + if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key)) + { + A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[r].m_key); + A[r].m_key = static_cast<uint16_t>(next); + ++r; + } + else + { + A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[s].m_key); + ++s; + } + } + A[num_syms - 2].m_key = 0; + + for (next = num_syms - 3; next >= 0; --next) + { + A[next].m_key = 1 + A[A[next].m_key].m_key; + } + + int num_avail = 1, num_used = 0, depth = 0; + r = num_syms - 2; + next = num_syms - 1; + while (num_avail > 0) + { + for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r ) + ; + + for ( ; num_avail > num_used; --next, --num_avail) + A[next].m_key = static_cast<uint16_t>(depth); + + num_avail = 2 * num_used; + num_used = 0; + ++depth; + } + } + + void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) + { + int i; + uint32_t total = 0; + if (code_list_len <= 1) + return; + + for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++) + pNum_codes[max_code_size] += pNum_codes[i]; + + for (i = max_code_size; i > 0; i--) + total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); + + while (total != (1UL << max_code_size)) + { + pNum_codes[max_code_size]--; + for (i = max_code_size - 1; i > 0; i--) + { + if (pNum_codes[i]) + { + pNum_codes[i]--; + pNum_codes[i + 1] += 2; + break; + } + } + + total--; + } + } + + sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1) + { + uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; + sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; + + clear_obj(hist); + + for (i = 0; i < num_syms; i++) + { + uint32_t freq = pSyms0[i].m_key; + hist[freq & 0xFF]++; + hist[256 + ((freq >> 8) & 0xFF)]++; + } + + while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) + total_passes--; + + for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) + { + const uint32_t *pHist = &hist[pass << 8]; + uint32_t offsets[256], cur_ofs = 0; + for (i = 0; i < 256; i++) + { + offsets[i] = cur_ofs; + cur_ofs += pHist[i]; + } + + for (i = 0; i < num_syms; i++) + pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; + + sym_freq *t = pCur_syms; + pCur_syms = pNew_syms; + pNew_syms = t; + } + + return pCur_syms; + } + + bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size) + { + if (max_code_size > cHuffmanMaxSupportedCodeSize) + return false; + if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) + return false; + + uint32_t total_used_syms = 0; + for (uint32_t i = 0; i < num_syms; i++) + if (pFreq[i]) + total_used_syms++; + + if (!total_used_syms) + return false; + + std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms); + for (uint32_t i = 0, j = 0; i < num_syms; i++) + { + if (pFreq[i]) + { + sym_freq0[j].m_key = pFreq[i]; + sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i); + } + } + + sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]); + + canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms); + + int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1]; + clear_obj(num_codes); + + for (uint32_t i = 0; i < total_used_syms; i++) + { + if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize) + return false; + + num_codes[pSym_freq[i].m_key]++; + } + + canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size); + + m_code_sizes.resize(0); + m_code_sizes.resize(num_syms); + + m_codes.resize(0); + m_codes.resize(num_syms); + + for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++) + for (uint32_t l = num_codes[i]; l > 0; l--) + m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i); + + uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1]; + + next_code[1] = 0; + for (uint32_t j = 0, i = 2; i <= max_code_size; i++) + next_code[i] = j = ((j + num_codes[i - 1]) << 1); + + for (uint32_t i = 0; i < num_syms; i++) + { + uint32_t rev_code = 0, code, code_size; + if ((code_size = m_code_sizes[i]) == 0) + continue; + if (code_size > cHuffmanMaxSupportedInternalCodeSize) + return false; + code = next_code[code_size]++; + for (uint32_t l = code_size; l > 0; l--, code >>= 1) + rev_code = (rev_code << 1) | (code & 1); + m_codes[i] = static_cast<uint16_t>(rev_code); + } + + return true; + } + + bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size) + { + if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) + return false; + + uint16_vec sym_freq(num_syms); + + uint32_t max_freq = 0; + for (uint32_t i = 0; i < num_syms; i++) + max_freq = maximum(max_freq, pSym_freq[i]); + + if (max_freq < UINT16_MAX) + { + for (uint32_t i = 0; i < num_syms; i++) + sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]); + } + else + { + for (uint32_t i = 0; i < num_syms; i++) + if (pSym_freq[i]) + sym_freq[i] = static_cast<uint16_t>(maximum<uint32_t>((pSym_freq[i] * 65534U + (max_freq >> 1)) / max_freq, 1)); + } + + return init(num_syms, &sym_freq[0], max_code_size); + } + + void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len) + { + if (run_size) + { + if (run_size < cHuffmanSmallRepeatSizeMin) + { + while (run_size--) + syms.push_back(static_cast<uint16_t>(len)); + } + else if (run_size <= cHuffmanSmallRepeatSizeMax) + { + syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6))); + } + else + { + assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax)); + syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6))); + } + } + + run_size = 0; + } + + void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size) + { + if (run_size) + { + if (run_size < cHuffmanSmallZeroRunSizeMin) + { + while (run_size--) + syms.push_back(0); + } + else if (run_size <= cHuffmanSmallZeroRunSizeMax) + { + syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6))); + } + else + { + assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax)); + syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6))); + } + } + + run_size = 0; + } + + uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab) + { + const uint64_t start_bits = m_total_bits; + + const uint8_vec &code_sizes = tab.get_code_sizes(); + + uint32_t total_used = tab.get_total_used_codes(); + put_bits(total_used, cHuffmanMaxSymsLog2); + + if (!total_used) + return 0; + + uint16_vec syms; + syms.reserve(total_used + 16); + + uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0; + + for (uint32_t i = 0; i <= total_used; ++i) + { + const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i]; + assert((code_len == 0xFF) || (code_len <= 16)); + + if (code_len) + { + end_zero_run(syms, zero_run_size); + + if (code_len != prev_code_len) + { + end_nonzero_run(syms, nonzero_run_size, prev_code_len); + if (code_len != 0xFF) + syms.push_back(static_cast<uint16_t>(code_len)); + } + else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax) + end_nonzero_run(syms, nonzero_run_size, prev_code_len); + } + else + { + end_nonzero_run(syms, nonzero_run_size, prev_code_len); + + if (++zero_run_size == cHuffmanBigZeroRunSizeMax) + end_zero_run(syms, zero_run_size); + } + + prev_code_len = code_len; + } + + histogram h(cHuffmanTotalCodelengthCodes); + for (uint32_t i = 0; i < syms.size(); i++) + h.inc(syms[i] & 63); + + huffman_encoding_table ct; + if (!ct.init(h, 7)) + return 0; + + assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes); + + uint32_t total_codelength_codes; + for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--) + if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]]) + break; + + assert(total_codelength_codes); + + put_bits(total_codelength_codes, 5); + for (uint32_t i = 0; i < total_codelength_codes; i++) + put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3); + + for (uint32_t i = 0; i < syms.size(); ++i) + { + const uint32_t l = syms[i] & 63, e = syms[i] >> 6; + + put_code(l, ct); + + if (l == cHuffmanSmallZeroRunCode) + put_bits(e, cHuffmanSmallZeroRunExtraBits); + else if (l == cHuffmanBigZeroRunCode) + put_bits(e, cHuffmanBigZeroRunExtraBits); + else if (l == cHuffmanSmallRepeatCode) + put_bits(e, cHuffmanSmallRepeatExtraBits); + else if (l == cHuffmanBigRepeatCode) + put_bits(e, cHuffmanBigRepeatExtraBits); + } + + return (uint32_t)(m_total_bits - start_bits); + } + + bool huffman_test(int rand_seed) + { + histogram h(19); + + // Feed in a fibonacci sequence to force large codesizes + h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3; + h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21; + h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144; + h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987; + h[16] += 1597; h[17] += 2584; h[18] += 4181; + + huffman_encoding_table etab; + etab.init(h, 16); + + { + bitwise_coder c; + c.init(1024); + + c.emit_huffman_table(etab); + for (int i = 0; i < 19; i++) + c.put_code(i, etab); + + c.flush(); + + basist::bitwise_decoder d; + d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size())); + + basist::huffman_decoding_table dtab; + bool success = d.read_huffman_table(dtab); + if (!success) + { + assert(0); + printf("Failure 5\n"); + return false; + } + + for (uint32_t i = 0; i < 19; i++) + { + uint32_t s = d.decode_huffman(dtab); + if (s != i) + { + assert(0); + printf("Failure 5\n"); + return false; + } + } + } + + basisu::rand r; + r.seed(rand_seed); + + for (int iter = 0; iter < 500000; iter++) + { + printf("%u\n", iter); + + uint32_t max_sym = r.irand(0, 8193); + uint32_t num_codes = r.irand(1, 10000); + uint_vec syms(num_codes); + + for (uint32_t i = 0; i < num_codes; i++) + { + if (r.bit()) + syms[i] = r.irand(0, max_sym); + else + { + int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f); + s = basisu::clamp<int>(s, 0, max_sym); + + syms[i] = s; + } + + } + + histogram h1(max_sym + 1); + for (uint32_t i = 0; i < num_codes; i++) + h1[syms[i]]++; + + huffman_encoding_table etab2; + if (!etab2.init(h1, 16)) + { + assert(0); + printf("Failed 0\n"); + return false; + } + + bitwise_coder c; + c.init(1024); + + c.emit_huffman_table(etab2); + + for (uint32_t i = 0; i < num_codes; i++) + c.put_code(syms[i], etab2); + + c.flush(); + + basist::bitwise_decoder d; + d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size()); + + basist::huffman_decoding_table dtab; + bool success = d.read_huffman_table(dtab); + if (!success) + { + assert(0); + printf("Failed 2\n"); + return false; + } + + for (uint32_t i = 0; i < num_codes; i++) + { + uint32_t s = d.decode_huffman(dtab); + if (s != syms[i]) + { + assert(0); + printf("Failed 4\n"); + return false; + } + } + + } + return true; + } + + void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) + { + assert((num_syms > 0) && (num_indices > 0)); + assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f)); + + clear(); + + m_remap_table.resize(num_syms); + m_entries_picked.reserve(num_syms); + m_total_count_to_picked.resize(num_syms); + + if (num_indices <= 1) + return; + + prepare_hist(num_syms, num_indices, pIndices); + find_initial(num_syms); + + while (m_entries_to_do.size()) + { + // Find the best entry to move into the picked list. + uint32_t best_entry; + double best_count; + find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight); + + // We now have chosen an entry to place in the picked list, now determine which side it goes on. + const uint32_t entry_to_move = m_entries_to_do[best_entry]; + + float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight); + + // Put entry_to_move either on the "left" or "right" side of the picked entries + if (side <= 0) + m_entries_picked.push_back(entry_to_move); + else + m_entries_picked.insert(m_entries_picked.begin(), entry_to_move); + + // Erase best_entry from the todo list + m_entries_to_do.erase(m_entries_to_do.begin() + best_entry); + + // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry + for (uint32_t i = 0; i < m_entries_to_do.size(); i++) + m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms); + } + + for (uint32_t i = 0; i < num_syms; i++) + m_remap_table[m_entries_picked[i]] = i; + } + + void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices) + { + m_hist.resize(0); + m_hist.resize(num_syms * num_syms); + + for (uint32_t i = 0; i < num_indices; i++) + { + const uint32_t idx = pIndices[i]; + inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms); + inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms); + } + } + + void palette_index_reorderer::find_initial(uint32_t num_syms) + { + uint32_t max_count = 0, max_index = 0; + for (uint32_t i = 0; i < num_syms * num_syms; i++) + if (m_hist[i] > max_count) + max_count = m_hist[i], max_index = i; + + uint32_t a = max_index / num_syms, b = max_index % num_syms; + + m_entries_picked.push_back(a); + m_entries_picked.push_back(b); + + for (uint32_t i = 0; i < num_syms; i++) + if ((i != b) && (i != a)) + m_entries_to_do.push_back(i); + + for (uint32_t i = 0; i < m_entries_to_do.size(); i++) + for (uint32_t j = 0; j < m_entries_picked.size(); j++) + m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms); + } + + void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) + { + best_entry = 0; + best_count = 0; + + for (uint32_t i = 0; i < m_entries_to_do.size(); i++) + { + const uint32_t u = m_entries_to_do[i]; + double total_count = m_total_count_to_picked[u]; + + if (pDist_func) + { + float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx)); + assert((w >= 0.0f) && (w <= 1.0f)); + total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w); + } + + if (total_count <= best_count) + continue; + + best_entry = i; + best_count = total_count; + } + } + + float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) + { + float which_side = 0; + + int l_count = 0, r_count = 0; + for (uint32_t j = 0; j < m_entries_picked.size(); j++) + { + const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1)); + which_side += static_cast<float>(r * count); + if (r >= 0) + l_count += r * count; + else + r_count += -r * count; + } + + if (pDist_func) + { + float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx)); + float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx)); + which_side = w_left * l_count - w_right * r_count; + } + return which_side; + } + + void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma) + { + assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); + + const uint32_t width = std::min(a.get_width(), b.get_width()); + const uint32_t height = std::min(a.get_height(), b.get_height()); + + double hist[256]; + clear_obj(hist); + + for (uint32_t y = 0; y < height; y++) + { + for (uint32_t x = 0; x < width; x++) + { + const color_rgba &ca = a(x, y), &cb = b(x, y); + + if (total_chans) + { + for (uint32_t c = 0; c < total_chans; c++) + hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++; + } + else + { + if (use_601_luma) + hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++; + else + hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++; + } + } + } + + m_max = 0; + double sum = 0.0f, sum2 = 0.0f; + for (uint32_t i = 0; i < 256; i++) + { + if (hist[i]) + { + m_max = std::max<float>(m_max, (float)i); + double v = i * hist[i]; + sum += v; + sum2 += i * v; + } + } + + double total_values = (double)width * (double)height; + if (avg_comp_error) + total_values *= (double)clamp<uint32_t>(total_chans, 1, 4); + + m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0); + m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0 * 255.0); + m_rms = (float)sqrt(m_mean_squared); + m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0, 0.0f, 300.0f) : 1e+10f; + } + + void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed) + { + rand r(seed); + + uint8_t *pDst = static_cast<uint8_t *>(pBuf); + + while (size >= sizeof(uint32_t)) + { + *(uint32_t *)pDst = r.urand32(); + pDst += sizeof(uint32_t); + size -= sizeof(uint32_t); + } + + while (size) + { + *pDst++ = r.byte(); + size--; + } + } + + uint32_t hash_hsieh(const uint8_t *pBuf, size_t len) + { + if (!pBuf || !len) + return 0; + + uint32_t h = static_cast<uint32_t>(len); + + const uint32_t bytes_left = len & 3; + len >>= 2; + + while (len--) + { + const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf); + + h += pWords[0]; + + const uint32_t t = (pWords[1] << 11) ^ h; + h = (h << 16) ^ t; + + pBuf += sizeof(uint32_t); + + h += h >> 11; + } + + switch (bytes_left) + { + case 1: + h += *reinterpret_cast<const signed char*>(pBuf); + h ^= h << 10; + h += h >> 1; + break; + case 2: + h += *reinterpret_cast<const uint16_t *>(pBuf); + h ^= h << 11; + h += h >> 17; + break; + case 3: + h += *reinterpret_cast<const uint16_t *>(pBuf); + h ^= h << 16; + h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18; + h += h >> 11; + break; + default: + break; + } + + h ^= h << 3; + h += h >> 5; + h ^= h << 4; + h += h >> 17; + h ^= h << 25; + h += h >> 6; + + return h; + } + + job_pool::job_pool(uint32_t num_threads) : + m_kill_flag(false), + m_num_active_jobs(0) + { + assert(num_threads >= 1U); + + debug_printf("job_pool::job_pool: %u total threads\n", num_threads); + + if (num_threads > 1) + { + m_threads.resize(num_threads - 1); + + for (int i = 0; i < ((int)num_threads - 1); i++) + m_threads[i] = std::thread([this, i] { job_thread(i); }); + } + } + + job_pool::~job_pool() + { + debug_printf("job_pool::~job_pool\n"); + + // Notify all workers that they need to die right now. + m_kill_flag = true; + + m_has_work.notify_all(); + + // Wait for all workers to die. + for (uint32_t i = 0; i < m_threads.size(); i++) + m_threads[i].join(); + } + + void job_pool::add_job(const std::function<void()>& job) + { + std::unique_lock<std::mutex> lock(m_mutex); + + m_queue.emplace_back(job); + + const size_t queue_size = m_queue.size(); + + lock.unlock(); + + if (queue_size > 1) + m_has_work.notify_one(); + } + + void job_pool::add_job(std::function<void()>&& job) + { + std::unique_lock<std::mutex> lock(m_mutex); + + m_queue.emplace_back(std::move(job)); + + const size_t queue_size = m_queue.size(); + + lock.unlock(); + + if (queue_size > 1) + m_has_work.notify_one(); + } + + void job_pool::wait_for_all() + { + std::unique_lock<std::mutex> lock(m_mutex); + + // Drain the job queue on the calling thread. + while (!m_queue.empty()) + { + std::function<void()> job(m_queue.back()); + m_queue.pop_back(); + + lock.unlock(); + + job(); + + lock.lock(); + } + + // The queue is empty, now wait for all active jobs to finish up. + m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } ); + } + + void job_pool::job_thread(uint32_t index) + { + debug_printf("job_pool::job_thread: starting %u\n", index); + + while (true) + { + std::unique_lock<std::mutex> lock(m_mutex); + + // Wait for any jobs to be issued. + m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } ); + + // Check to see if we're supposed to exit. + if (m_kill_flag) + break; + + // Get the job and execute it. + std::function<void()> job(m_queue.back()); + m_queue.pop_back(); + + ++m_num_active_jobs; + + lock.unlock(); + + job(); + + lock.lock(); + + --m_num_active_jobs; + + // Now check if there are no more jobs remaining. + const bool all_done = m_queue.empty() && !m_num_active_jobs; + + lock.unlock(); + + if (all_done) + m_no_more_jobs.notify_all(); + } + + debug_printf("job_pool::job_thread: exiting\n"); + } + +} // namespace basisu |