diff options
Diffstat (limited to 'thirdparty/astcenc/astcenc_compress_symbolic.cpp')
-rw-r--r-- | thirdparty/astcenc/astcenc_compress_symbolic.cpp | 1455 |
1 files changed, 1455 insertions, 0 deletions
diff --git a/thirdparty/astcenc/astcenc_compress_symbolic.cpp b/thirdparty/astcenc/astcenc_compress_symbolic.cpp new file mode 100644 index 0000000000..afb76246e7 --- /dev/null +++ b/thirdparty/astcenc/astcenc_compress_symbolic.cpp @@ -0,0 +1,1455 @@ +// SPDX-License-Identifier: Apache-2.0 +// ---------------------------------------------------------------------------- +// Copyright 2011-2023 Arm Limited +// +// Licensed under the Apache License, Version 2.0 (the "License"); you may not +// use this file except in compliance with the License. You may obtain a copy +// of the License at: +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +// License for the specific language governing permissions and limitations +// under the License. +// ---------------------------------------------------------------------------- + +#if !defined(ASTCENC_DECOMPRESS_ONLY) + +/** + * @brief Functions to compress a symbolic block. + */ + +#include "astcenc_internal.h" +#include "astcenc_diagnostic_trace.h" + +#include <cassert> + +/** + * @brief Merge two planes of endpoints into a single vector. + * + * @param ep_plane1 The endpoints for plane 1. + * @param ep_plane2 The endpoints for plane 2. + * @param component_plane2 The color component for plane 2. + * @param[out] result The merged output. + */ +static void merge_endpoints( + const endpoints& ep_plane1, + const endpoints& ep_plane2, + unsigned int component_plane2, + endpoints& result +) { + unsigned int partition_count = ep_plane1.partition_count; + assert(partition_count == 1); + + vmask4 sep_mask = vint4::lane_id() == vint4(component_plane2); + + result.partition_count = partition_count; + result.endpt0[0] = select(ep_plane1.endpt0[0], ep_plane2.endpt0[0], sep_mask); + result.endpt1[0] = select(ep_plane1.endpt1[0], ep_plane2.endpt1[0], sep_mask); +} + +/** + * @brief Attempt to improve weights given a chosen configuration. + * + * Given a fixed weight grid decimation and weight value quantization, iterate over all weights (per + * partition and per plane) and attempt to improve image quality by moving each weight up by one or + * down by one quantization step. + * + * This is a specialized function which only supports operating on undecimated weight grids, + * therefore primarily improving the performance of 4x4 and 5x5 blocks where grid decimation + * is needed less often. + * + * @param decode_mode The decode mode (LDR, HDR). + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param[out] scb The symbolic compressed block output. + */ +static bool realign_weights_undecimated( + astcenc_profile decode_mode, + const block_size_descriptor& bsd, + const image_block& blk, + symbolic_compressed_block& scb +) { + // Get the partition descriptor + unsigned int partition_count = scb.partition_count; + const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); + + // Get the quantization table + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + unsigned int weight_quant_level = bm.quant_mode; + const quant_and_transfer_table& qat = quant_and_xfer_tables[weight_quant_level]; + + unsigned int max_plane = bm.is_dual_plane; + int plane2_component = scb.plane2_component; + vmask4 plane_mask = vint4::lane_id() == vint4(plane2_component); + + // Decode the color endpoints + bool rgb_hdr; + bool alpha_hdr; + vint4 endpnt0[BLOCK_MAX_PARTITIONS]; + vint4 endpnt1[BLOCK_MAX_PARTITIONS]; + vfloat4 endpnt0f[BLOCK_MAX_PARTITIONS]; + vfloat4 offset[BLOCK_MAX_PARTITIONS]; + + promise(partition_count > 0); + + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + unpack_color_endpoints(decode_mode, + scb.color_formats[pa_idx], + scb.color_values[pa_idx], + rgb_hdr, alpha_hdr, + endpnt0[pa_idx], + endpnt1[pa_idx]); + } + + uint8_t* dec_weights_uquant = scb.weights; + bool adjustments = false; + + // For each plane and partition ... + for (unsigned int pl_idx = 0; pl_idx <= max_plane; pl_idx++) + { + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + // Compute the endpoint delta for all components in current plane + vint4 epd = endpnt1[pa_idx] - endpnt0[pa_idx]; + epd = select(epd, vint4::zero(), plane_mask); + + endpnt0f[pa_idx] = int_to_float(endpnt0[pa_idx]); + offset[pa_idx] = int_to_float(epd) * (1.0f / 64.0f); + } + + // For each weight compute previous, current, and next errors + promise(bsd.texel_count > 0); + for (unsigned int texel = 0; texel < bsd.texel_count; texel++) + { + int uqw = dec_weights_uquant[texel]; + + uint32_t prev_and_next = qat.prev_next_values[uqw]; + int uqw_down = prev_and_next & 0xFF; + int uqw_up = (prev_and_next >> 8) & 0xFF; + + // Interpolate the colors to create the diffs + float weight_base = static_cast<float>(uqw); + float weight_down = static_cast<float>(uqw_down - uqw); + float weight_up = static_cast<float>(uqw_up - uqw); + + unsigned int partition = pi.partition_of_texel[texel]; + vfloat4 color_offset = offset[partition]; + vfloat4 color_base = endpnt0f[partition]; + + vfloat4 color = color_base + color_offset * weight_base; + vfloat4 orig_color = blk.texel(texel); + vfloat4 error_weight = blk.channel_weight; + + vfloat4 color_diff = color - orig_color; + vfloat4 color_diff_down = color_diff + color_offset * weight_down; + vfloat4 color_diff_up = color_diff + color_offset * weight_up; + + float error_base = dot_s(color_diff * color_diff, error_weight); + float error_down = dot_s(color_diff_down * color_diff_down, error_weight); + float error_up = dot_s(color_diff_up * color_diff_up, error_weight); + + // Check if the prev or next error is better, and if so use it + if ((error_up < error_base) && (error_up < error_down) && (uqw < 64)) + { + dec_weights_uquant[texel] = static_cast<uint8_t>(uqw_up); + adjustments = true; + } + else if ((error_down < error_base) && (uqw > 0)) + { + dec_weights_uquant[texel] = static_cast<uint8_t>(uqw_down); + adjustments = true; + } + } + + // Prepare iteration for plane 2 + dec_weights_uquant += WEIGHTS_PLANE2_OFFSET; + plane_mask = ~plane_mask; + } + + return adjustments; +} + +/** + * @brief Attempt to improve weights given a chosen configuration. + * + * Given a fixed weight grid decimation and weight value quantization, iterate over all weights (per + * partition and per plane) and attempt to improve image quality by moving each weight up by one or + * down by one quantization step. + * + * @param decode_mode The decode mode (LDR, HDR). + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param[out] scb The symbolic compressed block output. + */ +static bool realign_weights_decimated( + astcenc_profile decode_mode, + const block_size_descriptor& bsd, + const image_block& blk, + symbolic_compressed_block& scb +) { + // Get the partition descriptor + unsigned int partition_count = scb.partition_count; + const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); + + // Get the quantization table + const block_mode& bm = bsd.get_block_mode(scb.block_mode); + unsigned int weight_quant_level = bm.quant_mode; + const quant_and_transfer_table& qat = quant_and_xfer_tables[weight_quant_level]; + + // Get the decimation table + const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); + unsigned int weight_count = di.weight_count; + assert(weight_count != bsd.texel_count); + + unsigned int max_plane = bm.is_dual_plane; + int plane2_component = scb.plane2_component; + vmask4 plane_mask = vint4::lane_id() == vint4(plane2_component); + + // Decode the color endpoints + bool rgb_hdr; + bool alpha_hdr; + vint4 endpnt0[BLOCK_MAX_PARTITIONS]; + vint4 endpnt1[BLOCK_MAX_PARTITIONS]; + vfloat4 endpnt0f[BLOCK_MAX_PARTITIONS]; + vfloat4 offset[BLOCK_MAX_PARTITIONS]; + + promise(partition_count > 0); + promise(weight_count > 0); + + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + unpack_color_endpoints(decode_mode, + scb.color_formats[pa_idx], + scb.color_values[pa_idx], + rgb_hdr, alpha_hdr, + endpnt0[pa_idx], + endpnt1[pa_idx]); + } + + uint8_t* dec_weights_uquant = scb.weights; + bool adjustments = false; + + // For each plane and partition ... + for (unsigned int pl_idx = 0; pl_idx <= max_plane; pl_idx++) + { + for (unsigned int pa_idx = 0; pa_idx < partition_count; pa_idx++) + { + // Compute the endpoint delta for all components in current plane + vint4 epd = endpnt1[pa_idx] - endpnt0[pa_idx]; + epd = select(epd, vint4::zero(), plane_mask); + + endpnt0f[pa_idx] = int_to_float(endpnt0[pa_idx]); + offset[pa_idx] = int_to_float(epd) * (1.0f / 64.0f); + } + + // Create an unquantized weight grid for this decimation level + alignas(ASTCENC_VECALIGN) float uq_weightsf[BLOCK_MAX_WEIGHTS]; + for (unsigned int we_idx = 0; we_idx < weight_count; we_idx += ASTCENC_SIMD_WIDTH) + { + vint unquant_value(dec_weights_uquant + we_idx); + vfloat unquant_valuef = int_to_float(unquant_value); + storea(unquant_valuef, uq_weightsf + we_idx); + } + + // For each weight compute previous, current, and next errors + for (unsigned int we_idx = 0; we_idx < weight_count; we_idx++) + { + int uqw = dec_weights_uquant[we_idx]; + uint32_t prev_and_next = qat.prev_next_values[uqw]; + + float uqw_base = uq_weightsf[we_idx]; + float uqw_down = static_cast<float>(prev_and_next & 0xFF); + float uqw_up = static_cast<float>((prev_and_next >> 8) & 0xFF); + + float uqw_diff_down = uqw_down - uqw_base; + float uqw_diff_up = uqw_up - uqw_base; + + vfloat4 error_basev = vfloat4::zero(); + vfloat4 error_downv = vfloat4::zero(); + vfloat4 error_upv = vfloat4::zero(); + + // Interpolate the colors to create the diffs + unsigned int texels_to_evaluate = di.weight_texel_count[we_idx]; + promise(texels_to_evaluate > 0); + for (unsigned int te_idx = 0; te_idx < texels_to_evaluate; te_idx++) + { + unsigned int texel = di.weight_texels_tr[te_idx][we_idx]; + + float tw_base = di.texel_contrib_for_weight[te_idx][we_idx]; + + float weight_base = (uq_weightsf[di.texel_weights_tr[0][texel]] * di.texel_weight_contribs_float_tr[0][texel] + + uq_weightsf[di.texel_weights_tr[1][texel]] * di.texel_weight_contribs_float_tr[1][texel]) + + (uq_weightsf[di.texel_weights_tr[2][texel]] * di.texel_weight_contribs_float_tr[2][texel] + + uq_weightsf[di.texel_weights_tr[3][texel]] * di.texel_weight_contribs_float_tr[3][texel]); + + // Ideally this is integer rounded, but IQ gain it isn't worth the overhead + // float weight = astc::flt_rd(weight_base + 0.5f); + // float weight_down = astc::flt_rd(weight_base + 0.5f + uqw_diff_down * tw_base) - weight; + // float weight_up = astc::flt_rd(weight_base + 0.5f + uqw_diff_up * tw_base) - weight; + float weight_down = weight_base + uqw_diff_down * tw_base - weight_base; + float weight_up = weight_base + uqw_diff_up * tw_base - weight_base; + + unsigned int partition = pi.partition_of_texel[texel]; + vfloat4 color_offset = offset[partition]; + vfloat4 color_base = endpnt0f[partition]; + + vfloat4 color = color_base + color_offset * weight_base; + vfloat4 orig_color = blk.texel(texel); + + vfloat4 color_diff = color - orig_color; + vfloat4 color_down_diff = color_diff + color_offset * weight_down; + vfloat4 color_up_diff = color_diff + color_offset * weight_up; + + error_basev += color_diff * color_diff; + error_downv += color_down_diff * color_down_diff; + error_upv += color_up_diff * color_up_diff; + } + + vfloat4 error_weight = blk.channel_weight; + float error_base = hadd_s(error_basev * error_weight); + float error_down = hadd_s(error_downv * error_weight); + float error_up = hadd_s(error_upv * error_weight); + + // Check if the prev or next error is better, and if so use it + if ((error_up < error_base) && (error_up < error_down) && (uqw < 64)) + { + uq_weightsf[we_idx] = uqw_up; + dec_weights_uquant[we_idx] = static_cast<uint8_t>(uqw_up); + adjustments = true; + } + else if ((error_down < error_base) && (uqw > 0)) + { + uq_weightsf[we_idx] = uqw_down; + dec_weights_uquant[we_idx] = static_cast<uint8_t>(uqw_down); + adjustments = true; + } + } + + // Prepare iteration for plane 2 + dec_weights_uquant += WEIGHTS_PLANE2_OFFSET; + plane_mask = ~plane_mask; + } + + return adjustments; +} + +/** + * @brief Compress a block using a chosen partitioning and 1 plane of weights. + * + * @param config The compressor configuration. + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param only_always True if we only use "always" percentile block modes. + * @param tune_errorval_threshold The error value threshold. + * @param partition_count The partition count. + * @param partition_index The partition index if @c partition_count is 2-4. + * @param[out] scb The symbolic compressed block output. + * @param[out] tmpbuf The quantized weights for plane 1. + */ +static float compress_symbolic_block_for_partition_1plane( + const astcenc_config& config, + const block_size_descriptor& bsd, + const image_block& blk, + bool only_always, + float tune_errorval_threshold, + unsigned int partition_count, + unsigned int partition_index, + symbolic_compressed_block& scb, + compression_working_buffers& tmpbuf, + int quant_limit +) { + promise(partition_count > 0); + promise(config.tune_candidate_limit > 0); + promise(config.tune_refinement_limit > 0); + + int max_weight_quant = astc::min(static_cast<int>(QUANT_32), quant_limit); + + auto compute_difference = &compute_symbolic_block_difference_1plane; + if ((partition_count == 1) && !(config.flags & ASTCENC_FLG_MAP_RGBM)) + { + compute_difference = &compute_symbolic_block_difference_1plane_1partition; + } + + const auto& pi = bsd.get_partition_info(partition_count, partition_index); + + // Compute ideal weights and endpoint colors, with no quantization or decimation + endpoints_and_weights& ei = tmpbuf.ei1; + compute_ideal_colors_and_weights_1plane(blk, pi, ei); + + // Compute ideal weights and endpoint colors for every decimation + float* dec_weights_ideal = tmpbuf.dec_weights_ideal; + uint8_t* dec_weights_uquant = tmpbuf.dec_weights_uquant; + + // For each decimation mode, compute an ideal set of weights with no quantization + unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always + : bsd.decimation_mode_count_selected; + promise(max_decimation_modes > 0); + for (unsigned int i = 0; i < max_decimation_modes; i++) + { + const auto& dm = bsd.get_decimation_mode(i); + if (!dm.is_ref_1_plane(static_cast<quant_method>(max_weight_quant))) + { + continue; + } + + const auto& di = bsd.get_decimation_info(i); + + compute_ideal_weights_for_decimation( + ei, + di, + dec_weights_ideal + i * BLOCK_MAX_WEIGHTS); + } + + // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal + // weight pair, compute the smallest weight that will result in a color value greater than 1 + vfloat4 min_ep(10.0f); + for (unsigned int i = 0; i < partition_count; i++) + { + vfloat4 ep = (vfloat4(1.0f) - ei.ep.endpt0[i]) / (ei.ep.endpt1[i] - ei.ep.endpt0[i]); + + vmask4 use_ep = (ep > vfloat4(0.5f)) & (ep < min_ep); + min_ep = select(min_ep, ep, use_ep); + } + + float min_wt_cutoff = hmin_s(min_ep); + + // For each mode, use the angular method to compute a shift + compute_angular_endpoints_1plane( + only_always, bsd, dec_weights_ideal, max_weight_quant, tmpbuf); + + float* weight_low_value = tmpbuf.weight_low_value1; + float* weight_high_value = tmpbuf.weight_high_value1; + int8_t* qwt_bitcounts = tmpbuf.qwt_bitcounts; + float* qwt_errors = tmpbuf.qwt_errors; + + // For each mode (which specifies a decimation and a quantization): + // * Compute number of bits needed for the quantized weights + // * Generate an optimized set of quantized weights + // * Compute quantization errors for the mode + + + static const int8_t free_bits_for_partition_count[4] { + 115 - 4, 111 - 4 - PARTITION_INDEX_BITS, 108 - 4 - PARTITION_INDEX_BITS, 105 - 4 - PARTITION_INDEX_BITS + }; + + unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always + : bsd.block_mode_count_1plane_selected; + promise(max_block_modes > 0); + for (unsigned int i = 0; i < max_block_modes; i++) + { + const block_mode& bm = bsd.block_modes[i]; + + if (bm.quant_mode > max_weight_quant) + { + qwt_errors[i] = 1e38f; + continue; + } + + assert(!bm.is_dual_plane); + int bitcount = free_bits_for_partition_count[partition_count - 1] - bm.weight_bits; + if (bitcount <= 0) + { + qwt_errors[i] = 1e38f; + continue; + } + + if (weight_high_value[i] > 1.02f * min_wt_cutoff) + { + weight_high_value[i] = 1.0f; + } + + int decimation_mode = bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + + qwt_bitcounts[i] = static_cast<int8_t>(bitcount); + + alignas(ASTCENC_VECALIGN) float dec_weights_uquantf[BLOCK_MAX_WEIGHTS]; + + // Generate the optimized set of weights for the weight mode + compute_quantized_weights_for_decimation( + di, + weight_low_value[i], weight_high_value[i], + dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode, + dec_weights_uquantf, + dec_weights_uquant + BLOCK_MAX_WEIGHTS * i, + bm.get_weight_quant_mode()); + + // Compute weight quantization errors for the block mode + qwt_errors[i] = compute_error_of_weight_set_1plane( + ei, + di, + dec_weights_uquantf); + } + + // Decide the optimal combination of color endpoint encodings and weight encodings + uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; + int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; + + quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; + quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; + + unsigned int candidate_count = compute_ideal_endpoint_formats( + pi, blk, ei.ep, qwt_bitcounts, qwt_errors, + config.tune_candidate_limit, 0, max_block_modes, + partition_format_specifiers, block_mode_index, + color_quant_level, color_quant_level_mod, tmpbuf); + + // Iterate over the N believed-to-be-best modes to find out which one is actually best + float best_errorval_in_mode = ERROR_CALC_DEFAULT; + float best_errorval_in_scb = scb.errorval; + + for (unsigned int i = 0; i < candidate_count; i++) + { + TRACE_NODE(node0, "candidate"); + + const int bm_packed_index = block_mode_index[i]; + assert(bm_packed_index >= 0 && bm_packed_index < static_cast<int>(bsd.block_mode_count_1plane_selected)); + const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; + + int decimation_mode = qw_bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + promise(di.weight_count > 0); + + trace_add_data("weight_x", di.weight_x); + trace_add_data("weight_y", di.weight_y); + trace_add_data("weight_z", di.weight_z); + trace_add_data("weight_quant", qw_bm.quant_mode); + + // Recompute the ideal color endpoints before storing them + vfloat4 rgbs_colors[BLOCK_MAX_PARTITIONS]; + vfloat4 rgbo_colors[BLOCK_MAX_PARTITIONS]; + + symbolic_compressed_block workscb; + endpoints workep = ei.ep; + + uint8_t* u8_weight_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index; + + for (unsigned int j = 0; j < di.weight_count; j++) + { + workscb.weights[j] = u8_weight_src[j]; + } + + for (unsigned int l = 0; l < config.tune_refinement_limit; l++) + { + recompute_ideal_colors_1plane( + blk, pi, di, workscb.weights, + workep, rgbs_colors, rgbo_colors); + + // Quantize the chosen color, tracking if worth trying the mod value + bool all_same = color_quant_level[i] != color_quant_level_mod[i]; + for (unsigned int j = 0; j < partition_count; j++) + { + workscb.color_formats[j] = pack_color_endpoints( + workep.endpt0[j], + workep.endpt1[j], + rgbs_colors[j], + rgbo_colors[j], + partition_format_specifiers[i][j], + workscb.color_values[j], + color_quant_level[i]); + + all_same = all_same && workscb.color_formats[j] == workscb.color_formats[0]; + } + + // If all the color endpoint modes are the same, we get a few more bits to store colors; + // let's see if we can take advantage of this: requantize all the colors and see if the + // endpoint modes remain the same. + workscb.color_formats_matched = 0; + if (partition_count >= 2 && all_same) + { + uint8_t colorvals[BLOCK_MAX_PARTITIONS][12]; + uint8_t color_formats_mod[BLOCK_MAX_PARTITIONS] { 0 }; + bool all_same_mod = true; + for (unsigned int j = 0; j < partition_count; j++) + { + color_formats_mod[j] = pack_color_endpoints( + workep.endpt0[j], + workep.endpt1[j], + rgbs_colors[j], + rgbo_colors[j], + partition_format_specifiers[i][j], + colorvals[j], + color_quant_level_mod[i]); + + // Early out as soon as it's no longer possible to use mod + if (color_formats_mod[j] != color_formats_mod[0]) + { + all_same_mod = false; + break; + } + } + + if (all_same_mod) + { + workscb.color_formats_matched = 1; + for (unsigned int j = 0; j < BLOCK_MAX_PARTITIONS; j++) + { + for (unsigned int k = 0; k < 8; k++) + { + workscb.color_values[j][k] = colorvals[j][k]; + } + + workscb.color_formats[j] = color_formats_mod[j]; + } + } + } + + // Store header fields + workscb.partition_count = static_cast<uint8_t>(partition_count); + workscb.partition_index = static_cast<uint16_t>(partition_index); + workscb.plane2_component = -1; + workscb.quant_mode = workscb.color_formats_matched ? color_quant_level_mod[i] : color_quant_level[i]; + workscb.block_mode = qw_bm.mode_index; + workscb.block_type = SYM_BTYPE_NONCONST; + + // Pre-realign test + if (l == 0) + { + float errorval = compute_difference(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_prerealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration (allow 4.5%), but the first + // iteration can help more so we give it a extra 8% leeway. Use this knowledge to + // drive a heuristic to skip blocks that are unlikely to catch up with the best + // block we have already. + unsigned int iters_remaining = config.tune_refinement_limit - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.08f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + } + + bool adjustments; + if (di.weight_count != bsd.texel_count) + { + adjustments = realign_weights_decimated( + config.profile, bsd, blk, workscb); + } + else + { + adjustments = realign_weights_undecimated( + config.profile, bsd, blk, workscb); + } + + // Post-realign test + float errorval = compute_difference(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_postrealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration, so skip blocks that are + // unlikely to catch up with the best block we have already. Assume a 4.5% per step to + // give benefit of the doubt ... + unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.0f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + + if (!adjustments) + { + break; + } + } + } + + return best_errorval_in_mode; +} + +/** + * @brief Compress a block using a chosen partitioning and 2 planes of weights. + * + * @param config The compressor configuration. + * @param bsd The block size information. + * @param blk The image block color data to compress. + * @param tune_errorval_threshold The error value threshold. + * @param plane2_component The component index for the second plane of weights. + * @param[out] scb The symbolic compressed block output. + * @param[out] tmpbuf The quantized weights for plane 1. + */ +static float compress_symbolic_block_for_partition_2planes( + const astcenc_config& config, + const block_size_descriptor& bsd, + const image_block& blk, + float tune_errorval_threshold, + unsigned int plane2_component, + symbolic_compressed_block& scb, + compression_working_buffers& tmpbuf, + int quant_limit +) { + promise(config.tune_candidate_limit > 0); + promise(config.tune_refinement_limit > 0); + promise(bsd.decimation_mode_count_selected > 0); + + int max_weight_quant = astc::min(static_cast<int>(QUANT_32), quant_limit); + + // Compute ideal weights and endpoint colors, with no quantization or decimation + endpoints_and_weights& ei1 = tmpbuf.ei1; + endpoints_and_weights& ei2 = tmpbuf.ei2; + + compute_ideal_colors_and_weights_2planes(bsd, blk, plane2_component, ei1, ei2); + + // Compute ideal weights and endpoint colors for every decimation + float* dec_weights_ideal = tmpbuf.dec_weights_ideal; + uint8_t* dec_weights_uquant = tmpbuf.dec_weights_uquant; + + // For each decimation mode, compute an ideal set of weights with no quantization + for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++) + { + const auto& dm = bsd.get_decimation_mode(i); + if (!dm.is_ref_2_plane(static_cast<quant_method>(max_weight_quant))) + { + continue; + } + + const auto& di = bsd.get_decimation_info(i); + + compute_ideal_weights_for_decimation( + ei1, + di, + dec_weights_ideal + i * BLOCK_MAX_WEIGHTS); + + compute_ideal_weights_for_decimation( + ei2, + di, + dec_weights_ideal + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET); + } + + // Compute maximum colors for the endpoints and ideal weights, then for each endpoint and ideal + // weight pair, compute the smallest weight that will result in a color value greater than 1 + vfloat4 min_ep1(10.0f); + vfloat4 min_ep2(10.0f); + + vfloat4 ep1 = (vfloat4(1.0f) - ei1.ep.endpt0[0]) / (ei1.ep.endpt1[0] - ei1.ep.endpt0[0]); + vmask4 use_ep1 = (ep1 > vfloat4(0.5f)) & (ep1 < min_ep1); + min_ep1 = select(min_ep1, ep1, use_ep1); + + vfloat4 ep2 = (vfloat4(1.0f) - ei2.ep.endpt0[0]) / (ei2.ep.endpt1[0] - ei2.ep.endpt0[0]); + vmask4 use_ep2 = (ep2 > vfloat4(0.5f)) & (ep2 < min_ep2); + min_ep2 = select(min_ep2, ep2, use_ep2); + + vfloat4 err_max(ERROR_CALC_DEFAULT); + vmask4 err_mask = vint4::lane_id() == vint4(plane2_component); + + // Set the plane2 component to max error in ep1 + min_ep1 = select(min_ep1, err_max, err_mask); + + float min_wt_cutoff1 = hmin_s(min_ep1); + + // Set the minwt2 to the plane2 component min in ep2 + float min_wt_cutoff2 = hmin_s(select(err_max, min_ep2, err_mask)); + + compute_angular_endpoints_2planes( + bsd, dec_weights_ideal, max_weight_quant, tmpbuf); + + // For each mode (which specifies a decimation and a quantization): + // * Compute number of bits needed for the quantized weights + // * Generate an optimized set of quantized weights + // * Compute quantization errors for the mode + + float* weight_low_value1 = tmpbuf.weight_low_value1; + float* weight_high_value1 = tmpbuf.weight_high_value1; + float* weight_low_value2 = tmpbuf.weight_low_value2; + float* weight_high_value2 = tmpbuf.weight_high_value2; + + int8_t* qwt_bitcounts = tmpbuf.qwt_bitcounts; + float* qwt_errors = tmpbuf.qwt_errors; + + unsigned int start_2plane = bsd.block_mode_count_1plane_selected; + unsigned int end_2plane = bsd.block_mode_count_1plane_2plane_selected; + + for (unsigned int i = start_2plane; i < end_2plane; i++) + { + const block_mode& bm = bsd.block_modes[i]; + assert(bm.is_dual_plane); + + if (bm.quant_mode > max_weight_quant) + { + qwt_errors[i] = 1e38f; + continue; + } + + qwt_bitcounts[i] = static_cast<int8_t>(109 - bm.weight_bits); + + if (weight_high_value1[i] > 1.02f * min_wt_cutoff1) + { + weight_high_value1[i] = 1.0f; + } + + if (weight_high_value2[i] > 1.02f * min_wt_cutoff2) + { + weight_high_value2[i] = 1.0f; + } + + unsigned int decimation_mode = bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + + alignas(ASTCENC_VECALIGN) float dec_weights_uquantf[BLOCK_MAX_WEIGHTS]; + + // Generate the optimized set of weights for the mode + compute_quantized_weights_for_decimation( + di, + weight_low_value1[i], + weight_high_value1[i], + dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode, + dec_weights_uquantf, + dec_weights_uquant + BLOCK_MAX_WEIGHTS * i, + bm.get_weight_quant_mode()); + + compute_quantized_weights_for_decimation( + di, + weight_low_value2[i], + weight_high_value2[i], + dec_weights_ideal + BLOCK_MAX_WEIGHTS * decimation_mode + WEIGHTS_PLANE2_OFFSET, + dec_weights_uquantf + WEIGHTS_PLANE2_OFFSET, + dec_weights_uquant + BLOCK_MAX_WEIGHTS * i + WEIGHTS_PLANE2_OFFSET, + bm.get_weight_quant_mode()); + + // Compute weight quantization errors for the block mode + qwt_errors[i] = compute_error_of_weight_set_2planes( + ei1, + ei2, + di, + dec_weights_uquantf, + dec_weights_uquantf + WEIGHTS_PLANE2_OFFSET); + } + + // Decide the optimal combination of color endpoint encodings and weight encodings + uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS]; + int block_mode_index[TUNE_MAX_TRIAL_CANDIDATES]; + + quant_method color_quant_level[TUNE_MAX_TRIAL_CANDIDATES]; + quant_method color_quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES]; + + endpoints epm; + merge_endpoints(ei1.ep, ei2.ep, plane2_component, epm); + + const auto& pi = bsd.get_partition_info(1, 0); + unsigned int candidate_count = compute_ideal_endpoint_formats( + pi, blk, epm, qwt_bitcounts, qwt_errors, + config.tune_candidate_limit, + bsd.block_mode_count_1plane_selected, bsd.block_mode_count_1plane_2plane_selected, + partition_format_specifiers, block_mode_index, + color_quant_level, color_quant_level_mod, tmpbuf); + + // Iterate over the N believed-to-be-best modes to find out which one is actually best + float best_errorval_in_mode = ERROR_CALC_DEFAULT; + float best_errorval_in_scb = scb.errorval; + + for (unsigned int i = 0; i < candidate_count; i++) + { + TRACE_NODE(node0, "candidate"); + + const int bm_packed_index = block_mode_index[i]; + assert(bm_packed_index >= static_cast<int>(bsd.block_mode_count_1plane_selected) && + bm_packed_index < static_cast<int>(bsd.block_mode_count_1plane_2plane_selected)); + const block_mode& qw_bm = bsd.block_modes[bm_packed_index]; + + int decimation_mode = qw_bm.decimation_mode; + const auto& di = bsd.get_decimation_info(decimation_mode); + promise(di.weight_count > 0); + + trace_add_data("weight_x", di.weight_x); + trace_add_data("weight_y", di.weight_y); + trace_add_data("weight_z", di.weight_z); + trace_add_data("weight_quant", qw_bm.quant_mode); + + vfloat4 rgbs_color; + vfloat4 rgbo_color; + + symbolic_compressed_block workscb; + endpoints workep = epm; + + uint8_t* u8_weight1_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index; + uint8_t* u8_weight2_src = dec_weights_uquant + BLOCK_MAX_WEIGHTS * bm_packed_index + WEIGHTS_PLANE2_OFFSET; + + for (int j = 0; j < di.weight_count; j++) + { + workscb.weights[j] = u8_weight1_src[j]; + workscb.weights[j + WEIGHTS_PLANE2_OFFSET] = u8_weight2_src[j]; + } + + for (unsigned int l = 0; l < config.tune_refinement_limit; l++) + { + recompute_ideal_colors_2planes( + blk, bsd, di, + workscb.weights, workscb.weights + WEIGHTS_PLANE2_OFFSET, + workep, rgbs_color, rgbo_color, plane2_component); + + // Quantize the chosen color + workscb.color_formats[0] = pack_color_endpoints( + workep.endpt0[0], + workep.endpt1[0], + rgbs_color, rgbo_color, + partition_format_specifiers[i][0], + workscb.color_values[0], + color_quant_level[i]); + + // Store header fields + workscb.partition_count = 1; + workscb.partition_index = 0; + workscb.quant_mode = color_quant_level[i]; + workscb.color_formats_matched = 0; + workscb.block_mode = qw_bm.mode_index; + workscb.plane2_component = static_cast<int8_t>(plane2_component); + workscb.block_type = SYM_BTYPE_NONCONST; + + // Pre-realign test + if (l == 0) + { + float errorval = compute_symbolic_block_difference_2plane(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_prerealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration (allow 4.5%), but the first + // iteration can help more so we give it a extra 8% leeway. Use this knowledge to + // drive a heuristic to skip blocks that are unlikely to catch up with the best + // block we have already. + unsigned int iters_remaining = config.tune_refinement_limit - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.08f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + } + + // Perform a final pass over the weights to try to improve them. + bool adjustments; + if (di.weight_count != bsd.texel_count) + { + adjustments = realign_weights_decimated( + config.profile, bsd, blk, workscb); + } + else + { + adjustments = realign_weights_undecimated( + config.profile, bsd, blk, workscb); + } + + // Post-realign test + float errorval = compute_symbolic_block_difference_2plane(config, bsd, workscb, blk); + if (errorval == -ERROR_CALC_DEFAULT) + { + errorval = -errorval; + workscb.block_type = SYM_BTYPE_ERROR; + } + + trace_add_data("error_postrealign", errorval); + best_errorval_in_mode = astc::min(errorval, best_errorval_in_mode); + + // Average refinement improvement is 3.5% per iteration, so skip blocks that are + // unlikely to catch up with the best block we have already. Assume a 4.5% per step to + // give benefit of the doubt ... + unsigned int iters_remaining = config.tune_refinement_limit - 1 - l; + float threshold = (0.045f * static_cast<float>(iters_remaining)) + 1.0f; + if (errorval > (threshold * best_errorval_in_scb)) + { + break; + } + + if (errorval < best_errorval_in_scb) + { + best_errorval_in_scb = errorval; + workscb.errorval = errorval; + scb = workscb; + + if (errorval < tune_errorval_threshold) + { + // Skip remaining candidates - this is "good enough" + i = candidate_count; + break; + } + } + + if (!adjustments) + { + break; + } + } + } + + return best_errorval_in_mode; +} + +/** + * @brief Determine the lowest cross-channel correlation factor. + * + * @param texels_per_block The number of texels in a block. + * @param blk The image block color data to compress. + * + * @return Return the lowest correlation factor. + */ +static float prepare_block_statistics( + int texels_per_block, + const image_block& blk +) { + // Compute covariance matrix, as a collection of 10 scalars that form the upper-triangular row + // of the matrix. The matrix is symmetric, so this is all we need for this use case. + float rs = 0.0f; + float gs = 0.0f; + float bs = 0.0f; + float as = 0.0f; + float rr_var = 0.0f; + float gg_var = 0.0f; + float bb_var = 0.0f; + float aa_var = 0.0f; + float rg_cov = 0.0f; + float rb_cov = 0.0f; + float ra_cov = 0.0f; + float gb_cov = 0.0f; + float ga_cov = 0.0f; + float ba_cov = 0.0f; + + float weight_sum = 0.0f; + + promise(texels_per_block > 0); + for (int i = 0; i < texels_per_block; i++) + { + float weight = hadd_s(blk.channel_weight) / 4.0f; + assert(weight >= 0.0f); + weight_sum += weight; + + float r = blk.data_r[i]; + float g = blk.data_g[i]; + float b = blk.data_b[i]; + float a = blk.data_a[i]; + + float rw = r * weight; + rs += rw; + rr_var += r * rw; + rg_cov += g * rw; + rb_cov += b * rw; + ra_cov += a * rw; + + float gw = g * weight; + gs += gw; + gg_var += g * gw; + gb_cov += b * gw; + ga_cov += a * gw; + + float bw = b * weight; + bs += bw; + bb_var += b * bw; + ba_cov += a * bw; + + float aw = a * weight; + as += aw; + aa_var += a * aw; + } + + float rpt = 1.0f / astc::max(weight_sum, 1e-7f); + + rr_var -= rs * (rs * rpt); + rg_cov -= gs * (rs * rpt); + rb_cov -= bs * (rs * rpt); + ra_cov -= as * (rs * rpt); + + gg_var -= gs * (gs * rpt); + gb_cov -= bs * (gs * rpt); + ga_cov -= as * (gs * rpt); + + bb_var -= bs * (bs * rpt); + ba_cov -= as * (bs * rpt); + + aa_var -= as * (as * rpt); + + // These will give a NaN if a channel is constant - these are fixed up in the next step + rg_cov *= astc::rsqrt(rr_var * gg_var); + rb_cov *= astc::rsqrt(rr_var * bb_var); + ra_cov *= astc::rsqrt(rr_var * aa_var); + gb_cov *= astc::rsqrt(gg_var * bb_var); + ga_cov *= astc::rsqrt(gg_var * aa_var); + ba_cov *= astc::rsqrt(bb_var * aa_var); + + if (astc::isnan(rg_cov)) rg_cov = 1.0f; + if (astc::isnan(rb_cov)) rb_cov = 1.0f; + if (astc::isnan(ra_cov)) ra_cov = 1.0f; + if (astc::isnan(gb_cov)) gb_cov = 1.0f; + if (astc::isnan(ga_cov)) ga_cov = 1.0f; + if (astc::isnan(ba_cov)) ba_cov = 1.0f; + + float lowest_correlation = astc::min(fabsf(rg_cov), fabsf(rb_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(ra_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(gb_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(ga_cov)); + lowest_correlation = astc::min(lowest_correlation, fabsf(ba_cov)); + + // Diagnostic trace points + trace_add_data("min_r", blk.data_min.lane<0>()); + trace_add_data("max_r", blk.data_max.lane<0>()); + trace_add_data("min_g", blk.data_min.lane<1>()); + trace_add_data("max_g", blk.data_max.lane<1>()); + trace_add_data("min_b", blk.data_min.lane<2>()); + trace_add_data("max_b", blk.data_max.lane<2>()); + trace_add_data("min_a", blk.data_min.lane<3>()); + trace_add_data("max_a", blk.data_max.lane<3>()); + trace_add_data("cov_rg", fabsf(rg_cov)); + trace_add_data("cov_rb", fabsf(rb_cov)); + trace_add_data("cov_ra", fabsf(ra_cov)); + trace_add_data("cov_gb", fabsf(gb_cov)); + trace_add_data("cov_ga", fabsf(ga_cov)); + trace_add_data("cov_ba", fabsf(ba_cov)); + + return lowest_correlation; +} + +/* See header for documentation. */ +void compress_block( + const astcenc_contexti& ctx, + const image_block& blk, + physical_compressed_block& pcb, + compression_working_buffers& tmpbuf) +{ + astcenc_profile decode_mode = ctx.config.profile; + symbolic_compressed_block scb; + const block_size_descriptor& bsd = *ctx.bsd; + float lowest_correl; + + TRACE_NODE(node0, "block"); + trace_add_data("pos_x", blk.xpos); + trace_add_data("pos_y", blk.ypos); + trace_add_data("pos_z", blk.zpos); + + // Set stricter block targets for luminance data as we have more bits to play with + bool block_is_l = blk.is_luminance(); + float block_is_l_scale = block_is_l ? 1.0f / 1.5f : 1.0f; + + // Set slightly stricter block targets for lumalpha data as we have more bits to play with + bool block_is_la = blk.is_luminancealpha(); + float block_is_la_scale = block_is_la ? 1.0f / 1.05f : 1.0f; + + bool block_skip_two_plane = false; + int max_partitions = ctx.config.tune_partition_count_limit; + + unsigned int requested_partition_indices[3] { + ctx.config.tune_2partition_index_limit, + ctx.config.tune_3partition_index_limit, + ctx.config.tune_4partition_index_limit + }; + + unsigned int requested_partition_trials[3] { + ctx.config.tune_2partitioning_candidate_limit, + ctx.config.tune_3partitioning_candidate_limit, + ctx.config.tune_4partitioning_candidate_limit + }; + +#if defined(ASTCENC_DIAGNOSTICS) + // Do this early in diagnostic builds so we can dump uniform metrics + // for every block. Do it later in release builds to avoid redundant work! + float error_weight_sum = hadd_s(blk.channel_weight) * bsd.texel_count; + float error_threshold = ctx.config.tune_db_limit + * error_weight_sum + * block_is_l_scale + * block_is_la_scale; + + lowest_correl = prepare_block_statistics(bsd.texel_count, blk); + trace_add_data("lowest_correl", lowest_correl); + trace_add_data("tune_error_threshold", error_threshold); +#endif + + // Detected a constant-color block + if (all(blk.data_min == blk.data_max)) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", 0); + trace_add_data("plane_count", 1); + + scb.partition_count = 0; + + // Encode as FP16 if using HDR + if ((decode_mode == ASTCENC_PRF_HDR) || + (decode_mode == ASTCENC_PRF_HDR_RGB_LDR_A)) + { + scb.block_type = SYM_BTYPE_CONST_F16; + vint4 color_f16 = float_to_float16(blk.origin_texel); + store(color_f16, scb.constant_color); + } + // Encode as UNORM16 if NOT using HDR + else + { + scb.block_type = SYM_BTYPE_CONST_U16; + vfloat4 color_f32 = clamp(0.0f, 1.0f, blk.origin_texel) * 65535.0f; + vint4 color_u16 = float_to_int_rtn(color_f32); + store(color_u16, scb.constant_color); + } + + trace_add_data("exit", "quality hit"); + + symbolic_to_physical(bsd, scb, pcb); + return; + } + +#if !defined(ASTCENC_DIAGNOSTICS) + float error_weight_sum = hadd_s(blk.channel_weight) * bsd.texel_count; + float error_threshold = ctx.config.tune_db_limit + * error_weight_sum + * block_is_l_scale + * block_is_la_scale; +#endif + + // Set SCB and mode errors to a very high error value + scb.errorval = ERROR_CALC_DEFAULT; + scb.block_type = SYM_BTYPE_ERROR; + + float best_errorvals_for_pcount[BLOCK_MAX_PARTITIONS] { + ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT, ERROR_CALC_DEFAULT + }; + + float exit_thresholds_for_pcount[BLOCK_MAX_PARTITIONS] { + 0.0f, + ctx.config.tune_2_partition_early_out_limit_factor, + ctx.config.tune_3_partition_early_out_limit_factor, + 0.0f + }; + + // Trial using 1 plane of weights and 1 partition. + + // Most of the time we test it twice, first with a mode cutoff of 0 and then with the specified + // mode cutoff. This causes an early-out that speeds up encoding of easy blocks. However, this + // optimization is disabled for 4x4 and 5x4 blocks where it nearly always slows down the + // compression and slightly reduces image quality. + + float errorval_mult[2] { + 1.0f / ctx.config.tune_mse_overshoot, + 1.0f + }; + + static const float errorval_overshoot = 1.0f / ctx.config.tune_mse_overshoot; + + // Only enable MODE0 fast path (trial 0) if 2D, and more than 25 texels + int start_trial = 1; + if ((bsd.texel_count >= TUNE_MIN_TEXELS_MODE0_FASTPATH) && (bsd.zdim == 1)) + { + start_trial = 0; + } + + int quant_limit = QUANT_32; + for (int i = start_trial; i < 2; i++) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", 1); + trace_add_data("plane_count", 1); + trace_add_data("search_mode", i); + + float errorval = compress_symbolic_block_for_partition_1plane( + ctx.config, bsd, blk, i == 0, + error_threshold * errorval_mult[i] * errorval_overshoot, + 1, 0, scb, tmpbuf, QUANT_32); + + // Record the quant level so we can use the filter later searches + const auto& bm = bsd.get_block_mode(scb.block_mode); + quant_limit = bm.get_weight_quant_mode(); + + best_errorvals_for_pcount[0] = astc::min(best_errorvals_for_pcount[0], errorval); + if (errorval < (error_threshold * errorval_mult[i])) + { + trace_add_data("exit", "quality hit"); + goto END_OF_TESTS; + } + } + +#if !defined(ASTCENC_DIAGNOSTICS) + lowest_correl = prepare_block_statistics(bsd.texel_count, blk); +#endif + + block_skip_two_plane = lowest_correl > ctx.config.tune_2_plane_early_out_limit_correlation; + + // Test the four possible 1-partition, 2-planes modes. Do this in reverse, as + // alpha is the most likely to be non-correlated if it is present in the data. + for (int i = BLOCK_MAX_COMPONENTS - 1; i >= 0; i--) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", 1); + trace_add_data("plane_count", 2); + trace_add_data("plane_component", i); + + if (block_skip_two_plane) + { + trace_add_data("skip", "tune_2_plane_early_out_limit_correlation"); + continue; + } + + if (blk.grayscale && i != 3) + { + trace_add_data("skip", "grayscale block"); + continue; + } + + if (blk.is_constant_channel(i)) + { + trace_add_data("skip", "constant component"); + continue; + } + + float errorval = compress_symbolic_block_for_partition_2planes( + ctx.config, bsd, blk, error_threshold * errorval_overshoot, + i, scb, tmpbuf, quant_limit); + + // If attempting two planes is much worse than the best one plane result + // then further two plane searches are unlikely to help so move on ... + if (errorval > (best_errorvals_for_pcount[0] * 1.85f)) + { + break; + } + + if (errorval < error_threshold) + { + trace_add_data("exit", "quality hit"); + goto END_OF_TESTS; + } + } + + // Find best blocks for 2, 3 and 4 partitions + for (int partition_count = 2; partition_count <= max_partitions; partition_count++) + { + unsigned int partition_indices[TUNE_MAX_PARTITIONING_CANDIDATES]; + + unsigned int requested_indices = requested_partition_indices[partition_count - 2]; + + unsigned int requested_trials = requested_partition_trials[partition_count - 2]; + requested_trials = astc::min(requested_trials, requested_indices); + + unsigned int actual_trials = find_best_partition_candidates( + bsd, blk, partition_count, requested_indices, partition_indices, requested_trials); + + float best_error_in_prev = best_errorvals_for_pcount[partition_count - 2]; + + for (unsigned int i = 0; i < actual_trials; i++) + { + TRACE_NODE(node1, "pass"); + trace_add_data("partition_count", partition_count); + trace_add_data("partition_index", partition_indices[i]); + trace_add_data("plane_count", 1); + trace_add_data("search_mode", i); + + float errorval = compress_symbolic_block_for_partition_1plane( + ctx.config, bsd, blk, false, + error_threshold * errorval_overshoot, + partition_count, partition_indices[i], + scb, tmpbuf, quant_limit); + + best_errorvals_for_pcount[partition_count - 1] = astc::min(best_errorvals_for_pcount[partition_count - 1], errorval); + + // If using N partitions doesn't improve much over using N-1 partitions then skip trying + // N+1. Error can dramatically improve if the data is correlated or non-correlated and + // aligns with a partitioning that suits that encoding, so for this inner loop check add + // a large error scale because the "other" trial could be a lot better. + float best_error = best_errorvals_for_pcount[partition_count - 1]; + float best_error_scale = exit_thresholds_for_pcount[partition_count - 1] * 1.85f; + if (best_error > (best_error_in_prev * best_error_scale)) + { + trace_add_data("skip", "tune_partition_early_out_limit_factor"); + goto END_OF_TESTS; + } + + if (errorval < error_threshold) + { + trace_add_data("exit", "quality hit"); + goto END_OF_TESTS; + } + } + + // If using N partitions doesn't improve much over using N-1 partitions then skip trying N+1 + float best_error = best_errorvals_for_pcount[partition_count - 1]; + float best_error_scale = exit_thresholds_for_pcount[partition_count - 1]; + if (best_error > (best_error_in_prev * best_error_scale)) + { + trace_add_data("skip", "tune_partition_early_out_limit_factor"); + goto END_OF_TESTS; + } + } + + trace_add_data("exit", "quality not hit"); + +END_OF_TESTS: + // If we still have an error block then convert to something we can encode + // TODO: Do something more sensible here, such as average color block + if (scb.block_type == SYM_BTYPE_ERROR) + { +#if defined(ASTCENC_DIAGNOSTICS) + static bool printed_once = false; + if (!printed_once) + { + printed_once = true; + printf("WARN: At least one block failed to find a valid encoding.\n" + " Try increasing compression quality settings.\n\n"); + } +#endif + + scb.block_type = SYM_BTYPE_CONST_U16; + vfloat4 color_f32 = clamp(0.0f, 1.0f, blk.origin_texel) * 65535.0f; + vint4 color_u16 = float_to_int_rtn(color_f32); + store(color_u16, scb.constant_color); + } + + // Compress to a physical block + symbolic_to_physical(bsd, scb, pcb); +} + +#endif |