summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_symbolic_physical.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/astcenc/astcenc_symbolic_physical.cpp')
-rw-r--r--thirdparty/astcenc/astcenc_symbolic_physical.cpp534
1 files changed, 534 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_symbolic_physical.cpp b/thirdparty/astcenc/astcenc_symbolic_physical.cpp
new file mode 100644
index 0000000000..80221a6013
--- /dev/null
+++ b/thirdparty/astcenc/astcenc_symbolic_physical.cpp
@@ -0,0 +1,534 @@
+// SPDX-License-Identifier: Apache-2.0
+// ----------------------------------------------------------------------------
+// Copyright 2011-2021 Arm Limited
+//
+// Licensed under the Apache License, Version 2.0 (the "License"); you may not
+// use this file except in compliance with the License. You may obtain a copy
+// of the License at:
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+// License for the specific language governing permissions and limitations
+// under the License.
+// ----------------------------------------------------------------------------
+
+/**
+ * @brief Functions for converting between symbolic and physical encodings.
+ */
+
+#include "astcenc_internal.h"
+
+#include <cassert>
+
+/**
+ * @brief Write up to 8 bits at an arbitrary bit offset.
+ *
+ * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so
+ * may span two separate bytes in memory.
+ *
+ * @param value The value to write.
+ * @param bitcount The number of bits to write, starting from LSB.
+ * @param bitoffset The bit offset to store at, between 0 and 7.
+ * @param[in,out] ptr The data pointer to write to.
+ */
+static inline void write_bits(
+ int value,
+ int bitcount,
+ int bitoffset,
+ uint8_t* ptr
+) {
+ int mask = (1 << bitcount) - 1;
+ value &= mask;
+ ptr += bitoffset >> 3;
+ bitoffset &= 7;
+ value <<= bitoffset;
+ mask <<= bitoffset;
+ mask = ~mask;
+
+ ptr[0] &= mask;
+ ptr[0] |= value;
+ ptr[1] &= mask >> 8;
+ ptr[1] |= value >> 8;
+}
+
+/**
+ * @brief Read up to 8 bits at an arbitrary bit offset.
+ *
+ * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may
+ * span two separate bytes in memory.
+ *
+ * @param bitcount The number of bits to read.
+ * @param bitoffset The bit offset to read from, between 0 and 7.
+ * @param[in,out] ptr The data pointer to read from.
+ *
+ * @return The read value.
+ */
+static inline int read_bits(
+ int bitcount,
+ int bitoffset,
+ const uint8_t* ptr
+) {
+ int mask = (1 << bitcount) - 1;
+ ptr += bitoffset >> 3;
+ bitoffset &= 7;
+ int value = ptr[0] | (ptr[1] << 8);
+ value >>= bitoffset;
+ value &= mask;
+ return value;
+}
+
+/**
+ * @brief Reverse bits in a byte.
+ *
+ * @param p The value to reverse.
+ *
+ * @return The reversed result.
+ */
+static inline int bitrev8(int p)
+{
+ p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F);
+ p = ((p & 0x33) << 2) | ((p >> 2) & 0x33);
+ p = ((p & 0x55) << 1) | ((p >> 1) & 0x55);
+ return p;
+}
+
+/* See header for documentation. */
+void symbolic_to_physical(
+ const block_size_descriptor& bsd,
+ const symbolic_compressed_block& scb,
+ physical_compressed_block& pcb
+) {
+ assert(scb.block_type != SYM_BTYPE_ERROR);
+
+ // Constant color block using UNORM16 colors
+ if (scb.block_type == SYM_BTYPE_CONST_U16)
+ {
+ // There is currently no attempt to coalesce larger void-extents
+ static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
+ for (unsigned int i = 0; i < 8; i++)
+ {
+ pcb.data[i] = cbytes[i];
+ }
+
+ for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
+ {
+ pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF;
+ pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
+ }
+
+ return;
+ }
+
+ // Constant color block using FP16 colors
+ if (scb.block_type == SYM_BTYPE_CONST_F16)
+ {
+ // There is currently no attempt to coalesce larger void-extents
+ static const uint8_t cbytes[8] { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
+ for (unsigned int i = 0; i < 8; i++)
+ {
+ pcb.data[i] = cbytes[i];
+ }
+
+ for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
+ {
+ pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF;
+ pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
+ }
+
+ return;
+ }
+
+ unsigned int partition_count = scb.partition_count;
+
+ // Compress the weights.
+ // They are encoded as an ordinary integer-sequence, then bit-reversed
+ uint8_t weightbuf[16] { 0 };
+
+ const auto& bm = bsd.get_block_mode(scb.block_mode);
+ const auto& di = bsd.get_decimation_info(bm.decimation_mode);
+ int weight_count = di.weight_count;
+ quant_method weight_quant_method = bm.get_weight_quant_mode();
+ float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method));
+ int is_dual_plane = bm.is_dual_plane;
+
+ const auto& qat = quant_and_xfer_tables[weight_quant_method];
+
+ int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
+
+ int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);
+
+ uint8_t weights[64];
+ if (is_dual_plane)
+ {
+ for (int i = 0; i < weight_count; i++)
+ {
+ float uqw = static_cast<float>(scb.weights[i]);
+ float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
+ int qwi = static_cast<int>(qw + 0.5f);
+ weights[2 * i] = qat.scramble_map[qwi];
+
+ uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]);
+ qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
+ qwi = static_cast<int>(qw + 0.5f);
+ weights[2 * i + 1] = qat.scramble_map[qwi];
+ }
+ }
+ else
+ {
+ for (int i = 0; i < weight_count; i++)
+ {
+ float uqw = static_cast<float>(scb.weights[i]);
+ float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
+ int qwi = static_cast<int>(qw + 0.5f);
+ weights[i] = qat.scramble_map[qwi];
+ }
+ }
+
+ encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0);
+
+ for (int i = 0; i < 16; i++)
+ {
+ pcb.data[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i]));
+ }
+
+ write_bits(scb.block_mode, 11, 0, pcb.data);
+ write_bits(partition_count - 1, 2, 11, pcb.data);
+
+ int below_weights_pos = 128 - bits_for_weights;
+
+ // Encode partition index and color endpoint types for blocks with 2+ partitions
+ if (partition_count > 1)
+ {
+ write_bits(scb.partition_index, 6, 13, pcb.data);
+ write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb.data);
+
+ if (scb.color_formats_matched)
+ {
+ write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb.data);
+ }
+ else
+ {
+ // Check endpoint types for each partition to determine the lowest class present
+ int low_class = 4;
+
+ for (unsigned int i = 0; i < partition_count; i++)
+ {
+ int class_of_format = scb.color_formats[i] >> 2;
+ low_class = astc::min(class_of_format, low_class);
+ }
+
+ if (low_class == 3)
+ {
+ low_class = 2;
+ }
+
+ int encoded_type = low_class + 1;
+ int bitpos = 2;
+
+ for (unsigned int i = 0; i < partition_count; i++)
+ {
+ int classbit_of_format = (scb.color_formats[i] >> 2) - low_class;
+ encoded_type |= classbit_of_format << bitpos;
+ bitpos++;
+ }
+
+ for (unsigned int i = 0; i < partition_count; i++)
+ {
+ int lowbits_of_format = scb.color_formats[i] & 3;
+ encoded_type |= lowbits_of_format << bitpos;
+ bitpos += 2;
+ }
+
+ int encoded_type_lowpart = encoded_type & 0x3F;
+ int encoded_type_highpart = encoded_type >> 6;
+ int encoded_type_highpart_size = (3 * partition_count) - 4;
+ int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size;
+ write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb.data);
+ write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb.data);
+ below_weights_pos -= encoded_type_highpart_size;
+ }
+ }
+ else
+ {
+ write_bits(scb.color_formats[0], 4, 13, pcb.data);
+ }
+
+ // In dual-plane mode, encode the color component of the second plane of weights
+ if (is_dual_plane)
+ {
+ write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb.data);
+ }
+
+ // Encode the color components
+ uint8_t values_to_encode[32];
+ int valuecount_to_encode = 0;
+
+ const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6];
+ for (unsigned int i = 0; i < scb.partition_count; i++)
+ {
+ int vals = 2 * (scb.color_formats[i] >> 2) + 2;
+ assert(vals <= 8);
+ for (int j = 0; j < vals; j++)
+ {
+ values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]];
+ }
+ valuecount_to_encode += vals;
+ }
+
+ encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb.data,
+ scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS);
+}
+
+/* See header for documentation. */
+void physical_to_symbolic(
+ const block_size_descriptor& bsd,
+ const physical_compressed_block& pcb,
+ symbolic_compressed_block& scb
+) {
+ uint8_t bswapped[16];
+
+ scb.block_type = SYM_BTYPE_NONCONST;
+
+ // Extract header fields
+ int block_mode = read_bits(11, 0, pcb.data);
+ if ((block_mode & 0x1FF) == 0x1FC)
+ {
+ // Constant color block
+
+ // Check what format the data has
+ if (block_mode & 0x200)
+ {
+ scb.block_type = SYM_BTYPE_CONST_F16;
+ }
+ else
+ {
+ scb.block_type = SYM_BTYPE_CONST_U16;
+ }
+
+ scb.partition_count = 0;
+ for (int i = 0; i < 4; i++)
+ {
+ scb.constant_color[i] = pcb.data[2 * i + 8] | (pcb.data[2 * i + 9] << 8);
+ }
+
+ // Additionally, check that the void-extent
+ if (bsd.zdim == 1)
+ {
+ // 2D void-extent
+ int rsvbits = read_bits(2, 10, pcb.data);
+ if (rsvbits != 3)
+ {
+ scb.block_type = SYM_BTYPE_ERROR;
+ return;
+ }
+
+ int vx_low_s = read_bits(8, 12, pcb.data) | (read_bits(5, 12 + 8, pcb.data) << 8);
+ int vx_high_s = read_bits(8, 25, pcb.data) | (read_bits(5, 25 + 8, pcb.data) << 8);
+ int vx_low_t = read_bits(8, 38, pcb.data) | (read_bits(5, 38 + 8, pcb.data) << 8);
+ int vx_high_t = read_bits(8, 51, pcb.data) | (read_bits(5, 51 + 8, pcb.data) << 8);
+
+ int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF;
+
+ if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones)
+ {
+ scb.block_type = SYM_BTYPE_ERROR;
+ return;
+ }
+ }
+ else
+ {
+ // 3D void-extent
+ int vx_low_s = read_bits(9, 10, pcb.data);
+ int vx_high_s = read_bits(9, 19, pcb.data);
+ int vx_low_t = read_bits(9, 28, pcb.data);
+ int vx_high_t = read_bits(9, 37, pcb.data);
+ int vx_low_p = read_bits(9, 46, pcb.data);
+ int vx_high_p = read_bits(9, 55, pcb.data);
+
+ int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF;
+
+ if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones)
+ {
+ scb.block_type = SYM_BTYPE_ERROR;
+ return;
+ }
+ }
+
+ return;
+ }
+
+ unsigned int packed_index = bsd.block_mode_packed_index[block_mode];
+ if (packed_index == BLOCK_BAD_BLOCK_MODE)
+ {
+ scb.block_type = SYM_BTYPE_ERROR;
+ return;
+ }
+
+ const auto& bm = bsd.get_block_mode(block_mode);
+ const auto& di = bsd.get_decimation_info(bm.decimation_mode);
+
+ int weight_count = di.weight_count;
+ promise(weight_count > 0);
+
+ quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode);
+ int is_dual_plane = bm.is_dual_plane;
+
+ int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
+
+ int partition_count = read_bits(2, 11, pcb.data) + 1;
+ promise(partition_count > 0);
+
+ scb.block_mode = static_cast<uint16_t>(block_mode);
+ scb.partition_count = static_cast<uint8_t>(partition_count);
+
+ for (int i = 0; i < 16; i++)
+ {
+ bswapped[i] = static_cast<uint8_t>(bitrev8(pcb.data[15 - i]));
+ }
+
+ int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);
+
+ int below_weights_pos = 128 - bits_for_weights;
+
+ uint8_t indices[64];
+ const auto& qat = quant_and_xfer_tables[weight_quant_method];
+
+ decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0);
+
+ if (is_dual_plane)
+ {
+ for (int i = 0; i < weight_count; i++)
+ {
+ scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]];
+ scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]];
+ }
+ }
+ else
+ {
+ for (int i = 0; i < weight_count; i++)
+ {
+ scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]];
+ }
+ }
+
+ if (is_dual_plane && partition_count == 4)
+ {
+ scb.block_type = SYM_BTYPE_ERROR;
+ return;
+ }
+
+ scb.color_formats_matched = 0;
+
+ // Determine the format of each endpoint pair
+ int color_formats[BLOCK_MAX_PARTITIONS];
+ int encoded_type_highpart_size = 0;
+ if (partition_count == 1)
+ {
+ color_formats[0] = read_bits(4, 13, pcb.data);
+ scb.partition_index = 0;
+ }
+ else
+ {
+ encoded_type_highpart_size = (3 * partition_count) - 4;
+ below_weights_pos -= encoded_type_highpart_size;
+ int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb.data) << 6);
+ int baseclass = encoded_type & 0x3;
+ if (baseclass == 0)
+ {
+ for (int i = 0; i < partition_count; i++)
+ {
+ color_formats[i] = (encoded_type >> 2) & 0xF;
+ }
+
+ below_weights_pos += encoded_type_highpart_size;
+ scb.color_formats_matched = 1;
+ encoded_type_highpart_size = 0;
+ }
+ else
+ {
+ int bitpos = 2;
+ baseclass--;
+
+ for (int i = 0; i < partition_count; i++)
+ {
+ color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2;
+ bitpos++;
+ }
+
+ for (int i = 0; i < partition_count; i++)
+ {
+ color_formats[i] |= (encoded_type >> bitpos) & 3;
+ bitpos += 2;
+ }
+ }
+ scb.partition_index = static_cast<uint16_t>(read_bits(6, 13, pcb.data) | (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb.data) << 6));
+ }
+
+ for (int i = 0; i < partition_count; i++)
+ {
+ scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]);
+ }
+
+ // Determine number of color endpoint integers
+ int color_integer_count = 0;
+ for (int i = 0; i < partition_count; i++)
+ {
+ int endpoint_class = color_formats[i] >> 2;
+ color_integer_count += (endpoint_class + 1) * 2;
+ }
+
+ if (color_integer_count > 18)
+ {
+ scb.block_type = SYM_BTYPE_ERROR;
+ return;
+ }
+
+ // Determine the color endpoint format to use
+ static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS };
+ int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size;
+ if (is_dual_plane)
+ {
+ color_bits -= 2;
+ }
+
+ if (color_bits < 0)
+ {
+ color_bits = 0;
+ }
+
+ int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits];
+ if (color_quant_level < QUANT_6)
+ {
+ scb.block_type = SYM_BTYPE_ERROR;
+ return;
+ }
+
+ // Unpack the integer color values and assign to endpoints
+ scb.quant_mode = static_cast<quant_method>(color_quant_level);
+
+ uint8_t values_to_decode[32];
+ decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb.data,
+ values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS));
+
+ int valuecount_to_decode = 0;
+ const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6];
+ for (int i = 0; i < partition_count; i++)
+ {
+ int vals = 2 * (color_formats[i] >> 2) + 2;
+ for (int j = 0; j < vals; j++)
+ {
+ scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]];
+ }
+ valuecount_to_decode += vals;
+ }
+
+ // Fetch component for second-plane in the case of dual plane of weights.
+ scb.plane2_component = -1;
+ if (is_dual_plane)
+ {
+ scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb.data));
+ }
+}