summaryrefslogtreecommitdiff
path: root/thirdparty/assimp/code/Subdivision.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/assimp/code/Subdivision.cpp')
-rw-r--r--thirdparty/assimp/code/Subdivision.cpp588
1 files changed, 588 insertions, 0 deletions
diff --git a/thirdparty/assimp/code/Subdivision.cpp b/thirdparty/assimp/code/Subdivision.cpp
new file mode 100644
index 0000000000..19db223a55
--- /dev/null
+++ b/thirdparty/assimp/code/Subdivision.cpp
@@ -0,0 +1,588 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2019, assimp team
+
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+#include <assimp/Subdivision.h>
+#include <assimp/SceneCombiner.h>
+#include <assimp/SpatialSort.h>
+#include "ProcessHelper.h"
+#include <assimp/Vertex.h>
+#include <assimp/ai_assert.h>
+#include <stdio.h>
+
+using namespace Assimp;
+void mydummy() {}
+
+// ------------------------------------------------------------------------------------------------
+/** Subdivider stub class to implement the Catmull-Clarke subdivision algorithm. The
+ * implementation is basing on recursive refinement. Directly evaluating the result is also
+ * possible and much quicker, but it depends on lengthy matrix lookup tables. */
+// ------------------------------------------------------------------------------------------------
+class CatmullClarkSubdivider : public Subdivider
+{
+public:
+ void Subdivide (aiMesh* mesh, aiMesh*& out, unsigned int num, bool discard_input);
+ void Subdivide (aiMesh** smesh, size_t nmesh,
+ aiMesh** out, unsigned int num, bool discard_input);
+
+ // ---------------------------------------------------------------------------
+ /** Intermediate description of an edge between two corners of a polygon*/
+ // ---------------------------------------------------------------------------
+ struct Edge
+ {
+ Edge()
+ : ref(0)
+ {}
+ Vertex edge_point, midpoint;
+ unsigned int ref;
+ };
+
+ typedef std::vector<unsigned int> UIntVector;
+ typedef std::map<uint64_t,Edge> EdgeMap;
+
+ // ---------------------------------------------------------------------------
+ // Hashing function to derive an index into an #EdgeMap from two given
+ // 'unsigned int' vertex coordinates (!!distinct coordinates - same
+ // vertex position == same index!!).
+ // NOTE - this leads to rare hash collisions if a) sizeof(unsigned int)>4
+ // and (id[0]>2^32-1 or id[0]>2^32-1).
+ // MAKE_EDGE_HASH() uses temporaries, so INIT_EDGE_HASH() needs to be put
+ // at the head of every function which is about to use MAKE_EDGE_HASH().
+ // Reason is that the hash is that hash construction needs to hold the
+ // invariant id0<id1 to identify an edge - else two hashes would refer
+ // to the same edge.
+ // ---------------------------------------------------------------------------
+#define MAKE_EDGE_HASH(id0,id1) (eh_tmp0__=id0,eh_tmp1__=id1,\
+ (eh_tmp0__<eh_tmp1__?std::swap(eh_tmp0__,eh_tmp1__):mydummy()),(uint64_t)eh_tmp0__^((uint64_t)eh_tmp1__<<32u))
+
+
+#define INIT_EDGE_HASH_TEMPORARIES()\
+ unsigned int eh_tmp0__, eh_tmp1__;
+
+private:
+ void InternSubdivide (const aiMesh* const * smesh,
+ size_t nmesh,aiMesh** out, unsigned int num);
+};
+
+
+// ------------------------------------------------------------------------------------------------
+// Construct a subdivider of a specific type
+Subdivider* Subdivider::Create (Algorithm algo)
+{
+ switch (algo)
+ {
+ case CATMULL_CLARKE:
+ return new CatmullClarkSubdivider();
+ };
+
+ ai_assert(false);
+ return NULL; // shouldn't happen
+}
+
+// ------------------------------------------------------------------------------------------------
+// Call the Catmull Clark subdivision algorithm for one mesh
+void CatmullClarkSubdivider::Subdivide (
+ aiMesh* mesh,
+ aiMesh*& out,
+ unsigned int num,
+ bool discard_input
+ )
+{
+ ai_assert(mesh != out);
+
+ Subdivide(&mesh,1,&out,num,discard_input);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Call the Catmull Clark subdivision algorithm for multiple meshes
+void CatmullClarkSubdivider::Subdivide (
+ aiMesh** smesh,
+ size_t nmesh,
+ aiMesh** out,
+ unsigned int num,
+ bool discard_input
+ )
+{
+ ai_assert( NULL != smesh );
+ ai_assert( NULL != out );
+
+ // course, both regions may not overlap
+ ai_assert(smesh<out || smesh+nmesh>out+nmesh);
+ if (!num) {
+ // No subdivision at all. Need to copy all the meshes .. argh.
+ if (discard_input) {
+ for (size_t s = 0; s < nmesh; ++s) {
+ out[s] = smesh[s];
+ smesh[s] = NULL;
+ }
+ }
+ else {
+ for (size_t s = 0; s < nmesh; ++s) {
+ SceneCombiner::Copy(out+s,smesh[s]);
+ }
+ }
+ return;
+ }
+
+ std::vector<aiMesh*> inmeshes;
+ std::vector<aiMesh*> outmeshes;
+ std::vector<unsigned int> maptbl;
+
+ inmeshes.reserve(nmesh);
+ outmeshes.reserve(nmesh);
+ maptbl.reserve(nmesh);
+
+ // Remove pure line and point meshes from the working set to reduce the
+ // number of edge cases the subdivider is forced to deal with. Line and
+ // point meshes are simply passed through.
+ for (size_t s = 0; s < nmesh; ++s) {
+ aiMesh* i = smesh[s];
+ // FIX - mPrimitiveTypes might not yet be initialized
+ if (i->mPrimitiveTypes && (i->mPrimitiveTypes & (aiPrimitiveType_LINE|aiPrimitiveType_POINT))==i->mPrimitiveTypes) {
+ ASSIMP_LOG_DEBUG("Catmull-Clark Subdivider: Skipping pure line/point mesh");
+
+ if (discard_input) {
+ out[s] = i;
+ smesh[s] = NULL;
+ }
+ else {
+ SceneCombiner::Copy(out+s,i);
+ }
+ continue;
+ }
+
+ outmeshes.push_back(NULL);inmeshes.push_back(i);
+ maptbl.push_back(static_cast<unsigned int>(s));
+ }
+
+ // Do the actual subdivision on the preallocated storage. InternSubdivide
+ // *always* assumes that enough storage is available, it does not bother
+ // checking any ranges.
+ ai_assert(inmeshes.size()==outmeshes.size()&&inmeshes.size()==maptbl.size());
+ if (inmeshes.empty()) {
+ ASSIMP_LOG_WARN("Catmull-Clark Subdivider: Pure point/line scene, I can't do anything");
+ return;
+ }
+ InternSubdivide(&inmeshes.front(),inmeshes.size(),&outmeshes.front(),num);
+ for (unsigned int i = 0; i < maptbl.size(); ++i) {
+ ai_assert(nullptr != outmeshes[i]);
+ out[maptbl[i]] = outmeshes[i];
+ }
+
+ if (discard_input) {
+ for (size_t s = 0; s < nmesh; ++s) {
+ delete smesh[s];
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Note - this is an implementation of the standard (recursive) Cm-Cl algorithm without further
+// optimizations (except we're using some nice LUTs). A description of the algorithm can be found
+// here: http://en.wikipedia.org/wiki/Catmull-Clark_subdivision_surface
+//
+// The code is mostly O(n), however parts are O(nlogn) which is therefore the algorithm's
+// expected total runtime complexity. The implementation is able to work in-place on the same
+// mesh arrays. Calling #InternSubdivide() directly is not encouraged. The code can operate
+// in-place unless 'smesh' and 'out' are equal (no strange overlaps or reorderings).
+// Previous data is replaced/deleted then.
+// ------------------------------------------------------------------------------------------------
+void CatmullClarkSubdivider::InternSubdivide (
+ const aiMesh* const * smesh,
+ size_t nmesh,
+ aiMesh** out,
+ unsigned int num
+ )
+{
+ ai_assert(NULL != smesh && NULL != out);
+ INIT_EDGE_HASH_TEMPORARIES();
+
+ // no subdivision requested or end of recursive refinement
+ if (!num) {
+ return;
+ }
+
+ UIntVector maptbl;
+ SpatialSort spatial;
+
+ // ---------------------------------------------------------------------
+ // 0. Offset table to index all meshes continuously, generate a spatially
+ // sorted representation of all vertices in all meshes.
+ // ---------------------------------------------------------------------
+ typedef std::pair<unsigned int,unsigned int> IntPair;
+ std::vector<IntPair> moffsets(nmesh);
+ unsigned int totfaces = 0, totvert = 0;
+ for (size_t t = 0; t < nmesh; ++t) {
+ const aiMesh* mesh = smesh[t];
+
+ spatial.Append(mesh->mVertices,mesh->mNumVertices,sizeof(aiVector3D),false);
+ moffsets[t] = IntPair(totfaces,totvert);
+
+ totfaces += mesh->mNumFaces;
+ totvert += mesh->mNumVertices;
+ }
+
+ spatial.Finalize();
+ const unsigned int num_unique = spatial.GenerateMappingTable(maptbl,ComputePositionEpsilon(smesh,nmesh));
+
+
+#define FLATTEN_VERTEX_IDX(mesh_idx, vert_idx) (moffsets[mesh_idx].second+vert_idx)
+#define FLATTEN_FACE_IDX(mesh_idx, face_idx) (moffsets[mesh_idx].first+face_idx)
+
+ // ---------------------------------------------------------------------
+ // 1. Compute the centroid point for all faces
+ // ---------------------------------------------------------------------
+ std::vector<Vertex> centroids(totfaces);
+ unsigned int nfacesout = 0;
+ for (size_t t = 0, n = 0; t < nmesh; ++t) {
+ const aiMesh* mesh = smesh[t];
+ for (unsigned int i = 0; i < mesh->mNumFaces;++i,++n)
+ {
+ const aiFace& face = mesh->mFaces[i];
+ Vertex& c = centroids[n];
+
+ for (unsigned int a = 0; a < face.mNumIndices;++a) {
+ c += Vertex(mesh,face.mIndices[a]);
+ }
+
+ c /= static_cast<float>(face.mNumIndices);
+ nfacesout += face.mNumIndices;
+ }
+ }
+
+ {
+ // we want edges to go away before the recursive calls so begin a new scope
+ EdgeMap edges;
+
+ // ---------------------------------------------------------------------
+ // 2. Set each edge point to be the average of all neighbouring
+ // face points and original points. Every edge exists twice
+ // if there is a neighboring face.
+ // ---------------------------------------------------------------------
+ for (size_t t = 0; t < nmesh; ++t) {
+ const aiMesh* mesh = smesh[t];
+
+ for (unsigned int i = 0; i < mesh->mNumFaces;++i) {
+ const aiFace& face = mesh->mFaces[i];
+
+ for (unsigned int p =0; p< face.mNumIndices; ++p) {
+ const unsigned int id[] = {
+ face.mIndices[p],
+ face.mIndices[p==face.mNumIndices-1?0:p+1]
+ };
+ const unsigned int mp[] = {
+ maptbl[FLATTEN_VERTEX_IDX(t,id[0])],
+ maptbl[FLATTEN_VERTEX_IDX(t,id[1])]
+ };
+
+ Edge& e = edges[MAKE_EDGE_HASH(mp[0],mp[1])];
+ e.ref++;
+ if (e.ref<=2) {
+ if (e.ref==1) { // original points (end points) - add only once
+ e.edge_point = e.midpoint = Vertex(mesh,id[0])+Vertex(mesh,id[1]);
+ e.midpoint *= 0.5f;
+ }
+ e.edge_point += centroids[FLATTEN_FACE_IDX(t,i)];
+ }
+ }
+ }
+ }
+
+ // ---------------------------------------------------------------------
+ // 3. Normalize edge points
+ // ---------------------------------------------------------------------
+ {unsigned int bad_cnt = 0;
+ for (EdgeMap::iterator it = edges.begin(); it != edges.end(); ++it) {
+ if ((*it).second.ref < 2) {
+ ai_assert((*it).second.ref);
+ ++bad_cnt;
+ }
+ (*it).second.edge_point *= 1.f/((*it).second.ref+2.f);
+ }
+
+ if (bad_cnt) {
+ // Report the number of bad edges. bad edges are referenced by less than two
+ // faces in the mesh. They occur at outer model boundaries in non-closed
+ // shapes.
+ ASSIMP_LOG_DEBUG_F("Catmull-Clark Subdivider: got ", bad_cnt, " bad edges touching only one face (totally ",
+ static_cast<unsigned int>(edges.size()), " edges). ");
+ }}
+
+ // ---------------------------------------------------------------------
+ // 4. Compute a vertex-face adjacency table. We can't reuse the code
+ // from VertexTriangleAdjacency because we need the table for multiple
+ // meshes and out vertex indices need to be mapped to distinct values
+ // first.
+ // ---------------------------------------------------------------------
+ UIntVector faceadjac(nfacesout), cntadjfac(maptbl.size(),0), ofsadjvec(maptbl.size()+1,0); {
+ for (size_t t = 0; t < nmesh; ++t) {
+ const aiMesh* const minp = smesh[t];
+ for (unsigned int i = 0; i < minp->mNumFaces; ++i) {
+
+ const aiFace& f = minp->mFaces[i];
+ for (unsigned int n = 0; n < f.mNumIndices; ++n) {
+ ++cntadjfac[maptbl[FLATTEN_VERTEX_IDX(t,f.mIndices[n])]];
+ }
+ }
+ }
+ unsigned int cur = 0;
+ for (size_t i = 0; i < cntadjfac.size(); ++i) {
+ ofsadjvec[i+1] = cur;
+ cur += cntadjfac[i];
+ }
+ for (size_t t = 0; t < nmesh; ++t) {
+ const aiMesh* const minp = smesh[t];
+ for (unsigned int i = 0; i < minp->mNumFaces; ++i) {
+
+ const aiFace& f = minp->mFaces[i];
+ for (unsigned int n = 0; n < f.mNumIndices; ++n) {
+ faceadjac[ofsadjvec[1+maptbl[FLATTEN_VERTEX_IDX(t,f.mIndices[n])]]++] = FLATTEN_FACE_IDX(t,i);
+ }
+ }
+ }
+
+ // check the other way round for consistency
+#ifdef ASSIMP_BUILD_DEBUG
+
+ for (size_t t = 0; t < ofsadjvec.size()-1; ++t) {
+ for (unsigned int m = 0; m < cntadjfac[t]; ++m) {
+ const unsigned int fidx = faceadjac[ofsadjvec[t]+m];
+ ai_assert(fidx < totfaces);
+ for (size_t n = 1; n < nmesh; ++n) {
+
+ if (moffsets[n].first > fidx) {
+ const aiMesh* msh = smesh[--n];
+ const aiFace& f = msh->mFaces[fidx-moffsets[n].first];
+
+ bool haveit = false;
+ for (unsigned int i = 0; i < f.mNumIndices; ++i) {
+ if (maptbl[FLATTEN_VERTEX_IDX(n,f.mIndices[i])]==(unsigned int)t) {
+ haveit = true;
+ break;
+ }
+ }
+ ai_assert(haveit);
+ if (!haveit) {
+ ASSIMP_LOG_DEBUG("Catmull-Clark Subdivider: Index not used");
+ }
+ break;
+ }
+ }
+ }
+ }
+
+#endif
+ }
+
+#define GET_ADJACENT_FACES_AND_CNT(vidx,fstartout,numout) \
+ fstartout = &faceadjac[ofsadjvec[vidx]], numout = cntadjfac[vidx]
+
+ typedef std::pair<bool,Vertex> TouchedOVertex;
+ std::vector<TouchedOVertex > new_points(num_unique,TouchedOVertex(false,Vertex()));
+ // ---------------------------------------------------------------------
+ // 5. Spawn a quad from each face point to the corresponding edge points
+ // the original points being the fourth quad points.
+ // ---------------------------------------------------------------------
+ for (size_t t = 0; t < nmesh; ++t) {
+ const aiMesh* const minp = smesh[t];
+ aiMesh* const mout = out[t] = new aiMesh();
+
+ for (unsigned int a = 0; a < minp->mNumFaces; ++a) {
+ mout->mNumFaces += minp->mFaces[a].mNumIndices;
+ }
+
+ // We need random access to the old face buffer, so reuse is not possible.
+ mout->mFaces = new aiFace[mout->mNumFaces];
+
+ mout->mNumVertices = mout->mNumFaces*4;
+ mout->mVertices = new aiVector3D[mout->mNumVertices];
+
+ // quads only, keep material index
+ mout->mPrimitiveTypes = aiPrimitiveType_POLYGON;
+ mout->mMaterialIndex = minp->mMaterialIndex;
+
+ if (minp->HasNormals()) {
+ mout->mNormals = new aiVector3D[mout->mNumVertices];
+ }
+
+ if (minp->HasTangentsAndBitangents()) {
+ mout->mTangents = new aiVector3D[mout->mNumVertices];
+ mout->mBitangents = new aiVector3D[mout->mNumVertices];
+ }
+
+ for(unsigned int i = 0; minp->HasTextureCoords(i); ++i) {
+ mout->mTextureCoords[i] = new aiVector3D[mout->mNumVertices];
+ mout->mNumUVComponents[i] = minp->mNumUVComponents[i];
+ }
+
+ for(unsigned int i = 0; minp->HasVertexColors(i); ++i) {
+ mout->mColors[i] = new aiColor4D[mout->mNumVertices];
+ }
+
+ mout->mNumVertices = mout->mNumFaces<<2u;
+ for (unsigned int i = 0, v = 0, n = 0; i < minp->mNumFaces;++i) {
+
+ const aiFace& face = minp->mFaces[i];
+ for (unsigned int a = 0; a < face.mNumIndices;++a) {
+
+ // Get a clean new face.
+ aiFace& faceOut = mout->mFaces[n++];
+ faceOut.mIndices = new unsigned int [faceOut.mNumIndices = 4];
+
+ // Spawn a new quadrilateral (ccw winding) for this original point between:
+ // a) face centroid
+ centroids[FLATTEN_FACE_IDX(t,i)].SortBack(mout,faceOut.mIndices[0]=v++);
+
+ // b) adjacent edge on the left, seen from the centroid
+ const Edge& e0 = edges[MAKE_EDGE_HASH(maptbl[FLATTEN_VERTEX_IDX(t,face.mIndices[a])],
+ maptbl[FLATTEN_VERTEX_IDX(t,face.mIndices[a==face.mNumIndices-1?0:a+1])
+ ])]; // fixme: replace with mod face.mNumIndices?
+
+ // c) adjacent edge on the right, seen from the centroid
+ const Edge& e1 = edges[MAKE_EDGE_HASH(maptbl[FLATTEN_VERTEX_IDX(t,face.mIndices[a])],
+ maptbl[FLATTEN_VERTEX_IDX(t,face.mIndices[!a?face.mNumIndices-1:a-1])
+ ])]; // fixme: replace with mod face.mNumIndices?
+
+ e0.edge_point.SortBack(mout,faceOut.mIndices[3]=v++);
+ e1.edge_point.SortBack(mout,faceOut.mIndices[1]=v++);
+
+ // d= original point P with distinct index i
+ // F := 0
+ // R := 0
+ // n := 0
+ // for each face f containing i
+ // F := F+ centroid of f
+ // R := R+ midpoint of edge of f from i to i+1
+ // n := n+1
+ //
+ // (F+2R+(n-3)P)/n
+ const unsigned int org = maptbl[FLATTEN_VERTEX_IDX(t,face.mIndices[a])];
+ TouchedOVertex& ov = new_points[org];
+
+ if (!ov.first) {
+ ov.first = true;
+
+ const unsigned int* adj; unsigned int cnt;
+ GET_ADJACENT_FACES_AND_CNT(org,adj,cnt);
+
+ if (cnt < 3) {
+ ov.second = Vertex(minp,face.mIndices[a]);
+ }
+ else {
+
+ Vertex F,R;
+ for (unsigned int o = 0; o < cnt; ++o) {
+ ai_assert(adj[o] < totfaces);
+ F += centroids[adj[o]];
+
+ // adj[0] is a global face index - search the face in the mesh list
+ const aiMesh* mp = NULL;
+ size_t nidx;
+
+ if (adj[o] < moffsets[0].first) {
+ mp = smesh[nidx=0];
+ }
+ else {
+ for (nidx = 1; nidx<= nmesh; ++nidx) {
+ if (nidx == nmesh ||moffsets[nidx].first > adj[o]) {
+ mp = smesh[--nidx];
+ break;
+ }
+ }
+ }
+
+ ai_assert(adj[o]-moffsets[nidx].first < mp->mNumFaces);
+ const aiFace& f = mp->mFaces[adj[o]-moffsets[nidx].first];
+ bool haveit = false;
+
+ // find our original point in the face
+ for (unsigned int m = 0; m < f.mNumIndices; ++m) {
+ if (maptbl[FLATTEN_VERTEX_IDX(nidx,f.mIndices[m])] == org) {
+
+ // add *both* edges. this way, we can be sure that we add
+ // *all* adjacent edges to R. In a closed shape, every
+ // edge is added twice - so we simply leave out the
+ // factor 2.f in the amove formula and get the right
+ // result.
+
+ const Edge& c0 = edges[MAKE_EDGE_HASH(org,maptbl[FLATTEN_VERTEX_IDX(
+ nidx,f.mIndices[!m?f.mNumIndices-1:m-1])])];
+ // fixme: replace with mod face.mNumIndices?
+
+ const Edge& c1 = edges[MAKE_EDGE_HASH(org,maptbl[FLATTEN_VERTEX_IDX(
+ nidx,f.mIndices[m==f.mNumIndices-1?0:m+1])])];
+ // fixme: replace with mod face.mNumIndices?
+ R += c0.midpoint+c1.midpoint;
+
+ haveit = true;
+ break;
+ }
+ }
+
+ // this invariant *must* hold if the vertex-to-face adjacency table is valid
+ ai_assert(haveit);
+ if ( !haveit ) {
+ ASSIMP_LOG_WARN( "OBJ: no name for material library specified." );
+ }
+ }
+
+ const float div = static_cast<float>(cnt), divsq = 1.f/(div*div);
+ ov.second = Vertex(minp,face.mIndices[a])*((div-3.f) / div) + R*divsq + F*divsq;
+ }
+ }
+ ov.second.SortBack(mout,faceOut.mIndices[2]=v++);
+ }
+ }
+ }
+ } // end of scope for edges, freeing its memory
+
+ // ---------------------------------------------------------------------
+ // 7. Apply the next subdivision step.
+ // ---------------------------------------------------------------------
+ if (num != 1) {
+ std::vector<aiMesh*> tmp(nmesh);
+ InternSubdivide (out,nmesh,&tmp.front(),num-1);
+ for (size_t i = 0; i < nmesh; ++i) {
+ delete out[i];
+ out[i] = tmp[i];
+ }
+ }
+}