summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_vecmathlib.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/astcenc/astcenc_vecmathlib.h')
-rw-r--r--thirdparty/astcenc/astcenc_vecmathlib.h570
1 files changed, 570 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_vecmathlib.h b/thirdparty/astcenc/astcenc_vecmathlib.h
new file mode 100644
index 0000000000..d48f1d73ea
--- /dev/null
+++ b/thirdparty/astcenc/astcenc_vecmathlib.h
@@ -0,0 +1,570 @@
+// SPDX-License-Identifier: Apache-2.0
+// ----------------------------------------------------------------------------
+// Copyright 2019-2022 Arm Limited
+// Copyright 2008 Jose Fonseca
+//
+// Licensed under the Apache License, Version 2.0 (the "License"); you may not
+// use this file except in compliance with the License. You may obtain a copy
+// of the License at:
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+// License for the specific language governing permissions and limitations
+// under the License.
+// ----------------------------------------------------------------------------
+
+/*
+ * This module implements vector support for floats, ints, and vector lane
+ * control masks. It provides access to both explicit vector width types, and
+ * flexible N-wide types where N can be determined at compile time.
+ *
+ * The design of this module encourages use of vector length agnostic code, via
+ * the vint, vfloat, and vmask types. These will take on the widest SIMD vector
+ * with that is available at compile time. The current vector width is
+ * accessible for e.g. loop strides via the ASTCENC_SIMD_WIDTH constant.
+ *
+ * Explicit scalar types are accessible via the vint1, vfloat1, vmask1 types.
+ * These are provided primarily for prototyping and algorithm debug of VLA
+ * implementations.
+ *
+ * Explicit 4-wide types are accessible via the vint4, vfloat4, and vmask4
+ * types. These are provided for use by VLA code, but are also expected to be
+ * used as a fixed-width type and will supported a reference C++ fallback for
+ * use on platforms without SIMD intrinsics.
+ *
+ * Explicit 8-wide types are accessible via the vint8, vfloat8, and vmask8
+ * types. These are provide for use by VLA code, and are not expected to be
+ * used as a fixed-width type in normal code. No reference C implementation is
+ * provided on platforms without underlying SIMD intrinsics.
+ *
+ * With the current implementation ISA support is provided for:
+ *
+ * * 1-wide for scalar reference.
+ * * 4-wide for Armv8-A NEON.
+ * * 4-wide for x86-64 SSE2.
+ * * 4-wide for x86-64 SSE4.1.
+ * * 8-wide for x86-64 AVX2.
+ */
+
+#ifndef ASTC_VECMATHLIB_H_INCLUDED
+#define ASTC_VECMATHLIB_H_INCLUDED
+
+#if ASTCENC_SSE != 0 || ASTCENC_AVX != 0
+ #include <immintrin.h>
+#elif ASTCENC_NEON != 0
+ #include <arm_neon.h>
+#endif
+
+#if !defined(__clang__) && defined(_MSC_VER)
+ #define ASTCENC_SIMD_INLINE __forceinline
+ #define ASTCENC_NO_INLINE
+#elif defined(__GNUC__) && !defined(__clang__)
+ #define ASTCENC_SIMD_INLINE __attribute__((always_inline)) inline
+ #define ASTCENC_NO_INLINE __attribute__ ((noinline))
+#else
+ #define ASTCENC_SIMD_INLINE __attribute__((always_inline, nodebug)) inline
+ #define ASTCENC_NO_INLINE __attribute__ ((noinline))
+#endif
+
+#if ASTCENC_AVX >= 2
+ /* If we have AVX2 expose 8-wide VLA. */
+ #include "astcenc_vecmathlib_sse_4.h"
+ #include "astcenc_vecmathlib_common_4.h"
+ #include "astcenc_vecmathlib_avx2_8.h"
+
+ #define ASTCENC_SIMD_WIDTH 8
+
+ using vfloat = vfloat8;
+
+ #if defined(ASTCENC_NO_INVARIANCE)
+ using vfloatacc = vfloat8;
+ #else
+ using vfloatacc = vfloat4;
+ #endif
+
+ using vint = vint8;
+ using vmask = vmask8;
+
+ constexpr auto loada = vfloat8::loada;
+ constexpr auto load1 = vfloat8::load1;
+
+#elif ASTCENC_SSE >= 20
+ /* If we have SSE expose 4-wide VLA, and 4-wide fixed width. */
+ #include "astcenc_vecmathlib_sse_4.h"
+ #include "astcenc_vecmathlib_common_4.h"
+
+ #define ASTCENC_SIMD_WIDTH 4
+
+ using vfloat = vfloat4;
+ using vfloatacc = vfloat4;
+ using vint = vint4;
+ using vmask = vmask4;
+
+ constexpr auto loada = vfloat4::loada;
+ constexpr auto load1 = vfloat4::load1;
+
+#elif ASTCENC_NEON > 0
+ /* If we have NEON expose 4-wide VLA. */
+ #include "astcenc_vecmathlib_neon_4.h"
+ #include "astcenc_vecmathlib_common_4.h"
+
+ #define ASTCENC_SIMD_WIDTH 4
+
+ using vfloat = vfloat4;
+ using vfloatacc = vfloat4;
+ using vint = vint4;
+ using vmask = vmask4;
+
+ constexpr auto loada = vfloat4::loada;
+ constexpr auto load1 = vfloat4::load1;
+
+#else
+ // If we have nothing expose 4-wide VLA, and 4-wide fixed width.
+
+ // Note: We no longer expose the 1-wide scalar fallback because it is not
+ // invariant with the 4-wide path due to algorithms that use horizontal
+ // operations that accumulate a local vector sum before accumulating into
+ // a running sum.
+ //
+ // For 4 items adding into an accumulator using 1-wide vectors the sum is:
+ //
+ // result = ((((sum + l0) + l1) + l2) + l3)
+ //
+ // ... whereas the accumulator for a 4-wide vector sum is:
+ //
+ // result = sum + ((l0 + l2) + (l1 + l3))
+ //
+ // In "normal maths" this is the same, but the floating point reassociation
+ // differences mean that these will not produce the same result.
+
+ #include "astcenc_vecmathlib_none_4.h"
+ #include "astcenc_vecmathlib_common_4.h"
+
+ #define ASTCENC_SIMD_WIDTH 4
+
+ using vfloat = vfloat4;
+ using vfloatacc = vfloat4;
+ using vint = vint4;
+ using vmask = vmask4;
+
+ constexpr auto loada = vfloat4::loada;
+ constexpr auto load1 = vfloat4::load1;
+#endif
+
+/**
+ * @brief Round a count down to the largest multiple of 8.
+ *
+ * @param count The unrounded value.
+ *
+ * @return The rounded value.
+ */
+ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_8(unsigned int count)
+{
+ return count & static_cast<unsigned int>(~(8 - 1));
+}
+
+/**
+ * @brief Round a count down to the largest multiple of 4.
+ *
+ * @param count The unrounded value.
+ *
+ * @return The rounded value.
+ */
+ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_4(unsigned int count)
+{
+ return count & static_cast<unsigned int>(~(4 - 1));
+}
+
+/**
+ * @brief Round a count down to the largest multiple of the SIMD width.
+ *
+ * Assumption that the vector width is a power of two ...
+ *
+ * @param count The unrounded value.
+ *
+ * @return The rounded value.
+ */
+ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_vla(unsigned int count)
+{
+ return count & static_cast<unsigned int>(~(ASTCENC_SIMD_WIDTH - 1));
+}
+
+/**
+ * @brief Round a count up to the largest multiple of the SIMD width.
+ *
+ * Assumption that the vector width is a power of two ...
+ *
+ * @param count The unrounded value.
+ *
+ * @return The rounded value.
+ */
+ASTCENC_SIMD_INLINE unsigned int round_up_to_simd_multiple_vla(unsigned int count)
+{
+ unsigned int multiples = (count + ASTCENC_SIMD_WIDTH - 1) / ASTCENC_SIMD_WIDTH;
+ return multiples * ASTCENC_SIMD_WIDTH;
+}
+
+/**
+ * @brief Return @c a with lanes negated if the @c b lane is negative.
+ */
+ASTCENC_SIMD_INLINE vfloat change_sign(vfloat a, vfloat b)
+{
+ vint ia = float_as_int(a);
+ vint ib = float_as_int(b);
+ vint sign_mask(static_cast<int>(0x80000000));
+ vint r = ia ^ (ib & sign_mask);
+ return int_as_float(r);
+}
+
+/**
+ * @brief Return fast, but approximate, vector atan(x).
+ *
+ * Max error of this implementation is 0.004883.
+ */
+ASTCENC_SIMD_INLINE vfloat atan(vfloat x)
+{
+ vmask c = abs(x) > vfloat(1.0f);
+ vfloat z = change_sign(vfloat(astc::PI_OVER_TWO), x);
+ vfloat y = select(x, vfloat(1.0f) / x, c);
+ y = y / (y * y * vfloat(0.28f) + vfloat(1.0f));
+ return select(y, z - y, c);
+}
+
+/**
+ * @brief Return fast, but approximate, vector atan2(x, y).
+ */
+ASTCENC_SIMD_INLINE vfloat atan2(vfloat y, vfloat x)
+{
+ vfloat z = atan(abs(y / x));
+ vmask xmask = vmask(float_as_int(x).m);
+ return change_sign(select_msb(z, vfloat(astc::PI) - z, xmask), y);
+}
+
+/*
+ * @brief Factory that returns a unit length 4 component vfloat4.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 unit4()
+{
+ return vfloat4(0.5f);
+}
+
+/**
+ * @brief Factory that returns a unit length 3 component vfloat4.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 unit3()
+{
+ float val = 0.577350258827209473f;
+ return vfloat4(val, val, val, 0.0f);
+}
+
+/**
+ * @brief Factory that returns a unit length 2 component vfloat4.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 unit2()
+{
+ float val = 0.707106769084930420f;
+ return vfloat4(val, val, 0.0f, 0.0f);
+}
+
+/**
+ * @brief Factory that returns a 3 component vfloat4.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 vfloat3(float a, float b, float c)
+{
+ return vfloat4(a, b, c, 0.0f);
+}
+
+/**
+ * @brief Factory that returns a 2 component vfloat4.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 vfloat2(float a, float b)
+{
+ return vfloat4(a, b, 0.0f, 0.0f);
+}
+
+/**
+ * @brief Normalize a non-zero length vector to unit length.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 normalize(vfloat4 a)
+{
+ vfloat4 length = dot(a, a);
+ return a / sqrt(length);
+}
+
+/**
+ * @brief Normalize a vector, returning @c safe if len is zero.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 normalize_safe(vfloat4 a, vfloat4 safe)
+{
+ vfloat4 length = dot(a, a);
+ if (length.lane<0>() != 0.0f)
+ {
+ return a / sqrt(length);
+ }
+
+ return safe;
+}
+
+
+
+#define POLY0(x, c0) ( c0)
+#define POLY1(x, c0, c1) ((POLY0(x, c1) * x) + c0)
+#define POLY2(x, c0, c1, c2) ((POLY1(x, c1, c2) * x) + c0)
+#define POLY3(x, c0, c1, c2, c3) ((POLY2(x, c1, c2, c3) * x) + c0)
+#define POLY4(x, c0, c1, c2, c3, c4) ((POLY3(x, c1, c2, c3, c4) * x) + c0)
+#define POLY5(x, c0, c1, c2, c3, c4, c5) ((POLY4(x, c1, c2, c3, c4, c5) * x) + c0)
+
+/**
+ * @brief Compute an approximate exp2(x) for each lane in the vector.
+ *
+ * Based on 5th degree minimax polynomials, ported from this blog
+ * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html
+ */
+static ASTCENC_SIMD_INLINE vfloat4 exp2(vfloat4 x)
+{
+ x = clamp(-126.99999f, 129.0f, x);
+
+ vint4 ipart = float_to_int(x - 0.5f);
+ vfloat4 fpart = x - int_to_float(ipart);
+
+ // Integer contrib, using 1 << ipart
+ vfloat4 iexp = int_as_float(lsl<23>(ipart + 127));
+
+ // Fractional contrib, using polynomial fit of 2^x in range [-0.5, 0.5)
+ vfloat4 fexp = POLY5(fpart,
+ 9.9999994e-1f,
+ 6.9315308e-1f,
+ 2.4015361e-1f,
+ 5.5826318e-2f,
+ 8.9893397e-3f,
+ 1.8775767e-3f);
+
+ return iexp * fexp;
+}
+
+/**
+ * @brief Compute an approximate log2(x) for each lane in the vector.
+ *
+ * Based on 5th degree minimax polynomials, ported from this blog
+ * https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html
+ */
+static ASTCENC_SIMD_INLINE vfloat4 log2(vfloat4 x)
+{
+ vint4 exp(0x7F800000);
+ vint4 mant(0x007FFFFF);
+ vint4 one(0x3F800000);
+
+ vint4 i = float_as_int(x);
+
+ vfloat4 e = int_to_float(lsr<23>(i & exp) - 127);
+
+ vfloat4 m = int_as_float((i & mant) | one);
+
+ // Polynomial fit of log2(x)/(x - 1), for x in range [1, 2)
+ vfloat4 p = POLY4(m,
+ 2.8882704548164776201f,
+ -2.52074962577807006663f,
+ 1.48116647521213171641f,
+ -0.465725644288844778798f,
+ 0.0596515482674574969533f);
+
+ // Increases the polynomial degree, but ensures that log2(1) == 0
+ p = p * (m - 1.0f);
+
+ return p + e;
+}
+
+/**
+ * @brief Compute an approximate pow(x, y) for each lane in the vector.
+ *
+ * Power function based on the exp2(log2(x) * y) transform.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 pow(vfloat4 x, vfloat4 y)
+{
+ vmask4 zero_mask = y == vfloat4(0.0f);
+ vfloat4 estimate = exp2(log2(x) * y);
+
+ // Guarantee that y == 0 returns exactly 1.0f
+ return select(estimate, vfloat4(1.0f), zero_mask);
+}
+
+/**
+ * @brief Count the leading zeros for each lane in @c a.
+ *
+ * Valid for all data values of @c a; will return a per-lane value [0, 32].
+ */
+static ASTCENC_SIMD_INLINE vint4 clz(vint4 a)
+{
+ // This function is a horrible abuse of floating point exponents to convert
+ // the original integer value into a 2^N encoding we can recover easily.
+
+ // Convert to float without risk of rounding up by keeping only top 8 bits.
+ // This trick is is guaranteed to keep top 8 bits and clear the 9th.
+ a = (~lsr<8>(a)) & a;
+ a = float_as_int(int_to_float(a));
+
+ // Extract and unbias exponent
+ a = vint4(127 + 31) - lsr<23>(a);
+
+ // Clamp result to a valid 32-bit range
+ return clamp(0, 32, a);
+}
+
+/**
+ * @brief Return lanewise 2^a for each lane in @c a.
+ *
+ * Use of signed int means that this is only valid for values in range [0, 31].
+ */
+static ASTCENC_SIMD_INLINE vint4 two_to_the_n(vint4 a)
+{
+ // 2^30 is the largest signed number than can be represented
+ assert(all(a < vint4(31)));
+
+ // This function is a horrible abuse of floating point to use the exponent
+ // and float conversion to generate a 2^N multiple.
+
+ // Bias the exponent
+ vint4 exp = a + 127;
+ exp = lsl<23>(exp);
+
+ // Reinterpret the bits as a float, and then convert to an int
+ vfloat4 f = int_as_float(exp);
+ return float_to_int(f);
+}
+
+/**
+ * @brief Convert unorm16 [0, 65535] to float16 in range [0, 1].
+ */
+static ASTCENC_SIMD_INLINE vint4 unorm16_to_sf16(vint4 p)
+{
+ vint4 fp16_one = vint4(0x3C00);
+ vint4 fp16_small = lsl<8>(p);
+
+ vmask4 is_one = p == vint4(0xFFFF);
+ vmask4 is_small = p < vint4(4);
+
+ // Manually inline clz() on Visual Studio to avoid release build codegen bug
+ // see https://github.com/ARM-software/astc-encoder/issues/259
+#if !defined(__clang__) && defined(_MSC_VER)
+ vint4 a = (~lsr<8>(p)) & p;
+ a = float_as_int(int_to_float(a));
+ a = vint4(127 + 31) - lsr<23>(a);
+ vint4 lz = clamp(0, 32, a) - 16;
+#else
+ vint4 lz = clz(p) - 16;
+#endif
+
+ p = p * two_to_the_n(lz + 1);
+ p = p & vint4(0xFFFF);
+
+ p = lsr<6>(p);
+
+ p = p | lsl<10>(vint4(14) - lz);
+
+ vint4 r = select(p, fp16_one, is_one);
+ r = select(r, fp16_small, is_small);
+ return r;
+}
+
+/**
+ * @brief Convert 16-bit LNS to float16.
+ */
+static ASTCENC_SIMD_INLINE vint4 lns_to_sf16(vint4 p)
+{
+ vint4 mc = p & 0x7FF;
+ vint4 ec = lsr<11>(p);
+
+ vint4 mc_512 = mc * 3;
+ vmask4 mask_512 = mc < vint4(512);
+
+ vint4 mc_1536 = mc * 4 - 512;
+ vmask4 mask_1536 = mc < vint4(1536);
+
+ vint4 mc_else = mc * 5 - 2048;
+
+ vint4 mt = mc_else;
+ mt = select(mt, mc_1536, mask_1536);
+ mt = select(mt, mc_512, mask_512);
+
+ vint4 res = lsl<10>(ec) | lsr<3>(mt);
+ return min(res, vint4(0x7BFF));
+}
+
+/**
+ * @brief Extract mantissa and exponent of a float value.
+ *
+ * @param a The input value.
+ * @param[out] exp The output exponent.
+ *
+ * @return The mantissa.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 frexp(vfloat4 a, vint4& exp)
+{
+ // Interpret the bits as an integer
+ vint4 ai = float_as_int(a);
+
+ // Extract and unbias the exponent
+ exp = (lsr<23>(ai) & 0xFF) - 126;
+
+ // Extract and unbias the mantissa
+ vint4 manti = (ai & static_cast<int>(0x807FFFFF)) | 0x3F000000;
+ return int_as_float(manti);
+}
+
+/**
+ * @brief Convert float to 16-bit LNS.
+ */
+static ASTCENC_SIMD_INLINE vfloat4 float_to_lns(vfloat4 a)
+{
+ vint4 exp;
+ vfloat4 mant = frexp(a, exp);
+
+ // Do these early before we start messing about ...
+ vmask4 mask_underflow_nan = ~(a > vfloat4(1.0f / 67108864.0f));
+ vmask4 mask_infinity = a >= vfloat4(65536.0f);
+
+ // If input is smaller than 2^-14, multiply by 2^25 and don't bias.
+ vmask4 exp_lt_m13 = exp < vint4(-13);
+
+ vfloat4 a1a = a * 33554432.0f;
+ vint4 expa = vint4::zero();
+
+ vfloat4 a1b = (mant - 0.5f) * 4096;
+ vint4 expb = exp + 14;
+
+ a = select(a1b, a1a, exp_lt_m13);
+ exp = select(expb, expa, exp_lt_m13);
+
+ vmask4 a_lt_384 = a < vfloat4(384.0f);
+ vmask4 a_lt_1408 = a <= vfloat4(1408.0f);
+
+ vfloat4 a2a = a * (4.0f / 3.0f);
+ vfloat4 a2b = a + 128.0f;
+ vfloat4 a2c = (a + 512.0f) * (4.0f / 5.0f);
+
+ a = a2c;
+ a = select(a, a2b, a_lt_1408);
+ a = select(a, a2a, a_lt_384);
+
+ a = a + (int_to_float(exp) * 2048.0f) + 1.0f;
+
+ a = select(a, vfloat4(65535.0f), mask_infinity);
+ a = select(a, vfloat4::zero(), mask_underflow_nan);
+
+ return a;
+}
+
+namespace astc
+{
+
+static ASTCENC_SIMD_INLINE float pow(float x, float y)
+{
+ return pow(vfloat4(x), vfloat4(y)).lane<0>();
+}
+
+}
+
+#endif // #ifndef ASTC_VECMATHLIB_H_INCLUDED