summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h')
-rw-r--r--thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h1204
1 files changed, 1204 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h b/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h
new file mode 100644
index 0000000000..a785aca75b
--- /dev/null
+++ b/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h
@@ -0,0 +1,1204 @@
+// SPDX-License-Identifier: Apache-2.0
+// ----------------------------------------------------------------------------
+// Copyright 2019-2022 Arm Limited
+//
+// Licensed under the Apache License, Version 2.0 (the "License"); you may not
+// use this file except in compliance with the License. You may obtain a copy
+// of the License at:
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+// License for the specific language governing permissions and limitations
+// under the License.
+// ----------------------------------------------------------------------------
+
+/**
+ * @brief 8x32-bit vectors, implemented using AVX2.
+ *
+ * This module implements 8-wide 32-bit float, int, and mask vectors for x86
+ * AVX2.
+ *
+ * There is a baseline level of functionality provided by all vector widths and
+ * implementations. This is implemented using identical function signatures,
+ * modulo data type, so we can use them as substitutable implementations in VLA
+ * code.
+ */
+
+#ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
+#define ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
+
+#ifndef ASTCENC_SIMD_INLINE
+ #error "Include astcenc_vecmathlib.h, do not include directly"
+#endif
+
+#include <cstdio>
+
+// Define convenience intrinsics that are missing on older compilers
+#define astcenc_mm256_set_m128i(m, n) _mm256_insertf128_si256(_mm256_castsi128_si256((n)), (m), 1)
+
+// ============================================================================
+// vfloat8 data type
+// ============================================================================
+
+/**
+ * @brief Data type for 8-wide floats.
+ */
+struct vfloat8
+{
+ /**
+ * @brief Construct from zero-initialized value.
+ */
+ ASTCENC_SIMD_INLINE vfloat8() = default;
+
+ /**
+ * @brief Construct from 4 values loaded from an unaligned address.
+ *
+ * Consider using loada() which is better with vectors if data is aligned
+ * to vector length.
+ */
+ ASTCENC_SIMD_INLINE explicit vfloat8(const float *p)
+ {
+ m = _mm256_loadu_ps(p);
+ }
+
+ /**
+ * @brief Construct from 1 scalar value replicated across all lanes.
+ *
+ * Consider using zero() for constexpr zeros.
+ */
+ ASTCENC_SIMD_INLINE explicit vfloat8(float a)
+ {
+ m = _mm256_set1_ps(a);
+ }
+
+ /**
+ * @brief Construct from 8 scalar values.
+ *
+ * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
+ */
+ ASTCENC_SIMD_INLINE explicit vfloat8(
+ float a, float b, float c, float d,
+ float e, float f, float g, float h)
+ {
+ m = _mm256_set_ps(h, g, f, e, d, c, b, a);
+ }
+
+ /**
+ * @brief Construct from an existing SIMD register.
+ */
+ ASTCENC_SIMD_INLINE explicit vfloat8(__m256 a)
+ {
+ m = a;
+ }
+
+ /**
+ * @brief Get the scalar value of a single lane.
+ */
+ template <int l> ASTCENC_SIMD_INLINE float lane() const
+ {
+ #if !defined(__clang__) && defined(_MSC_VER)
+ return m.m256_f32[l];
+ #else
+ union { __m256 m; float f[8]; } cvt;
+ cvt.m = m;
+ return cvt.f[l];
+ #endif
+ }
+
+ /**
+ * @brief Factory that returns a vector of zeros.
+ */
+ static ASTCENC_SIMD_INLINE vfloat8 zero()
+ {
+ return vfloat8(_mm256_setzero_ps());
+ }
+
+ /**
+ * @brief Factory that returns a replicated scalar loaded from memory.
+ */
+ static ASTCENC_SIMD_INLINE vfloat8 load1(const float* p)
+ {
+ return vfloat8(_mm256_broadcast_ss(p));
+ }
+
+ /**
+ * @brief Factory that returns a vector loaded from 32B aligned memory.
+ */
+ static ASTCENC_SIMD_INLINE vfloat8 loada(const float* p)
+ {
+ return vfloat8(_mm256_load_ps(p));
+ }
+
+ /**
+ * @brief Factory that returns a vector containing the lane IDs.
+ */
+ static ASTCENC_SIMD_INLINE vfloat8 lane_id()
+ {
+ return vfloat8(_mm256_set_ps(7, 6, 5, 4, 3, 2, 1, 0));
+ }
+
+ /**
+ * @brief The vector ...
+ */
+ __m256 m;
+};
+
+// ============================================================================
+// vint8 data type
+// ============================================================================
+
+/**
+ * @brief Data type for 8-wide ints.
+ */
+struct vint8
+{
+ /**
+ * @brief Construct from zero-initialized value.
+ */
+ ASTCENC_SIMD_INLINE vint8() = default;
+
+ /**
+ * @brief Construct from 8 values loaded from an unaligned address.
+ *
+ * Consider using loada() which is better with vectors if data is aligned
+ * to vector length.
+ */
+ ASTCENC_SIMD_INLINE explicit vint8(const int *p)
+ {
+ m = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(p));
+ }
+
+ /**
+ * @brief Construct from 8 uint8_t loaded from an unaligned address.
+ */
+ ASTCENC_SIMD_INLINE explicit vint8(const uint8_t *p)
+ {
+ // _mm_loadu_si64 would be nicer syntax, but missing on older GCC
+ m = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*reinterpret_cast<const long long*>(p)));
+ }
+
+ /**
+ * @brief Construct from 1 scalar value replicated across all lanes.
+ *
+ * Consider using vfloat4::zero() for constexpr zeros.
+ */
+ ASTCENC_SIMD_INLINE explicit vint8(int a)
+ {
+ m = _mm256_set1_epi32(a);
+ }
+
+ /**
+ * @brief Construct from 8 scalar values.
+ *
+ * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
+ */
+ ASTCENC_SIMD_INLINE explicit vint8(
+ int a, int b, int c, int d,
+ int e, int f, int g, int h)
+ {
+ m = _mm256_set_epi32(h, g, f, e, d, c, b, a);
+ }
+
+ /**
+ * @brief Construct from an existing SIMD register.
+ */
+ ASTCENC_SIMD_INLINE explicit vint8(__m256i a)
+ {
+ m = a;
+ }
+
+ /**
+ * @brief Get the scalar from a single lane.
+ */
+ template <int l> ASTCENC_SIMD_INLINE int lane() const
+ {
+ #if !defined(__clang__) && defined(_MSC_VER)
+ return m.m256i_i32[l];
+ #else
+ union { __m256i m; int f[8]; } cvt;
+ cvt.m = m;
+ return cvt.f[l];
+ #endif
+ }
+
+ /**
+ * @brief Factory that returns a vector of zeros.
+ */
+ static ASTCENC_SIMD_INLINE vint8 zero()
+ {
+ return vint8(_mm256_setzero_si256());
+ }
+
+ /**
+ * @brief Factory that returns a replicated scalar loaded from memory.
+ */
+ static ASTCENC_SIMD_INLINE vint8 load1(const int* p)
+ {
+ __m128i a = _mm_set1_epi32(*p);
+ return vint8(_mm256_broadcastd_epi32(a));
+ }
+
+ /**
+ * @brief Factory that returns a vector loaded from 32B aligned memory.
+ */
+ static ASTCENC_SIMD_INLINE vint8 loada(const int* p)
+ {
+ return vint8(_mm256_load_si256(reinterpret_cast<const __m256i*>(p)));
+ }
+
+ /**
+ * @brief Factory that returns a vector containing the lane IDs.
+ */
+ static ASTCENC_SIMD_INLINE vint8 lane_id()
+ {
+ return vint8(_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0));
+ }
+
+ /**
+ * @brief The vector ...
+ */
+ __m256i m;
+};
+
+// ============================================================================
+// vmask8 data type
+// ============================================================================
+
+/**
+ * @brief Data type for 8-wide control plane masks.
+ */
+struct vmask8
+{
+ /**
+ * @brief Construct from an existing SIMD register.
+ */
+ ASTCENC_SIMD_INLINE explicit vmask8(__m256 a)
+ {
+ m = a;
+ }
+
+ /**
+ * @brief Construct from an existing SIMD register.
+ */
+ ASTCENC_SIMD_INLINE explicit vmask8(__m256i a)
+ {
+ m = _mm256_castsi256_ps(a);
+ }
+
+ /**
+ * @brief Construct from 1 scalar value.
+ */
+ ASTCENC_SIMD_INLINE explicit vmask8(bool a)
+ {
+ vint8 mask(a == false ? 0 : -1);
+ m = _mm256_castsi256_ps(mask.m);
+ }
+
+ /**
+ * @brief The vector ...
+ */
+ __m256 m;
+};
+
+// ============================================================================
+// vmask8 operators and functions
+// ============================================================================
+
+/**
+ * @brief Overload: mask union (or).
+ */
+ASTCENC_SIMD_INLINE vmask8 operator|(vmask8 a, vmask8 b)
+{
+ return vmask8(_mm256_or_ps(a.m, b.m));
+}
+
+/**
+ * @brief Overload: mask intersect (and).
+ */
+ASTCENC_SIMD_INLINE vmask8 operator&(vmask8 a, vmask8 b)
+{
+ return vmask8(_mm256_and_ps(a.m, b.m));
+}
+
+/**
+ * @brief Overload: mask difference (xor).
+ */
+ASTCENC_SIMD_INLINE vmask8 operator^(vmask8 a, vmask8 b)
+{
+ return vmask8(_mm256_xor_ps(a.m, b.m));
+}
+
+/**
+ * @brief Overload: mask invert (not).
+ */
+ASTCENC_SIMD_INLINE vmask8 operator~(vmask8 a)
+{
+ return vmask8(_mm256_xor_si256(_mm256_castps_si256(a.m), _mm256_set1_epi32(-1)));
+}
+
+/**
+ * @brief Return a 8-bit mask code indicating mask status.
+ *
+ * bit0 = lane 0
+ */
+ASTCENC_SIMD_INLINE unsigned int mask(vmask8 a)
+{
+ return static_cast<unsigned int>(_mm256_movemask_ps(a.m));
+}
+
+/**
+ * @brief True if any lanes are enabled, false otherwise.
+ */
+ASTCENC_SIMD_INLINE bool any(vmask8 a)
+{
+ return mask(a) != 0;
+}
+
+/**
+ * @brief True if all lanes are enabled, false otherwise.
+ */
+ASTCENC_SIMD_INLINE bool all(vmask8 a)
+{
+ return mask(a) == 0xFF;
+}
+
+// ============================================================================
+// vint8 operators and functions
+// ============================================================================
+/**
+ * @brief Overload: vector by vector addition.
+ */
+ASTCENC_SIMD_INLINE vint8 operator+(vint8 a, vint8 b)
+{
+ return vint8(_mm256_add_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector incremental addition.
+ */
+ASTCENC_SIMD_INLINE vint8& operator+=(vint8& a, const vint8& b)
+{
+ a = a + b;
+ return a;
+}
+
+/**
+ * @brief Overload: vector by vector subtraction.
+ */
+ASTCENC_SIMD_INLINE vint8 operator-(vint8 a, vint8 b)
+{
+ return vint8(_mm256_sub_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector multiplication.
+ */
+ASTCENC_SIMD_INLINE vint8 operator*(vint8 a, vint8 b)
+{
+ return vint8(_mm256_mullo_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector bit invert.
+ */
+ASTCENC_SIMD_INLINE vint8 operator~(vint8 a)
+{
+ return vint8(_mm256_xor_si256(a.m, _mm256_set1_epi32(-1)));
+}
+
+/**
+ * @brief Overload: vector by vector bitwise or.
+ */
+ASTCENC_SIMD_INLINE vint8 operator|(vint8 a, vint8 b)
+{
+ return vint8(_mm256_or_si256(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector bitwise and.
+ */
+ASTCENC_SIMD_INLINE vint8 operator&(vint8 a, vint8 b)
+{
+ return vint8(_mm256_and_si256(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector bitwise xor.
+ */
+ASTCENC_SIMD_INLINE vint8 operator^(vint8 a, vint8 b)
+{
+ return vint8(_mm256_xor_si256(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector equality.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator==(vint8 a, vint8 b)
+{
+ return vmask8(_mm256_cmpeq_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector inequality.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator!=(vint8 a, vint8 b)
+{
+ return ~vmask8(_mm256_cmpeq_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector less than.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator<(vint8 a, vint8 b)
+{
+ return vmask8(_mm256_cmpgt_epi32(b.m, a.m));
+}
+
+/**
+ * @brief Overload: vector by vector greater than.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator>(vint8 a, vint8 b)
+{
+ return vmask8(_mm256_cmpgt_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Logical shift left.
+ */
+template <int s> ASTCENC_SIMD_INLINE vint8 lsl(vint8 a)
+{
+ return vint8(_mm256_slli_epi32(a.m, s));
+}
+
+/**
+ * @brief Arithmetic shift right.
+ */
+template <int s> ASTCENC_SIMD_INLINE vint8 asr(vint8 a)
+{
+ return vint8(_mm256_srai_epi32(a.m, s));
+}
+
+/**
+ * @brief Logical shift right.
+ */
+template <int s> ASTCENC_SIMD_INLINE vint8 lsr(vint8 a)
+{
+ return vint8(_mm256_srli_epi32(a.m, s));
+}
+
+/**
+ * @brief Return the min vector of two vectors.
+ */
+ASTCENC_SIMD_INLINE vint8 min(vint8 a, vint8 b)
+{
+ return vint8(_mm256_min_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Return the max vector of two vectors.
+ */
+ASTCENC_SIMD_INLINE vint8 max(vint8 a, vint8 b)
+{
+ return vint8(_mm256_max_epi32(a.m, b.m));
+}
+
+/**
+ * @brief Return the horizontal minimum of a vector.
+ */
+ASTCENC_SIMD_INLINE vint8 hmin(vint8 a)
+{
+ __m128i m = _mm_min_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
+ m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
+ m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
+ m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
+
+ __m256i r = astcenc_mm256_set_m128i(m, m);
+ vint8 vmin(r);
+ return vmin;
+}
+
+/**
+ * @brief Return the horizontal maximum of a vector.
+ */
+ASTCENC_SIMD_INLINE vint8 hmax(vint8 a)
+{
+ __m128i m = _mm_max_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
+ m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
+ m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
+ m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
+
+ __m256i r = astcenc_mm256_set_m128i(m, m);
+ vint8 vmax(r);
+ return vmax;
+}
+
+/**
+ * @brief Store a vector to a 16B aligned memory address.
+ */
+ASTCENC_SIMD_INLINE void storea(vint8 a, int* p)
+{
+ _mm256_store_si256(reinterpret_cast<__m256i*>(p), a.m);
+}
+
+/**
+ * @brief Store a vector to an unaligned memory address.
+ */
+ASTCENC_SIMD_INLINE void store(vint8 a, int* p)
+{
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(p), a.m);
+}
+
+/**
+ * @brief Store lowest N (vector width) bytes into an unaligned address.
+ */
+ASTCENC_SIMD_INLINE void store_nbytes(vint8 a, uint8_t* p)
+{
+ // This is the most logical implementation, but the convenience intrinsic
+ // is missing on older compilers (supported in g++ 9 and clang++ 9).
+ // _mm_storeu_si64(ptr, _mm256_extracti128_si256(v.m, 0))
+ _mm_storel_epi64(reinterpret_cast<__m128i*>(p), _mm256_extracti128_si256(a.m, 0));
+}
+
+/**
+ * @brief Gather N (vector width) indices from the array.
+ */
+ASTCENC_SIMD_INLINE vint8 gatheri(const int* base, vint8 indices)
+{
+ return vint8(_mm256_i32gather_epi32(base, indices.m, 4));
+}
+
+/**
+ * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
+ */
+ASTCENC_SIMD_INLINE vint8 pack_low_bytes(vint8 v)
+{
+ __m256i shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 28, 24, 20, 16,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 12, 8, 4, 0);
+ __m256i a = _mm256_shuffle_epi8(v.m, shuf);
+ __m128i a0 = _mm256_extracti128_si256(a, 0);
+ __m128i a1 = _mm256_extracti128_si256(a, 1);
+ __m128i b = _mm_unpacklo_epi32(a0, a1);
+
+ __m256i r = astcenc_mm256_set_m128i(b, b);
+ return vint8(r);
+}
+
+/**
+ * @brief Return lanes from @c b if @c cond is set, else @c a.
+ */
+ASTCENC_SIMD_INLINE vint8 select(vint8 a, vint8 b, vmask8 cond)
+{
+ __m256i condi = _mm256_castps_si256(cond.m);
+ return vint8(_mm256_blendv_epi8(a.m, b.m, condi));
+}
+
+// ============================================================================
+// vfloat4 operators and functions
+// ============================================================================
+
+/**
+ * @brief Overload: vector by vector addition.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator+(vfloat8 a, vfloat8 b)
+{
+ return vfloat8(_mm256_add_ps(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector incremental addition.
+ */
+ASTCENC_SIMD_INLINE vfloat8& operator+=(vfloat8& a, const vfloat8& b)
+{
+ a = a + b;
+ return a;
+}
+
+/**
+ * @brief Overload: vector by vector subtraction.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator-(vfloat8 a, vfloat8 b)
+{
+ return vfloat8(_mm256_sub_ps(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by vector multiplication.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, vfloat8 b)
+{
+ return vfloat8(_mm256_mul_ps(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by scalar multiplication.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, float b)
+{
+ return vfloat8(_mm256_mul_ps(a.m, _mm256_set1_ps(b)));
+}
+
+/**
+ * @brief Overload: scalar by vector multiplication.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator*(float a, vfloat8 b)
+{
+ return vfloat8(_mm256_mul_ps(_mm256_set1_ps(a), b.m));
+}
+
+/**
+ * @brief Overload: vector by vector division.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, vfloat8 b)
+{
+ return vfloat8(_mm256_div_ps(a.m, b.m));
+}
+
+/**
+ * @brief Overload: vector by scalar division.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, float b)
+{
+ return vfloat8(_mm256_div_ps(a.m, _mm256_set1_ps(b)));
+}
+
+
+/**
+ * @brief Overload: scalar by vector division.
+ */
+ASTCENC_SIMD_INLINE vfloat8 operator/(float a, vfloat8 b)
+{
+ return vfloat8(_mm256_div_ps(_mm256_set1_ps(a), b.m));
+}
+
+
+/**
+ * @brief Overload: vector by vector equality.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator==(vfloat8 a, vfloat8 b)
+{
+ return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_EQ_OQ));
+}
+
+/**
+ * @brief Overload: vector by vector inequality.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator!=(vfloat8 a, vfloat8 b)
+{
+ return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_NEQ_OQ));
+}
+
+/**
+ * @brief Overload: vector by vector less than.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator<(vfloat8 a, vfloat8 b)
+{
+ return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LT_OQ));
+}
+
+/**
+ * @brief Overload: vector by vector greater than.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator>(vfloat8 a, vfloat8 b)
+{
+ return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GT_OQ));
+}
+
+/**
+ * @brief Overload: vector by vector less than or equal.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator<=(vfloat8 a, vfloat8 b)
+{
+ return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LE_OQ));
+}
+
+/**
+ * @brief Overload: vector by vector greater than or equal.
+ */
+ASTCENC_SIMD_INLINE vmask8 operator>=(vfloat8 a, vfloat8 b)
+{
+ return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GE_OQ));
+}
+
+/**
+ * @brief Return the min vector of two vectors.
+ *
+ * If either lane value is NaN, @c b will be returned for that lane.
+ */
+ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, vfloat8 b)
+{
+ return vfloat8(_mm256_min_ps(a.m, b.m));
+}
+
+/**
+ * @brief Return the min vector of a vector and a scalar.
+ *
+ * If either lane value is NaN, @c b will be returned for that lane.
+ */
+ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, float b)
+{
+ return min(a, vfloat8(b));
+}
+
+/**
+ * @brief Return the max vector of two vectors.
+ *
+ * If either lane value is NaN, @c b will be returned for that lane.
+ */
+ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, vfloat8 b)
+{
+ return vfloat8(_mm256_max_ps(a.m, b.m));
+}
+
+/**
+ * @brief Return the max vector of a vector and a scalar.
+ *
+ * If either lane value is NaN, @c b will be returned for that lane.
+ */
+ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, float b)
+{
+ return max(a, vfloat8(b));
+}
+
+/**
+ * @brief Return the clamped value between min and max.
+ *
+ * It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN
+ * then @c min will be returned for that lane.
+ */
+ASTCENC_SIMD_INLINE vfloat8 clamp(float min, float max, vfloat8 a)
+{
+ // Do not reorder - second operand will return if either is NaN
+ a.m = _mm256_max_ps(a.m, _mm256_set1_ps(min));
+ a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
+ return a;
+}
+
+/**
+ * @brief Return a clamped value between 0.0f and max.
+ *
+ * It is assumed that @c max is not a NaN value. If @c a is NaN then zero will
+ * be returned for that lane.
+ */
+ASTCENC_SIMD_INLINE vfloat8 clampz(float max, vfloat8 a)
+{
+ a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
+ a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
+ return a;
+}
+
+/**
+ * @brief Return a clamped value between 0.0f and 1.0f.
+ *
+ * If @c a is NaN then zero will be returned for that lane.
+ */
+ASTCENC_SIMD_INLINE vfloat8 clampzo(vfloat8 a)
+{
+ a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
+ a.m = _mm256_min_ps(a.m, _mm256_set1_ps(1.0f));
+ return a;
+}
+
+/**
+ * @brief Return the absolute value of the float vector.
+ */
+ASTCENC_SIMD_INLINE vfloat8 abs(vfloat8 a)
+{
+ __m256 msk = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff));
+ return vfloat8(_mm256_and_ps(a.m, msk));
+}
+
+/**
+ * @brief Return a float rounded to the nearest integer value.
+ */
+ASTCENC_SIMD_INLINE vfloat8 round(vfloat8 a)
+{
+ constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
+ return vfloat8(_mm256_round_ps(a.m, flags));
+}
+
+/**
+ * @brief Return the horizontal minimum of a vector.
+ */
+ASTCENC_SIMD_INLINE vfloat8 hmin(vfloat8 a)
+{
+ __m128 vlow = _mm256_castps256_ps128(a.m);
+ __m128 vhigh = _mm256_extractf128_ps(a.m, 1);
+ vlow = _mm_min_ps(vlow, vhigh);
+
+ // First do an horizontal reduction.
+ __m128 shuf = _mm_shuffle_ps(vlow, vlow, _MM_SHUFFLE(2, 3, 0, 1));
+ __m128 mins = _mm_min_ps(vlow, shuf);
+ shuf = _mm_movehl_ps(shuf, mins);
+ mins = _mm_min_ss(mins, shuf);
+
+ // This is the most logical implementation, but the convenience intrinsic
+ // is missing on older compilers (supported in g++ 9 and clang++ 9).
+ //__m256i r = _mm256_set_m128(m, m)
+ __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(mins), mins, 1);
+
+ return vfloat8(_mm256_permute_ps(r, 0));
+}
+
+/**
+ * @brief Return the horizontal minimum of a vector.
+ */
+ASTCENC_SIMD_INLINE float hmin_s(vfloat8 a)
+{
+ return hmin(a).lane<0>();
+}
+
+/**
+ * @brief Return the horizontal maximum of a vector.
+ */
+ASTCENC_SIMD_INLINE vfloat8 hmax(vfloat8 a)
+{
+ __m128 vlow = _mm256_castps256_ps128(a.m);
+ __m128 vhigh = _mm256_extractf128_ps(a.m, 1);
+ vhigh = _mm_max_ps(vlow, vhigh);
+
+ // First do an horizontal reduction.
+ __m128 shuf = _mm_shuffle_ps(vhigh, vhigh, _MM_SHUFFLE(2, 3, 0, 1));
+ __m128 maxs = _mm_max_ps(vhigh, shuf);
+ shuf = _mm_movehl_ps(shuf,maxs);
+ maxs = _mm_max_ss(maxs, shuf);
+
+ // This is the most logical implementation, but the convenience intrinsic
+ // is missing on older compilers (supported in g++ 9 and clang++ 9).
+ //__m256i r = _mm256_set_m128(m, m)
+ __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(maxs), maxs, 1);
+ return vfloat8(_mm256_permute_ps(r, 0));
+}
+
+/**
+ * @brief Return the horizontal maximum of a vector.
+ */
+ASTCENC_SIMD_INLINE float hmax_s(vfloat8 a)
+{
+ return hmax(a).lane<0>();
+}
+
+/**
+ * @brief Return the horizontal sum of a vector.
+ */
+ASTCENC_SIMD_INLINE float hadd_s(vfloat8 a)
+{
+ // Two sequential 4-wide adds gives invariance with 4-wide code
+ vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
+ vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
+ return hadd_s(lo) + hadd_s(hi);
+}
+
+/**
+ * @brief Return lanes from @c b if @c cond is set, else @c a.
+ */
+ASTCENC_SIMD_INLINE vfloat8 select(vfloat8 a, vfloat8 b, vmask8 cond)
+{
+ return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
+}
+
+/**
+ * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
+ */
+ASTCENC_SIMD_INLINE vfloat8 select_msb(vfloat8 a, vfloat8 b, vmask8 cond)
+{
+ return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
+}
+
+/**
+ * @brief Accumulate lane-wise sums for a vector, folded 4-wide.
+ *
+ * This is invariant with 4-wide implementations.
+ */
+ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a)
+{
+ vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
+ haccumulate(accum, lo);
+
+ vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
+ haccumulate(accum, hi);
+}
+
+/**
+ * @brief Accumulate lane-wise sums for a vector.
+ *
+ * This is NOT invariant with 4-wide implementations.
+ */
+ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a)
+{
+ accum += a;
+}
+
+/**
+ * @brief Accumulate masked lane-wise sums for a vector, folded 4-wide.
+ *
+ * This is invariant with 4-wide implementations.
+ */
+ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a, vmask8 m)
+{
+ a = select(vfloat8::zero(), a, m);
+ haccumulate(accum, a);
+}
+
+/**
+ * @brief Accumulate masked lane-wise sums for a vector.
+ *
+ * This is NOT invariant with 4-wide implementations.
+ */
+ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a, vmask8 m)
+{
+ a = select(vfloat8::zero(), a, m);
+ haccumulate(accum, a);
+}
+
+/**
+ * @brief Return the sqrt of the lanes in the vector.
+ */
+ASTCENC_SIMD_INLINE vfloat8 sqrt(vfloat8 a)
+{
+ return vfloat8(_mm256_sqrt_ps(a.m));
+}
+
+/**
+ * @brief Load a vector of gathered results from an array;
+ */
+ASTCENC_SIMD_INLINE vfloat8 gatherf(const float* base, vint8 indices)
+{
+ return vfloat8(_mm256_i32gather_ps(base, indices.m, 4));
+}
+
+/**
+ * @brief Store a vector to an unaligned memory address.
+ */
+ASTCENC_SIMD_INLINE void store(vfloat8 a, float* p)
+{
+ _mm256_storeu_ps(p, a.m);
+}
+
+/**
+ * @brief Store a vector to a 32B aligned memory address.
+ */
+ASTCENC_SIMD_INLINE void storea(vfloat8 a, float* p)
+{
+ _mm256_store_ps(p, a.m);
+}
+
+/**
+ * @brief Return a integer value for a float vector, using truncation.
+ */
+ASTCENC_SIMD_INLINE vint8 float_to_int(vfloat8 a)
+{
+ return vint8(_mm256_cvttps_epi32(a.m));
+}
+
+/**
+ * @brief Return a integer value for a float vector, using round-to-nearest.
+ */
+ASTCENC_SIMD_INLINE vint8 float_to_int_rtn(vfloat8 a)
+{
+ a = round(a);
+ return vint8(_mm256_cvttps_epi32(a.m));
+}
+
+
+/**
+ * @brief Return a float value for an integer vector.
+ */
+ASTCENC_SIMD_INLINE vfloat8 int_to_float(vint8 a)
+{
+ return vfloat8(_mm256_cvtepi32_ps(a.m));
+}
+
+/**
+ * @brief Return a float value as an integer bit pattern (i.e. no conversion).
+ *
+ * It is a common trick to convert floats into integer bit patterns, perform
+ * some bit hackery based on knowledge they are IEEE 754 layout, and then
+ * convert them back again. This is the first half of that flip.
+ */
+ASTCENC_SIMD_INLINE vint8 float_as_int(vfloat8 a)
+{
+ return vint8(_mm256_castps_si256(a.m));
+}
+
+/**
+ * @brief Return a integer value as a float bit pattern (i.e. no conversion).
+ *
+ * It is a common trick to convert floats into integer bit patterns, perform
+ * some bit hackery based on knowledge they are IEEE 754 layout, and then
+ * convert them back again. This is the second half of that flip.
+ */
+ASTCENC_SIMD_INLINE vfloat8 int_as_float(vint8 a)
+{
+ return vfloat8(_mm256_castsi256_ps(a.m));
+}
+
+/**
+ * @brief Prepare a vtable lookup table for use with the native SIMD size.
+ */
+ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint8& t0p)
+{
+ // AVX2 duplicates the table within each 128-bit lane
+ __m128i t0n = t0.m;
+ t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
+}
+
+/**
+ * @brief Prepare a vtable lookup table for use with the native SIMD size.
+ */
+ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint8& t0p, vint8& t1p)
+{
+ // AVX2 duplicates the table within each 128-bit lane
+ __m128i t0n = t0.m;
+ t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
+
+ __m128i t1n = _mm_xor_si128(t0.m, t1.m);
+ t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
+}
+
+/**
+ * @brief Prepare a vtable lookup table for use with the native SIMD size.
+ */
+ASTCENC_SIMD_INLINE void vtable_prepare(
+ vint4 t0, vint4 t1, vint4 t2, vint4 t3,
+ vint8& t0p, vint8& t1p, vint8& t2p, vint8& t3p)
+{
+ // AVX2 duplicates the table within each 128-bit lane
+ __m128i t0n = t0.m;
+ t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
+
+ __m128i t1n = _mm_xor_si128(t0.m, t1.m);
+ t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
+
+ __m128i t2n = _mm_xor_si128(t1.m, t2.m);
+ t2p = vint8(astcenc_mm256_set_m128i(t2n, t2n));
+
+ __m128i t3n = _mm_xor_si128(t2.m, t3.m);
+ t3p = vint8(astcenc_mm256_set_m128i(t3n, t3n));
+}
+
+/**
+ * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
+ */
+ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 idx)
+{
+ // Set index byte MSB to 1 for unused bytes so shuffle returns zero
+ __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
+
+ __m256i result = _mm256_shuffle_epi8(t0.m, idxx);
+ return vint8(result);
+}
+
+/**
+ * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
+ */
+ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 idx)
+{
+ // Set index byte MSB to 1 for unused bytes so shuffle returns zero
+ __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
+
+ __m256i result = _mm256_shuffle_epi8(t0.m, idxx);
+ idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
+
+ __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
+ result = _mm256_xor_si256(result, result2);
+ return vint8(result);
+}
+
+/**
+ * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
+ */
+ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 t2, vint8 t3, vint8 idx)
+{
+ // Set index byte MSB to 1 for unused bytes so shuffle returns zero
+ __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
+
+ __m256i result = _mm256_shuffle_epi8(t0.m, idxx);
+ idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
+
+ __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
+ result = _mm256_xor_si256(result, result2);
+ idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
+
+ result2 = _mm256_shuffle_epi8(t2.m, idxx);
+ result = _mm256_xor_si256(result, result2);
+ idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
+
+ result2 = _mm256_shuffle_epi8(t3.m, idxx);
+ result = _mm256_xor_si256(result, result2);
+
+ return vint8(result);
+}
+
+/**
+ * @brief Return a vector of interleaved RGBA data.
+ *
+ * Input vectors have the value stored in the bottom 8 bits of each lane,
+ * with high bits set to zero.
+ *
+ * Output vector stores a single RGBA texel packed in each lane.
+ */
+ASTCENC_SIMD_INLINE vint8 interleave_rgba8(vint8 r, vint8 g, vint8 b, vint8 a)
+{
+ return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
+}
+
+/**
+ * @brief Store a vector, skipping masked lanes.
+ *
+ * All masked lanes must be at the end of vector, after all non-masked lanes.
+ */
+ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint8 data, vmask8 mask)
+{
+ _mm256_maskstore_epi32(base, _mm256_castps_si256(mask.m), data.m);
+}
+
+/**
+ * @brief Debug function to print a vector of ints.
+ */
+ASTCENC_SIMD_INLINE void print(vint8 a)
+{
+ alignas(ASTCENC_VECALIGN) int v[8];
+ storea(a, v);
+ printf("v8_i32:\n %8d %8d %8d %8d %8d %8d %8d %8d\n",
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
+}
+
+/**
+ * @brief Debug function to print a vector of ints.
+ */
+ASTCENC_SIMD_INLINE void printx(vint8 a)
+{
+ alignas(ASTCENC_VECALIGN) int v[8];
+ storea(a, v);
+ printf("v8_i32:\n %08x %08x %08x %08x %08x %08x %08x %08x\n",
+ v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
+}
+
+/**
+ * @brief Debug function to print a vector of floats.
+ */
+ASTCENC_SIMD_INLINE void print(vfloat8 a)
+{
+ alignas(ASTCENC_VECALIGN) float v[8];
+ storea(a, v);
+ printf("v8_f32:\n %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f\n",
+ static_cast<double>(v[0]), static_cast<double>(v[1]),
+ static_cast<double>(v[2]), static_cast<double>(v[3]),
+ static_cast<double>(v[4]), static_cast<double>(v[5]),
+ static_cast<double>(v[6]), static_cast<double>(v[7]));
+}
+
+/**
+ * @brief Debug function to print a vector of masks.
+ */
+ASTCENC_SIMD_INLINE void print(vmask8 a)
+{
+ print(select(vint8(0), vint8(1), a));
+}
+
+#endif // #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED