diff options
Diffstat (limited to 'thirdparty/astcenc/astcenc_vecmathlib_neon_4.h')
-rw-r--r-- | thirdparty/astcenc/astcenc_vecmathlib_neon_4.h | 1072 |
1 files changed, 1072 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_vecmathlib_neon_4.h b/thirdparty/astcenc/astcenc_vecmathlib_neon_4.h new file mode 100644 index 0000000000..e742eae6cb --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_neon_4.h @@ -0,0 +1,1072 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 4x32-bit vectors, implemented using Armv8-A NEON. + * + * This module implements 4-wide 32-bit float, int, and mask vectors for + * Armv8-A NEON. + * + * There is a baseline level of functionality provided by all vector widths and + * implementations. This is implemented using identical function signatures, + * modulo data type, so we can use them as substitutable implementations in VLA + * code. + * + * The 4-wide vectors are also used as a fixed-width type, and significantly + * extend the functionality above that available to VLA code. + */ + +#ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED +#define ASTC_VECMATHLIB_NEON_4_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <cstdio> + +// ============================================================================ +// vfloat4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide floats. + */ +struct vfloat4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(const float *p) + { + m = vld1q_f32(p); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a) + { + m = vdupq_n_f32(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) + { + float v[4] { a, b, c, d }; + m = vld1q_f32(v); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat4(float32x4_t a) + { + m = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + return vgetq_lane_f32(m, l); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(float a) + { + m = vsetq_lane_f32(a, m, l); + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat4 zero() + { + return vfloat4(vdupq_n_f32(0.0f)); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) + { + return vfloat4(vld1q_dup_f32(p)); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) + { + return vfloat4(vld1q_f32(p)); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat4 lane_id() + { + alignas(16) float data[4] { 0.0f, 1.0f, 2.0f, 3.0f }; + return vfloat4(vld1q_f32(data)); + } + + /** + * @brief Return a swizzled float 2. + */ + template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f); + } + + /** + * @brief Return a swizzled float 3. + */ + template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f); + } + + /** + * @brief Return a swizzled float 4. + */ + template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const + { + return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>()); + } + + /** + * @brief The vector ... + */ + float32x4_t m; +}; + +// ============================================================================ +// vint4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide ints. + */ +struct vint4 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint4() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vint4(const int *p) + { + m = vld1q_s32(p); + } + + /** + * @brief Construct from 4 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) + { + // Cast is safe - NEON loads are allowed to be unaligned + uint32x2_t t8 = vld1_dup_u32(reinterpret_cast<const uint32_t*>(p)); + uint16x4_t t16 = vget_low_u16(vmovl_u8(vreinterpret_u8_u32(t8))); + m = vreinterpretq_s32_u32(vmovl_u16(t16)); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using vfloat4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a) + { + m = vdupq_n_s32(a); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) + { + int v[4] { a, b, c, d }; + m = vld1q_s32(v); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint4(int32x4_t a) + { + m = a; + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + return vgetq_lane_s32(m, l); + } + + /** + * @brief Set the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE void set_lane(int a) + { + m = vsetq_lane_s32(a, m, l); + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint4 zero() + { + return vint4(0); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint4 load1(const int* p) + { + return vint4(*p); + } + + /** + * @brief Factory that returns a vector loaded from 16B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint4 loada(const int* p) + { + return vint4(p); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint4 lane_id() + { + alignas(16) static const int data[4] { 0, 1, 2, 3 }; + return vint4(vld1q_s32(data)); + } + + /** + * @brief The vector ... + */ + int32x4_t m; +}; + +// ============================================================================ +// vmask4 data type +// ============================================================================ + +/** + * @brief Data type for 4-wide control plane masks. + */ +struct vmask4 +{ + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(uint32x4_t a) + { + m = a; + } + +#if !defined(_MSC_VER) + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(int32x4_t a) + { + m = vreinterpretq_u32_s32(a); + } +#endif + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a) + { + m = vreinterpretq_u32_s32(vdupq_n_s32(a == true ? -1 : 0)); + } + + /** + * @brief Construct from 4 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) + { + int v[4] { + a == true ? -1 : 0, + b == true ? -1 : 0, + c == true ? -1 : 0, + d == true ? -1 : 0 + }; + + int32x4_t ms = vld1q_s32(v); + m = vreinterpretq_u32_s32(ms); + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int32_t l> ASTCENC_SIMD_INLINE uint32_t lane() const + { + return vgetq_lane_u32(m, l); + } + + /** + * @brief The vector ... + */ + uint32x4_t m; +}; + +// ============================================================================ +// vmask4 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) +{ + return vmask4(vorrq_u32(a.m, b.m)); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) +{ + return vmask4(vandq_u32(a.m, b.m)); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) +{ + return vmask4(veorq_u32(a.m, b.m)); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) +{ + return vmask4(vmvnq_u32(a.m)); +} + +/** + * @brief Return a 4-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) +{ + static const int shifta[4] { 0, 1, 2, 3 }; + static const int32x4_t shift = vld1q_s32(shifta); + + uint32x4_t tmp = vshrq_n_u32(a.m, 31); + return vaddvq_u32(vshlq_u32(tmp, shift)); +} + +// ============================================================================ +// vint4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) +{ + return vint4(vaddq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) +{ + return vint4(vsubq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) +{ + return vint4(vmulq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) +{ + return vint4(vmvnq_s32(a.m)); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) +{ + return vint4(vorrq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) +{ + return vint4(vandq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) +{ + return vint4(veorq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) +{ + return vmask4(vceqq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) +{ + return ~vmask4(vceqq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) +{ + return vmask4(vcltq_s32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) +{ + return vmask4(vcgtq_s32(a.m, b.m)); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) +{ + return vint4(vshlq_s32(a.m, vdupq_n_s32(s))); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) +{ + uint32x4_t ua = vreinterpretq_u32_s32(a.m); + ua = vshlq_u32(ua, vdupq_n_s32(-s)); + return vint4(vreinterpretq_s32_u32(ua)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a) +{ + return vint4(vshlq_s32(a.m, vdupq_n_s32(-s))); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) +{ + return vint4(vminq_s32(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) +{ + return vint4(vmaxq_s32(a.m, b.m)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) +{ + return vint4(vminvq_s32(a.m)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) +{ + return vint4(vmaxvq_s32(a.m)); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE int hadd_s(vint4 a) +{ + int32x2_t t = vadd_s32(vget_high_s32(a.m), vget_low_s32(a.m)); + return vget_lane_s32(vpadd_s32(t, t), 0); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) +{ + vst1q_s32(p, a.m); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint4 a, int* p) +{ + vst1q_s32(p, a.m); +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) +{ + vst1q_lane_s32(reinterpret_cast<int32_t*>(p), a.m, 0); +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) +{ + alignas(16) int idx[4]; + storea(indices, idx); + alignas(16) int vals[4]; + vals[0] = base[idx[0]]; + vals[1] = base[idx[1]]; + vals[2] = base[idx[2]]; + vals[3] = base[idx[3]]; + return vint4(vals); +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) +{ + alignas(16) uint8_t shuf[16] { + 0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }; + uint8x16_t idx = vld1q_u8(shuf); + int8x16_t av = vreinterpretq_s8_s32(a.m); + return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(av, idx))); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) +{ + return vint4(vbslq_s32(cond.m, b.m, a.m)); +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) +{ + return vfloat4(vaddq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) +{ + return vfloat4(vsubq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) +{ + return vfloat4(vmulq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) +{ + return vfloat4(vdivq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) +{ + return vmask4(vceqq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) +{ + return vmask4(vmvnq_u32(vceqq_f32(a.m, b.m))); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) +{ + return vmask4(vcltq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) +{ + return vmask4(vcgtq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) +{ + return vmask4(vcleq_f32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) +{ + return vmask4(vcgeq_f32(a.m, b.m)); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(vminnmq_f32(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) +{ + // Do not reorder - second operand will return if either is NaN + return vfloat4(vmaxnmq_f32(a.m, b.m)); +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) +{ + float32x4_t zero = vdupq_n_f32(0.0f); + float32x4_t inv = vsubq_f32(zero, a.m); + return vfloat4(vmaxq_f32(a.m, inv)); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) +{ + return vfloat4(vrndnq_f32(a.m)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) +{ + return vfloat4(vminvq_f32(a.m)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) +{ + return vfloat4(vmaxvq_f32(a.m)); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) +{ + // Perform halving add to ensure invariance; we cannot use vaddqv as this + // does (0 + 1 + 2 + 3) which is not invariant with x86 (0 + 2) + (1 + 3). + float32x2_t t = vadd_f32(vget_high_f32(a.m), vget_low_f32(a.m)); + return vget_lane_f32(vpadd_f32(t, t), 0); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) +{ + return vfloat4(vsqrtq_f32(a.m)); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) +{ + return vfloat4(vbslq_f32(cond.m, b.m, a.m)); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) +{ + static const uint32x4_t msb = vdupq_n_u32(0x80000000u); + uint32x4_t mask = vcgeq_u32(cond.m, msb); + return vfloat4(vbslq_f32(mask, b.m, a.m)); +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) +{ + alignas(16) int idx[4]; + storea(indices, idx); + alignas(16) float vals[4]; + vals[0] = base[idx[0]]; + vals[1] = base[idx[1]]; + vals[2] = base[idx[2]]; + vals[3] = base[idx[3]]; + return vfloat4(vals); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p) +{ + vst1q_f32(p, a.m); +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p) +{ + vst1q_f32(p, a.m); +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) +{ + return vint4(vcvtq_s32_f32(a.m)); +} + +/** + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) +{ + a = round(a); + return vint4(vcvtq_s32_f32(a.m)); +} + +/** + * @brief Return a float value for an integer vector. + */ +ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) +{ + return vfloat4(vcvtq_f32_s32(a.m)); +} + +/** + * @brief Return a float16 value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) +{ + // Generate float16 value + float16x4_t f16 = vcvt_f16_f32(a.m); + + // Convert each 16-bit float pattern to a 32-bit pattern + uint16x4_t u16 = vreinterpret_u16_f16(f16); + uint32x4_t u32 = vmovl_u16(u16); + return vint4(vreinterpretq_s32_u32(u32)); +} + +/** + * @brief Return a float16 value for a float scalar, using round-to-nearest. + */ +static inline uint16_t float_to_float16(float a) +{ + vfloat4 av(a); + return static_cast<uint16_t>(float_to_float16(av).lane<0>()); +} + +/** + * @brief Return a float value for a float16 vector. + */ +ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) +{ + // Convert each 32-bit float pattern to a 16-bit pattern + uint32x4_t u32 = vreinterpretq_u32_s32(a.m); + uint16x4_t u16 = vmovn_u32(u32); + float16x4_t f16 = vreinterpret_f16_u16(u16); + + // Generate float16 value + return vfloat4(vcvt_f32_f16(f16)); +} + +/** + * @brief Return a float value for a float16 scalar. + */ +ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) +{ + vint4 av(a); + return float16_to_float(av).lane<0>(); +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) +{ + return vint4(vreinterpretq_s32_f32(a.m)); +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v) +{ + return vfloat4(vreinterpretq_f32_s32(v.m)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) +{ + t0p = t0; +} + + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) +{ + t0p = t0; + t1p = t1; +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) +{ + t0p = t0; + t1p = t1; + t2p = t2; + t3p = t3; +} + +/** + * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) +{ + int8x16_t table { + vreinterpretq_s8_s32(t0.m) + }; + + // Set index byte above max index for unused bytes so table lookup returns zero + int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); + uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); + + return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(table, idx_bytes))); +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) +{ + int8x16x2_t table { + vreinterpretq_s8_s32(t0.m), + vreinterpretq_s8_s32(t1.m) + }; + + // Set index byte above max index for unused bytes so table lookup returns zero + int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); + uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); + + return vint4(vreinterpretq_s32_s8(vqtbl2q_s8(table, idx_bytes))); +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) +{ + int8x16x4_t table { + vreinterpretq_s8_s32(t0.m), + vreinterpretq_s8_s32(t1.m), + vreinterpretq_s8_s32(t2.m), + vreinterpretq_s8_s32(t3.m) + }; + + // Set index byte above max index for unused bytes so table lookup returns zero + int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); + uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); + + return vint4(vreinterpretq_s32_s8(vqtbl4q_s8(table, idx_bytes))); +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) +{ + return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) +{ + if (mask.lane<3>()) + { + store(data, base); + } + else if (mask.lane<2>()) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + base[2] = data.lane<2>(); + } + else if (mask.lane<1>()) + { + base[0] = data.lane<0>(); + base[1] = data.lane<1>(); + } + else if (mask.lane<0>()) + { + base[0] = data.lane<0>(); + } +} + +#define ASTCENC_USE_NATIVE_POPCOUNT 1 + +/** + * @brief Population bit count. + * + * @param v The value to population count. + * + * @return The number of 1 bits. + */ +ASTCENC_SIMD_INLINE int popcount(uint64_t v) +{ + return static_cast<int>(vaddlv_u8(vcnt_u8(vcreate_u8(v)))); +} + +#endif // #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED |