diff options
Diffstat (limited to 'thirdparty/astcenc/astcenc_vecmathlib_none_4.h')
-rw-r--r-- | thirdparty/astcenc/astcenc_vecmathlib_none_4.h | 1169 |
1 files changed, 1169 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_vecmathlib_none_4.h b/thirdparty/astcenc/astcenc_vecmathlib_none_4.h new file mode 100644 index 0000000000..d9b52be3e4 --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_none_4.h @@ -0,0 +1,1169 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 4x32-bit vectors, implemented using plain C++. + * + * This module implements 4-wide 32-bit float, int, and mask vectors. This + * module provides a scalar fallback for VLA code, primarily useful for + * debugging VLA algorithms without the complexity of handling SIMD. Only the + * baseline level of functionality needed to support VLA is provided. + * + * Note that the vector conditional operators implemented by this module are + * designed to behave like SIMD conditional operators that generate lane masks. + * Rather than returning 0/1 booleans like normal C++ code they will return + * 0/-1 to give a full lane-width bitmask. + * + * Note that the documentation for this module still talks about "vectors" to + * help developers think about the implied VLA behavior when writing optimized + * paths. + */ + +#ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED +#define ASTC_VECMATHLIB_NONE_4_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <algorithm> +#include <cstdio> +#include <cstring> +#include <cfenv> + +// ============================================================================ +// vfloat4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide floats. + */ +struct vfloat4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with wider VLA vectors if data is + * aligned to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(const float* p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 4 scalar values replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a) + { + m[0] = a; + m[1] = a; + m[2] = a; + m[3] = a; + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) + { + m[0] = a; + m[1] = b; + m[2] = c; + m[3] = d; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return m[l]; + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(float a) + { + m[l] = a; + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat4 zero() + { + return vfloat4(0.0f); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) + { + return vfloat4(*p); + } + + /** + * @brief Factory that returns a vector loaded from aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) + { + return vfloat4(p); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat4 lane_id() + { + return vfloat4(0.0f, 1.0f, 2.0f, 3.0f); + } + + /** + * @brief Return a swizzled float 2. + */ + template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f); + } + + /** + * @brief Return a swizzled float 3. + */ + template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f); + } + + /** + * @brief Return a swizzled float 4. + */ + template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>()); + } + + /** + * @brief The vector ... + */ + float m[4]; +}; + +// ============================================================================ +// vint4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide ints. + */ +struct vint4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using vint4::loada() which is better with wider VLA vectors + * if data is aligned. + */ + ASTCENC_SIMD_INLINE explicit vint4(const int* p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 4 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) + { + m[0] = a; + m[1] = b; + m[2] = c; + m[3] = d; + } + + + /** + * @brief Construct from 4 scalar values replicated across all lanes. + * + * Consider using vint4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a) + { + m[0] = a; + m[1] = a; + m[2] = a; + m[3] = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + return m[l]; + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(int a) + { + m[l] = a; + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint4 zero() + { + return vint4(0); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint4 load1(const int* p) + { + return vint4(*p); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint4 loada(const int* p) + { + return vint4(p); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint4 lane_id() + { + return vint4(0, 1, 2, 3); + } + + /** + * @brief The vector ... + */ + int m[4]; +}; + +// ============================================================================ +// vmask4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide control plane masks. + */ +struct vmask4 +{ + /** + * @brief Construct from an existing mask value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(int* p) + { + m[0] = p[0]; + m[1] = p[1]; + m[2] = p[2]; + m[3] = p[3]; + } + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a) + { + m[0] = a == false ? 0 : -1; + m[1] = a == false ? 0 : -1; + m[2] = a == false ? 0 : -1; + m[3] = a == false ? 0 : -1; + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) + { + m[0] = a == false ? 0 : -1; + m[1] = b == false ? 0 : -1; + m[2] = c == false ? 0 : -1; + m[3] = d == false ? 0 : -1; + } + + + /** + * @brief The vector ... + */ + int m[4]; +}; + +// ============================================================================ +// vmask4 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) +{ + return vmask4(a.m[0] | b.m[0], + a.m[1] | b.m[1], + a.m[2] | b.m[2], + a.m[3] | b.m[3]); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) +{ + return vmask4(a.m[0] & b.m[0], + a.m[1] & b.m[1], + a.m[2] & b.m[2], + a.m[3] & b.m[3]); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) +{ + return vmask4(a.m[0] ^ b.m[0], + a.m[1] ^ b.m[1], + a.m[2] ^ b.m[2], + a.m[3] ^ b.m[3]); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) +{ + return vmask4(~a.m[0], + ~a.m[1], + ~a.m[2], + ~a.m[3]); +} + +/** + * @brief Return a 1-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) +{ + return ((a.m[0] >> 31) & 0x1) | + ((a.m[1] >> 30) & 0x2) | + ((a.m[2] >> 29) & 0x4) | + ((a.m[3] >> 28) & 0x8); +} + +// ============================================================================ +// vint4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) +{ + return vint4(a.m[0] + b.m[0], + a.m[1] + b.m[1], + a.m[2] + b.m[2], + a.m[3] + b.m[3]); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) +{ + return vint4(a.m[0] - b.m[0], + a.m[1] - b.m[1], + a.m[2] - b.m[2], + a.m[3] - b.m[3]); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) +{ + return vint4(a.m[0] * b.m[0], + a.m[1] * b.m[1], + a.m[2] * b.m[2], + a.m[3] * b.m[3]); +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) +{ + return vint4(~a.m[0], + ~a.m[1], + ~a.m[2], + ~a.m[3]); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) +{ + return vint4(a.m[0] | b.m[0], + a.m[1] | b.m[1], + a.m[2] | b.m[2], + a.m[3] | b.m[3]); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) +{ + return vint4(a.m[0] & b.m[0], + a.m[1] & b.m[1], + a.m[2] & b.m[2], + a.m[3] & b.m[3]); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) +{ + return vint4(a.m[0] ^ b.m[0], + a.m[1] ^ b.m[1], + a.m[2] ^ b.m[2], + a.m[3] ^ b.m[3]); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) +{ + return vmask4(a.m[0] == b.m[0], + a.m[1] == b.m[1], + a.m[2] == b.m[2], + a.m[3] == b.m[3]); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) +{ + return vmask4(a.m[0] != b.m[0], + a.m[1] != b.m[1], + a.m[2] != b.m[2], + a.m[3] != b.m[3]); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) +{ + return vmask4(a.m[0] < b.m[0], + a.m[1] < b.m[1], + a.m[2] < b.m[2], + a.m[3] < b.m[3]); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) +{ + return vmask4(a.m[0] > b.m[0], + a.m[1] > b.m[1], + a.m[2] > b.m[2], + a.m[3] > b.m[3]); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) +{ + return vint4(a.m[0] << s, + a.m[1] << s, + a.m[2] << s, + a.m[3] << s); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) +{ + unsigned int as0 = static_cast<unsigned int>(a.m[0]) >> s; + unsigned int as1 = static_cast<unsigned int>(a.m[1]) >> s; + unsigned int as2 = static_cast<unsigned int>(a.m[2]) >> s; + unsigned int as3 = static_cast<unsigned int>(a.m[3]) >> s; + + return vint4(static_cast<int>(as0), + static_cast<int>(as1), + static_cast<int>(as2), + static_cast<int>(as3)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a) +{ + return vint4(a.m[0] >> s, + a.m[1] >> s, + a.m[2] >> s, + a.m[3] >> s); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) +{ + return vint4(a.m[0] < b.m[0] ? a.m[0] : b.m[0], + a.m[1] < b.m[1] ? a.m[1] : b.m[1], + a.m[2] < b.m[2] ? a.m[2] : b.m[2], + a.m[3] < b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) +{ + return vint4(a.m[0] > b.m[0] ? a.m[0] : b.m[0], + a.m[1] > b.m[1] ? a.m[1] : b.m[1], + a.m[2] > b.m[2] ? a.m[2] : b.m[2], + a.m[3] > b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the horizontal minimum of a single vector. + */ +ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) +{ + int b = std::min(a.m[0], a.m[1]); + int c = std::min(a.m[2], a.m[3]); + return vint4(std::min(b, c)); +} + +/** + * @brief Return the horizontal maximum of a single vector. + */ +ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) +{ + int b = std::max(a.m[0], a.m[1]); + int c = std::max(a.m[2], a.m[3]); + return vint4(std::max(b, c)); +} + +/** + * @brief Return the horizontal sum of vector lanes as a scalar. + */ +ASTCENC_SIMD_INLINE int hadd_s(vint4 a) +{ + return a.m[0] + a.m[1] + a.m[2] + a.m[3]; +} + +/** + * @brief Store a vector to an aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) +{ + p[0] = a.m[0]; + p[1] = a.m[1]; + p[2] = a.m[2]; + p[3] = a.m[3]; +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint4 a, int* p) +{ + p[0] = a.m[0]; + p[1] = a.m[1]; + p[2] = a.m[2]; + p[3] = a.m[3]; +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) +{ + int* pi = reinterpret_cast<int*>(p); + *pi = a.m[0]; +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) +{ + return vint4(base[indices.m[0]], + base[indices.m[1]], + base[indices.m[2]], + base[indices.m[3]]); +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) +{ + int b0 = a.m[0] & 0xFF; + int b1 = a.m[1] & 0xFF; + int b2 = a.m[2] & 0xFF; + int b3 = a.m[3] & 0xFF; + + int b = b0 | (b1 << 8) | (b2 << 16) | (b3 << 24); + return vint4(b, 0, 0, 0); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) +{ + return vint4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0], + (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1], + (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2], + (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]); +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] + b.m[0], + a.m[1] + b.m[1], + a.m[2] + b.m[2], + a.m[3] + b.m[3]); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] - b.m[0], + a.m[1] - b.m[1], + a.m[2] - b.m[2], + a.m[3] - b.m[3]); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] * b.m[0], + a.m[1] * b.m[1], + a.m[2] * b.m[2], + a.m[3] * b.m[3]); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] / b.m[0], + a.m[1] / b.m[1], + a.m[2] / b.m[2], + a.m[3] / b.m[3]); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] == b.m[0], + a.m[1] == b.m[1], + a.m[2] == b.m[2], + a.m[3] == b.m[3]); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] != b.m[0], + a.m[1] != b.m[1], + a.m[2] != b.m[2], + a.m[3] != b.m[3]); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] < b.m[0], + a.m[1] < b.m[1], + a.m[2] < b.m[2], + a.m[3] < b.m[3]); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] > b.m[0], + a.m[1] > b.m[1], + a.m[2] > b.m[2], + a.m[3] > b.m[3]); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] <= b.m[0], + a.m[1] <= b.m[1], + a.m[2] <= b.m[2], + a.m[3] <= b.m[3]); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) +{ + return vmask4(a.m[0] >= b.m[0], + a.m[1] >= b.m[1], + a.m[2] >= b.m[2], + a.m[3] >= b.m[3]); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] < b.m[0] ? a.m[0] : b.m[0], + a.m[1] < b.m[1] ? a.m[1] : b.m[1], + a.m[2] < b.m[2] ? a.m[2] : b.m[2], + a.m[3] < b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) +{ + return vfloat4(a.m[0] > b.m[0] ? a.m[0] : b.m[0], + a.m[1] > b.m[1] ? a.m[1] : b.m[1], + a.m[2] > b.m[2] ? a.m[2] : b.m[2], + a.m[3] > b.m[3] ? a.m[3] : b.m[3]); +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) +{ + return vfloat4(std::abs(a.m[0]), + std::abs(a.m[1]), + std::abs(a.m[2]), + std::abs(a.m[3])); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) +{ + assert(std::fegetround() == FE_TONEAREST); + return vfloat4(std::nearbyint(a.m[0]), + std::nearbyint(a.m[1]), + std::nearbyint(a.m[2]), + std::nearbyint(a.m[3])); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) +{ + float tmp1 = std::min(a.m[0], a.m[1]); + float tmp2 = std::min(a.m[2], a.m[3]); + return vfloat4(std::min(tmp1, tmp2)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) +{ + float tmp1 = std::max(a.m[0], a.m[1]); + float tmp2 = std::max(a.m[2], a.m[3]); + return vfloat4(std::max(tmp1, tmp2)); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) +{ + // Use halving add, gives invariance with SIMD versions + return (a.m[0] + a.m[2]) + (a.m[1] + a.m[3]); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) +{ + return vfloat4(std::sqrt(a.m[0]), + std::sqrt(a.m[1]), + std::sqrt(a.m[2]), + std::sqrt(a.m[3])); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) +{ + return vfloat4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0], + (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1], + (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2], + (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) +{ + return vfloat4((cond.m[0] & static_cast<int>(0x80000000)) ? b.m[0] : a.m[0], + (cond.m[1] & static_cast<int>(0x80000000)) ? b.m[1] : a.m[1], + (cond.m[2] & static_cast<int>(0x80000000)) ? b.m[2] : a.m[2], + (cond.m[3] & static_cast<int>(0x80000000)) ? b.m[3] : a.m[3]); +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) +{ + return vfloat4(base[indices.m[0]], + base[indices.m[1]], + base[indices.m[2]], + base[indices.m[3]]); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat4 a, float* ptr) +{ + ptr[0] = a.m[0]; + ptr[1] = a.m[1]; + ptr[2] = a.m[2]; + ptr[3] = a.m[3]; +} + +/** + * @brief Store a vector to an aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* ptr) +{ + ptr[0] = a.m[0]; + ptr[1] = a.m[1]; + ptr[2] = a.m[2]; + ptr[3] = a.m[3]; +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) +{ + return vint4(static_cast<int>(a.m[0]), + static_cast<int>(a.m[1]), + static_cast<int>(a.m[2]), + static_cast<int>(a.m[3])); +} + +/**f + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) +{ + return vint4(static_cast<int>(a.m[0] + 0.5f), + static_cast<int>(a.m[1] + 0.5f), + static_cast<int>(a.m[2] + 0.5f), + static_cast<int>(a.m[3] + 0.5f)); +} + +/** + * @brief Return a float value for a integer vector. + */ +ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) +{ + return vfloat4(static_cast<float>(a.m[0]), + static_cast<float>(a.m[1]), + static_cast<float>(a.m[2]), + static_cast<float>(a.m[3])); +} + +/** + * @brief Return a float16 value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) +{ + return vint4( + float_to_sf16(a.lane<0>()), + float_to_sf16(a.lane<1>()), + float_to_sf16(a.lane<2>()), + float_to_sf16(a.lane<3>())); +} + +/** + * @brief Return a float16 value for a float scalar, using round-to-nearest. + */ +static inline uint16_t float_to_float16(float a) +{ + return float_to_sf16(a); +} + +/** + * @brief Return a float value for a float16 vector. + */ +ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) +{ + return vfloat4( + sf16_to_float(static_cast<uint16_t>(a.lane<0>())), + sf16_to_float(static_cast<uint16_t>(a.lane<1>())), + sf16_to_float(static_cast<uint16_t>(a.lane<2>())), + sf16_to_float(static_cast<uint16_t>(a.lane<3>()))); +} + +/** + * @brief Return a float value for a float16 scalar. + */ +ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) +{ + return sf16_to_float(a); +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) +{ + vint4 r; + memcpy(r.m, a.m, 4 * 4); + return r; +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 a) +{ + vfloat4 r; + memcpy(r.m, a.m, 4 * 4); + return r; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) +{ + t0p = t0; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) +{ + t0p = t0; + t1p = t1; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) +{ + t0p = t0; + t1p = t1; + t2p = t2; + t3p = t3; +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) +{ + uint8_t table[16]; + storea(t0, reinterpret_cast<int*>(table + 0)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +} + + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) +{ + uint8_t table[32]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) +{ + uint8_t table[64]; + storea(t0, reinterpret_cast<int*>(table + 0)); + storea(t1, reinterpret_cast<int*>(table + 16)); + storea(t2, reinterpret_cast<int*>(table + 32)); + storea(t3, reinterpret_cast<int*>(table + 48)); + + return vint4(table[idx.lane<0>()], + table[idx.lane<1>()], + table[idx.lane<2>()], + table[idx.lane<3>()]); +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) +{ + return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) +{ + if (mask.m[3]) + { + store(data, base); + } + else if (mask.m[2]) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + base[2] = data.lane<2>(); + } + else if (mask.m[1]) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + } + else if (mask.m[0]) + { + base[0] = data.lane<0>(); + } +} + +#endif // #ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED |