summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_weight_align.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/astcenc/astcenc_weight_align.cpp')
-rw-r--r--thirdparty/astcenc/astcenc_weight_align.cpp479
1 files changed, 479 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_weight_align.cpp b/thirdparty/astcenc/astcenc_weight_align.cpp
new file mode 100644
index 0000000000..e40a318cf5
--- /dev/null
+++ b/thirdparty/astcenc/astcenc_weight_align.cpp
@@ -0,0 +1,479 @@
+// SPDX-License-Identifier: Apache-2.0
+// ----------------------------------------------------------------------------
+// Copyright 2011-2022 Arm Limited
+//
+// Licensed under the Apache License, Version 2.0 (the "License"); you may not
+// use this file except in compliance with the License. You may obtain a copy
+// of the License at:
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+// License for the specific language governing permissions and limitations
+// under the License.
+// ----------------------------------------------------------------------------
+
+#if !defined(ASTCENC_DECOMPRESS_ONLY)
+
+/**
+ * @brief Functions for angular-sum algorithm for weight alignment.
+ *
+ * This algorithm works as follows:
+ * - we compute a complex number P as (cos s*i, sin s*i) for each weight,
+ * where i is the input value and s is a scaling factor based on the spacing between the weights.
+ * - we then add together complex numbers for all the weights.
+ * - we then compute the length and angle of the resulting sum.
+ *
+ * This should produce the following results:
+ * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
+ * - even distribution results in a vector of length 0.
+ * - all samples identical results in perfect alignment for every scaling.
+ *
+ * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
+ * should then result in some scalings standing out as having particularly good alignment factors;
+ * we can use this to produce a set of candidate scale/shift values for various quantization levels;
+ * we should then actually try them and see what happens.
+ */
+
+#include "astcenc_internal.h"
+#include "astcenc_vecmathlib.h"
+
+#include <stdio.h>
+#include <cassert>
+#include <cstring>
+
+static constexpr unsigned int ANGULAR_STEPS { 32 };
+
+static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
+ "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");
+
+static_assert(ANGULAR_STEPS >= 32,
+ "ANGULAR_STEPS must be at least max(steps_for_quant_level)");
+
+// Store a reduced sin/cos table for 64 possible weight values; this causes
+// slight quality loss compared to using sin() and cos() directly. Must be 2^N.
+static constexpr unsigned int SINCOS_STEPS { 64 };
+
+static const uint8_t steps_for_quant_level[12] {
+ 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32
+};
+
+alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
+alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
+
+#if defined(ASTCENC_DIAGNOSTICS)
+ static bool print_once { true };
+#endif
+
+/* See header for documentation. */
+void prepare_angular_tables()
+{
+ for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
+ {
+ float angle_step = static_cast<float>(i + 1);
+
+ for (unsigned int j = 0; j < SINCOS_STEPS; j++)
+ {
+ sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
+ cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
+ }
+ }
+}
+
+/**
+ * @brief Compute the angular alignment factors and offsets.
+ *
+ * @param weight_count The number of (decimated) weights.
+ * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
+ * @param max_angular_steps The maximum number of steps to be tested.
+ * @param[out] offsets The output angular offsets array.
+ */
+static void compute_angular_offsets(
+ unsigned int weight_count,
+ const float* dec_weight_ideal_value,
+ unsigned int max_angular_steps,
+ float* offsets
+) {
+ promise(weight_count > 0);
+ promise(max_angular_steps > 0);
+
+ alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS];
+
+ // Precompute isample; arrays are always allocated 64 elements long
+ for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
+ {
+ // Add 2^23 and interpreting bits extracts round-to-nearest int
+ vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
+ vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
+ storea(isample, isamplev + i);
+ }
+
+ // Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
+ vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
+
+ for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
+ {
+ vfloat anglesum_x = vfloat::zero();
+ vfloat anglesum_y = vfloat::zero();
+
+ for (unsigned int j = 0; j < weight_count; j++)
+ {
+ int isample = isamplev[j];
+ anglesum_x += loada(cos_table[isample] + i);
+ anglesum_y += loada(sin_table[isample] + i);
+ }
+
+ vfloat angle = atan2(anglesum_y, anglesum_x);
+ vfloat ofs = angle * mult;
+ storea(ofs, offsets + i);
+ }
+}
+
+/**
+ * @brief For a given step size compute the lowest and highest weight.
+ *
+ * Compute the lowest and highest weight that results from quantizing using the given stepsize and
+ * offset, and then compute the resulting error. The cut errors indicate the error that results from
+ * forcing samples that should have had one weight value one step up or down.
+ *
+ * @param weight_count The number of (decimated) weights.
+ * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
+ * @param max_angular_steps The maximum number of steps to be tested.
+ * @param max_quant_steps The maximum quantization level to be tested.
+ * @param offsets The angular offsets array.
+ * @param[out] lowest_weight Per angular step, the lowest weight.
+ * @param[out] weight_span Per angular step, the span between lowest and highest weight.
+ * @param[out] error Per angular step, the error.
+ * @param[out] cut_low_weight_error Per angular step, the low weight cut error.
+ * @param[out] cut_high_weight_error Per angular step, the high weight cut error.
+ */
+static void compute_lowest_and_highest_weight(
+ unsigned int weight_count,
+ const float* dec_weight_ideal_value,
+ unsigned int max_angular_steps,
+ unsigned int max_quant_steps,
+ const float* offsets,
+ float* lowest_weight,
+ int* weight_span,
+ float* error,
+ float* cut_low_weight_error,
+ float* cut_high_weight_error
+) {
+ promise(weight_count > 0);
+ promise(max_angular_steps > 0);
+
+ vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
+
+ // Arrays are ANGULAR_STEPS long, so always safe to run full vectors
+ for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
+ {
+ vfloat minidx(128.0f);
+ vfloat maxidx(-128.0f);
+ vfloat errval = vfloat::zero();
+ vfloat cut_low_weight_err = vfloat::zero();
+ vfloat cut_high_weight_err = vfloat::zero();
+ vfloat offset = loada(offsets + sp);
+
+ for (unsigned int j = 0; j < weight_count; j++)
+ {
+ vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset;
+ vfloat svalrte = round(sval);
+ vfloat diff = sval - svalrte;
+ errval += diff * diff;
+
+ // Reset tracker on min hit
+ vmask mask = svalrte < minidx;
+ minidx = select(minidx, svalrte, mask);
+ cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
+
+ // Accumulate on min hit
+ mask = svalrte == minidx;
+ vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
+ cut_low_weight_err = select(cut_low_weight_err, accum, mask);
+
+ // Reset tracker on max hit
+ mask = svalrte > maxidx;
+ maxidx = select(maxidx, svalrte, mask);
+ cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
+
+ // Accumulate on max hit
+ mask = svalrte == maxidx;
+ accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
+ cut_high_weight_err = select(cut_high_weight_err, accum, mask);
+ }
+
+ // Write out min weight and weight span; clamp span to a usable range
+ vint span = float_to_int(maxidx - minidx + vfloat(1));
+ span = min(span, vint(max_quant_steps + 3));
+ span = max(span, vint(2));
+ storea(minidx, lowest_weight + sp);
+ storea(span, weight_span + sp);
+
+ // The cut_(lowest/highest)_weight_error indicate the error that results from forcing
+ // samples that should have had the weight value one step (up/down).
+ vfloat ssize = 1.0f / rcp_stepsize;
+ vfloat errscale = ssize * ssize;
+ storea(errval * errscale, error + sp);
+ storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
+ storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
+
+ rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
+ }
+}
+
+/**
+ * @brief The main function for the angular algorithm.
+ *
+ * @param weight_count The number of (decimated) weights.
+ * @param dec_weight_ideal_value The ideal decimated unquantized weight values.
+ * @param max_quant_level The maximum quantization level to be tested.
+ * @param[out] low_value Per angular step, the lowest weight value.
+ * @param[out] high_value Per angular step, the highest weight value.
+ */
+static void compute_angular_endpoints_for_quant_levels(
+ unsigned int weight_count,
+ const float* dec_weight_ideal_value,
+ unsigned int max_quant_level,
+ float low_value[TUNE_MAX_ANGULAR_QUANT + 1],
+ float high_value[TUNE_MAX_ANGULAR_QUANT + 1]
+) {
+ unsigned int max_quant_steps = steps_for_quant_level[max_quant_level];
+ unsigned int max_angular_steps = steps_for_quant_level[max_quant_level];
+
+ alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS];
+
+ compute_angular_offsets(weight_count, dec_weight_ideal_value,
+ max_angular_steps, angular_offsets);
+
+ alignas(ASTCENC_VECALIGN) float lowest_weight[ANGULAR_STEPS];
+ alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS];
+ alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS];
+ alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS];
+ alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS];
+
+ compute_lowest_and_highest_weight(weight_count, dec_weight_ideal_value,
+ max_angular_steps, max_quant_steps,
+ angular_offsets, lowest_weight, weight_span, error,
+ cut_low_weight_error, cut_high_weight_error);
+
+ // For each quantization level, find the best error terms. Use packed vectors so data-dependent
+ // branches can become selects. This involves some integer to float casts, but the values are
+ // small enough so they never round the wrong way.
+ vfloat4 best_results[36];
+
+ // Initialize the array to some safe defaults
+ promise(max_quant_steps > 0);
+ for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
+ {
+ // Lane<0> = Best error
+ // Lane<1> = Best scale; -1 indicates no solution found
+ // Lane<2> = Cut low weight
+ best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f);
+ }
+
+ promise(max_angular_steps > 0);
+ for (unsigned int i = 0; i < max_angular_steps; i++)
+ {
+ float i_flt = static_cast<float>(i);
+
+ int idx_span = weight_span[i];
+
+ float error_cut_low = error[i] + cut_low_weight_error[i];
+ float error_cut_high = error[i] + cut_high_weight_error[i];
+ float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
+
+ // Check best error against record N
+ vfloat4 best_result = best_results[idx_span];
+ vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f);
+ vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]);
+ best_results[idx_span] = select(best_result, new_result, mask);
+
+ // Check best error against record N-1 with either cut low or cut high
+ best_result = best_results[idx_span - 1];
+
+ new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f);
+ mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low);
+ best_result = select(best_result, new_result, mask);
+
+ new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f);
+ mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high);
+ best_results[idx_span - 1] = select(best_result, new_result, mask);
+
+ // Check best error against record N-2 with both cut low and high
+ best_result = best_results[idx_span - 2];
+ new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f);
+ mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high);
+ best_results[idx_span - 2] = select(best_result, new_result, mask);
+ }
+
+ for (unsigned int i = 0; i <= max_quant_level; i++)
+ {
+ unsigned int q = steps_for_quant_level[i];
+ int bsi = static_cast<int>(best_results[q].lane<1>());
+
+ // Did we find anything?
+#if defined(ASTCENC_DIAGNOSTICS)
+ if ((bsi < 0) && print_once)
+ {
+ print_once = false;
+ printf("INFO: Unable to find full encoding within search error limit.\n\n");
+ }
+#endif
+
+ bsi = astc::max(0, bsi);
+
+ float lwi = lowest_weight[bsi] + best_results[q].lane<2>();
+ float hwi = lwi + static_cast<float>(q) - 1.0f;
+
+ float stepsize = 1.0f / (1.0f + static_cast<float>(bsi));
+ low_value[i] = (angular_offsets[bsi] + lwi) * stepsize;
+ high_value[i] = (angular_offsets[bsi] + hwi) * stepsize;
+ }
+}
+
+/* See header for documentation. */
+void compute_angular_endpoints_1plane(
+ bool only_always,
+ const block_size_descriptor& bsd,
+ const float* dec_weight_ideal_value,
+ unsigned int max_weight_quant,
+ compression_working_buffers& tmpbuf
+) {
+ float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
+ float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
+
+ float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
+ float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
+
+ unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always
+ : bsd.decimation_mode_count_selected;
+ promise(max_decimation_modes > 0);
+ for (unsigned int i = 0; i < max_decimation_modes; i++)
+ {
+ const decimation_mode& dm = bsd.decimation_modes[i];
+ if (!dm.is_ref_1_plane(static_cast<quant_method>(max_weight_quant)))
+ {
+ continue;
+ }
+
+ unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
+
+ unsigned int max_precision = dm.maxprec_1plane;
+ if (max_precision > TUNE_MAX_ANGULAR_QUANT)
+ {
+ max_precision = TUNE_MAX_ANGULAR_QUANT;
+ }
+
+ if (max_precision > max_weight_quant)
+ {
+ max_precision = max_weight_quant;
+ }
+
+ compute_angular_endpoints_for_quant_levels(
+ weight_count,
+ dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
+ max_precision, low_values[i], high_values[i]);
+ }
+
+ unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always
+ : bsd.block_mode_count_1plane_selected;
+ promise(max_block_modes > 0);
+ for (unsigned int i = 0; i < max_block_modes; i++)
+ {
+ const block_mode& bm = bsd.block_modes[i];
+ assert(!bm.is_dual_plane);
+
+ unsigned int quant_mode = bm.quant_mode;
+ unsigned int decim_mode = bm.decimation_mode;
+
+ if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
+ {
+ low_value[i] = low_values[decim_mode][quant_mode];
+ high_value[i] = high_values[decim_mode][quant_mode];
+ }
+ else
+ {
+ low_value[i] = 0.0f;
+ high_value[i] = 1.0f;
+ }
+ }
+}
+
+/* See header for documentation. */
+void compute_angular_endpoints_2planes(
+ const block_size_descriptor& bsd,
+ const float* dec_weight_ideal_value,
+ unsigned int max_weight_quant,
+ compression_working_buffers& tmpbuf
+) {
+ float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
+ float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
+ float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2;
+ float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2;
+
+ float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
+ float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
+ float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2;
+ float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2;
+
+ promise(bsd.decimation_mode_count_selected > 0);
+ for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++)
+ {
+ const decimation_mode& dm = bsd.decimation_modes[i];
+ if (!dm.is_ref_2_plane(static_cast<quant_method>(max_weight_quant)))
+ {
+ continue;
+ }
+
+ unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
+
+ unsigned int max_precision = dm.maxprec_2planes;
+ if (max_precision > TUNE_MAX_ANGULAR_QUANT)
+ {
+ max_precision = TUNE_MAX_ANGULAR_QUANT;
+ }
+
+ if (max_precision > max_weight_quant)
+ {
+ max_precision = max_weight_quant;
+ }
+
+ compute_angular_endpoints_for_quant_levels(
+ weight_count,
+ dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
+ max_precision, low_values1[i], high_values1[i]);
+
+ compute_angular_endpoints_for_quant_levels(
+ weight_count,
+ dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET,
+ max_precision, low_values2[i], high_values2[i]);
+ }
+
+ unsigned int start = bsd.block_mode_count_1plane_selected;
+ unsigned int end = bsd.block_mode_count_1plane_2plane_selected;
+ for (unsigned int i = start; i < end; i++)
+ {
+ const block_mode& bm = bsd.block_modes[i];
+ unsigned int quant_mode = bm.quant_mode;
+ unsigned int decim_mode = bm.decimation_mode;
+
+ if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
+ {
+ low_value1[i] = low_values1[decim_mode][quant_mode];
+ high_value1[i] = high_values1[decim_mode][quant_mode];
+ low_value2[i] = low_values2[decim_mode][quant_mode];
+ high_value2[i] = high_values2[decim_mode][quant_mode];
+ }
+ else
+ {
+ low_value1[i] = 0.0f;
+ high_value1[i] = 1.0f;
+ low_value2[i] = 0.0f;
+ high_value2[i] = 1.0f;
+ }
+ }
+}
+
+#endif