diff options
Diffstat (limited to 'thirdparty/basis_universal/basisu_enc.cpp')
| -rw-r--r-- | thirdparty/basis_universal/basisu_enc.cpp | 1376 |
1 files changed, 0 insertions, 1376 deletions
diff --git a/thirdparty/basis_universal/basisu_enc.cpp b/thirdparty/basis_universal/basisu_enc.cpp deleted file mode 100644 index 7057c65cf8..0000000000 --- a/thirdparty/basis_universal/basisu_enc.cpp +++ /dev/null @@ -1,1376 +0,0 @@ -// basisu_enc.cpp -// Copyright (C) 2019 Binomial LLC. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -#include "basisu_enc.h" -#include "lodepng.h" -#include "basisu_resampler.h" -#include "basisu_resampler_filters.h" -#include "basisu_etc.h" -#include "transcoder/basisu_transcoder.h" - -#if defined(_WIN32) -// For QueryPerformanceCounter/QueryPerformanceFrequency -#define WIN32_LEAN_AND_MEAN -#include <windows.h> -#endif - -namespace basisu -{ - uint64_t interval_timer::g_init_ticks, interval_timer::g_freq; - double interval_timer::g_timer_freq; - - uint8_t g_hamming_dist[256] = - { - 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 - }; - - // Encoder library initialization (just call once at startup) - void basisu_encoder_init() - { - basist::basisu_transcoder_init(); - } - - void error_printf(const char *pFmt, ...) - { - char buf[2048]; - - va_list args; - va_start(args, pFmt); -#ifdef _WIN32 - vsprintf_s(buf, sizeof(buf), pFmt, args); -#else - vsnprintf(buf, sizeof(buf), pFmt, args); -#endif - va_end(args); - - fprintf(stderr, "ERROR: %s", buf); - } - -#if defined(_WIN32) - inline void query_counter(timer_ticks* pTicks) - { - QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks)); - } - inline void query_counter_frequency(timer_ticks* pTicks) - { - QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks)); - } -#elif defined(__APPLE__) -#include <sys/time.h> - inline void query_counter(timer_ticks* pTicks) - { - struct timeval cur_time; - gettimeofday(&cur_time, NULL); - *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); - } - inline void query_counter_frequency(timer_ticks* pTicks) - { - *pTicks = 1000000; - } -#elif defined(__GNUC__) -#include <sys/timex.h> - inline void query_counter(timer_ticks* pTicks) - { - struct timeval cur_time; - gettimeofday(&cur_time, NULL); - *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); - } - inline void query_counter_frequency(timer_ticks* pTicks) - { - *pTicks = 1000000; - } -#else -#error TODO -#endif - - interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false) - { - if (!g_timer_freq) - init(); - } - - void interval_timer::start() - { - query_counter(&m_start_time); - m_started = true; - m_stopped = false; - } - - void interval_timer::stop() - { - assert(m_started); - query_counter(&m_stop_time); - m_stopped = true; - } - - double interval_timer::get_elapsed_secs() const - { - assert(m_started); - if (!m_started) - return 0; - - timer_ticks stop_time = m_stop_time; - if (!m_stopped) - query_counter(&stop_time); - - timer_ticks delta = stop_time - m_start_time; - return delta * g_timer_freq; - } - - void interval_timer::init() - { - if (!g_timer_freq) - { - query_counter_frequency(&g_freq); - g_timer_freq = 1.0f / g_freq; - query_counter(&g_init_ticks); - } - } - - timer_ticks interval_timer::get_ticks() - { - if (!g_timer_freq) - init(); - timer_ticks ticks; - query_counter(&ticks); - return ticks - g_init_ticks; - } - - double interval_timer::ticks_to_secs(timer_ticks ticks) - { - if (!g_timer_freq) - init(); - return ticks * g_timer_freq; - } - - bool load_png(const char* pFilename, image& img) - { - std::vector<uint8_t> buffer; - unsigned err = lodepng::load_file(buffer, std::string(pFilename)); - if (err) - return false; - - unsigned w = 0, h = 0; - - if (sizeof(void *) == sizeof(uint32_t)) - { - // Inspect the image first on 32-bit builds, to see if the image would require too much memory. - lodepng::State state; - err = lodepng_inspect(&w, &h, &state, &buffer[0], buffer.size()); - if ((err != 0) || (!w) || (!h)) - return false; - - const uint32_t exepected_alloc_size = w * h * sizeof(uint32_t); - - // If the file is too large on 32-bit builds then just bail now, to prevent causing a memory exception. - const uint32_t MAX_ALLOC_SIZE = 250000000; - if (exepected_alloc_size >= MAX_ALLOC_SIZE) - { - error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); - return false; - } - - w = h = 0; - } - - std::vector<uint8_t> out; - err = lodepng::decode(out, w, h, &buffer[0], buffer.size()); - if ((err != 0) || (!w) || (!h)) - return false; - - if (out.size() != (w * h * 4)) - return false; - - img.resize(w, h); - - memcpy(img.get_ptr(), &out[0], out.size()); - - return true; - } - - bool save_png(const char* pFilename, const image & img, uint32_t image_save_flags, uint32_t grayscale_comp) - { - if (!img.get_total_pixels()) - return false; - - std::vector<uint8_t> out; - unsigned err = 0; - - if (image_save_flags & cImageSaveGrayscale) - { - uint8_vec g_pixels(img.get_width() * img.get_height()); - uint8_t *pDst = &g_pixels[0]; - - for (uint32_t y = 0; y < img.get_height(); y++) - for (uint32_t x = 0; x < img.get_width(); x++) - *pDst++ = img(x, y)[grayscale_comp]; - - err = lodepng::encode(out, (const uint8_t*)& g_pixels[0], img.get_width(), img.get_height(), LCT_GREY, 8); - } - else - { - bool has_alpha = img.has_alpha(); - if ((!has_alpha) || ((image_save_flags & cImageSaveIgnoreAlpha) != 0)) - { - uint8_vec rgb_pixels(img.get_width() * 3 * img.get_height()); - uint8_t *pDst = &rgb_pixels[0]; - - for (uint32_t y = 0; y < img.get_height(); y++) - { - for (uint32_t x = 0; x < img.get_width(); x++) - { - const color_rgba& c = img(x, y); - pDst[0] = c.r; - pDst[1] = c.g; - pDst[2] = c.b; - pDst += 3; - } - } - - err = lodepng::encode(out, (const uint8_t*)& rgb_pixels[0], img.get_width(), img.get_height(), LCT_RGB, 8); - } - else - { - err = lodepng::encode(out, (const uint8_t*)img.get_ptr(), img.get_width(), img.get_height(), LCT_RGBA, 8); - } - } - - err = lodepng::save_file(out, std::string(pFilename)); - if (err) - return false; - - return true; - } - - bool read_file_to_vec(const char* pFilename, uint8_vec& data) - { - FILE* pFile = nullptr; -#ifdef _WIN32 - fopen_s(&pFile, pFilename, "rb"); -#else - pFile = fopen(pFilename, "rb"); -#endif - if (!pFile) - return false; - - fseek(pFile, 0, SEEK_END); -#ifdef _WIN32 - int64_t filesize = _ftelli64(pFile); -#else - int64_t filesize = ftello(pFile); -#endif - if (filesize < 0) - { - fclose(pFile); - return false; - } - fseek(pFile, 0, SEEK_SET); - - if (sizeof(size_t) == sizeof(uint32_t)) - { - if (filesize > 0x70000000) - { - // File might be too big to load safely in one alloc - fclose(pFile); - return false; - } - } - - data.resize((size_t)filesize); - - if (filesize) - { - if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize) - { - fclose(pFile); - return false; - } - } - - fclose(pFile); - return true; - } - - bool write_data_to_file(const char* pFilename, const void* pData, size_t len) - { - FILE* pFile = nullptr; -#ifdef _WIN32 - fopen_s(&pFile, pFilename, "wb"); -#else - pFile = fopen(pFilename, "wb"); -#endif - if (!pFile) - return false; - - if (len) - { - if (fwrite(pData, 1, len, pFile) != len) - { - fclose(pFile); - return false; - } - } - - return fclose(pFile) != EOF; - } - - float linear_to_srgb(float l) - { - assert(l >= 0.0f && l <= 1.0f); - if (l < .0031308f) - return saturate(l * 12.92f); - else - return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f); - } - - float srgb_to_linear(float s) - { - assert(s >= 0.0f && s <= 1.0f); - if (s < .04045f) - return saturate(s * (1.0f/12.92f)); - else - return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f)); - } - - bool image_resample(const image &src, image &dst, bool srgb, - const char *pFilter, float filter_scale, - bool wrapping, - uint32_t first_comp, uint32_t num_comps) - { - assert((first_comp + num_comps) <= 4); - - const int cMaxComps = 4; - - const uint32_t src_w = src.get_width(), src_h = src.get_height(); - const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); - - if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) - { - printf("Image is too large!\n"); - return false; - } - - if (!src_w || !src_h || !dst_w || !dst_h) - return false; - - if ((num_comps < 1) || (num_comps > cMaxComps)) - return false; - - if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) - { - printf("Image is too large!\n"); - return false; - } - - if ((src_w == dst_w) && (src_h == dst_h)) - { - dst = src; - return true; - } - - float srgb_to_linear_table[256]; - if (srgb) - { - for (int i = 0; i < 256; ++i) - srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f)); - } - - const int LINEAR_TO_SRGB_TABLE_SIZE = 8192; - uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE]; - - if (srgb) - { - for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i) - linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255); - } - - std::vector<float> samples[cMaxComps]; - Resampler *resamplers[cMaxComps]; - - resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, - wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, - pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); - samples[0].resize(src_w); - - for (uint32_t i = 1; i < num_comps; ++i) - { - resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, - wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, - pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); - samples[i].resize(src_w); - } - - uint32_t dst_y = 0; - - for (uint32_t src_y = 0; src_y < src_h; ++src_y) - { - const color_rgba *pSrc = &src(0, src_y); - - // Put source lines into resampler(s) - for (uint32_t x = 0; x < src_w; ++x) - { - for (uint32_t c = 0; c < num_comps; ++c) - { - const uint32_t comp_index = first_comp + c; - const uint32_t v = (*pSrc)[comp_index]; - - if (!srgb || (comp_index == 3)) - samples[c][x] = v * (1.0f / 255.0f); - else - samples[c][x] = srgb_to_linear_table[v]; - } - - pSrc++; - } - - for (uint32_t c = 0; c < num_comps; ++c) - { - if (!resamplers[c]->put_line(&samples[c][0])) - { - for (uint32_t i = 0; i < num_comps; i++) - delete resamplers[i]; - return false; - } - } - - // Now retrieve any output lines - for (;;) - { - uint32_t c; - for (c = 0; c < num_comps; ++c) - { - const uint32_t comp_index = first_comp + c; - - const float *pOutput_samples = resamplers[c]->get_line(); - if (!pOutput_samples) - break; - - const bool linear_flag = !srgb || (comp_index == 3); - - color_rgba *pDst = &dst(0, dst_y); - - for (uint32_t x = 0; x < dst_w; x++) - { - // TODO: Add dithering - if (linear_flag) - { - int j = (int)(255.0f * pOutput_samples[x] + .5f); - (*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255); - } - else - { - int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f); - (*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)]; - } - - pDst++; - } - } - if (c < num_comps) - break; - - ++dst_y; - } - } - - for (uint32_t i = 0; i < num_comps; ++i) - delete resamplers[i]; - - return true; - } - - void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms) - { - // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen - if (!num_syms) - return; - - if (1 == num_syms) - { - A[0].m_key = 1; - return; - } - - A[0].m_key += A[1].m_key; - - int s = 2, r = 0, next; - for (next = 1; next < (num_syms - 1); ++next) - { - if ((s >= num_syms) || (A[r].m_key < A[s].m_key)) - { - A[next].m_key = A[r].m_key; - A[r].m_key = static_cast<uint16_t>(next); - ++r; - } - else - { - A[next].m_key = A[s].m_key; - ++s; - } - - if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key)) - { - A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[r].m_key); - A[r].m_key = static_cast<uint16_t>(next); - ++r; - } - else - { - A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[s].m_key); - ++s; - } - } - A[num_syms - 2].m_key = 0; - - for (next = num_syms - 3; next >= 0; --next) - { - A[next].m_key = 1 + A[A[next].m_key].m_key; - } - - int num_avail = 1, num_used = 0, depth = 0; - r = num_syms - 2; - next = num_syms - 1; - while (num_avail > 0) - { - for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r ) - ; - - for ( ; num_avail > num_used; --next, --num_avail) - A[next].m_key = static_cast<uint16_t>(depth); - - num_avail = 2 * num_used; - num_used = 0; - ++depth; - } - } - - void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) - { - int i; - uint32_t total = 0; - if (code_list_len <= 1) - return; - - for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++) - pNum_codes[max_code_size] += pNum_codes[i]; - - for (i = max_code_size; i > 0; i--) - total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); - - while (total != (1UL << max_code_size)) - { - pNum_codes[max_code_size]--; - for (i = max_code_size - 1; i > 0; i--) - { - if (pNum_codes[i]) - { - pNum_codes[i]--; - pNum_codes[i + 1] += 2; - break; - } - } - - total--; - } - } - - sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1) - { - uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; - sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; - - clear_obj(hist); - - for (i = 0; i < num_syms; i++) - { - uint32_t freq = pSyms0[i].m_key; - hist[freq & 0xFF]++; - hist[256 + ((freq >> 8) & 0xFF)]++; - } - - while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) - total_passes--; - - for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) - { - const uint32_t *pHist = &hist[pass << 8]; - uint32_t offsets[256], cur_ofs = 0; - for (i = 0; i < 256; i++) - { - offsets[i] = cur_ofs; - cur_ofs += pHist[i]; - } - - for (i = 0; i < num_syms; i++) - pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; - - sym_freq *t = pCur_syms; - pCur_syms = pNew_syms; - pNew_syms = t; - } - - return pCur_syms; - } - - bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size) - { - if (max_code_size > cHuffmanMaxSupportedCodeSize) - return false; - if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) - return false; - - uint32_t total_used_syms = 0; - for (uint32_t i = 0; i < num_syms; i++) - if (pFreq[i]) - total_used_syms++; - - if (!total_used_syms) - return false; - - std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms); - for (uint32_t i = 0, j = 0; i < num_syms; i++) - { - if (pFreq[i]) - { - sym_freq0[j].m_key = pFreq[i]; - sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i); - } - } - - sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]); - - canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms); - - int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1]; - clear_obj(num_codes); - - for (uint32_t i = 0; i < total_used_syms; i++) - { - if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize) - return false; - - num_codes[pSym_freq[i].m_key]++; - } - - canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size); - - m_code_sizes.resize(0); - m_code_sizes.resize(num_syms); - - m_codes.resize(0); - m_codes.resize(num_syms); - - for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++) - for (uint32_t l = num_codes[i]; l > 0; l--) - m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i); - - uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1]; - - next_code[1] = 0; - for (uint32_t j = 0, i = 2; i <= max_code_size; i++) - next_code[i] = j = ((j + num_codes[i - 1]) << 1); - - for (uint32_t i = 0; i < num_syms; i++) - { - uint32_t rev_code = 0, code, code_size; - if ((code_size = m_code_sizes[i]) == 0) - continue; - if (code_size > cHuffmanMaxSupportedInternalCodeSize) - return false; - code = next_code[code_size]++; - for (uint32_t l = code_size; l > 0; l--, code >>= 1) - rev_code = (rev_code << 1) | (code & 1); - m_codes[i] = static_cast<uint16_t>(rev_code); - } - - return true; - } - - bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size) - { - if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) - return false; - - uint16_vec sym_freq(num_syms); - - uint32_t max_freq = 0; - for (uint32_t i = 0; i < num_syms; i++) - max_freq = maximum(max_freq, pSym_freq[i]); - - if (max_freq < UINT16_MAX) - { - for (uint32_t i = 0; i < num_syms; i++) - sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]); - } - else - { - for (uint32_t i = 0; i < num_syms; i++) - if (pSym_freq[i]) - sym_freq[i] = static_cast<uint16_t>(maximum<uint32_t>((pSym_freq[i] * 65534U + (max_freq >> 1)) / max_freq, 1)); - } - - return init(num_syms, &sym_freq[0], max_code_size); - } - - void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len) - { - if (run_size) - { - if (run_size < cHuffmanSmallRepeatSizeMin) - { - while (run_size--) - syms.push_back(static_cast<uint16_t>(len)); - } - else if (run_size <= cHuffmanSmallRepeatSizeMax) - { - syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6))); - } - else - { - assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax)); - syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6))); - } - } - - run_size = 0; - } - - void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size) - { - if (run_size) - { - if (run_size < cHuffmanSmallZeroRunSizeMin) - { - while (run_size--) - syms.push_back(0); - } - else if (run_size <= cHuffmanSmallZeroRunSizeMax) - { - syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6))); - } - else - { - assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax)); - syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6))); - } - } - - run_size = 0; - } - - uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab) - { - const uint64_t start_bits = m_total_bits; - - const uint8_vec &code_sizes = tab.get_code_sizes(); - - uint32_t total_used = tab.get_total_used_codes(); - put_bits(total_used, cHuffmanMaxSymsLog2); - - if (!total_used) - return 0; - - uint16_vec syms; - syms.reserve(total_used + 16); - - uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0; - - for (uint32_t i = 0; i <= total_used; ++i) - { - const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i]; - assert((code_len == 0xFF) || (code_len <= 16)); - - if (code_len) - { - end_zero_run(syms, zero_run_size); - - if (code_len != prev_code_len) - { - end_nonzero_run(syms, nonzero_run_size, prev_code_len); - if (code_len != 0xFF) - syms.push_back(static_cast<uint16_t>(code_len)); - } - else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax) - end_nonzero_run(syms, nonzero_run_size, prev_code_len); - } - else - { - end_nonzero_run(syms, nonzero_run_size, prev_code_len); - - if (++zero_run_size == cHuffmanBigZeroRunSizeMax) - end_zero_run(syms, zero_run_size); - } - - prev_code_len = code_len; - } - - histogram h(cHuffmanTotalCodelengthCodes); - for (uint32_t i = 0; i < syms.size(); i++) - h.inc(syms[i] & 63); - - huffman_encoding_table ct; - if (!ct.init(h, 7)) - return 0; - - assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes); - - uint32_t total_codelength_codes; - for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--) - if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]]) - break; - - assert(total_codelength_codes); - - put_bits(total_codelength_codes, 5); - for (uint32_t i = 0; i < total_codelength_codes; i++) - put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3); - - for (uint32_t i = 0; i < syms.size(); ++i) - { - const uint32_t l = syms[i] & 63, e = syms[i] >> 6; - - put_code(l, ct); - - if (l == cHuffmanSmallZeroRunCode) - put_bits(e, cHuffmanSmallZeroRunExtraBits); - else if (l == cHuffmanBigZeroRunCode) - put_bits(e, cHuffmanBigZeroRunExtraBits); - else if (l == cHuffmanSmallRepeatCode) - put_bits(e, cHuffmanSmallRepeatExtraBits); - else if (l == cHuffmanBigRepeatCode) - put_bits(e, cHuffmanBigRepeatExtraBits); - } - - return (uint32_t)(m_total_bits - start_bits); - } - - bool huffman_test(int rand_seed) - { - histogram h(19); - - // Feed in a fibonacci sequence to force large codesizes - h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3; - h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21; - h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144; - h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987; - h[16] += 1597; h[17] += 2584; h[18] += 4181; - - huffman_encoding_table etab; - etab.init(h, 16); - - { - bitwise_coder c; - c.init(1024); - - c.emit_huffman_table(etab); - for (int i = 0; i < 19; i++) - c.put_code(i, etab); - - c.flush(); - - basist::bitwise_decoder d; - d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size())); - - basist::huffman_decoding_table dtab; - bool success = d.read_huffman_table(dtab); - if (!success) - { - assert(0); - printf("Failure 5\n"); - return false; - } - - for (uint32_t i = 0; i < 19; i++) - { - uint32_t s = d.decode_huffman(dtab); - if (s != i) - { - assert(0); - printf("Failure 5\n"); - return false; - } - } - } - - basisu::rand r; - r.seed(rand_seed); - - for (int iter = 0; iter < 500000; iter++) - { - printf("%u\n", iter); - - uint32_t max_sym = r.irand(0, 8193); - uint32_t num_codes = r.irand(1, 10000); - uint_vec syms(num_codes); - - for (uint32_t i = 0; i < num_codes; i++) - { - if (r.bit()) - syms[i] = r.irand(0, max_sym); - else - { - int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f); - s = basisu::clamp<int>(s, 0, max_sym); - - syms[i] = s; - } - - } - - histogram h1(max_sym + 1); - for (uint32_t i = 0; i < num_codes; i++) - h1[syms[i]]++; - - huffman_encoding_table etab2; - if (!etab2.init(h1, 16)) - { - assert(0); - printf("Failed 0\n"); - return false; - } - - bitwise_coder c; - c.init(1024); - - c.emit_huffman_table(etab2); - - for (uint32_t i = 0; i < num_codes; i++) - c.put_code(syms[i], etab2); - - c.flush(); - - basist::bitwise_decoder d; - d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size()); - - basist::huffman_decoding_table dtab; - bool success = d.read_huffman_table(dtab); - if (!success) - { - assert(0); - printf("Failed 2\n"); - return false; - } - - for (uint32_t i = 0; i < num_codes; i++) - { - uint32_t s = d.decode_huffman(dtab); - if (s != syms[i]) - { - assert(0); - printf("Failed 4\n"); - return false; - } - } - - } - return true; - } - - void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) - { - assert((num_syms > 0) && (num_indices > 0)); - assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f)); - - clear(); - - m_remap_table.resize(num_syms); - m_entries_picked.reserve(num_syms); - m_total_count_to_picked.resize(num_syms); - - if (num_indices <= 1) - return; - - prepare_hist(num_syms, num_indices, pIndices); - find_initial(num_syms); - - while (m_entries_to_do.size()) - { - // Find the best entry to move into the picked list. - uint32_t best_entry; - double best_count; - find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight); - - // We now have chosen an entry to place in the picked list, now determine which side it goes on. - const uint32_t entry_to_move = m_entries_to_do[best_entry]; - - float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight); - - // Put entry_to_move either on the "left" or "right" side of the picked entries - if (side <= 0) - m_entries_picked.push_back(entry_to_move); - else - m_entries_picked.insert(m_entries_picked.begin(), entry_to_move); - - // Erase best_entry from the todo list - m_entries_to_do.erase(m_entries_to_do.begin() + best_entry); - - // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry - for (uint32_t i = 0; i < m_entries_to_do.size(); i++) - m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms); - } - - for (uint32_t i = 0; i < num_syms; i++) - m_remap_table[m_entries_picked[i]] = i; - } - - void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices) - { - m_hist.resize(0); - m_hist.resize(num_syms * num_syms); - - for (uint32_t i = 0; i < num_indices; i++) - { - const uint32_t idx = pIndices[i]; - inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms); - inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms); - } - } - - void palette_index_reorderer::find_initial(uint32_t num_syms) - { - uint32_t max_count = 0, max_index = 0; - for (uint32_t i = 0; i < num_syms * num_syms; i++) - if (m_hist[i] > max_count) - max_count = m_hist[i], max_index = i; - - uint32_t a = max_index / num_syms, b = max_index % num_syms; - - m_entries_picked.push_back(a); - m_entries_picked.push_back(b); - - for (uint32_t i = 0; i < num_syms; i++) - if ((i != b) && (i != a)) - m_entries_to_do.push_back(i); - - for (uint32_t i = 0; i < m_entries_to_do.size(); i++) - for (uint32_t j = 0; j < m_entries_picked.size(); j++) - m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms); - } - - void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) - { - best_entry = 0; - best_count = 0; - - for (uint32_t i = 0; i < m_entries_to_do.size(); i++) - { - const uint32_t u = m_entries_to_do[i]; - double total_count = m_total_count_to_picked[u]; - - if (pDist_func) - { - float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx)); - assert((w >= 0.0f) && (w <= 1.0f)); - total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w); - } - - if (total_count <= best_count) - continue; - - best_entry = i; - best_count = total_count; - } - } - - float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) - { - float which_side = 0; - - int l_count = 0, r_count = 0; - for (uint32_t j = 0; j < m_entries_picked.size(); j++) - { - const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1)); - which_side += static_cast<float>(r * count); - if (r >= 0) - l_count += r * count; - else - r_count += -r * count; - } - - if (pDist_func) - { - float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx)); - float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx)); - which_side = w_left * l_count - w_right * r_count; - } - return which_side; - } - - void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma) - { - assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); - - const uint32_t width = std::min(a.get_width(), b.get_width()); - const uint32_t height = std::min(a.get_height(), b.get_height()); - - double hist[256]; - clear_obj(hist); - - for (uint32_t y = 0; y < height; y++) - { - for (uint32_t x = 0; x < width; x++) - { - const color_rgba &ca = a(x, y), &cb = b(x, y); - - if (total_chans) - { - for (uint32_t c = 0; c < total_chans; c++) - hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++; - } - else - { - if (use_601_luma) - hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++; - else - hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++; - } - } - } - - m_max = 0; - double sum = 0.0f, sum2 = 0.0f; - for (uint32_t i = 0; i < 256; i++) - { - if (hist[i]) - { - m_max = std::max<float>(m_max, (float)i); - double v = i * hist[i]; - sum += v; - sum2 += i * v; - } - } - - double total_values = (double)width * (double)height; - if (avg_comp_error) - total_values *= (double)clamp<uint32_t>(total_chans, 1, 4); - - m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0); - m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0 * 255.0); - m_rms = (float)sqrt(m_mean_squared); - m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0, 0.0f, 300.0f) : 1e+10f; - } - - void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed) - { - rand r(seed); - - uint8_t *pDst = static_cast<uint8_t *>(pBuf); - - while (size >= sizeof(uint32_t)) - { - *(uint32_t *)pDst = r.urand32(); - pDst += sizeof(uint32_t); - size -= sizeof(uint32_t); - } - - while (size) - { - *pDst++ = r.byte(); - size--; - } - } - - uint32_t hash_hsieh(const uint8_t *pBuf, size_t len) - { - if (!pBuf || !len) - return 0; - - uint32_t h = static_cast<uint32_t>(len); - - const uint32_t bytes_left = len & 3; - len >>= 2; - - while (len--) - { - const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf); - - h += pWords[0]; - - const uint32_t t = (pWords[1] << 11) ^ h; - h = (h << 16) ^ t; - - pBuf += sizeof(uint32_t); - - h += h >> 11; - } - - switch (bytes_left) - { - case 1: - h += *reinterpret_cast<const signed char*>(pBuf); - h ^= h << 10; - h += h >> 1; - break; - case 2: - h += *reinterpret_cast<const uint16_t *>(pBuf); - h ^= h << 11; - h += h >> 17; - break; - case 3: - h += *reinterpret_cast<const uint16_t *>(pBuf); - h ^= h << 16; - h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18; - h += h >> 11; - break; - default: - break; - } - - h ^= h << 3; - h += h >> 5; - h ^= h << 4; - h += h >> 17; - h ^= h << 25; - h += h >> 6; - - return h; - } - - job_pool::job_pool(uint32_t num_threads) : - m_kill_flag(false), - m_num_active_jobs(0) - { - assert(num_threads >= 1U); - - debug_printf("job_pool::job_pool: %u total threads\n", num_threads); - - if (num_threads > 1) - { - m_threads.resize(num_threads - 1); - - for (int i = 0; i < ((int)num_threads - 1); i++) - m_threads[i] = std::thread([this, i] { job_thread(i); }); - } - } - - job_pool::~job_pool() - { - debug_printf("job_pool::~job_pool\n"); - - // Notify all workers that they need to die right now. - m_kill_flag = true; - - m_has_work.notify_all(); - - // Wait for all workers to die. - for (uint32_t i = 0; i < m_threads.size(); i++) - m_threads[i].join(); - } - - void job_pool::add_job(const std::function<void()>& job) - { - std::unique_lock<std::mutex> lock(m_mutex); - - m_queue.emplace_back(job); - - const size_t queue_size = m_queue.size(); - - lock.unlock(); - - if (queue_size > 1) - m_has_work.notify_one(); - } - - void job_pool::add_job(std::function<void()>&& job) - { - std::unique_lock<std::mutex> lock(m_mutex); - - m_queue.emplace_back(std::move(job)); - - const size_t queue_size = m_queue.size(); - - lock.unlock(); - - if (queue_size > 1) - m_has_work.notify_one(); - } - - void job_pool::wait_for_all() - { - std::unique_lock<std::mutex> lock(m_mutex); - - // Drain the job queue on the calling thread. - while (!m_queue.empty()) - { - std::function<void()> job(m_queue.back()); - m_queue.pop_back(); - - lock.unlock(); - - job(); - - lock.lock(); - } - - // The queue is empty, now wait for all active jobs to finish up. - m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } ); - } - - void job_pool::job_thread(uint32_t index) - { - debug_printf("job_pool::job_thread: starting %u\n", index); - - while (true) - { - std::unique_lock<std::mutex> lock(m_mutex); - - // Wait for any jobs to be issued. - m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } ); - - // Check to see if we're supposed to exit. - if (m_kill_flag) - break; - - // Get the job and execute it. - std::function<void()> job(m_queue.back()); - m_queue.pop_back(); - - ++m_num_active_jobs; - - lock.unlock(); - - job(); - - lock.lock(); - - --m_num_active_jobs; - - // Now check if there are no more jobs remaining. - const bool all_done = m_queue.empty() && !m_num_active_jobs; - - lock.unlock(); - - if (all_done) - m_no_more_jobs.notify_all(); - } - - debug_printf("job_pool::job_thread: exiting\n"); - } - -} // namespace basisu |