diff options
Diffstat (limited to 'thirdparty/astcenc/astcenc_vecmathlib_sse_4.h')
-rw-r--r-- | thirdparty/astcenc/astcenc_vecmathlib_sse_4.h | 1283 |
1 files changed, 1283 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_vecmathlib_sse_4.h b/thirdparty/astcenc/astcenc_vecmathlib_sse_4.h new file mode 100644 index 0000000000..76fe577a89 --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_sse_4.h @@ -0,0 +1,1283 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 4x32-bit vectors, implemented using SSE. + * + * This module implements 4-wide 32-bit float, int, and mask vectors for x86 + * SSE. The implementation requires at least SSE2, but higher levels of SSE can + * be selected at compile time to improve performance. + * + * There is a baseline level of functionality provided by all vector widths and + * implementations. This is implemented using identical function signatures, + * modulo data type, so we can use them as substitutable implementations in VLA + * code. + * + * The 4-wide vectors are also used as a fixed-width type, and significantly + * extend the functionality above that available to VLA code. + */ + +#ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED +#define ASTC_VECMATHLIB_SSE_4_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <cstdio> + +// ============================================================================ +// vfloat4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide floats. + */ +struct vfloat4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(const float *p) + { + m = _mm_loadu_ps(p); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a) + { + m = _mm_set1_ps(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) + { + m = _mm_set_ps(d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a) + { + m = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(float a) + { +#if ASTCENC_SSE >= 41 + __m128 v = _mm_set1_ps(a); + m = _mm_insert_ps(m, v, l << 6 | l << 4); +#else + alignas(16) float idx[4]; + _mm_store_ps(idx, m); + idx[l] = a; + m = _mm_load_ps(idx); +#endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat4 zero() + { + return vfloat4(_mm_setzero_ps()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) + { + return vfloat4(_mm_load_ps1(p)); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) + { + return vfloat4(_mm_load_ps(p)); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat4 lane_id() + { + return vfloat4(_mm_set_ps(3, 2, 1, 0)); + } + + /** + * @brief Return a swizzled float 2. + */ + template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2)); + result.set_lane<2>(0.0f); + result.set_lane<3>(0.0f); + return result; + } + + /** + * @brief Return a swizzled float 3. + */ + template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4)); + result.set_lane<3>(0.0f); + return result; + } + + /** + * @brief Return a swizzled float 4. + */ + template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6)); + } + + /** + * @brief The vector ... + */ + __m128 m; +}; + +// ============================================================================ +// vint4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide ints. + */ +struct vint4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vint4(const int *p) + { + m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p)); + } + + /** + * @brief Construct from 4 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) + { + // _mm_loadu_si32 would be nicer syntax, but missing on older GCC + __m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p)); + +#if ASTCENC_SSE >= 41 + m = _mm_cvtepu8_epi32(t); +#else + t = _mm_unpacklo_epi8(t, _mm_setzero_si128()); + m = _mm_unpacklo_epi16(t, _mm_setzero_si128()); +#endif + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using vfloat4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a) + { + m = _mm_set1_epi32(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) + { + m = _mm_set_epi32(d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(__m128i a) + { + m = a; + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l)); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(int a) + { +#if ASTCENC_SSE >= 41 + m = _mm_insert_epi32(m, a, l); +#else + alignas(16) int idx[4]; + _mm_store_si128(reinterpret_cast<__m128i*>(idx), m); + idx[l] = a; + m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx)); +#endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint4 zero() + { + return vint4(_mm_setzero_si128()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint4 load1(const int* p) + { + return vint4(*p); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint4 loada(const int* p) + { + return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p))); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint4 lane_id() + { + return vint4(_mm_set_epi32(3, 2, 1, 0)); + } + + /** + * @brief The vector ... + */ + __m128i m; +}; + +// ============================================================================ +// vmask4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide control plane masks. + */ +struct vmask4 +{ + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(__m128 a) + { + m = a; + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(__m128i a) + { + m = _mm_castsi128_ps(a); + } + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a) + { + vint4 mask(a == false ? 0 : -1); + m = _mm_castsi128_ps(mask.m); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) + { + vint4 mask(a == false ? 0 : -1, + b == false ? 0 : -1, + c == false ? 0 : -1, + d == false ? 0 : -1); + + m = _mm_castsi128_ps(mask.m); + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)); + } + + /** + * @brief The vector ... + */ + __m128 m; +}; + +// ============================================================================ +// vmask4 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) +{ + return vmask4(_mm_or_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) +{ + return vmask4(_mm_and_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) +{ + return vmask4(_mm_xor_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) +{ + return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1))); +} + +/** + * @brief Return a 4-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) +{ + return static_cast<unsigned int>(_mm_movemask_ps(a.m)); +} + +// ============================================================================ +// vint4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) +{ + return vint4(_mm_add_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) +{ + return vint4(_mm_sub_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) +{ +#if ASTCENC_SSE >= 41 + return vint4(_mm_mullo_epi32 (a.m, b.m)); +#else + __m128i t1 = _mm_mul_epu32(a.m, b.m); + __m128i t2 = _mm_mul_epu32( + _mm_srli_si128(a.m, 4), + _mm_srli_si128(b.m, 4)); + __m128i r = _mm_unpacklo_epi32( + _mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)), + _mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0))); + return vint4(r); +#endif +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) +{ + return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1))); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) +{ + return vint4(_mm_or_si128(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) +{ + return vint4(_mm_and_si128(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) +{ + return vint4(_mm_xor_si128(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) +{ + return vmask4(_mm_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) +{ + return ~vmask4(_mm_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) +{ + return vmask4(_mm_cmplt_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) +{ + return vmask4(_mm_cmpgt_epi32(a.m, b.m)); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) +{ + return vint4(_mm_slli_epi32(a.m, s)); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) +{ + return vint4(_mm_srli_epi32(a.m, s)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a) +{ + return vint4(_mm_srai_epi32(a.m, s)); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) +{ +#if ASTCENC_SSE >= 41 + return vint4(_mm_min_epi32(a.m, b.m)); +#else + vmask4 d = a < b; + __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m); + __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m); + return vint4(_mm_or_si128(ap,bp)); +#endif +} + +/** + * @brief Return the max vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) +{ +#if ASTCENC_SSE >= 41 + return vint4(_mm_max_epi32(a.m, b.m)); +#else + vmask4 d = a > b; + __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m); + __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m); + return vint4(_mm_or_si128(ap,bp)); +#endif +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) +{ + a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/* + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) +{ + a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/** + * @brief Return the horizontal sum of a vector as a scalar. + */ +ASTCENC_SIMD_INLINE int hadd_s(vint4 a) +{ + // Add top and bottom halves, lane 1/0 + __m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m), + _mm_castsi128_ps(a.m))); + __m128i t = _mm_add_epi32(a.m, fold); + + // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow) + t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55)); + + return _mm_cvtsi128_si32(t); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) +{ + _mm_store_si128(reinterpret_cast<__m128i*>(p), a.m); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint4 a, int* p) +{ + // Cast due to missing intrinsics + _mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m)); +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) +{ + // Cast due to missing intrinsics + _mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m)); +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) +{ +#if ASTCENC_AVX >= 2 + return vint4(_mm_i32gather_epi32(base, indices.m, 4)); +#else + alignas(16) int idx[4]; + storea(indices, idx); + return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]); +#endif +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) +{ +#if ASTCENC_SSE >= 41 + __m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0); + return vint4(_mm_shuffle_epi8(a.m, shuf)); +#else + __m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1))); + __m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3))); + return vint4(_mm_unpacklo_epi16(va, vb)); +#endif +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) +{ + __m128i condi = _mm_castps_si128(cond.m); + +#if ASTCENC_SSE >= 41 + return vint4(_mm_blendv_epi8(a.m, b.m, condi)); +#else + return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m))); +#endif +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_add_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_sub_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_mul_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_div_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpeq_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpneq_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmplt_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpgt_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmple_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) +{ + return vmask4(_mm_cmpge_ps(a.m, b.m)); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(_mm_min_ps(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(_mm_max_ps(a.m, b.m)); +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) +{ + return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m)); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) +{ +#if ASTCENC_SSE >= 41 + constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC; + return vfloat4(_mm_round_ps(a.m, flags)); +#else + __m128 v = a.m; + __m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000))); + __m128 no_fraction = _mm_set1_ps(8388608.0f); + __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF)); + __m128 sign = _mm_and_ps(v, neg_zero); + __m128 s_magic = _mm_or_ps(no_fraction, sign); + __m128 r1 = _mm_add_ps(v, s_magic); + r1 = _mm_sub_ps(r1, s_magic); + __m128 r2 = _mm_and_ps(v, abs_mask); + __m128 mask = _mm_cmple_ps(r2, no_fraction); + r2 = _mm_andnot_ps(mask, v); + r1 = _mm_and_ps(r1, mask); + return vfloat4(_mm_xor_ps(r1, r2)); +#endif +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) +{ + a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) +{ + a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2)))); + a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1)))); + return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0))); +} + +/** + * @brief Return the horizontal sum of a vector as a scalar. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) +{ + // Add top and bottom halves, lane 1/0 + __m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m)); + + // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow) + t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55)); + + return _mm_cvtss_f32(t); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) +{ + return vfloat4(_mm_sqrt_ps(a.m)); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) +{ +#if ASTCENC_SSE >= 41 + return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m)); +#else + return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m))); +#endif +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) +{ +#if ASTCENC_SSE >= 41 + return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m)); +#else + __m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31)); + return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m))); +#endif +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) +{ +#if ASTCENC_AVX >= 2 + return vfloat4(_mm_i32gather_ps(base, indices.m, 4)); +#else + alignas(16) int idx[4]; + storea(indices, idx); + return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]); +#endif +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p) +{ + _mm_storeu_ps(p, a.m); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p) +{ + _mm_store_ps(p, a.m); +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) +{ + return vint4(_mm_cvttps_epi32(a.m)); +} + +/** + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) +{ + a = round(a); + return vint4(_mm_cvttps_epi32(a.m)); +} + +/** + * @brief Return a float value for an integer vector. + */ +ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) +{ + return vfloat4(_mm_cvtepi32_ps(a.m)); +} + +/** + * @brief Return a float16 value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) +{ +#if ASTCENC_F16C >= 1 + __m128i packedf16 = _mm_cvtps_ph(a.m, 0); + __m128i f16 = _mm_cvtepu16_epi32(packedf16); + return vint4(f16); +#else + return vint4( + float_to_sf16(a.lane<0>()), + float_to_sf16(a.lane<1>()), + float_to_sf16(a.lane<2>()), + float_to_sf16(a.lane<3>())); +#endif +} + +/** + * @brief Return a float16 value for a float scalar, using round-to-nearest. + */ +static inline uint16_t float_to_float16(float a) +{ +#if ASTCENC_F16C >= 1 + __m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0); + return static_cast<uint16_t>(_mm_cvtsi128_si32(f16)); +#else + return float_to_sf16(a); +#endif +} + +/** + * @brief Return a float value for a float16 vector. + */ +ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) +{ +#if ASTCENC_F16C >= 1 + __m128i packed = _mm_packs_epi32(a.m, a.m); + __m128 f32 = _mm_cvtph_ps(packed); + return vfloat4(f32); +#else + return vfloat4( + sf16_to_float(static_cast<uint16_t>(a.lane<0>())), + sf16_to_float(static_cast<uint16_t>(a.lane<1>())), + sf16_to_float(static_cast<uint16_t>(a.lane<2>())), + sf16_to_float(static_cast<uint16_t>(a.lane<3>()))); +#endif +} + +/** + * @brief Return a float value for a float16 scalar. + */ +ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) +{ +#if ASTCENC_F16C >= 1 + __m128i packed = _mm_set1_epi16(static_cast<short>(a)); + __m128 f32 = _mm_cvtph_ps(packed); + return _mm_cvtss_f32(f32); +#else + return sf16_to_float(a); +#endif +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) +{ + return vint4(_mm_castps_si128(a.m)); +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v) +{ + return vfloat4(_mm_castsi128_ps(v.m)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) +{ + t0p = t0; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) +{ +#if ASTCENC_SSE >= 30 + t0p = t0; + t1p = t0 ^ t1; +#else + t0p = t0; + t1p = t1; +#endif +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) +{ +#if ASTCENC_SSE >= 30 + t0p = t0; + t1p = t0 ^ t1; + t2p = t1 ^ t2; + t3p = t2 ^ t3; +#else + t0p = t0; + t1p = t1; + t2p = t2; + t3p = t3; +#endif +} + +/** + * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) +{ +#if ASTCENC_SSE >= 30 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m128i result = _mm_shuffle_epi8(t0.m, idxx); + return vint4(result); +#else + alignas(ASTCENC_VECALIGN) uint8_t table[16]; + storea(t0, reinterpret_cast<int*>(table + 0)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +#endif +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) +{ +#if ASTCENC_SSE >= 30 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m128i result = _mm_shuffle_epi8(t0.m, idxx); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + __m128i result2 = _mm_shuffle_epi8(t1.m, idxx); + result = _mm_xor_si128(result, result2); + + return vint4(result); +#else + alignas(ASTCENC_VECALIGN) uint8_t table[32]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +#endif +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) +{ +#if ASTCENC_SSE >= 30 + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m128i result = _mm_shuffle_epi8(t0.m, idxx); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + __m128i result2 = _mm_shuffle_epi8(t1.m, idxx); + result = _mm_xor_si128(result, result2); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + result2 = _mm_shuffle_epi8(t2.m, idxx); + result = _mm_xor_si128(result, result2); + idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); + + result2 = _mm_shuffle_epi8(t3.m, idxx); + result = _mm_xor_si128(result, result2); + + return vint4(result); +#else + alignas(ASTCENC_VECALIGN) uint8_t table[64]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + storea(t2, reinterpret_cast<int*>(table + 32)); + storea(t3, reinterpret_cast<int*>(table + 48)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +#endif +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) +{ +// Workaround an XCode compiler internal fault; note is slower than slli_epi32 +// so we should revert this when we get the opportunity +#if defined(__APPLE__) + __m128i value = r.m; + value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1)); + value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2)); + value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3)); + return vint4(value); +#else + __m128i value = r.m; + value = _mm_add_epi32(value, _mm_slli_epi32(g.m, 8)); + value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16)); + value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24)); + return vint4(value); +#endif +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) +{ +#if ASTCENC_AVX >= 2 + _mm_maskstore_epi32(base, _mm_castps_si128(mask.m), data.m); +#else + // Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee + // fault suppression on masked lanes so we can get page faults at the end of an image. + if (mask.lane<3>() != 0.0f) + { + store(data, base); + } + else if (mask.lane<2>() != 0.0f) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + base[2] = data.lane<2>(); + } + else if (mask.lane<1>() != 0.0f) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + } + else if (mask.lane<0>() != 0.0f) + { + base[0] = data.lane<0>(); + } +#endif +} + +#if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41) + +#define ASTCENC_USE_NATIVE_DOT_PRODUCT 1 + +/** + * @brief Return the dot product for the full 4 lanes, returning scalar. + */ +ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b) +{ + return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF)); +} + +/** + * @brief Return the dot product for the full 4 lanes, returning vector. + */ +ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF)); +} + +/** + * @brief Return the dot product for the bottom 3 lanes, returning scalar. + */ +ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b) +{ + return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77)); +} + +/** + * @brief Return the dot product for the bottom 3 lanes, returning vector. + */ +ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b) +{ + return vfloat4(_mm_dp_ps(a.m, b.m, 0x77)); +} + +#endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41) + +#if ASTCENC_POPCNT >= 1 + +#define ASTCENC_USE_NATIVE_POPCOUNT 1 + +/** + * @brief Population bit count. + * + * @param v The value to population count. + * + * @return The number of 1 bits. + */ +ASTCENC_SIMD_INLINE int popcount(uint64_t v) +{ + return static_cast<int>(_mm_popcnt_u64(v)); +} + +#endif // ASTCENC_POPCNT >= 1 + +#endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED |