diff options
Diffstat (limited to 'thirdparty/b2d_convexdecomp/b2Glue.h')
-rw-r--r-- | thirdparty/b2d_convexdecomp/b2Glue.h | 174 |
1 files changed, 0 insertions, 174 deletions
diff --git a/thirdparty/b2d_convexdecomp/b2Glue.h b/thirdparty/b2d_convexdecomp/b2Glue.h deleted file mode 100644 index 175f75be75..0000000000 --- a/thirdparty/b2d_convexdecomp/b2Glue.h +++ /dev/null @@ -1,174 +0,0 @@ -/* -* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com -* -* This software is provided 'as-is', without any express or implied -* warranty. In no event will the authors be held liable for any damages -* arising from the use of this software. -* Permission is granted to anyone to use this software for any purpose, -* including commercial applications, and to alter it and redistribute it -* freely, subject to the following restrictions: -* 1. The origin of this software must not be misrepresented; you must not -* claim that you wrote the original software. If you use this software -* in a product, an acknowledgment in the product documentation would be -* appreciated but is not required. -* 2. Altered source versions must be plainly marked as such, and must not be -* misrepresented as being the original software. -* 3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B2GLUE_H -#define B2GLUE_H - -#include "core/math/vector2.h" - -#include <limits.h> - -namespace b2ConvexDecomp { - -typedef real_t float32; -typedef int32_t int32; - -static inline float32 b2Sqrt(float32 val) { return Math::sqrt(val); } -#define b2_maxFloat FLT_MAX -#define b2_epsilon CMP_EPSILON -#define b2_pi 3.14159265359f -#define b2_maxPolygonVertices 16 -#define b2Max MAX -#define b2Min MIN -#define b2Clamp CLAMP -#define b2Abs ABS -/// A small length used as a collision and constraint tolerance. Usually it is -/// chosen to be numerically significant, but visually insignificant. -#define b2_linearSlop 0.005f - -/// A small angle used as a collision and constraint tolerance. Usually it is -/// chosen to be numerically significant, but visually insignificant. -#define b2_angularSlop (2.0f / 180.0f * b2_pi) - -/// A 2D column vector. -struct b2Vec2 -{ - /// Default constructor does nothing (for performance). - b2Vec2() {} - - /// Construct using coordinates. - b2Vec2(float32 x, float32 y) : x(x), y(y) {} - - /// Set this vector to all zeros. - void SetZero() { x = 0.0f; y = 0.0f; } - - /// Set this vector to some specified coordinates. - void Set(float32 x_, float32 y_) { x = x_; y = y_; } - - /// Negate this vector. - b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } - - /// Read from and indexed element. - float32 operator () (int32 i) const - { - return (&x)[i]; - } - - /// Write to an indexed element. - float32& operator () (int32 i) - { - return (&x)[i]; - } - - /// Add a vector to this vector. - void operator += (const b2Vec2& v) - { - x += v.x; y += v.y; - } - - /// Subtract a vector from this vector. - void operator -= (const b2Vec2& v) - { - x -= v.x; y -= v.y; - } - - /// Multiply this vector by a scalar. - void operator *= (float32 a) - { - x *= a; y *= a; - } - - /// Get the length of this vector (the norm). - float32 Length() const - { - return b2Sqrt(x * x + y * y); - } - - /// Get the length squared. For performance, use this instead of - /// b2Vec2::Length (if possible). - float32 LengthSquared() const - { - return x * x + y * y; - } - - bool operator==(const b2Vec2& p_v) const { - return x==p_v.x && y==p_v.y; - } - b2Vec2 operator+(const b2Vec2& p_v) const { - return b2Vec2(x+p_v.x,y+p_v.y); - } - b2Vec2 operator-(const b2Vec2& p_v) const { - return b2Vec2(x-p_v.x,y-p_v.y); - } - - b2Vec2 operator*(float32 f) const { - return b2Vec2(f*x,f*y); - } - - /// Convert this vector into a unit vector. Returns the length. - float32 Normalize() - { - float32 length = Length(); - if (length < b2_epsilon) - { - return 0.0f; - } - float32 invLength = 1.0f / length; - x *= invLength; - y *= invLength; - - return length; - } - - /* - /// Does this vector contain finite coordinates? - bool IsValid() const - { - return b2IsValid(x) && b2IsValid(y); - } - */ - - float32 x, y; -}; - -inline b2Vec2 operator*(float32 f,const b2Vec2& p_v) { - return b2Vec2(f*p_v.x,f*p_v.y); -} - -/// Perform the dot product on two vectors. -inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) -{ - return a.x * b.x + a.y * b.y; -} - -/// Perform the cross product on two vectors. In 2D this produces a scalar. -inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) -{ - return a.x * b.y - a.y * b.x; -} - -/// Perform the cross product on a vector and a scalar. In 2D this produces -/// a vector. -inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) -{ - return b2Vec2(s * a.y, -s * a.x); -} - -} - -#endif |