diff options
Diffstat (limited to 'thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h')
-rw-r--r-- | thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h | 1204 |
1 files changed, 1204 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h b/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h new file mode 100644 index 0000000000..a785aca75b --- /dev/null +++ b/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h @@ -0,0 +1,1204 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2019-2022 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +/** + * @brief 8x32-bit vectors, implemented using AVX2. + * + * This module implements 8-wide 32-bit float, int, and mask vectors for x86 + * AVX2. + * + * There is a baseline level of functionality provided by all vector widths and + * implementations. This is implemented using identical function signatures, + * modulo data type, so we can use them as substitutable implementations in VLA + * code. + */ + +#ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED +#define ASTC_VECMATHLIB_AVX2_8_H_INCLUDED + +#ifndef ASTCENC_SIMD_INLINE + #error "Include astcenc_vecmathlib.h, do not include directly" +#endif + +#include <cstdio> + +// Define convenience intrinsics that are missing on older compilers +#define astcenc_mm256_set_m128i(m, n) _mm256_insertf128_si256(_mm256_castsi128_si256((n)), (m), 1) + +// ============================================================================ +// vfloat8 data type +// ============================================================================ + +/** + * @brief Data type for 8-wide floats. + */ +struct vfloat8 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vfloat8() = default; + + /** + * @brief Construct from 4 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vfloat8(const float *p) + { + m = _mm256_loadu_ps(p); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vfloat8(float a) + { + m = _mm256_set1_ps(a); + } + + /** + * @brief Construct from 8 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat8( + float a, float b, float c, float d, + float e, float f, float g, float h) + { + m = _mm256_set_ps(h, g, f, e, d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vfloat8(__m256 a) + { + m = a; + } + + /** + * @brief Get the scalar value of a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE float lane() const + { + #if !defined(__clang__) && defined(_MSC_VER) + return m.m256_f32[l]; + #else + union { __m256 m; float f[8]; } cvt; + cvt.m = m; + return cvt.f[l]; + #endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vfloat8 zero() + { + return vfloat8(_mm256_setzero_ps()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vfloat8 load1(const float* p) + { + return vfloat8(_mm256_broadcast_ss(p)); + } + + /** + * @brief Factory that returns a vector loaded from 32B aligned memory. + */ + static ASTCENC_SIMD_INLINE vfloat8 loada(const float* p) + { + return vfloat8(_mm256_load_ps(p)); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vfloat8 lane_id() + { + return vfloat8(_mm256_set_ps(7, 6, 5, 4, 3, 2, 1, 0)); + } + + /** + * @brief The vector ... + */ + __m256 m; +}; + +// ============================================================================ +// vint8 data type +// ============================================================================ + +/** + * @brief Data type for 8-wide ints. + */ +struct vint8 +{ + /** + * @brief Construct from zero-initialized value. + */ + ASTCENC_SIMD_INLINE vint8() = default; + + /** + * @brief Construct from 8 values loaded from an unaligned address. + * + * Consider using loada() which is better with vectors if data is aligned + * to vector length. + */ + ASTCENC_SIMD_INLINE explicit vint8(const int *p) + { + m = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(p)); + } + + /** + * @brief Construct from 8 uint8_t loaded from an unaligned address. + */ + ASTCENC_SIMD_INLINE explicit vint8(const uint8_t *p) + { + // _mm_loadu_si64 would be nicer syntax, but missing on older GCC + m = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*reinterpret_cast<const long long*>(p))); + } + + /** + * @brief Construct from 1 scalar value replicated across all lanes. + * + * Consider using vfloat4::zero() for constexpr zeros. + */ + ASTCENC_SIMD_INLINE explicit vint8(int a) + { + m = _mm256_set1_epi32(a); + } + + /** + * @brief Construct from 8 scalar values. + * + * The value of @c a is stored to lane 0 (LSB) in the SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint8( + int a, int b, int c, int d, + int e, int f, int g, int h) + { + m = _mm256_set_epi32(h, g, f, e, d, c, b, a); + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vint8(__m256i a) + { + m = a; + } + + /** + * @brief Get the scalar from a single lane. + */ + template <int l> ASTCENC_SIMD_INLINE int lane() const + { + #if !defined(__clang__) && defined(_MSC_VER) + return m.m256i_i32[l]; + #else + union { __m256i m; int f[8]; } cvt; + cvt.m = m; + return cvt.f[l]; + #endif + } + + /** + * @brief Factory that returns a vector of zeros. + */ + static ASTCENC_SIMD_INLINE vint8 zero() + { + return vint8(_mm256_setzero_si256()); + } + + /** + * @brief Factory that returns a replicated scalar loaded from memory. + */ + static ASTCENC_SIMD_INLINE vint8 load1(const int* p) + { + __m128i a = _mm_set1_epi32(*p); + return vint8(_mm256_broadcastd_epi32(a)); + } + + /** + * @brief Factory that returns a vector loaded from 32B aligned memory. + */ + static ASTCENC_SIMD_INLINE vint8 loada(const int* p) + { + return vint8(_mm256_load_si256(reinterpret_cast<const __m256i*>(p))); + } + + /** + * @brief Factory that returns a vector containing the lane IDs. + */ + static ASTCENC_SIMD_INLINE vint8 lane_id() + { + return vint8(_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0)); + } + + /** + * @brief The vector ... + */ + __m256i m; +}; + +// ============================================================================ +// vmask8 data type +// ============================================================================ + +/** + * @brief Data type for 8-wide control plane masks. + */ +struct vmask8 +{ + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask8(__m256 a) + { + m = a; + } + + /** + * @brief Construct from an existing SIMD register. + */ + ASTCENC_SIMD_INLINE explicit vmask8(__m256i a) + { + m = _mm256_castsi256_ps(a); + } + + /** + * @brief Construct from 1 scalar value. + */ + ASTCENC_SIMD_INLINE explicit vmask8(bool a) + { + vint8 mask(a == false ? 0 : -1); + m = _mm256_castsi256_ps(mask.m); + } + + /** + * @brief The vector ... + */ + __m256 m; +}; + +// ============================================================================ +// vmask8 operators and functions +// ============================================================================ + +/** + * @brief Overload: mask union (or). + */ +ASTCENC_SIMD_INLINE vmask8 operator|(vmask8 a, vmask8 b) +{ + return vmask8(_mm256_or_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask intersect (and). + */ +ASTCENC_SIMD_INLINE vmask8 operator&(vmask8 a, vmask8 b) +{ + return vmask8(_mm256_and_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask difference (xor). + */ +ASTCENC_SIMD_INLINE vmask8 operator^(vmask8 a, vmask8 b) +{ + return vmask8(_mm256_xor_ps(a.m, b.m)); +} + +/** + * @brief Overload: mask invert (not). + */ +ASTCENC_SIMD_INLINE vmask8 operator~(vmask8 a) +{ + return vmask8(_mm256_xor_si256(_mm256_castps_si256(a.m), _mm256_set1_epi32(-1))); +} + +/** + * @brief Return a 8-bit mask code indicating mask status. + * + * bit0 = lane 0 + */ +ASTCENC_SIMD_INLINE unsigned int mask(vmask8 a) +{ + return static_cast<unsigned int>(_mm256_movemask_ps(a.m)); +} + +/** + * @brief True if any lanes are enabled, false otherwise. + */ +ASTCENC_SIMD_INLINE bool any(vmask8 a) +{ + return mask(a) != 0; +} + +/** + * @brief True if all lanes are enabled, false otherwise. + */ +ASTCENC_SIMD_INLINE bool all(vmask8 a) +{ + return mask(a) == 0xFF; +} + +// ============================================================================ +// vint8 operators and functions +// ============================================================================ +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vint8 operator+(vint8 a, vint8 b) +{ + return vint8(_mm256_add_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector incremental addition. + */ +ASTCENC_SIMD_INLINE vint8& operator+=(vint8& a, const vint8& b) +{ + a = a + b; + return a; +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vint8 operator-(vint8 a, vint8 b) +{ + return vint8(_mm256_sub_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vint8 operator*(vint8 a, vint8 b) +{ + return vint8(_mm256_mullo_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector bit invert. + */ +ASTCENC_SIMD_INLINE vint8 operator~(vint8 a) +{ + return vint8(_mm256_xor_si256(a.m, _mm256_set1_epi32(-1))); +} + +/** + * @brief Overload: vector by vector bitwise or. + */ +ASTCENC_SIMD_INLINE vint8 operator|(vint8 a, vint8 b) +{ + return vint8(_mm256_or_si256(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise and. + */ +ASTCENC_SIMD_INLINE vint8 operator&(vint8 a, vint8 b) +{ + return vint8(_mm256_and_si256(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector bitwise xor. + */ +ASTCENC_SIMD_INLINE vint8 operator^(vint8 a, vint8 b) +{ + return vint8(_mm256_xor_si256(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask8 operator==(vint8 a, vint8 b) +{ + return vmask8(_mm256_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask8 operator!=(vint8 a, vint8 b) +{ + return ~vmask8(_mm256_cmpeq_epi32(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask8 operator<(vint8 a, vint8 b) +{ + return vmask8(_mm256_cmpgt_epi32(b.m, a.m)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask8 operator>(vint8 a, vint8 b) +{ + return vmask8(_mm256_cmpgt_epi32(a.m, b.m)); +} + +/** + * @brief Logical shift left. + */ +template <int s> ASTCENC_SIMD_INLINE vint8 lsl(vint8 a) +{ + return vint8(_mm256_slli_epi32(a.m, s)); +} + +/** + * @brief Arithmetic shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint8 asr(vint8 a) +{ + return vint8(_mm256_srai_epi32(a.m, s)); +} + +/** + * @brief Logical shift right. + */ +template <int s> ASTCENC_SIMD_INLINE vint8 lsr(vint8 a) +{ + return vint8(_mm256_srli_epi32(a.m, s)); +} + +/** + * @brief Return the min vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint8 min(vint8 a, vint8 b) +{ + return vint8(_mm256_min_epi32(a.m, b.m)); +} + +/** + * @brief Return the max vector of two vectors. + */ +ASTCENC_SIMD_INLINE vint8 max(vint8 a, vint8 b) +{ + return vint8(_mm256_max_epi32(a.m, b.m)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vint8 hmin(vint8 a) +{ + __m128i m = _mm_min_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1)); + m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2))); + m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1))); + m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0)); + + __m256i r = astcenc_mm256_set_m128i(m, m); + vint8 vmin(r); + return vmin; +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vint8 hmax(vint8 a) +{ + __m128i m = _mm_max_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1)); + m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2))); + m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1))); + m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0)); + + __m256i r = astcenc_mm256_set_m128i(m, m); + vint8 vmax(r); + return vmax; +} + +/** + * @brief Store a vector to a 16B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vint8 a, int* p) +{ + _mm256_store_si256(reinterpret_cast<__m256i*>(p), a.m); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vint8 a, int* p) +{ + _mm256_storeu_si256(reinterpret_cast<__m256i*>(p), a.m); +} + +/** + * @brief Store lowest N (vector width) bytes into an unaligned address. + */ +ASTCENC_SIMD_INLINE void store_nbytes(vint8 a, uint8_t* p) +{ + // This is the most logical implementation, but the convenience intrinsic + // is missing on older compilers (supported in g++ 9 and clang++ 9). + // _mm_storeu_si64(ptr, _mm256_extracti128_si256(v.m, 0)) + _mm_storel_epi64(reinterpret_cast<__m128i*>(p), _mm256_extracti128_si256(a.m, 0)); +} + +/** + * @brief Gather N (vector width) indices from the array. + */ +ASTCENC_SIMD_INLINE vint8 gatheri(const int* base, vint8 indices) +{ + return vint8(_mm256_i32gather_epi32(base, indices.m, 4)); +} + +/** + * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. + */ +ASTCENC_SIMD_INLINE vint8 pack_low_bytes(vint8 v) +{ + __m256i shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 28, 24, 20, 16, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 12, 8, 4, 0); + __m256i a = _mm256_shuffle_epi8(v.m, shuf); + __m128i a0 = _mm256_extracti128_si256(a, 0); + __m128i a1 = _mm256_extracti128_si256(a, 1); + __m128i b = _mm_unpacklo_epi32(a0, a1); + + __m256i r = astcenc_mm256_set_m128i(b, b); + return vint8(r); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vint8 select(vint8 a, vint8 b, vmask8 cond) +{ + __m256i condi = _mm256_castps_si256(cond.m); + return vint8(_mm256_blendv_epi8(a.m, b.m, condi)); +} + +// ============================================================================ +// vfloat4 operators and functions +// ============================================================================ + +/** + * @brief Overload: vector by vector addition. + */ +ASTCENC_SIMD_INLINE vfloat8 operator+(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_add_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector incremental addition. + */ +ASTCENC_SIMD_INLINE vfloat8& operator+=(vfloat8& a, const vfloat8& b) +{ + a = a + b; + return a; +} + +/** + * @brief Overload: vector by vector subtraction. + */ +ASTCENC_SIMD_INLINE vfloat8 operator-(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_sub_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_mul_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by scalar multiplication. + */ +ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, float b) +{ + return vfloat8(_mm256_mul_ps(a.m, _mm256_set1_ps(b))); +} + +/** + * @brief Overload: scalar by vector multiplication. + */ +ASTCENC_SIMD_INLINE vfloat8 operator*(float a, vfloat8 b) +{ + return vfloat8(_mm256_mul_ps(_mm256_set1_ps(a), b.m)); +} + +/** + * @brief Overload: vector by vector division. + */ +ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_div_ps(a.m, b.m)); +} + +/** + * @brief Overload: vector by scalar division. + */ +ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, float b) +{ + return vfloat8(_mm256_div_ps(a.m, _mm256_set1_ps(b))); +} + + +/** + * @brief Overload: scalar by vector division. + */ +ASTCENC_SIMD_INLINE vfloat8 operator/(float a, vfloat8 b) +{ + return vfloat8(_mm256_div_ps(_mm256_set1_ps(a), b.m)); +} + + +/** + * @brief Overload: vector by vector equality. + */ +ASTCENC_SIMD_INLINE vmask8 operator==(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_EQ_OQ)); +} + +/** + * @brief Overload: vector by vector inequality. + */ +ASTCENC_SIMD_INLINE vmask8 operator!=(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_NEQ_OQ)); +} + +/** + * @brief Overload: vector by vector less than. + */ +ASTCENC_SIMD_INLINE vmask8 operator<(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LT_OQ)); +} + +/** + * @brief Overload: vector by vector greater than. + */ +ASTCENC_SIMD_INLINE vmask8 operator>(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GT_OQ)); +} + +/** + * @brief Overload: vector by vector less than or equal. + */ +ASTCENC_SIMD_INLINE vmask8 operator<=(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LE_OQ)); +} + +/** + * @brief Overload: vector by vector greater than or equal. + */ +ASTCENC_SIMD_INLINE vmask8 operator>=(vfloat8 a, vfloat8 b) +{ + return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GE_OQ)); +} + +/** + * @brief Return the min vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_min_ps(a.m, b.m)); +} + +/** + * @brief Return the min vector of a vector and a scalar. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, float b) +{ + return min(a, vfloat8(b)); +} + +/** + * @brief Return the max vector of two vectors. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, vfloat8 b) +{ + return vfloat8(_mm256_max_ps(a.m, b.m)); +} + +/** + * @brief Return the max vector of a vector and a scalar. + * + * If either lane value is NaN, @c b will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, float b) +{ + return max(a, vfloat8(b)); +} + +/** + * @brief Return the clamped value between min and max. + * + * It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN + * then @c min will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 clamp(float min, float max, vfloat8 a) +{ + // Do not reorder - second operand will return if either is NaN + a.m = _mm256_max_ps(a.m, _mm256_set1_ps(min)); + a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max)); + return a; +} + +/** + * @brief Return a clamped value between 0.0f and max. + * + * It is assumed that @c max is not a NaN value. If @c a is NaN then zero will + * be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 clampz(float max, vfloat8 a) +{ + a.m = _mm256_max_ps(a.m, _mm256_setzero_ps()); + a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max)); + return a; +} + +/** + * @brief Return a clamped value between 0.0f and 1.0f. + * + * If @c a is NaN then zero will be returned for that lane. + */ +ASTCENC_SIMD_INLINE vfloat8 clampzo(vfloat8 a) +{ + a.m = _mm256_max_ps(a.m, _mm256_setzero_ps()); + a.m = _mm256_min_ps(a.m, _mm256_set1_ps(1.0f)); + return a; +} + +/** + * @brief Return the absolute value of the float vector. + */ +ASTCENC_SIMD_INLINE vfloat8 abs(vfloat8 a) +{ + __m256 msk = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff)); + return vfloat8(_mm256_and_ps(a.m, msk)); +} + +/** + * @brief Return a float rounded to the nearest integer value. + */ +ASTCENC_SIMD_INLINE vfloat8 round(vfloat8 a) +{ + constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC; + return vfloat8(_mm256_round_ps(a.m, flags)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat8 hmin(vfloat8 a) +{ + __m128 vlow = _mm256_castps256_ps128(a.m); + __m128 vhigh = _mm256_extractf128_ps(a.m, 1); + vlow = _mm_min_ps(vlow, vhigh); + + // First do an horizontal reduction. + __m128 shuf = _mm_shuffle_ps(vlow, vlow, _MM_SHUFFLE(2, 3, 0, 1)); + __m128 mins = _mm_min_ps(vlow, shuf); + shuf = _mm_movehl_ps(shuf, mins); + mins = _mm_min_ss(mins, shuf); + + // This is the most logical implementation, but the convenience intrinsic + // is missing on older compilers (supported in g++ 9 and clang++ 9). + //__m256i r = _mm256_set_m128(m, m) + __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(mins), mins, 1); + + return vfloat8(_mm256_permute_ps(r, 0)); +} + +/** + * @brief Return the horizontal minimum of a vector. + */ +ASTCENC_SIMD_INLINE float hmin_s(vfloat8 a) +{ + return hmin(a).lane<0>(); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE vfloat8 hmax(vfloat8 a) +{ + __m128 vlow = _mm256_castps256_ps128(a.m); + __m128 vhigh = _mm256_extractf128_ps(a.m, 1); + vhigh = _mm_max_ps(vlow, vhigh); + + // First do an horizontal reduction. + __m128 shuf = _mm_shuffle_ps(vhigh, vhigh, _MM_SHUFFLE(2, 3, 0, 1)); + __m128 maxs = _mm_max_ps(vhigh, shuf); + shuf = _mm_movehl_ps(shuf,maxs); + maxs = _mm_max_ss(maxs, shuf); + + // This is the most logical implementation, but the convenience intrinsic + // is missing on older compilers (supported in g++ 9 and clang++ 9). + //__m256i r = _mm256_set_m128(m, m) + __m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(maxs), maxs, 1); + return vfloat8(_mm256_permute_ps(r, 0)); +} + +/** + * @brief Return the horizontal maximum of a vector. + */ +ASTCENC_SIMD_INLINE float hmax_s(vfloat8 a) +{ + return hmax(a).lane<0>(); +} + +/** + * @brief Return the horizontal sum of a vector. + */ +ASTCENC_SIMD_INLINE float hadd_s(vfloat8 a) +{ + // Two sequential 4-wide adds gives invariance with 4-wide code + vfloat4 lo(_mm256_extractf128_ps(a.m, 0)); + vfloat4 hi(_mm256_extractf128_ps(a.m, 1)); + return hadd_s(lo) + hadd_s(hi); +} + +/** + * @brief Return lanes from @c b if @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat8 select(vfloat8 a, vfloat8 b, vmask8 cond) +{ + return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m)); +} + +/** + * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. + */ +ASTCENC_SIMD_INLINE vfloat8 select_msb(vfloat8 a, vfloat8 b, vmask8 cond) +{ + return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m)); +} + +/** + * @brief Accumulate lane-wise sums for a vector, folded 4-wide. + * + * This is invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a) +{ + vfloat4 lo(_mm256_extractf128_ps(a.m, 0)); + haccumulate(accum, lo); + + vfloat4 hi(_mm256_extractf128_ps(a.m, 1)); + haccumulate(accum, hi); +} + +/** + * @brief Accumulate lane-wise sums for a vector. + * + * This is NOT invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a) +{ + accum += a; +} + +/** + * @brief Accumulate masked lane-wise sums for a vector, folded 4-wide. + * + * This is invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a, vmask8 m) +{ + a = select(vfloat8::zero(), a, m); + haccumulate(accum, a); +} + +/** + * @brief Accumulate masked lane-wise sums for a vector. + * + * This is NOT invariant with 4-wide implementations. + */ +ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a, vmask8 m) +{ + a = select(vfloat8::zero(), a, m); + haccumulate(accum, a); +} + +/** + * @brief Return the sqrt of the lanes in the vector. + */ +ASTCENC_SIMD_INLINE vfloat8 sqrt(vfloat8 a) +{ + return vfloat8(_mm256_sqrt_ps(a.m)); +} + +/** + * @brief Load a vector of gathered results from an array; + */ +ASTCENC_SIMD_INLINE vfloat8 gatherf(const float* base, vint8 indices) +{ + return vfloat8(_mm256_i32gather_ps(base, indices.m, 4)); +} + +/** + * @brief Store a vector to an unaligned memory address. + */ +ASTCENC_SIMD_INLINE void store(vfloat8 a, float* p) +{ + _mm256_storeu_ps(p, a.m); +} + +/** + * @brief Store a vector to a 32B aligned memory address. + */ +ASTCENC_SIMD_INLINE void storea(vfloat8 a, float* p) +{ + _mm256_store_ps(p, a.m); +} + +/** + * @brief Return a integer value for a float vector, using truncation. + */ +ASTCENC_SIMD_INLINE vint8 float_to_int(vfloat8 a) +{ + return vint8(_mm256_cvttps_epi32(a.m)); +} + +/** + * @brief Return a integer value for a float vector, using round-to-nearest. + */ +ASTCENC_SIMD_INLINE vint8 float_to_int_rtn(vfloat8 a) +{ + a = round(a); + return vint8(_mm256_cvttps_epi32(a.m)); +} + + +/** + * @brief Return a float value for an integer vector. + */ +ASTCENC_SIMD_INLINE vfloat8 int_to_float(vint8 a) +{ + return vfloat8(_mm256_cvtepi32_ps(a.m)); +} + +/** + * @brief Return a float value as an integer bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the first half of that flip. + */ +ASTCENC_SIMD_INLINE vint8 float_as_int(vfloat8 a) +{ + return vint8(_mm256_castps_si256(a.m)); +} + +/** + * @brief Return a integer value as a float bit pattern (i.e. no conversion). + * + * It is a common trick to convert floats into integer bit patterns, perform + * some bit hackery based on knowledge they are IEEE 754 layout, and then + * convert them back again. This is the second half of that flip. + */ +ASTCENC_SIMD_INLINE vfloat8 int_as_float(vint8 a) +{ + return vfloat8(_mm256_castsi256_ps(a.m)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint8& t0p) +{ + // AVX2 duplicates the table within each 128-bit lane + __m128i t0n = t0.m; + t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint8& t0p, vint8& t1p) +{ + // AVX2 duplicates the table within each 128-bit lane + __m128i t0n = t0.m; + t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); + + __m128i t1n = _mm_xor_si128(t0.m, t1.m); + t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n)); +} + +/** + * @brief Prepare a vtable lookup table for use with the native SIMD size. + */ +ASTCENC_SIMD_INLINE void vtable_prepare( + vint4 t0, vint4 t1, vint4 t2, vint4 t3, + vint8& t0p, vint8& t1p, vint8& t2p, vint8& t3p) +{ + // AVX2 duplicates the table within each 128-bit lane + __m128i t0n = t0.m; + t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n)); + + __m128i t1n = _mm_xor_si128(t0.m, t1.m); + t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n)); + + __m128i t2n = _mm_xor_si128(t1.m, t2.m); + t2p = vint8(astcenc_mm256_set_m128i(t2n, t2n)); + + __m128i t3n = _mm_xor_si128(t2.m, t3.m); + t3p = vint8(astcenc_mm256_set_m128i(t3n, t3n)); +} + +/** + * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 idx) +{ + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m256i result = _mm256_shuffle_epi8(t0.m, idxx); + return vint8(result); +} + +/** + * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 idx) +{ + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m256i result = _mm256_shuffle_epi8(t0.m, idxx); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx); + result = _mm256_xor_si256(result, result2); + return vint8(result); +} + +/** + * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. + */ +ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 t2, vint8 t3, vint8 idx) +{ + // Set index byte MSB to 1 for unused bytes so shuffle returns zero + __m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00))); + + __m256i result = _mm256_shuffle_epi8(t0.m, idxx); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + __m256i result2 = _mm256_shuffle_epi8(t1.m, idxx); + result = _mm256_xor_si256(result, result2); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + result2 = _mm256_shuffle_epi8(t2.m, idxx); + result = _mm256_xor_si256(result, result2); + idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16)); + + result2 = _mm256_shuffle_epi8(t3.m, idxx); + result = _mm256_xor_si256(result, result2); + + return vint8(result); +} + +/** + * @brief Return a vector of interleaved RGBA data. + * + * Input vectors have the value stored in the bottom 8 bits of each lane, + * with high bits set to zero. + * + * Output vector stores a single RGBA texel packed in each lane. + */ +ASTCENC_SIMD_INLINE vint8 interleave_rgba8(vint8 r, vint8 g, vint8 b, vint8 a) +{ + return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); +} + +/** + * @brief Store a vector, skipping masked lanes. + * + * All masked lanes must be at the end of vector, after all non-masked lanes. + */ +ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint8 data, vmask8 mask) +{ + _mm256_maskstore_epi32(base, _mm256_castps_si256(mask.m), data.m); +} + +/** + * @brief Debug function to print a vector of ints. + */ +ASTCENC_SIMD_INLINE void print(vint8 a) +{ + alignas(ASTCENC_VECALIGN) int v[8]; + storea(a, v); + printf("v8_i32:\n %8d %8d %8d %8d %8d %8d %8d %8d\n", + v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); +} + +/** + * @brief Debug function to print a vector of ints. + */ +ASTCENC_SIMD_INLINE void printx(vint8 a) +{ + alignas(ASTCENC_VECALIGN) int v[8]; + storea(a, v); + printf("v8_i32:\n %08x %08x %08x %08x %08x %08x %08x %08x\n", + v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); +} + +/** + * @brief Debug function to print a vector of floats. + */ +ASTCENC_SIMD_INLINE void print(vfloat8 a) +{ + alignas(ASTCENC_VECALIGN) float v[8]; + storea(a, v); + printf("v8_f32:\n %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f\n", + static_cast<double>(v[0]), static_cast<double>(v[1]), + static_cast<double>(v[2]), static_cast<double>(v[3]), + static_cast<double>(v[4]), static_cast<double>(v[5]), + static_cast<double>(v[6]), static_cast<double>(v[7])); +} + +/** + * @brief Debug function to print a vector of masks. + */ +ASTCENC_SIMD_INLINE void print(vmask8 a) +{ + print(select(vint8(0), vint8(1), a)); +} + +#endif // #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED |