diff options
Diffstat (limited to 'thirdparty/assimp/code/FBXConverter.cpp')
-rw-r--r-- | thirdparty/assimp/code/FBXConverter.cpp | 3536 |
1 files changed, 3536 insertions, 0 deletions
diff --git a/thirdparty/assimp/code/FBXConverter.cpp b/thirdparty/assimp/code/FBXConverter.cpp new file mode 100644 index 0000000000..09ae06a64f --- /dev/null +++ b/thirdparty/assimp/code/FBXConverter.cpp @@ -0,0 +1,3536 @@ +/* +Open Asset Import Library (assimp) +---------------------------------------------------------------------- + +Copyright (c) 2006-2019, assimp team + + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the +following conditions are met: + +* Redistributions of source code must retain the above + copyright notice, this list of conditions and the + following disclaimer. + +* Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the + following disclaimer in the documentation and/or other + materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its + contributors may be used to endorse or promote products + derived from this software without specific prior + written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +---------------------------------------------------------------------- +*/ + +/** @file FBXConverter.cpp + * @brief Implementation of the FBX DOM -> aiScene converter + */ + +#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER + +#include "FBXConverter.h" +#include "FBXParser.h" +#include "FBXMeshGeometry.h" +#include "FBXDocument.h" +#include "FBXUtil.h" +#include "FBXProperties.h" +#include "FBXImporter.h" + +#include <assimp/StringComparison.h> + +#include <assimp/scene.h> + +#include <assimp/CreateAnimMesh.h> + +#include <tuple> +#include <memory> +#include <iterator> +#include <vector> +#include <sstream> +#include <iomanip> + +namespace Assimp { + namespace FBX { + + using namespace Util; + +#define MAGIC_NODE_TAG "_$AssimpFbx$" + +#define CONVERT_FBX_TIME(time) static_cast<double>(time) / 46186158000L + + FBXConverter::FBXConverter(aiScene* out, const Document& doc) + : defaultMaterialIndex() + , lights() + , cameras() + , textures() + , materials_converted() + , textures_converted() + , meshes_converted() + , node_anim_chain_bits() + , mNodeNameInstances() + , mNodeNames() + , anim_fps() + , out(out) + , doc(doc) { + // animations need to be converted first since this will + // populate the node_anim_chain_bits map, which is needed + // to determine which nodes need to be generated. + ConvertAnimations(); + ConvertRootNode(); + + if (doc.Settings().readAllMaterials) { + // unfortunately this means we have to evaluate all objects + for (const ObjectMap::value_type& v : doc.Objects()) { + + const Object* ob = v.second->Get(); + if (!ob) { + continue; + } + + const Material* mat = dynamic_cast<const Material*>(ob); + if (mat) { + + if (materials_converted.find(mat) == materials_converted.end()) { + ConvertMaterial(*mat, 0); + } + } + } + } + + ConvertGlobalSettings(); + TransferDataToScene(); + + // if we didn't read any meshes set the AI_SCENE_FLAGS_INCOMPLETE + // to make sure the scene passes assimp's validation. FBX files + // need not contain geometry (i.e. camera animations, raw armatures). + if (out->mNumMeshes == 0) { + out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; + } + } + + + FBXConverter::~FBXConverter() { + std::for_each(meshes.begin(), meshes.end(), Util::delete_fun<aiMesh>()); + std::for_each(materials.begin(), materials.end(), Util::delete_fun<aiMaterial>()); + std::for_each(animations.begin(), animations.end(), Util::delete_fun<aiAnimation>()); + std::for_each(lights.begin(), lights.end(), Util::delete_fun<aiLight>()); + std::for_each(cameras.begin(), cameras.end(), Util::delete_fun<aiCamera>()); + std::for_each(textures.begin(), textures.end(), Util::delete_fun<aiTexture>()); + } + + void FBXConverter::ConvertRootNode() { + out->mRootNode = new aiNode(); + out->mRootNode->mName.Set("RootNode"); + + // root has ID 0 + ConvertNodes(0L, *out->mRootNode); + } + + void FBXConverter::ConvertNodes(uint64_t id, aiNode& parent, const aiMatrix4x4& parent_transform) { + const std::vector<const Connection*>& conns = doc.GetConnectionsByDestinationSequenced(id, "Model"); + + std::vector<aiNode*> nodes; + nodes.reserve(conns.size()); + + std::vector<aiNode*> nodes_chain; + std::vector<aiNode*> post_nodes_chain; + + try { + for (const Connection* con : conns) { + + // ignore object-property links + if (con->PropertyName().length()) { + continue; + } + + const Object* const object = con->SourceObject(); + if (nullptr == object) { + FBXImporter::LogWarn("failed to convert source object for Model link"); + continue; + } + + const Model* const model = dynamic_cast<const Model*>(object); + + if (nullptr != model) { + nodes_chain.clear(); + post_nodes_chain.clear(); + + aiMatrix4x4 new_abs_transform = parent_transform; + + // even though there is only a single input node, the design of + // assimp (or rather: the complicated transformation chain that + // is employed by fbx) means that we may need multiple aiNode's + // to represent a fbx node's transformation. + GenerateTransformationNodeChain(*model, nodes_chain, post_nodes_chain); + + ai_assert(nodes_chain.size()); + + std::string original_name = FixNodeName(model->Name()); + + // check if any of the nodes in the chain has the name the fbx node + // is supposed to have. If there is none, add another node to + // preserve the name - people might have scripts etc. that rely + // on specific node names. + aiNode* name_carrier = NULL; + for (aiNode* prenode : nodes_chain) { + if (!strcmp(prenode->mName.C_Str(), original_name.c_str())) { + name_carrier = prenode; + break; + } + } + + if (!name_carrier) { + std::string old_original_name = original_name; + GetUniqueName(old_original_name, original_name); + nodes_chain.push_back(new aiNode(original_name)); + } + else { + original_name = nodes_chain.back()->mName.C_Str(); + } + + //setup metadata on newest node + SetupNodeMetadata(*model, *nodes_chain.back()); + + // link all nodes in a row + aiNode* last_parent = &parent; + for (aiNode* prenode : nodes_chain) { + ai_assert(prenode); + + if (last_parent != &parent) { + last_parent->mNumChildren = 1; + last_parent->mChildren = new aiNode*[1]; + last_parent->mChildren[0] = prenode; + } + + prenode->mParent = last_parent; + last_parent = prenode; + + new_abs_transform *= prenode->mTransformation; + } + + // attach geometry + ConvertModel(*model, *nodes_chain.back(), new_abs_transform); + + // check if there will be any child nodes + const std::vector<const Connection*>& child_conns + = doc.GetConnectionsByDestinationSequenced(model->ID(), "Model"); + + // if so, link the geometric transform inverse nodes + // before we attach any child nodes + if (child_conns.size()) { + for (aiNode* postnode : post_nodes_chain) { + ai_assert(postnode); + + if (last_parent != &parent) { + last_parent->mNumChildren = 1; + last_parent->mChildren = new aiNode*[1]; + last_parent->mChildren[0] = postnode; + } + + postnode->mParent = last_parent; + last_parent = postnode; + + new_abs_transform *= postnode->mTransformation; + } + } + else { + // free the nodes we allocated as we don't need them + Util::delete_fun<aiNode> deleter; + std::for_each( + post_nodes_chain.begin(), + post_nodes_chain.end(), + deleter + ); + } + + // attach sub-nodes (if any) + ConvertNodes(model->ID(), *last_parent, new_abs_transform); + + if (doc.Settings().readLights) { + ConvertLights(*model, original_name); + } + + if (doc.Settings().readCameras) { + ConvertCameras(*model, original_name); + } + + nodes.push_back(nodes_chain.front()); + nodes_chain.clear(); + } + } + + if (nodes.size()) { + parent.mChildren = new aiNode*[nodes.size()](); + parent.mNumChildren = static_cast<unsigned int>(nodes.size()); + + std::swap_ranges(nodes.begin(), nodes.end(), parent.mChildren); + } + } + catch (std::exception&) { + Util::delete_fun<aiNode> deleter; + std::for_each(nodes.begin(), nodes.end(), deleter); + std::for_each(nodes_chain.begin(), nodes_chain.end(), deleter); + std::for_each(post_nodes_chain.begin(), post_nodes_chain.end(), deleter); + } + } + + + void FBXConverter::ConvertLights(const Model& model, const std::string &orig_name) { + const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes(); + for (const NodeAttribute* attr : node_attrs) { + const Light* const light = dynamic_cast<const Light*>(attr); + if (light) { + ConvertLight(*light, orig_name); + } + } + } + + void FBXConverter::ConvertCameras(const Model& model, const std::string &orig_name) { + const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes(); + for (const NodeAttribute* attr : node_attrs) { + const Camera* const cam = dynamic_cast<const Camera*>(attr); + if (cam) { + ConvertCamera(*cam, orig_name); + } + } + } + + void FBXConverter::ConvertLight(const Light& light, const std::string &orig_name) { + lights.push_back(new aiLight()); + aiLight* const out_light = lights.back(); + + out_light->mName.Set(orig_name); + + const float intensity = light.Intensity() / 100.0f; + const aiVector3D& col = light.Color(); + + out_light->mColorDiffuse = aiColor3D(col.x, col.y, col.z); + out_light->mColorDiffuse.r *= intensity; + out_light->mColorDiffuse.g *= intensity; + out_light->mColorDiffuse.b *= intensity; + + out_light->mColorSpecular = out_light->mColorDiffuse; + + //lights are defined along negative y direction + out_light->mPosition = aiVector3D(0.0f); + out_light->mDirection = aiVector3D(0.0f, -1.0f, 0.0f); + out_light->mUp = aiVector3D(0.0f, 0.0f, -1.0f); + + switch (light.LightType()) + { + case Light::Type_Point: + out_light->mType = aiLightSource_POINT; + break; + + case Light::Type_Directional: + out_light->mType = aiLightSource_DIRECTIONAL; + break; + + case Light::Type_Spot: + out_light->mType = aiLightSource_SPOT; + out_light->mAngleOuterCone = AI_DEG_TO_RAD(light.OuterAngle()); + out_light->mAngleInnerCone = AI_DEG_TO_RAD(light.InnerAngle()); + break; + + case Light::Type_Area: + FBXImporter::LogWarn("cannot represent area light, set to UNDEFINED"); + out_light->mType = aiLightSource_UNDEFINED; + break; + + case Light::Type_Volume: + FBXImporter::LogWarn("cannot represent volume light, set to UNDEFINED"); + out_light->mType = aiLightSource_UNDEFINED; + break; + default: + ai_assert(false); + } + + float decay = light.DecayStart(); + switch (light.DecayType()) + { + case Light::Decay_None: + out_light->mAttenuationConstant = decay; + out_light->mAttenuationLinear = 0.0f; + out_light->mAttenuationQuadratic = 0.0f; + break; + case Light::Decay_Linear: + out_light->mAttenuationConstant = 0.0f; + out_light->mAttenuationLinear = 2.0f / decay; + out_light->mAttenuationQuadratic = 0.0f; + break; + case Light::Decay_Quadratic: + out_light->mAttenuationConstant = 0.0f; + out_light->mAttenuationLinear = 0.0f; + out_light->mAttenuationQuadratic = 2.0f / (decay * decay); + break; + case Light::Decay_Cubic: + FBXImporter::LogWarn("cannot represent cubic attenuation, set to Quadratic"); + out_light->mAttenuationQuadratic = 1.0f; + break; + default: + ai_assert(false); + } + } + + void FBXConverter::ConvertCamera(const Camera& cam, const std::string &orig_name) + { + cameras.push_back(new aiCamera()); + aiCamera* const out_camera = cameras.back(); + + out_camera->mName.Set(orig_name); + + out_camera->mAspect = cam.AspectWidth() / cam.AspectHeight(); + + //cameras are defined along positive x direction + /*out_camera->mPosition = cam.Position(); + out_camera->mLookAt = (cam.InterestPosition() - out_camera->mPosition).Normalize(); + out_camera->mUp = cam.UpVector();*/ + + out_camera->mPosition = aiVector3D(0.0f); + out_camera->mLookAt = aiVector3D(1.0f, 0.0f, 0.0f); + out_camera->mUp = aiVector3D(0.0f, 1.0f, 0.0f); + + out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView()); + + out_camera->mClipPlaneNear = cam.NearPlane(); + out_camera->mClipPlaneFar = cam.FarPlane(); + + out_camera->mHorizontalFOV = AI_DEG_TO_RAD(cam.FieldOfView()); + out_camera->mClipPlaneNear = cam.NearPlane(); + out_camera->mClipPlaneFar = cam.FarPlane(); + } + + void FBXConverter::GetUniqueName(const std::string &name, std::string &uniqueName) + { + uniqueName = name; + int i = 0; + auto it = mNodeNameInstances.find(name); // duplicate node name instance count + if (it != mNodeNameInstances.end()) + { + i = it->second; + while (mNodeNames.find(uniqueName) != mNodeNames.end()) + { + i++; + std::stringstream ext; + ext << name << std::setfill('0') << std::setw(3) << i; + uniqueName = ext.str(); + } + } + mNodeNameInstances[name] = i; + mNodeNames.insert(uniqueName); + } + + const char* FBXConverter::NameTransformationComp(TransformationComp comp) { + switch (comp) { + case TransformationComp_Translation: + return "Translation"; + case TransformationComp_RotationOffset: + return "RotationOffset"; + case TransformationComp_RotationPivot: + return "RotationPivot"; + case TransformationComp_PreRotation: + return "PreRotation"; + case TransformationComp_Rotation: + return "Rotation"; + case TransformationComp_PostRotation: + return "PostRotation"; + case TransformationComp_RotationPivotInverse: + return "RotationPivotInverse"; + case TransformationComp_ScalingOffset: + return "ScalingOffset"; + case TransformationComp_ScalingPivot: + return "ScalingPivot"; + case TransformationComp_Scaling: + return "Scaling"; + case TransformationComp_ScalingPivotInverse: + return "ScalingPivotInverse"; + case TransformationComp_GeometricScaling: + return "GeometricScaling"; + case TransformationComp_GeometricRotation: + return "GeometricRotation"; + case TransformationComp_GeometricTranslation: + return "GeometricTranslation"; + case TransformationComp_GeometricScalingInverse: + return "GeometricScalingInverse"; + case TransformationComp_GeometricRotationInverse: + return "GeometricRotationInverse"; + case TransformationComp_GeometricTranslationInverse: + return "GeometricTranslationInverse"; + case TransformationComp_MAXIMUM: // this is to silence compiler warnings + default: + break; + } + + ai_assert(false); + + return nullptr; + } + + const char* FBXConverter::NameTransformationCompProperty(TransformationComp comp) { + switch (comp) { + case TransformationComp_Translation: + return "Lcl Translation"; + case TransformationComp_RotationOffset: + return "RotationOffset"; + case TransformationComp_RotationPivot: + return "RotationPivot"; + case TransformationComp_PreRotation: + return "PreRotation"; + case TransformationComp_Rotation: + return "Lcl Rotation"; + case TransformationComp_PostRotation: + return "PostRotation"; + case TransformationComp_RotationPivotInverse: + return "RotationPivotInverse"; + case TransformationComp_ScalingOffset: + return "ScalingOffset"; + case TransformationComp_ScalingPivot: + return "ScalingPivot"; + case TransformationComp_Scaling: + return "Lcl Scaling"; + case TransformationComp_ScalingPivotInverse: + return "ScalingPivotInverse"; + case TransformationComp_GeometricScaling: + return "GeometricScaling"; + case TransformationComp_GeometricRotation: + return "GeometricRotation"; + case TransformationComp_GeometricTranslation: + return "GeometricTranslation"; + case TransformationComp_GeometricScalingInverse: + return "GeometricScalingInverse"; + case TransformationComp_GeometricRotationInverse: + return "GeometricRotationInverse"; + case TransformationComp_GeometricTranslationInverse: + return "GeometricTranslationInverse"; + case TransformationComp_MAXIMUM: // this is to silence compiler warnings + break; + } + + ai_assert(false); + + return nullptr; + } + + aiVector3D FBXConverter::TransformationCompDefaultValue(TransformationComp comp) + { + // XXX a neat way to solve the never-ending special cases for scaling + // would be to do everything in log space! + return comp == TransformationComp_Scaling ? aiVector3D(1.f, 1.f, 1.f) : aiVector3D(); + } + + void FBXConverter::GetRotationMatrix(Model::RotOrder mode, const aiVector3D& rotation, aiMatrix4x4& out) + { + if (mode == Model::RotOrder_SphericXYZ) { + FBXImporter::LogError("Unsupported RotationMode: SphericXYZ"); + out = aiMatrix4x4(); + return; + } + + const float angle_epsilon = 1e-6f; + + out = aiMatrix4x4(); + + bool is_id[3] = { true, true, true }; + + aiMatrix4x4 temp[3]; + if (std::fabs(rotation.z) > angle_epsilon) { + aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z), temp[2]); + is_id[2] = false; + } + if (std::fabs(rotation.y) > angle_epsilon) { + aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y), temp[1]); + is_id[1] = false; + } + if (std::fabs(rotation.x) > angle_epsilon) { + aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x), temp[0]); + is_id[0] = false; + } + + int order[3] = { -1, -1, -1 }; + + // note: rotation order is inverted since we're left multiplying as is usual in assimp + switch (mode) + { + case Model::RotOrder_EulerXYZ: + order[0] = 2; + order[1] = 1; + order[2] = 0; + break; + + case Model::RotOrder_EulerXZY: + order[0] = 1; + order[1] = 2; + order[2] = 0; + break; + + case Model::RotOrder_EulerYZX: + order[0] = 0; + order[1] = 2; + order[2] = 1; + break; + + case Model::RotOrder_EulerYXZ: + order[0] = 2; + order[1] = 0; + order[2] = 1; + break; + + case Model::RotOrder_EulerZXY: + order[0] = 1; + order[1] = 0; + order[2] = 2; + break; + + case Model::RotOrder_EulerZYX: + order[0] = 0; + order[1] = 1; + order[2] = 2; + break; + + default: + ai_assert(false); + break; + } + + ai_assert(order[0] >= 0); + ai_assert(order[0] <= 2); + ai_assert(order[1] >= 0); + ai_assert(order[1] <= 2); + ai_assert(order[2] >= 0); + ai_assert(order[2] <= 2); + + if (!is_id[order[0]]) { + out = temp[order[0]]; + } + + if (!is_id[order[1]]) { + out = out * temp[order[1]]; + } + + if (!is_id[order[2]]) { + out = out * temp[order[2]]; + } + } + + bool FBXConverter::NeedsComplexTransformationChain(const Model& model) + { + const PropertyTable& props = model.Props(); + bool ok; + + const float zero_epsilon = 1e-6f; + const aiVector3D all_ones(1.0f, 1.0f, 1.0f); + for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) { + const TransformationComp comp = static_cast<TransformationComp>(i); + + if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation) { + continue; + } + + bool scale_compare = (comp == TransformationComp_GeometricScaling || comp == TransformationComp_Scaling); + + const aiVector3D& v = PropertyGet<aiVector3D>(props, NameTransformationCompProperty(comp), ok); + if (ok && scale_compare) { + if ((v - all_ones).SquareLength() > zero_epsilon) { + return true; + } + } + else if (ok) { + if (v.SquareLength() > zero_epsilon) { + return true; + } + } + } + + return false; + } + + std::string FBXConverter::NameTransformationChainNode(const std::string& name, TransformationComp comp) + { + return name + std::string(MAGIC_NODE_TAG) + "_" + NameTransformationComp(comp); + } + + void FBXConverter::GenerateTransformationNodeChain(const Model& model, std::vector<aiNode*>& output_nodes, + std::vector<aiNode*>& post_output_nodes) { + const PropertyTable& props = model.Props(); + const Model::RotOrder rot = model.RotationOrder(); + + bool ok; + + aiMatrix4x4 chain[TransformationComp_MAXIMUM]; + std::fill_n(chain, static_cast<unsigned int>(TransformationComp_MAXIMUM), aiMatrix4x4()); + + // generate transformation matrices for all the different transformation components + const float zero_epsilon = 1e-6f; + const aiVector3D all_ones(1.0f, 1.0f, 1.0f); + bool is_complex = false; + + const aiVector3D& PreRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok); + if (ok && PreRotation.SquareLength() > zero_epsilon) { + is_complex = true; + + GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PreRotation, chain[TransformationComp_PreRotation]); + } + + const aiVector3D& PostRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok); + if (ok && PostRotation.SquareLength() > zero_epsilon) { + is_complex = true; + + GetRotationMatrix(Model::RotOrder::RotOrder_EulerXYZ, PostRotation, chain[TransformationComp_PostRotation]); + } + + const aiVector3D& RotationPivot = PropertyGet<aiVector3D>(props, "RotationPivot", ok); + if (ok && RotationPivot.SquareLength() > zero_epsilon) { + is_complex = true; + + aiMatrix4x4::Translation(RotationPivot, chain[TransformationComp_RotationPivot]); + aiMatrix4x4::Translation(-RotationPivot, chain[TransformationComp_RotationPivotInverse]); + } + + const aiVector3D& RotationOffset = PropertyGet<aiVector3D>(props, "RotationOffset", ok); + if (ok && RotationOffset.SquareLength() > zero_epsilon) { + is_complex = true; + + aiMatrix4x4::Translation(RotationOffset, chain[TransformationComp_RotationOffset]); + } + + const aiVector3D& ScalingOffset = PropertyGet<aiVector3D>(props, "ScalingOffset", ok); + if (ok && ScalingOffset.SquareLength() > zero_epsilon) { + is_complex = true; + + aiMatrix4x4::Translation(ScalingOffset, chain[TransformationComp_ScalingOffset]); + } + + const aiVector3D& ScalingPivot = PropertyGet<aiVector3D>(props, "ScalingPivot", ok); + if (ok && ScalingPivot.SquareLength() > zero_epsilon) { + is_complex = true; + + aiMatrix4x4::Translation(ScalingPivot, chain[TransformationComp_ScalingPivot]); + aiMatrix4x4::Translation(-ScalingPivot, chain[TransformationComp_ScalingPivotInverse]); + } + + const aiVector3D& Translation = PropertyGet<aiVector3D>(props, "Lcl Translation", ok); + if (ok && Translation.SquareLength() > zero_epsilon) { + aiMatrix4x4::Translation(Translation, chain[TransformationComp_Translation]); + } + + const aiVector3D& Scaling = PropertyGet<aiVector3D>(props, "Lcl Scaling", ok); + if (ok && (Scaling - all_ones).SquareLength() > zero_epsilon) { + aiMatrix4x4::Scaling(Scaling, chain[TransformationComp_Scaling]); + } + + const aiVector3D& Rotation = PropertyGet<aiVector3D>(props, "Lcl Rotation", ok); + if (ok && Rotation.SquareLength() > zero_epsilon) { + GetRotationMatrix(rot, Rotation, chain[TransformationComp_Rotation]); + } + + const aiVector3D& GeometricScaling = PropertyGet<aiVector3D>(props, "GeometricScaling", ok); + if (ok && (GeometricScaling - all_ones).SquareLength() > zero_epsilon) { + is_complex = true; + aiMatrix4x4::Scaling(GeometricScaling, chain[TransformationComp_GeometricScaling]); + aiVector3D GeometricScalingInverse = GeometricScaling; + bool canscale = true; + for (unsigned int i = 0; i < 3; ++i) { + if (std::fabs(GeometricScalingInverse[i]) > zero_epsilon) { + GeometricScalingInverse[i] = 1.0f / GeometricScaling[i]; + } + else { + FBXImporter::LogError("cannot invert geometric scaling matrix with a 0.0 scale component"); + canscale = false; + break; + } + } + if (canscale) { + aiMatrix4x4::Scaling(GeometricScalingInverse, chain[TransformationComp_GeometricScalingInverse]); + } + } + + const aiVector3D& GeometricRotation = PropertyGet<aiVector3D>(props, "GeometricRotation", ok); + if (ok && GeometricRotation.SquareLength() > zero_epsilon) { + is_complex = true; + GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotation]); + GetRotationMatrix(rot, GeometricRotation, chain[TransformationComp_GeometricRotationInverse]); + chain[TransformationComp_GeometricRotationInverse].Inverse(); + } + + const aiVector3D& GeometricTranslation = PropertyGet<aiVector3D>(props, "GeometricTranslation", ok); + if (ok && GeometricTranslation.SquareLength() > zero_epsilon) { + is_complex = true; + aiMatrix4x4::Translation(GeometricTranslation, chain[TransformationComp_GeometricTranslation]); + aiMatrix4x4::Translation(-GeometricTranslation, chain[TransformationComp_GeometricTranslationInverse]); + } + + // is_complex needs to be consistent with NeedsComplexTransformationChain() + // or the interplay between this code and the animation converter would + // not be guaranteed. + ai_assert(NeedsComplexTransformationChain(model) == is_complex); + + std::string name = FixNodeName(model.Name()); + + // now, if we have more than just Translation, Scaling and Rotation, + // we need to generate a full node chain to accommodate for assimp's + // lack to express pivots and offsets. + if (is_complex && doc.Settings().preservePivots) { + FBXImporter::LogInfo("generating full transformation chain for node: " + name); + + // query the anim_chain_bits dictionary to find out which chain elements + // have associated node animation channels. These can not be dropped + // even if they have identity transform in bind pose. + NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find(name); + const unsigned int anim_chain_bitmask = (it == node_anim_chain_bits.end() ? 0 : (*it).second); + + unsigned int bit = 0x1; + for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) { + const TransformationComp comp = static_cast<TransformationComp>(i); + + if (chain[i].IsIdentity() && (anim_chain_bitmask & bit) == 0) { + continue; + } + + if (comp == TransformationComp_PostRotation) { + chain[i] = chain[i].Inverse(); + } + + aiNode* nd = new aiNode(); + nd->mName.Set(NameTransformationChainNode(name, comp)); + nd->mTransformation = chain[i]; + + // geometric inverses go in a post-node chain + if (comp == TransformationComp_GeometricScalingInverse || + comp == TransformationComp_GeometricRotationInverse || + comp == TransformationComp_GeometricTranslationInverse + ) { + post_output_nodes.push_back(nd); + } + else { + output_nodes.push_back(nd); + } + } + + ai_assert(output_nodes.size()); + return; + } + + // else, we can just multiply the matrices together + aiNode* nd = new aiNode(); + output_nodes.push_back(nd); + std::string uniqueName; + GetUniqueName(name, uniqueName); + + nd->mName.Set(uniqueName); + + for (const auto &transform : chain) { + nd->mTransformation = nd->mTransformation * transform; + } + } + + void FBXConverter::SetupNodeMetadata(const Model& model, aiNode& nd) + { + const PropertyTable& props = model.Props(); + DirectPropertyMap unparsedProperties = props.GetUnparsedProperties(); + + // create metadata on node + const std::size_t numStaticMetaData = 2; + aiMetadata* data = aiMetadata::Alloc(static_cast<unsigned int>(unparsedProperties.size() + numStaticMetaData)); + nd.mMetaData = data; + int index = 0; + + // find user defined properties (3ds Max) + data->Set(index++, "UserProperties", aiString(PropertyGet<std::string>(props, "UDP3DSMAX", ""))); + // preserve the info that a node was marked as Null node in the original file. + data->Set(index++, "IsNull", model.IsNull() ? true : false); + + // add unparsed properties to the node's metadata + for (const DirectPropertyMap::value_type& prop : unparsedProperties) { + // Interpret the property as a concrete type + if (const TypedProperty<bool>* interpreted = prop.second->As<TypedProperty<bool> >()) { + data->Set(index++, prop.first, interpreted->Value()); + } + else if (const TypedProperty<int>* interpreted = prop.second->As<TypedProperty<int> >()) { + data->Set(index++, prop.first, interpreted->Value()); + } + else if (const TypedProperty<uint64_t>* interpreted = prop.second->As<TypedProperty<uint64_t> >()) { + data->Set(index++, prop.first, interpreted->Value()); + } + else if (const TypedProperty<float>* interpreted = prop.second->As<TypedProperty<float> >()) { + data->Set(index++, prop.first, interpreted->Value()); + } + else if (const TypedProperty<std::string>* interpreted = prop.second->As<TypedProperty<std::string> >()) { + data->Set(index++, prop.first, aiString(interpreted->Value())); + } + else if (const TypedProperty<aiVector3D>* interpreted = prop.second->As<TypedProperty<aiVector3D> >()) { + data->Set(index++, prop.first, interpreted->Value()); + } + else { + ai_assert(false); + } + } + } + + void FBXConverter::ConvertModel(const Model& model, aiNode& nd, const aiMatrix4x4& node_global_transform) + { + const std::vector<const Geometry*>& geos = model.GetGeometry(); + + std::vector<unsigned int> meshes; + meshes.reserve(geos.size()); + + for (const Geometry* geo : geos) { + + const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*>(geo); + const LineGeometry* const line = dynamic_cast<const LineGeometry*>(geo); + if (mesh) { + const std::vector<unsigned int>& indices = ConvertMesh(*mesh, model, node_global_transform, nd); + std::copy(indices.begin(), indices.end(), std::back_inserter(meshes)); + } + else if (line) { + const std::vector<unsigned int>& indices = ConvertLine(*line, model, node_global_transform, nd); + std::copy(indices.begin(), indices.end(), std::back_inserter(meshes)); + } + else { + FBXImporter::LogWarn("ignoring unrecognized geometry: " + geo->Name()); + } + } + + if (meshes.size()) { + nd.mMeshes = new unsigned int[meshes.size()](); + nd.mNumMeshes = static_cast<unsigned int>(meshes.size()); + + std::swap_ranges(meshes.begin(), meshes.end(), nd.mMeshes); + } + } + + std::vector<unsigned int> FBXConverter::ConvertMesh(const MeshGeometry& mesh, const Model& model, + const aiMatrix4x4& node_global_transform, aiNode& nd) + { + std::vector<unsigned int> temp; + + MeshMap::const_iterator it = meshes_converted.find(&mesh); + if (it != meshes_converted.end()) { + std::copy((*it).second.begin(), (*it).second.end(), std::back_inserter(temp)); + return temp; + } + + const std::vector<aiVector3D>& vertices = mesh.GetVertices(); + const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts(); + if (vertices.empty() || faces.empty()) { + FBXImporter::LogWarn("ignoring empty geometry: " + mesh.Name()); + return temp; + } + + // one material per mesh maps easily to aiMesh. Multiple material + // meshes need to be split. + const MatIndexArray& mindices = mesh.GetMaterialIndices(); + if (doc.Settings().readMaterials && !mindices.empty()) { + const MatIndexArray::value_type base = mindices[0]; + for (MatIndexArray::value_type index : mindices) { + if (index != base) { + return ConvertMeshMultiMaterial(mesh, model, node_global_transform, nd); + } + } + } + + // faster code-path, just copy the data + temp.push_back(ConvertMeshSingleMaterial(mesh, model, node_global_transform, nd)); + return temp; + } + + std::vector<unsigned int> FBXConverter::ConvertLine(const LineGeometry& line, const Model& model, + const aiMatrix4x4& node_global_transform, aiNode& nd) + { + std::vector<unsigned int> temp; + + const std::vector<aiVector3D>& vertices = line.GetVertices(); + const std::vector<int>& indices = line.GetIndices(); + if (vertices.empty() || indices.empty()) { + FBXImporter::LogWarn("ignoring empty line: " + line.Name()); + return temp; + } + + aiMesh* const out_mesh = SetupEmptyMesh(line, nd); + out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; + + // copy vertices + out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size()); + out_mesh->mVertices = new aiVector3D[out_mesh->mNumVertices]; + std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices); + + //Number of line segments (faces) is "Number of Points - Number of Endpoints" + //N.B.: Endpoints in FbxLine are denoted by negative indices. + //If such an Index is encountered, add 1 and multiply by -1 to get the real index. + unsigned int epcount = 0; + for (unsigned i = 0; i < indices.size(); i++) + { + if (indices[i] < 0) epcount++; + } + unsigned int pcount = static_cast<unsigned int>( indices.size() ); + unsigned int scount = out_mesh->mNumFaces = pcount - epcount; + + aiFace* fac = out_mesh->mFaces = new aiFace[scount](); + for (unsigned int i = 0; i < pcount; ++i) { + if (indices[i] < 0) continue; + aiFace& f = *fac++; + f.mNumIndices = 2; //2 == aiPrimitiveType_LINE + f.mIndices = new unsigned int[2]; + f.mIndices[0] = indices[i]; + int segid = indices[(i + 1 == pcount ? 0 : i + 1)]; //If we have reached he last point, wrap around + f.mIndices[1] = (segid < 0 ? (segid + 1)*-1 : segid); //Convert EndPoint Index to normal Index + } + temp.push_back(static_cast<unsigned int>(meshes.size() - 1)); + return temp; + } + + aiMesh* FBXConverter::SetupEmptyMesh(const Geometry& mesh, aiNode& nd) + { + aiMesh* const out_mesh = new aiMesh(); + meshes.push_back(out_mesh); + meshes_converted[&mesh].push_back(static_cast<unsigned int>(meshes.size() - 1)); + + // set name + std::string name = mesh.Name(); + if (name.substr(0, 10) == "Geometry::") { + name = name.substr(10); + } + + if (name.length()) { + out_mesh->mName.Set(name); + } + else + { + out_mesh->mName = nd.mName; + } + + return out_mesh; + } + + unsigned int FBXConverter::ConvertMeshSingleMaterial(const MeshGeometry& mesh, const Model& model, + const aiMatrix4x4& node_global_transform, aiNode& nd) + { + const MatIndexArray& mindices = mesh.GetMaterialIndices(); + aiMesh* const out_mesh = SetupEmptyMesh(mesh, nd); + + const std::vector<aiVector3D>& vertices = mesh.GetVertices(); + const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts(); + + // copy vertices + out_mesh->mNumVertices = static_cast<unsigned int>(vertices.size()); + out_mesh->mVertices = new aiVector3D[vertices.size()]; + + std::copy(vertices.begin(), vertices.end(), out_mesh->mVertices); + + // generate dummy faces + out_mesh->mNumFaces = static_cast<unsigned int>(faces.size()); + aiFace* fac = out_mesh->mFaces = new aiFace[faces.size()](); + + unsigned int cursor = 0; + for (unsigned int pcount : faces) { + aiFace& f = *fac++; + f.mNumIndices = pcount; + f.mIndices = new unsigned int[pcount]; + switch (pcount) + { + case 1: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT; + break; + case 2: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; + break; + case 3: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; + break; + default: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; + break; + } + for (unsigned int i = 0; i < pcount; ++i) { + f.mIndices[i] = cursor++; + } + } + + // copy normals + const std::vector<aiVector3D>& normals = mesh.GetNormals(); + if (normals.size()) { + ai_assert(normals.size() == vertices.size()); + + out_mesh->mNormals = new aiVector3D[vertices.size()]; + std::copy(normals.begin(), normals.end(), out_mesh->mNormals); + } + + // copy tangents - assimp requires both tangents and bitangents (binormals) + // to be present, or neither of them. Compute binormals from normals + // and tangents if needed. + const std::vector<aiVector3D>& tangents = mesh.GetTangents(); + const std::vector<aiVector3D>* binormals = &mesh.GetBinormals(); + + if (tangents.size()) { + std::vector<aiVector3D> tempBinormals; + if (!binormals->size()) { + if (normals.size()) { + tempBinormals.resize(normals.size()); + for (unsigned int i = 0; i < tangents.size(); ++i) { + tempBinormals[i] = normals[i] ^ tangents[i]; + } + + binormals = &tempBinormals; + } + else { + binormals = NULL; + } + } + + if (binormals) { + ai_assert(tangents.size() == vertices.size()); + ai_assert(binormals->size() == vertices.size()); + + out_mesh->mTangents = new aiVector3D[vertices.size()]; + std::copy(tangents.begin(), tangents.end(), out_mesh->mTangents); + + out_mesh->mBitangents = new aiVector3D[vertices.size()]; + std::copy(binormals->begin(), binormals->end(), out_mesh->mBitangents); + } + } + + // copy texture coords + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i); + if (uvs.empty()) { + break; + } + + aiVector3D* out_uv = out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()]; + for (const aiVector2D& v : uvs) { + *out_uv++ = aiVector3D(v.x, v.y, 0.0f); + } + + out_mesh->mNumUVComponents[i] = 2; + } + + // copy vertex colors + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i) { + const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i); + if (colors.empty()) { + break; + } + + out_mesh->mColors[i] = new aiColor4D[vertices.size()]; + std::copy(colors.begin(), colors.end(), out_mesh->mColors[i]); + } + + if (!doc.Settings().readMaterials || mindices.empty()) { + FBXImporter::LogError("no material assigned to mesh, setting default material"); + out_mesh->mMaterialIndex = GetDefaultMaterial(); + } + else { + ConvertMaterialForMesh(out_mesh, model, mesh, mindices[0]); + } + + if (doc.Settings().readWeights && mesh.DeformerSkin() != NULL) { + ConvertWeights(out_mesh, model, mesh, node_global_transform, NO_MATERIAL_SEPARATION); + } + + std::vector<aiAnimMesh*> animMeshes; + for (const BlendShape* blendShape : mesh.GetBlendShapes()) { + for (const BlendShapeChannel* blendShapeChannel : blendShape->BlendShapeChannels()) { + const std::vector<const ShapeGeometry*>& shapeGeometries = blendShapeChannel->GetShapeGeometries(); + for (size_t i = 0; i < shapeGeometries.size(); i++) { + aiAnimMesh *animMesh = aiCreateAnimMesh(out_mesh); + const ShapeGeometry* shapeGeometry = shapeGeometries.at(i); + const std::vector<aiVector3D>& vertices = shapeGeometry->GetVertices(); + const std::vector<aiVector3D>& normals = shapeGeometry->GetNormals(); + const std::vector<unsigned int>& indices = shapeGeometry->GetIndices(); + animMesh->mName.Set(FixAnimMeshName(shapeGeometry->Name())); + for (size_t j = 0; j < indices.size(); j++) { + unsigned int index = indices.at(j); + aiVector3D vertex = vertices.at(j); + aiVector3D normal = normals.at(j); + unsigned int count = 0; + const unsigned int* outIndices = mesh.ToOutputVertexIndex(index, count); + for (unsigned int k = 0; k < count; k++) { + unsigned int index = outIndices[k]; + animMesh->mVertices[index] += vertex; + if (animMesh->mNormals != nullptr) { + animMesh->mNormals[index] += normal; + animMesh->mNormals[index].NormalizeSafe(); + } + } + } + animMesh->mWeight = shapeGeometries.size() > 1 ? blendShapeChannel->DeformPercent() / 100.0f : 1.0f; + animMeshes.push_back(animMesh); + } + } + } + const size_t numAnimMeshes = animMeshes.size(); + if (numAnimMeshes > 0) { + out_mesh->mNumAnimMeshes = static_cast<unsigned int>(numAnimMeshes); + out_mesh->mAnimMeshes = new aiAnimMesh*[numAnimMeshes]; + for (size_t i = 0; i < numAnimMeshes; i++) { + out_mesh->mAnimMeshes[i] = animMeshes.at(i); + } + } + return static_cast<unsigned int>(meshes.size() - 1); + } + + std::vector<unsigned int> FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model, + const aiMatrix4x4& node_global_transform, aiNode& nd) + { + const MatIndexArray& mindices = mesh.GetMaterialIndices(); + ai_assert(mindices.size()); + + std::set<MatIndexArray::value_type> had; + std::vector<unsigned int> indices; + + for (MatIndexArray::value_type index : mindices) { + if (had.find(index) == had.end()) { + + indices.push_back(ConvertMeshMultiMaterial(mesh, model, index, node_global_transform, nd)); + had.insert(index); + } + } + + return indices; + } + + unsigned int FBXConverter::ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model, + MatIndexArray::value_type index, + const aiMatrix4x4& node_global_transform, + aiNode& nd) + { + aiMesh* const out_mesh = SetupEmptyMesh(mesh, nd); + + const MatIndexArray& mindices = mesh.GetMaterialIndices(); + const std::vector<aiVector3D>& vertices = mesh.GetVertices(); + const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts(); + + const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != NULL; + + unsigned int count_faces = 0; + unsigned int count_vertices = 0; + + // count faces + std::vector<unsigned int>::const_iterator itf = faces.begin(); + for (MatIndexArray::const_iterator it = mindices.begin(), + end = mindices.end(); it != end; ++it, ++itf) + { + if ((*it) != index) { + continue; + } + ++count_faces; + count_vertices += *itf; + } + + ai_assert(count_faces); + ai_assert(count_vertices); + + // mapping from output indices to DOM indexing, needed to resolve weights + std::vector<unsigned int> reverseMapping; + + if (process_weights) { + reverseMapping.resize(count_vertices); + } + + // allocate output data arrays, but don't fill them yet + out_mesh->mNumVertices = count_vertices; + out_mesh->mVertices = new aiVector3D[count_vertices]; + + out_mesh->mNumFaces = count_faces; + aiFace* fac = out_mesh->mFaces = new aiFace[count_faces](); + + + // allocate normals + const std::vector<aiVector3D>& normals = mesh.GetNormals(); + if (normals.size()) { + ai_assert(normals.size() == vertices.size()); + out_mesh->mNormals = new aiVector3D[vertices.size()]; + } + + // allocate tangents, binormals. + const std::vector<aiVector3D>& tangents = mesh.GetTangents(); + const std::vector<aiVector3D>* binormals = &mesh.GetBinormals(); + std::vector<aiVector3D> tempBinormals; + + if (tangents.size()) { + if (!binormals->size()) { + if (normals.size()) { + // XXX this computes the binormals for the entire mesh, not only + // the part for which we need them. + tempBinormals.resize(normals.size()); + for (unsigned int i = 0; i < tangents.size(); ++i) { + tempBinormals[i] = normals[i] ^ tangents[i]; + } + + binormals = &tempBinormals; + } + else { + binormals = NULL; + } + } + + if (binormals) { + ai_assert(tangents.size() == vertices.size() && binormals->size() == vertices.size()); + + out_mesh->mTangents = new aiVector3D[vertices.size()]; + out_mesh->mBitangents = new aiVector3D[vertices.size()]; + } + } + + // allocate texture coords + unsigned int num_uvs = 0; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs) { + const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(i); + if (uvs.empty()) { + break; + } + + out_mesh->mTextureCoords[i] = new aiVector3D[vertices.size()]; + out_mesh->mNumUVComponents[i] = 2; + } + + // allocate vertex colors + unsigned int num_vcs = 0; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs) { + const std::vector<aiColor4D>& colors = mesh.GetVertexColors(i); + if (colors.empty()) { + break; + } + + out_mesh->mColors[i] = new aiColor4D[vertices.size()]; + } + + unsigned int cursor = 0, in_cursor = 0; + + itf = faces.begin(); + for (MatIndexArray::const_iterator it = mindices.begin(), end = mindices.end(); it != end; ++it, ++itf) + { + const unsigned int pcount = *itf; + if ((*it) != index) { + in_cursor += pcount; + continue; + } + + aiFace& f = *fac++; + + f.mNumIndices = pcount; + f.mIndices = new unsigned int[pcount]; + switch (pcount) + { + case 1: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT; + break; + case 2: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE; + break; + case 3: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; + break; + default: + out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; + break; + } + for (unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor) { + f.mIndices[i] = cursor; + + if (reverseMapping.size()) { + reverseMapping[cursor] = in_cursor; + } + + out_mesh->mVertices[cursor] = vertices[in_cursor]; + + if (out_mesh->mNormals) { + out_mesh->mNormals[cursor] = normals[in_cursor]; + } + + if (out_mesh->mTangents) { + out_mesh->mTangents[cursor] = tangents[in_cursor]; + out_mesh->mBitangents[cursor] = (*binormals)[in_cursor]; + } + + for (unsigned int j = 0; j < num_uvs; ++j) { + const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords(j); + out_mesh->mTextureCoords[j][cursor] = aiVector3D(uvs[in_cursor].x, uvs[in_cursor].y, 0.0f); + } + + for (unsigned int j = 0; j < num_vcs; ++j) { + const std::vector<aiColor4D>& cols = mesh.GetVertexColors(j); + out_mesh->mColors[j][cursor] = cols[in_cursor]; + } + } + } + + ConvertMaterialForMesh(out_mesh, model, mesh, index); + + if (process_weights) { + ConvertWeights(out_mesh, model, mesh, node_global_transform, index, &reverseMapping); + } + + return static_cast<unsigned int>(meshes.size() - 1); + } + + void FBXConverter::ConvertWeights(aiMesh* out, const Model& model, const MeshGeometry& geo, + const aiMatrix4x4& node_global_transform, + unsigned int materialIndex, + std::vector<unsigned int>* outputVertStartIndices) + { + ai_assert(geo.DeformerSkin()); + + std::vector<size_t> out_indices; + std::vector<size_t> index_out_indices; + std::vector<size_t> count_out_indices; + + const Skin& sk = *geo.DeformerSkin(); + + std::vector<aiBone*> bones; + bones.reserve(sk.Clusters().size()); + + const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION; + ai_assert(no_mat_check || outputVertStartIndices); + + try { + + for (const Cluster* cluster : sk.Clusters()) { + ai_assert(cluster); + + const WeightIndexArray& indices = cluster->GetIndices(); + + if (indices.empty()) { + continue; + } + + const MatIndexArray& mats = geo.GetMaterialIndices(); + + bool ok = false; + + const size_t no_index_sentinel = std::numeric_limits<size_t>::max(); + + count_out_indices.clear(); + index_out_indices.clear(); + out_indices.clear(); + + // now check if *any* of these weights is contained in the output mesh, + // taking notes so we don't need to do it twice. + for (WeightIndexArray::value_type index : indices) { + + unsigned int count = 0; + const unsigned int* const out_idx = geo.ToOutputVertexIndex(index, count); + // ToOutputVertexIndex only returns NULL if index is out of bounds + // which should never happen + ai_assert(out_idx != NULL); + + index_out_indices.push_back(no_index_sentinel); + count_out_indices.push_back(0); + + for (unsigned int i = 0; i < count; ++i) { + if (no_mat_check || static_cast<size_t>(mats[geo.FaceForVertexIndex(out_idx[i])]) == materialIndex) { + + if (index_out_indices.back() == no_index_sentinel) { + index_out_indices.back() = out_indices.size(); + + } + + if (no_mat_check) { + out_indices.push_back(out_idx[i]); + } + else { + // this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn) + const std::vector<unsigned int>::iterator it = std::lower_bound( + outputVertStartIndices->begin(), + outputVertStartIndices->end(), + out_idx[i] + ); + + out_indices.push_back(std::distance(outputVertStartIndices->begin(), it)); + } + + ++count_out_indices.back(); + ok = true; + } + } + } + + // if we found at least one, generate the output bones + // XXX this could be heavily simplified by collecting the bone + // data in a single step. + if (ok) { + ConvertCluster(bones, model, *cluster, out_indices, index_out_indices, + count_out_indices, node_global_transform); + } + } + } + catch (std::exception&) { + std::for_each(bones.begin(), bones.end(), Util::delete_fun<aiBone>()); + throw; + } + + if (bones.empty()) { + return; + } + + out->mBones = new aiBone*[bones.size()](); + out->mNumBones = static_cast<unsigned int>(bones.size()); + + std::swap_ranges(bones.begin(), bones.end(), out->mBones); + } + + void FBXConverter::ConvertCluster(std::vector<aiBone*>& bones, const Model& /*model*/, const Cluster& cl, + std::vector<size_t>& out_indices, + std::vector<size_t>& index_out_indices, + std::vector<size_t>& count_out_indices, + const aiMatrix4x4& node_global_transform) + { + + aiBone* const bone = new aiBone(); + bones.push_back(bone); + + bone->mName = FixNodeName(cl.TargetNode()->Name()); + + bone->mOffsetMatrix = cl.TransformLink(); + bone->mOffsetMatrix.Inverse(); + + bone->mOffsetMatrix = bone->mOffsetMatrix * node_global_transform; + + bone->mNumWeights = static_cast<unsigned int>(out_indices.size()); + aiVertexWeight* cursor = bone->mWeights = new aiVertexWeight[out_indices.size()]; + + const size_t no_index_sentinel = std::numeric_limits<size_t>::max(); + const WeightArray& weights = cl.GetWeights(); + + const size_t c = index_out_indices.size(); + for (size_t i = 0; i < c; ++i) { + const size_t index_index = index_out_indices[i]; + + if (index_index == no_index_sentinel) { + continue; + } + + const size_t cc = count_out_indices[i]; + for (size_t j = 0; j < cc; ++j) { + aiVertexWeight& out_weight = *cursor++; + + out_weight.mVertexId = static_cast<unsigned int>(out_indices[index_index + j]); + out_weight.mWeight = weights[i]; + } + } + } + + void FBXConverter::ConvertMaterialForMesh(aiMesh* out, const Model& model, const MeshGeometry& geo, + MatIndexArray::value_type materialIndex) + { + // locate source materials for this mesh + const std::vector<const Material*>& mats = model.GetMaterials(); + if (static_cast<unsigned int>(materialIndex) >= mats.size() || materialIndex < 0) { + FBXImporter::LogError("material index out of bounds, setting default material"); + out->mMaterialIndex = GetDefaultMaterial(); + return; + } + + const Material* const mat = mats[materialIndex]; + MaterialMap::const_iterator it = materials_converted.find(mat); + if (it != materials_converted.end()) { + out->mMaterialIndex = (*it).second; + return; + } + + out->mMaterialIndex = ConvertMaterial(*mat, &geo); + materials_converted[mat] = out->mMaterialIndex; + } + + unsigned int FBXConverter::GetDefaultMaterial() + { + if (defaultMaterialIndex) { + return defaultMaterialIndex - 1; + } + + aiMaterial* out_mat = new aiMaterial(); + materials.push_back(out_mat); + + const aiColor3D diffuse = aiColor3D(0.8f, 0.8f, 0.8f); + out_mat->AddProperty(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE); + + aiString s; + s.Set(AI_DEFAULT_MATERIAL_NAME); + + out_mat->AddProperty(&s, AI_MATKEY_NAME); + + defaultMaterialIndex = static_cast<unsigned int>(materials.size()); + return defaultMaterialIndex - 1; + } + + + unsigned int FBXConverter::ConvertMaterial(const Material& material, const MeshGeometry* const mesh) + { + const PropertyTable& props = material.Props(); + + // generate empty output material + aiMaterial* out_mat = new aiMaterial(); + materials_converted[&material] = static_cast<unsigned int>(materials.size()); + + materials.push_back(out_mat); + + aiString str; + + // strip Material:: prefix + std::string name = material.Name(); + if (name.substr(0, 10) == "Material::") { + name = name.substr(10); + } + + // set material name if not empty - this could happen + // and there should be no key for it in this case. + if (name.length()) { + str.Set(name); + out_mat->AddProperty(&str, AI_MATKEY_NAME); + } + + // shading stuff and colors + SetShadingPropertiesCommon(out_mat, props); + SetShadingPropertiesRaw( out_mat, props, material.Textures(), mesh ); + + // texture assignments + SetTextureProperties(out_mat, material.Textures(), mesh); + SetTextureProperties(out_mat, material.LayeredTextures(), mesh); + + return static_cast<unsigned int>(materials.size() - 1); + } + + unsigned int FBXConverter::ConvertVideo(const Video& video) + { + // generate empty output texture + aiTexture* out_tex = new aiTexture(); + textures.push_back(out_tex); + + // assuming the texture is compressed + out_tex->mWidth = static_cast<unsigned int>(video.ContentLength()); // total data size + out_tex->mHeight = 0; // fixed to 0 + + // steal the data from the Video to avoid an additional copy + out_tex->pcData = reinterpret_cast<aiTexel*>(const_cast<Video&>(video).RelinquishContent()); + + // try to extract a hint from the file extension + const std::string& filename = video.FileName().empty() ? video.RelativeFilename() : video.FileName(); + std::string ext = BaseImporter::GetExtension(filename); + + if (ext == "jpeg") { + ext = "jpg"; + } + + if (ext.size() <= 3) { + memcpy(out_tex->achFormatHint, ext.c_str(), ext.size()); + } + + out_tex->mFilename.Set(video.FileName().c_str()); + + return static_cast<unsigned int>(textures.size() - 1); + } + + aiString FBXConverter::GetTexturePath(const Texture* tex) + { + aiString path; + path.Set(tex->RelativeFilename()); + + const Video* media = tex->Media(); + if (media != nullptr) { + bool textureReady = false; //tells if our texture is ready (if it was loaded or if it was found) + unsigned int index; + + VideoMap::const_iterator it = textures_converted.find(media); + if (it != textures_converted.end()) { + index = (*it).second; + textureReady = true; + } + else { + if (media->ContentLength() > 0) { + index = ConvertVideo(*media); + textures_converted[media] = index; + textureReady = true; + } + } + + // setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture), if the texture is ready + if (doc.Settings().useLegacyEmbeddedTextureNaming) { + if (textureReady) { + // TODO: check the possibility of using the flag "AI_CONFIG_IMPORT_FBX_EMBEDDED_TEXTURES_LEGACY_NAMING" + // In FBX files textures are now stored internally by Assimp with their filename included + // Now Assimp can lookup through the loaded textures after all data is processed + // We need to load all textures before referencing them, as FBX file format order may reference a texture before loading it + // This may occur on this case too, it has to be studied + path.data[0] = '*'; + path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index); + } + } + } + + return path; + } + + void FBXConverter::TrySetTextureProperties(aiMaterial* out_mat, const TextureMap& textures, + const std::string& propName, + aiTextureType target, const MeshGeometry* const mesh) + { + TextureMap::const_iterator it = textures.find(propName); + if (it == textures.end()) { + return; + } + + const Texture* const tex = (*it).second; + if (tex != 0) + { + aiString path = GetTexturePath(tex); + out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, 0); + + aiUVTransform uvTrafo; + // XXX handle all kinds of UV transformations + uvTrafo.mScaling = tex->UVScaling(); + uvTrafo.mTranslation = tex->UVTranslation(); + out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, 0); + + const PropertyTable& props = tex->Props(); + + int uvIndex = 0; + + bool ok; + const std::string& uvSet = PropertyGet<std::string>(props, "UVSet", ok); + if (ok) { + // "default" is the name which usually appears in the FbxFileTexture template + if (uvSet != "default" && uvSet.length()) { + // this is a bit awkward - we need to find a mesh that uses this + // material and scan its UV channels for the given UV name because + // assimp references UV channels by index, not by name. + + // XXX: the case that UV channels may appear in different orders + // in meshes is unhandled. A possible solution would be to sort + // the UV channels alphabetically, but this would have the side + // effect that the primary (first) UV channel would sometimes + // be moved, causing trouble when users read only the first + // UV channel and ignore UV channel assignments altogether. + + const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(), + std::find(materials.begin(), materials.end(), out_mat) + )); + + + uvIndex = -1; + if (!mesh) + { + for (const MeshMap::value_type& v : meshes_converted) { + const MeshGeometry* const meshGeom = dynamic_cast<const MeshGeometry*> (v.first); + if (!meshGeom) { + continue; + } + + const MatIndexArray& mats = meshGeom->GetMaterialIndices(); + if (std::find(mats.begin(), mats.end(), matIndex) == mats.end()) { + continue; + } + + int index = -1; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + if (meshGeom->GetTextureCoords(i).empty()) { + break; + } + const std::string& name = meshGeom->GetTextureCoordChannelName(i); + if (name == uvSet) { + index = static_cast<int>(i); + break; + } + } + if (index == -1) { + FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material"); + continue; + } + + if (uvIndex == -1) { + uvIndex = index; + } + else { + FBXImporter::LogWarn("the UV channel named " + uvSet + + " appears at different positions in meshes, results will be wrong"); + } + } + } + else + { + int index = -1; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + if (mesh->GetTextureCoords(i).empty()) { + break; + } + const std::string& name = mesh->GetTextureCoordChannelName(i); + if (name == uvSet) { + index = static_cast<int>(i); + break; + } + } + if (index == -1) { + FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material"); + } + + if (uvIndex == -1) { + uvIndex = index; + } + } + + if (uvIndex == -1) { + FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel"); + uvIndex = 0; + } + } + } + + out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, 0); + } + } + + void FBXConverter::TrySetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures, + const std::string& propName, + aiTextureType target, const MeshGeometry* const mesh) { + LayeredTextureMap::const_iterator it = layeredTextures.find(propName); + if (it == layeredTextures.end()) { + return; + } + + int texCount = (*it).second->textureCount(); + + // Set the blend mode for layered textures + int blendmode = (*it).second->GetBlendMode(); + out_mat->AddProperty(&blendmode, 1, _AI_MATKEY_TEXOP_BASE, target, 0); + + for (int texIndex = 0; texIndex < texCount; texIndex++) { + + const Texture* const tex = (*it).second->getTexture(texIndex); + + aiString path = GetTexturePath(tex); + out_mat->AddProperty(&path, _AI_MATKEY_TEXTURE_BASE, target, texIndex); + + aiUVTransform uvTrafo; + // XXX handle all kinds of UV transformations + uvTrafo.mScaling = tex->UVScaling(); + uvTrafo.mTranslation = tex->UVTranslation(); + out_mat->AddProperty(&uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, texIndex); + + const PropertyTable& props = tex->Props(); + + int uvIndex = 0; + + bool ok; + const std::string& uvSet = PropertyGet<std::string>(props, "UVSet", ok); + if (ok) { + // "default" is the name which usually appears in the FbxFileTexture template + if (uvSet != "default" && uvSet.length()) { + // this is a bit awkward - we need to find a mesh that uses this + // material and scan its UV channels for the given UV name because + // assimp references UV channels by index, not by name. + + // XXX: the case that UV channels may appear in different orders + // in meshes is unhandled. A possible solution would be to sort + // the UV channels alphabetically, but this would have the side + // effect that the primary (first) UV channel would sometimes + // be moved, causing trouble when users read only the first + // UV channel and ignore UV channel assignments altogether. + + const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(), + std::find(materials.begin(), materials.end(), out_mat) + )); + + uvIndex = -1; + if (!mesh) + { + for (const MeshMap::value_type& v : meshes_converted) { + const MeshGeometry* const meshGeom = dynamic_cast<const MeshGeometry*> (v.first); + if (!meshGeom) { + continue; + } + + const MatIndexArray& mats = meshGeom->GetMaterialIndices(); + if (std::find(mats.begin(), mats.end(), matIndex) == mats.end()) { + continue; + } + + int index = -1; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + if (meshGeom->GetTextureCoords(i).empty()) { + break; + } + const std::string& name = meshGeom->GetTextureCoordChannelName(i); + if (name == uvSet) { + index = static_cast<int>(i); + break; + } + } + if (index == -1) { + FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material"); + continue; + } + + if (uvIndex == -1) { + uvIndex = index; + } + else { + FBXImporter::LogWarn("the UV channel named " + uvSet + + " appears at different positions in meshes, results will be wrong"); + } + } + } + else + { + int index = -1; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + if (mesh->GetTextureCoords(i).empty()) { + break; + } + const std::string& name = mesh->GetTextureCoordChannelName(i); + if (name == uvSet) { + index = static_cast<int>(i); + break; + } + } + if (index == -1) { + FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material"); + } + + if (uvIndex == -1) { + uvIndex = index; + } + } + + if (uvIndex == -1) { + FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel"); + uvIndex = 0; + } + } + } + + out_mat->AddProperty(&uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, texIndex); + } + } + + void FBXConverter::SetTextureProperties(aiMaterial* out_mat, const TextureMap& textures, const MeshGeometry* const mesh) + { + TrySetTextureProperties(out_mat, textures, "DiffuseColor", aiTextureType_DIFFUSE, mesh); + TrySetTextureProperties(out_mat, textures, "AmbientColor", aiTextureType_AMBIENT, mesh); + TrySetTextureProperties(out_mat, textures, "EmissiveColor", aiTextureType_EMISSIVE, mesh); + TrySetTextureProperties(out_mat, textures, "SpecularColor", aiTextureType_SPECULAR, mesh); + TrySetTextureProperties(out_mat, textures, "SpecularFactor", aiTextureType_SPECULAR, mesh); + TrySetTextureProperties(out_mat, textures, "TransparentColor", aiTextureType_OPACITY, mesh); + TrySetTextureProperties(out_mat, textures, "ReflectionColor", aiTextureType_REFLECTION, mesh); + TrySetTextureProperties(out_mat, textures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh); + TrySetTextureProperties(out_mat, textures, "NormalMap", aiTextureType_NORMALS, mesh); + TrySetTextureProperties(out_mat, textures, "Bump", aiTextureType_HEIGHT, mesh); + TrySetTextureProperties(out_mat, textures, "ShininessExponent", aiTextureType_SHININESS, mesh); + TrySetTextureProperties( out_mat, textures, "TransparencyFactor", aiTextureType_OPACITY, mesh ); + TrySetTextureProperties( out_mat, textures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh ); + //Maya counterparts + TrySetTextureProperties(out_mat, textures, "Maya|DiffuseTexture", aiTextureType_DIFFUSE, mesh); + TrySetTextureProperties(out_mat, textures, "Maya|NormalTexture", aiTextureType_NORMALS, mesh); + TrySetTextureProperties(out_mat, textures, "Maya|SpecularTexture", aiTextureType_SPECULAR, mesh); + TrySetTextureProperties(out_mat, textures, "Maya|FalloffTexture", aiTextureType_OPACITY, mesh); + TrySetTextureProperties(out_mat, textures, "Maya|ReflectionMapTexture", aiTextureType_REFLECTION, mesh); + } + + void FBXConverter::SetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures, const MeshGeometry* const mesh) + { + TrySetTextureProperties(out_mat, layeredTextures, "DiffuseColor", aiTextureType_DIFFUSE, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "AmbientColor", aiTextureType_AMBIENT, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "EmissiveColor", aiTextureType_EMISSIVE, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "SpecularColor", aiTextureType_SPECULAR, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "SpecularFactor", aiTextureType_SPECULAR, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "TransparentColor", aiTextureType_OPACITY, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "ReflectionColor", aiTextureType_REFLECTION, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "NormalMap", aiTextureType_NORMALS, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "Bump", aiTextureType_HEIGHT, mesh); + TrySetTextureProperties(out_mat, layeredTextures, "ShininessExponent", aiTextureType_SHININESS, mesh); + TrySetTextureProperties( out_mat, layeredTextures, "EmissiveFactor", aiTextureType_EMISSIVE, mesh ); + TrySetTextureProperties( out_mat, layeredTextures, "TransparencyFactor", aiTextureType_OPACITY, mesh ); + } + + aiColor3D FBXConverter::GetColorPropertyFactored(const PropertyTable& props, const std::string& colorName, + const std::string& factorName, bool& result, bool useTemplate) + { + result = true; + + bool ok; + aiVector3D BaseColor = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate); + if (!ok) { + result = false; + return aiColor3D(0.0f, 0.0f, 0.0f); + } + + // if no factor name, return the colour as is + if (factorName.empty()) { + return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z); + } + + // otherwise it should be multiplied by the factor, if found. + float factor = PropertyGet<float>(props, factorName, ok, useTemplate); + if (ok) { + BaseColor *= factor; + } + return aiColor3D(BaseColor.x, BaseColor.y, BaseColor.z); + } + + aiColor3D FBXConverter::GetColorPropertyFromMaterial(const PropertyTable& props, const std::string& baseName, + bool& result) + { + return GetColorPropertyFactored(props, baseName + "Color", baseName + "Factor", result, true); + } + + aiColor3D FBXConverter::GetColorProperty(const PropertyTable& props, const std::string& colorName, + bool& result, bool useTemplate) + { + result = true; + bool ok; + const aiVector3D& ColorVec = PropertyGet<aiVector3D>(props, colorName, ok, useTemplate); + if (!ok) { + result = false; + return aiColor3D(0.0f, 0.0f, 0.0f); + } + return aiColor3D(ColorVec.x, ColorVec.y, ColorVec.z); + } + + void FBXConverter::SetShadingPropertiesCommon(aiMaterial* out_mat, const PropertyTable& props) + { + // Set shading properties. + // Modern FBX Files have two separate systems for defining these, + // with only the more comprehensive one described in the property template. + // Likely the other values are a legacy system, + // which is still always exported by the official FBX SDK. + // + // Blender's FBX import and export mostly ignore this legacy system, + // and as we only support recent versions of FBX anyway, we can do the same. + bool ok; + + const aiColor3D& Diffuse = GetColorPropertyFromMaterial(props, "Diffuse", ok); + if (ok) { + out_mat->AddProperty(&Diffuse, 1, AI_MATKEY_COLOR_DIFFUSE); + } + + const aiColor3D& Emissive = GetColorPropertyFromMaterial(props, "Emissive", ok); + if (ok) { + out_mat->AddProperty(&Emissive, 1, AI_MATKEY_COLOR_EMISSIVE); + } + + const aiColor3D& Ambient = GetColorPropertyFromMaterial(props, "Ambient", ok); + if (ok) { + out_mat->AddProperty(&Ambient, 1, AI_MATKEY_COLOR_AMBIENT); + } + + // we store specular factor as SHININESS_STRENGTH, so just get the color + const aiColor3D& Specular = GetColorProperty(props, "SpecularColor", ok, true); + if (ok) { + out_mat->AddProperty(&Specular, 1, AI_MATKEY_COLOR_SPECULAR); + } + + // and also try to get SHININESS_STRENGTH + const float SpecularFactor = PropertyGet<float>(props, "SpecularFactor", ok, true); + if (ok) { + out_mat->AddProperty(&SpecularFactor, 1, AI_MATKEY_SHININESS_STRENGTH); + } + + // and the specular exponent + const float ShininessExponent = PropertyGet<float>(props, "ShininessExponent", ok); + if (ok) { + out_mat->AddProperty(&ShininessExponent, 1, AI_MATKEY_SHININESS); + } + + // TransparentColor / TransparencyFactor... gee thanks FBX :rolleyes: + const aiColor3D& Transparent = GetColorPropertyFactored(props, "TransparentColor", "TransparencyFactor", ok); + float CalculatedOpacity = 1.0f; + if (ok) { + out_mat->AddProperty(&Transparent, 1, AI_MATKEY_COLOR_TRANSPARENT); + // as calculated by FBX SDK 2017: + CalculatedOpacity = 1.0f - ((Transparent.r + Transparent.g + Transparent.b) / 3.0f); + } + + // try to get the transparency factor + const float TransparencyFactor = PropertyGet<float>(props, "TransparencyFactor", ok); + if (ok) { + out_mat->AddProperty(&TransparencyFactor, 1, AI_MATKEY_TRANSPARENCYFACTOR); + } + + // use of TransparencyFactor is inconsistent. + // Maya always stores it as 1.0, + // so we can't use it to set AI_MATKEY_OPACITY. + // Blender is more sensible and stores it as the alpha value. + // However both the FBX SDK and Blender always write an additional + // legacy "Opacity" field, so we can try to use that. + // + // If we can't find it, + // we can fall back to the value which the FBX SDK calculates + // from transparency colour (RGB) and factor (F) as + // 1.0 - F*((R+G+B)/3). + // + // There's no consistent way to interpret this opacity value, + // so it's up to clients to do the correct thing. + const float Opacity = PropertyGet<float>(props, "Opacity", ok); + if (ok) { + out_mat->AddProperty(&Opacity, 1, AI_MATKEY_OPACITY); + } + else if (CalculatedOpacity != 1.0) { + out_mat->AddProperty(&CalculatedOpacity, 1, AI_MATKEY_OPACITY); + } + + // reflection color and factor are stored separately + const aiColor3D& Reflection = GetColorProperty(props, "ReflectionColor", ok, true); + if (ok) { + out_mat->AddProperty(&Reflection, 1, AI_MATKEY_COLOR_REFLECTIVE); + } + + float ReflectionFactor = PropertyGet<float>(props, "ReflectionFactor", ok, true); + if (ok) { + out_mat->AddProperty(&ReflectionFactor, 1, AI_MATKEY_REFLECTIVITY); + } + + const float BumpFactor = PropertyGet<float>(props, "BumpFactor", ok); + if (ok) { + out_mat->AddProperty(&BumpFactor, 1, AI_MATKEY_BUMPSCALING); + } + + const float DispFactor = PropertyGet<float>(props, "DisplacementFactor", ok); + if (ok) { + out_mat->AddProperty(&DispFactor, 1, "$mat.displacementscaling", 0, 0); + } +} + + +void FBXConverter::SetShadingPropertiesRaw(aiMaterial* out_mat, const PropertyTable& props, const TextureMap& textures, const MeshGeometry* const mesh) +{ + // Add all the unparsed properties with a "$raw." prefix + + const std::string prefix = "$raw."; + + for (const DirectPropertyMap::value_type& prop : props.GetUnparsedProperties()) { + + std::string name = prefix + prop.first; + + if (const TypedProperty<aiVector3D>* interpreted = prop.second->As<TypedProperty<aiVector3D> >()) + { + out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0); + } + else if (const TypedProperty<aiColor3D>* interpreted = prop.second->As<TypedProperty<aiColor3D> >()) + { + out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0); + } + else if (const TypedProperty<aiColor4D>* interpreted = prop.second->As<TypedProperty<aiColor4D> >()) + { + out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0); + } + else if (const TypedProperty<float>* interpreted = prop.second->As<TypedProperty<float> >()) + { + out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0); + } + else if (const TypedProperty<int>* interpreted = prop.second->As<TypedProperty<int> >()) + { + out_mat->AddProperty(&interpreted->Value(), 1, name.c_str(), 0, 0); + } + else if (const TypedProperty<bool>* interpreted = prop.second->As<TypedProperty<bool> >()) + { + int value = interpreted->Value() ? 1 : 0; + out_mat->AddProperty(&value, 1, name.c_str(), 0, 0); + } + else if (const TypedProperty<std::string>* interpreted = prop.second->As<TypedProperty<std::string> >()) + { + const aiString value = aiString(interpreted->Value()); + out_mat->AddProperty(&value, name.c_str(), 0, 0); + } + } + + // Add the textures' properties + + for (TextureMap::const_iterator it = textures.begin(); it != textures.end(); it++) { + + std::string name = prefix + it->first; + + const Texture* const tex = (*it).second; + if (tex != nullptr) + { + aiString path; + path.Set(tex->RelativeFilename()); + + const Video* media = tex->Media(); + if (media != nullptr && media->ContentLength() > 0) { + unsigned int index; + + VideoMap::const_iterator it = textures_converted.find(media); + if (it != textures_converted.end()) { + index = (*it).second; + } + else { + index = ConvertVideo(*media); + textures_converted[media] = index; + } + + // setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture) + path.data[0] = '*'; + path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index); + } + + out_mat->AddProperty(&path, (name + "|file").c_str(), aiTextureType_UNKNOWN, 0); + + aiUVTransform uvTrafo; + // XXX handle all kinds of UV transformations + uvTrafo.mScaling = tex->UVScaling(); + uvTrafo.mTranslation = tex->UVTranslation(); + out_mat->AddProperty(&uvTrafo, 1, (name + "|uvtrafo").c_str(), aiTextureType_UNKNOWN, 0); + + int uvIndex = 0; + + bool uvFound = false; + const std::string& uvSet = PropertyGet<std::string>(tex->Props(), "UVSet", uvFound); + if (uvFound) { + // "default" is the name which usually appears in the FbxFileTexture template + if (uvSet != "default" && uvSet.length()) { + // this is a bit awkward - we need to find a mesh that uses this + // material and scan its UV channels for the given UV name because + // assimp references UV channels by index, not by name. + + // XXX: the case that UV channels may appear in different orders + // in meshes is unhandled. A possible solution would be to sort + // the UV channels alphabetically, but this would have the side + // effect that the primary (first) UV channel would sometimes + // be moved, causing trouble when users read only the first + // UV channel and ignore UV channel assignments altogether. + + std::vector<aiMaterial*>::iterator materialIt = std::find(materials.begin(), materials.end(), out_mat); + const unsigned int matIndex = static_cast<unsigned int>(std::distance(materials.begin(), materialIt)); + + uvIndex = -1; + if (!mesh) + { + for (const MeshMap::value_type& v : meshes_converted) { + const MeshGeometry* const meshGeom = dynamic_cast<const MeshGeometry*>(v.first); + if (!meshGeom) { + continue; + } + + const MatIndexArray& mats = meshGeom->GetMaterialIndices(); + if (std::find(mats.begin(), mats.end(), matIndex) == mats.end()) { + continue; + } + + int index = -1; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + if (meshGeom->GetTextureCoords(i).empty()) { + break; + } + const std::string& name = meshGeom->GetTextureCoordChannelName(i); + if (name == uvSet) { + index = static_cast<int>(i); + break; + } + } + if (index == -1) { + FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material"); + continue; + } + + if (uvIndex == -1) { + uvIndex = index; + } + else { + FBXImporter::LogWarn("the UV channel named " + uvSet + " appears at different positions in meshes, results will be wrong"); + } + } + } + else + { + int index = -1; + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + if (mesh->GetTextureCoords(i).empty()) { + break; + } + const std::string& name = mesh->GetTextureCoordChannelName(i); + if (name == uvSet) { + index = static_cast<int>(i); + break; + } + } + if (index == -1) { + FBXImporter::LogWarn("did not find UV channel named " + uvSet + " in a mesh using this material"); + } + + if (uvIndex == -1) { + uvIndex = index; + } + } + + if (uvIndex == -1) { + FBXImporter::LogWarn("failed to resolve UV channel " + uvSet + ", using first UV channel"); + uvIndex = 0; + } + } + } + + out_mat->AddProperty(&uvIndex, 1, (name + "|uvwsrc").c_str(), aiTextureType_UNKNOWN, 0); + } + } + } + + + double FBXConverter::FrameRateToDouble(FileGlobalSettings::FrameRate fp, double customFPSVal) { + switch (fp) { + case FileGlobalSettings::FrameRate_DEFAULT: + return 1.0; + + case FileGlobalSettings::FrameRate_120: + return 120.0; + + case FileGlobalSettings::FrameRate_100: + return 100.0; + + case FileGlobalSettings::FrameRate_60: + return 60.0; + + case FileGlobalSettings::FrameRate_50: + return 50.0; + + case FileGlobalSettings::FrameRate_48: + return 48.0; + + case FileGlobalSettings::FrameRate_30: + case FileGlobalSettings::FrameRate_30_DROP: + return 30.0; + + case FileGlobalSettings::FrameRate_NTSC_DROP_FRAME: + case FileGlobalSettings::FrameRate_NTSC_FULL_FRAME: + return 29.9700262; + + case FileGlobalSettings::FrameRate_PAL: + return 25.0; + + case FileGlobalSettings::FrameRate_CINEMA: + return 24.0; + + case FileGlobalSettings::FrameRate_1000: + return 1000.0; + + case FileGlobalSettings::FrameRate_CINEMA_ND: + return 23.976; + + case FileGlobalSettings::FrameRate_CUSTOM: + return customFPSVal; + + case FileGlobalSettings::FrameRate_MAX: // this is to silence compiler warnings + break; + } + + ai_assert(false); + + return -1.0f; + } + + + void FBXConverter::ConvertAnimations() + { + // first of all determine framerate + const FileGlobalSettings::FrameRate fps = doc.GlobalSettings().TimeMode(); + const float custom = doc.GlobalSettings().CustomFrameRate(); + anim_fps = FrameRateToDouble(fps, custom); + + const std::vector<const AnimationStack*>& animations = doc.AnimationStacks(); + for (const AnimationStack* stack : animations) { + ConvertAnimationStack(*stack); + } + } + + std::string FBXConverter::FixNodeName(const std::string& name) { + // strip Model:: prefix, avoiding ambiguities (i.e. don't strip if + // this causes ambiguities, well possible between empty identifiers, + // such as "Model::" and ""). Make sure the behaviour is consistent + // across multiple calls to FixNodeName(). + if (name.substr(0, 7) == "Model::") { + std::string temp = name.substr(7); + return temp; + } + + return name; + } + + std::string FBXConverter::FixAnimMeshName(const std::string& name) { + if (name.length()) { + size_t indexOf = name.find_first_of("::"); + if (indexOf != std::string::npos && indexOf < name.size() - 2) { + return name.substr(indexOf + 2); + } + } + return name.length() ? name : "AnimMesh"; + } + + void FBXConverter::ConvertAnimationStack(const AnimationStack& st) + { + const AnimationLayerList& layers = st.Layers(); + if (layers.empty()) { + return; + } + + aiAnimation* const anim = new aiAnimation(); + animations.push_back(anim); + + // strip AnimationStack:: prefix + std::string name = st.Name(); + if (name.substr(0, 16) == "AnimationStack::") { + name = name.substr(16); + } + else if (name.substr(0, 11) == "AnimStack::") { + name = name.substr(11); + } + + anim->mName.Set(name); + + // need to find all nodes for which we need to generate node animations - + // it may happen that we need to merge multiple layers, though. + NodeMap node_map; + + // reverse mapping from curves to layers, much faster than querying + // the FBX DOM for it. + LayerMap layer_map; + + const char* prop_whitelist[] = { + "Lcl Scaling", + "Lcl Rotation", + "Lcl Translation", + "DeformPercent" + }; + + std::map<std::string, morphAnimData*> morphAnimDatas; + + for (const AnimationLayer* layer : layers) { + ai_assert(layer); + const AnimationCurveNodeList& nodes = layer->Nodes(prop_whitelist, 4); + for (const AnimationCurveNode* node : nodes) { + ai_assert(node); + const Model* const model = dynamic_cast<const Model*>(node->Target()); + if (model) { + const std::string& name = FixNodeName(model->Name()); + node_map[name].push_back(node); + layer_map[node] = layer; + continue; + } + const BlendShapeChannel* const bsc = dynamic_cast<const BlendShapeChannel*>(node->Target()); + if (bsc) { + ProcessMorphAnimDatas(&morphAnimDatas, bsc, node); + } + } + } + + // generate node animations + std::vector<aiNodeAnim*> node_anims; + + double min_time = 1e10; + double max_time = -1e10; + + int64_t start_time = st.LocalStart(); + int64_t stop_time = st.LocalStop(); + bool has_local_startstop = start_time != 0 || stop_time != 0; + if (!has_local_startstop) { + // no time range given, so accept every keyframe and use the actual min/max time + // the numbers are INT64_MIN/MAX, the 20000 is for safety because GenerateNodeAnimations uses an epsilon of 10000 + start_time = -9223372036854775807ll + 20000; + stop_time = 9223372036854775807ll - 20000; + } + + try { + for (const NodeMap::value_type& kv : node_map) { + GenerateNodeAnimations(node_anims, + kv.first, + kv.second, + layer_map, + start_time, stop_time, + max_time, + min_time); + } + } + catch (std::exception&) { + std::for_each(node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>()); + throw; + } + + if (node_anims.size() || morphAnimDatas.size()) { + if (node_anims.size()) { + anim->mChannels = new aiNodeAnim*[node_anims.size()](); + anim->mNumChannels = static_cast<unsigned int>(node_anims.size()); + std::swap_ranges(node_anims.begin(), node_anims.end(), anim->mChannels); + } + if (morphAnimDatas.size()) { + unsigned int numMorphMeshChannels = static_cast<unsigned int>(morphAnimDatas.size()); + anim->mMorphMeshChannels = new aiMeshMorphAnim*[numMorphMeshChannels]; + anim->mNumMorphMeshChannels = numMorphMeshChannels; + unsigned int i = 0; + for (auto morphAnimIt : morphAnimDatas) { + morphAnimData* animData = morphAnimIt.second; + unsigned int numKeys = static_cast<unsigned int>(animData->size()); + aiMeshMorphAnim* meshMorphAnim = new aiMeshMorphAnim(); + meshMorphAnim->mName.Set(morphAnimIt.first); + meshMorphAnim->mNumKeys = numKeys; + meshMorphAnim->mKeys = new aiMeshMorphKey[numKeys]; + unsigned int j = 0; + for (auto animIt : *animData) { + morphKeyData* keyData = animIt.second; + unsigned int numValuesAndWeights = static_cast<unsigned int>(keyData->values.size()); + meshMorphAnim->mKeys[j].mNumValuesAndWeights = numValuesAndWeights; + meshMorphAnim->mKeys[j].mValues = new unsigned int[numValuesAndWeights]; + meshMorphAnim->mKeys[j].mWeights = new double[numValuesAndWeights]; + meshMorphAnim->mKeys[j].mTime = CONVERT_FBX_TIME(animIt.first) * anim_fps; + for (unsigned int k = 0; k < numValuesAndWeights; k++) { + meshMorphAnim->mKeys[j].mValues[k] = keyData->values.at(k); + meshMorphAnim->mKeys[j].mWeights[k] = keyData->weights.at(k); + } + j++; + } + anim->mMorphMeshChannels[i++] = meshMorphAnim; + } + } + } + else { + // empty animations would fail validation, so drop them + delete anim; + animations.pop_back(); + FBXImporter::LogInfo("ignoring empty AnimationStack (using IK?): " + name); + return; + } + + double start_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(start_time) * anim_fps) : min_time; + double stop_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(stop_time) * anim_fps) : max_time; + + // adjust relative timing for animation + for (unsigned int c = 0; c < anim->mNumChannels; c++) { + aiNodeAnim* channel = anim->mChannels[c]; + for (uint32_t i = 0; i < channel->mNumPositionKeys; i++) { + channel->mPositionKeys[i].mTime -= start_time_fps; + } + for (uint32_t i = 0; i < channel->mNumRotationKeys; i++) { + channel->mRotationKeys[i].mTime -= start_time_fps; + } + for (uint32_t i = 0; i < channel->mNumScalingKeys; i++) { + channel->mScalingKeys[i].mTime -= start_time_fps; + } + } + for (unsigned int c = 0; c < anim->mNumMorphMeshChannels; c++) { + aiMeshMorphAnim* channel = anim->mMorphMeshChannels[c]; + for (uint32_t i = 0; i < channel->mNumKeys; i++) { + channel->mKeys[i].mTime -= start_time_fps; + } + } + + // for some mysterious reason, mDuration is simply the maximum key -- the + // validator always assumes animations to start at zero. + anim->mDuration = stop_time_fps - start_time_fps; + anim->mTicksPerSecond = anim_fps; + } + + // ------------------------------------------------------------------------------------------------ + void FBXConverter::ProcessMorphAnimDatas(std::map<std::string, morphAnimData*>* morphAnimDatas, const BlendShapeChannel* bsc, const AnimationCurveNode* node) { + std::vector<const Connection*> bscConnections = doc.GetConnectionsBySourceSequenced(bsc->ID(), "Deformer"); + for (const Connection* bscConnection : bscConnections) { + auto bs = dynamic_cast<const BlendShape*>(bscConnection->DestinationObject()); + if (bs) { + auto channelIt = std::find(bs->BlendShapeChannels().begin(), bs->BlendShapeChannels().end(), bsc); + if (channelIt != bs->BlendShapeChannels().end()) { + auto channelIndex = static_cast<unsigned int>(std::distance(bs->BlendShapeChannels().begin(), channelIt)); + std::vector<const Connection*> bsConnections = doc.GetConnectionsBySourceSequenced(bs->ID(), "Geometry"); + for (const Connection* bsConnection : bsConnections) { + auto geo = dynamic_cast<const Geometry*>(bsConnection->DestinationObject()); + if (geo) { + std::vector<const Connection*> geoConnections = doc.GetConnectionsBySourceSequenced(geo->ID(), "Model"); + for (const Connection* geoConnection : geoConnections) { + auto model = dynamic_cast<const Model*>(geoConnection->DestinationObject()); + if (model) { + auto geoIt = std::find(model->GetGeometry().begin(), model->GetGeometry().end(), geo); + auto geoIndex = static_cast<unsigned int>(std::distance(model->GetGeometry().begin(), geoIt)); + auto name = aiString(FixNodeName(model->Name() + "*")); + name.length = 1 + ASSIMP_itoa10(name.data + name.length, MAXLEN - 1, geoIndex); + morphAnimData* animData; + auto animIt = morphAnimDatas->find(name.C_Str()); + if (animIt == morphAnimDatas->end()) { + animData = new morphAnimData(); + morphAnimDatas->insert(std::make_pair(name.C_Str(), animData)); + } + else { + animData = animIt->second; + } + for (std::pair<std::string, const AnimationCurve*> curvesIt : node->Curves()) { + if (curvesIt.first == "d|DeformPercent") { + const AnimationCurve* animationCurve = curvesIt.second; + const KeyTimeList& keys = animationCurve->GetKeys(); + const KeyValueList& values = animationCurve->GetValues(); + unsigned int k = 0; + for (auto key : keys) { + morphKeyData* keyData; + auto keyIt = animData->find(key); + if (keyIt == animData->end()) { + keyData = new morphKeyData(); + animData->insert(std::make_pair(key, keyData)); + } + else { + keyData = keyIt->second; + } + keyData->values.push_back(channelIndex); + keyData->weights.push_back(values.at(k) / 100.0f); + k++; + } + } + } + } + } + } + } + } + } + } + } + + // ------------------------------------------------------------------------------------------------ +#ifdef ASSIMP_BUILD_DEBUG + // ------------------------------------------------------------------------------------------------ + // sanity check whether the input is ok + static void validateAnimCurveNodes(const std::vector<const AnimationCurveNode*>& curves, + bool strictMode) { + const Object* target(NULL); + for (const AnimationCurveNode* node : curves) { + if (!target) { + target = node->Target(); + } + if (node->Target() != target) { + FBXImporter::LogWarn("Node target is nullptr type."); + } + if (strictMode) { + ai_assert(node->Target() == target); + } + } + } +#endif // ASSIMP_BUILD_DEBUG + + // ------------------------------------------------------------------------------------------------ + void FBXConverter::GenerateNodeAnimations(std::vector<aiNodeAnim*>& node_anims, + const std::string& fixed_name, + const std::vector<const AnimationCurveNode*>& curves, + const LayerMap& layer_map, + int64_t start, int64_t stop, + double& max_time, + double& min_time) + { + + NodeMap node_property_map; + ai_assert(curves.size()); + +#ifdef ASSIMP_BUILD_DEBUG + validateAnimCurveNodes(curves, doc.Settings().strictMode); +#endif + const AnimationCurveNode* curve_node = NULL; + for (const AnimationCurveNode* node : curves) { + ai_assert(node); + + if (node->TargetProperty().empty()) { + FBXImporter::LogWarn("target property for animation curve not set: " + node->Name()); + continue; + } + + curve_node = node; + if (node->Curves().empty()) { + FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode: " + node->Name()); + continue; + } + + node_property_map[node->TargetProperty()].push_back(node); + } + + ai_assert(curve_node); + ai_assert(curve_node->TargetAsModel()); + + const Model& target = *curve_node->TargetAsModel(); + + // check for all possible transformation components + NodeMap::const_iterator chain[TransformationComp_MAXIMUM]; + + bool has_any = false; + bool has_complex = false; + + for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) { + const TransformationComp comp = static_cast<TransformationComp>(i); + + // inverse pivots don't exist in the input, we just generate them + if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) { + chain[i] = node_property_map.end(); + continue; + } + + chain[i] = node_property_map.find(NameTransformationCompProperty(comp)); + if (chain[i] != node_property_map.end()) { + + // check if this curves contains redundant information by looking + // up the corresponding node's transformation chain. + if (doc.Settings().optimizeEmptyAnimationCurves && + IsRedundantAnimationData(target, comp, (*chain[i]).second)) { + + FBXImporter::LogDebug("dropping redundant animation channel for node " + target.Name()); + continue; + } + + has_any = true; + + if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation) + { + has_complex = true; + } + } + } + + if (!has_any) { + FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames"); + return; + } + + // this needs to play nicely with GenerateTransformationNodeChain() which will + // be invoked _later_ (animations come first). If this node has only rotation, + // scaling and translation _and_ there are no animated other components either, + // we can use a single node and also a single node animation channel. + if (!has_complex && !NeedsComplexTransformationChain(target)) { + + aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain, + node_property_map.end(), + layer_map, + start, stop, + max_time, + min_time, + true // input is TRS order, assimp is SRT + ); + + ai_assert(nd); + if (nd->mNumPositionKeys == 0 && nd->mNumRotationKeys == 0 && nd->mNumScalingKeys == 0) { + delete nd; + } + else { + node_anims.push_back(nd); + } + return; + } + + // otherwise, things get gruesome and we need separate animation channels + // for each part of the transformation chain. Remember which channels + // we generated and pass this information to the node conversion + // code to avoid nodes that have identity transform, but non-identity + // animations, being dropped. + unsigned int flags = 0, bit = 0x1; + for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1) { + const TransformationComp comp = static_cast<TransformationComp>(i); + + if (chain[i] != node_property_map.end()) { + flags |= bit; + + ai_assert(comp != TransformationComp_RotationPivotInverse); + ai_assert(comp != TransformationComp_ScalingPivotInverse); + + const std::string& chain_name = NameTransformationChainNode(fixed_name, comp); + + aiNodeAnim* na = nullptr; + switch (comp) + { + case TransformationComp_Rotation: + case TransformationComp_PreRotation: + case TransformationComp_PostRotation: + case TransformationComp_GeometricRotation: + na = GenerateRotationNodeAnim(chain_name, + target, + (*chain[i]).second, + layer_map, + start, stop, + max_time, + min_time); + + break; + + case TransformationComp_RotationOffset: + case TransformationComp_RotationPivot: + case TransformationComp_ScalingOffset: + case TransformationComp_ScalingPivot: + case TransformationComp_Translation: + case TransformationComp_GeometricTranslation: + na = GenerateTranslationNodeAnim(chain_name, + target, + (*chain[i]).second, + layer_map, + start, stop, + max_time, + min_time); + + // pivoting requires us to generate an implicit inverse channel to undo the pivot translation + if (comp == TransformationComp_RotationPivot) { + const std::string& invName = NameTransformationChainNode(fixed_name, + TransformationComp_RotationPivotInverse); + + aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName, + target, + (*chain[i]).second, + layer_map, + start, stop, + max_time, + min_time, + true); + + ai_assert(inv); + if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) { + delete inv; + } + else { + node_anims.push_back(inv); + } + + ai_assert(TransformationComp_RotationPivotInverse > i); + flags |= bit << (TransformationComp_RotationPivotInverse - i); + } + else if (comp == TransformationComp_ScalingPivot) { + const std::string& invName = NameTransformationChainNode(fixed_name, + TransformationComp_ScalingPivotInverse); + + aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName, + target, + (*chain[i]).second, + layer_map, + start, stop, + max_time, + min_time, + true); + + ai_assert(inv); + if (inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0) { + delete inv; + } + else { + node_anims.push_back(inv); + } + + ai_assert(TransformationComp_RotationPivotInverse > i); + flags |= bit << (TransformationComp_RotationPivotInverse - i); + } + + break; + + case TransformationComp_Scaling: + case TransformationComp_GeometricScaling: + na = GenerateScalingNodeAnim(chain_name, + target, + (*chain[i]).second, + layer_map, + start, stop, + max_time, + min_time); + + break; + + default: + ai_assert(false); + } + + ai_assert(na); + if (na->mNumPositionKeys == 0 && na->mNumRotationKeys == 0 && na->mNumScalingKeys == 0) { + delete na; + } + else { + node_anims.push_back(na); + } + continue; + } + } + + node_anim_chain_bits[fixed_name] = flags; + } + + + bool FBXConverter::IsRedundantAnimationData(const Model& target, + TransformationComp comp, + const std::vector<const AnimationCurveNode*>& curves) { + ai_assert(curves.size()); + + // look for animation nodes with + // * sub channels for all relevant components set + // * one key/value pair per component + // * combined values match up the corresponding value in the bind pose node transformation + // only such nodes are 'redundant' for this function. + + if (curves.size() > 1) { + return false; + } + + const AnimationCurveNode& nd = *curves.front(); + const AnimationCurveMap& sub_curves = nd.Curves(); + + const AnimationCurveMap::const_iterator dx = sub_curves.find("d|X"); + const AnimationCurveMap::const_iterator dy = sub_curves.find("d|Y"); + const AnimationCurveMap::const_iterator dz = sub_curves.find("d|Z"); + + if (dx == sub_curves.end() || dy == sub_curves.end() || dz == sub_curves.end()) { + return false; + } + + const KeyValueList& vx = (*dx).second->GetValues(); + const KeyValueList& vy = (*dy).second->GetValues(); + const KeyValueList& vz = (*dz).second->GetValues(); + + if (vx.size() != 1 || vy.size() != 1 || vz.size() != 1) { + return false; + } + + const aiVector3D dyn_val = aiVector3D(vx[0], vy[0], vz[0]); + const aiVector3D& static_val = PropertyGet<aiVector3D>(target.Props(), + NameTransformationCompProperty(comp), + TransformationCompDefaultValue(comp) + ); + + const float epsilon = 1e-6f; + return (dyn_val - static_val).SquareLength() < epsilon; + } + + + aiNodeAnim* FBXConverter::GenerateRotationNodeAnim(const std::string& name, + const Model& target, + const std::vector<const AnimationCurveNode*>& curves, + const LayerMap& layer_map, + int64_t start, int64_t stop, + double& max_time, + double& min_time) + { + std::unique_ptr<aiNodeAnim> na(new aiNodeAnim()); + na->mNodeName.Set(name); + + ConvertRotationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time, target.RotationOrder()); + + // dummy scaling key + na->mScalingKeys = new aiVectorKey[1]; + na->mNumScalingKeys = 1; + + na->mScalingKeys[0].mTime = 0.; + na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f); + + // dummy position key + na->mPositionKeys = new aiVectorKey[1]; + na->mNumPositionKeys = 1; + + na->mPositionKeys[0].mTime = 0.; + na->mPositionKeys[0].mValue = aiVector3D(); + + return na.release(); + } + + aiNodeAnim* FBXConverter::GenerateScalingNodeAnim(const std::string& name, + const Model& /*target*/, + const std::vector<const AnimationCurveNode*>& curves, + const LayerMap& layer_map, + int64_t start, int64_t stop, + double& max_time, + double& min_time) + { + std::unique_ptr<aiNodeAnim> na(new aiNodeAnim()); + na->mNodeName.Set(name); + + ConvertScaleKeys(na.get(), curves, layer_map, start, stop, max_time, min_time); + + // dummy rotation key + na->mRotationKeys = new aiQuatKey[1]; + na->mNumRotationKeys = 1; + + na->mRotationKeys[0].mTime = 0.; + na->mRotationKeys[0].mValue = aiQuaternion(); + + // dummy position key + na->mPositionKeys = new aiVectorKey[1]; + na->mNumPositionKeys = 1; + + na->mPositionKeys[0].mTime = 0.; + na->mPositionKeys[0].mValue = aiVector3D(); + + return na.release(); + } + + aiNodeAnim* FBXConverter::GenerateTranslationNodeAnim(const std::string& name, + const Model& /*target*/, + const std::vector<const AnimationCurveNode*>& curves, + const LayerMap& layer_map, + int64_t start, int64_t stop, + double& max_time, + double& min_time, + bool inverse) { + std::unique_ptr<aiNodeAnim> na(new aiNodeAnim()); + na->mNodeName.Set(name); + + ConvertTranslationKeys(na.get(), curves, layer_map, start, stop, max_time, min_time); + + if (inverse) { + for (unsigned int i = 0; i < na->mNumPositionKeys; ++i) { + na->mPositionKeys[i].mValue *= -1.0f; + } + } + + // dummy scaling key + na->mScalingKeys = new aiVectorKey[1]; + na->mNumScalingKeys = 1; + + na->mScalingKeys[0].mTime = 0.; + na->mScalingKeys[0].mValue = aiVector3D(1.0f, 1.0f, 1.0f); + + // dummy rotation key + na->mRotationKeys = new aiQuatKey[1]; + na->mNumRotationKeys = 1; + + na->mRotationKeys[0].mTime = 0.; + na->mRotationKeys[0].mValue = aiQuaternion(); + + return na.release(); + } + + aiNodeAnim* FBXConverter::GenerateSimpleNodeAnim(const std::string& name, + const Model& target, + NodeMap::const_iterator chain[TransformationComp_MAXIMUM], + NodeMap::const_iterator iter_end, + const LayerMap& layer_map, + int64_t start, int64_t stop, + double& max_time, + double& min_time, + bool reverse_order) + + { + std::unique_ptr<aiNodeAnim> na(new aiNodeAnim()); + na->mNodeName.Set(name); + + const PropertyTable& props = target.Props(); + + // need to convert from TRS order to SRT? + if (reverse_order) { + + aiVector3D def_scale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f)); + aiVector3D def_translate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f)); + aiVector3D def_rot = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f)); + + KeyFrameListList scaling; + KeyFrameListList translation; + KeyFrameListList rotation; + + if (chain[TransformationComp_Scaling] != iter_end) { + scaling = GetKeyframeList((*chain[TransformationComp_Scaling]).second, start, stop); + } + + if (chain[TransformationComp_Translation] != iter_end) { + translation = GetKeyframeList((*chain[TransformationComp_Translation]).second, start, stop); + } + + if (chain[TransformationComp_Rotation] != iter_end) { + rotation = GetKeyframeList((*chain[TransformationComp_Rotation]).second, start, stop); + } + + KeyFrameListList joined; + joined.insert(joined.end(), scaling.begin(), scaling.end()); + joined.insert(joined.end(), translation.begin(), translation.end()); + joined.insert(joined.end(), rotation.begin(), rotation.end()); + + const KeyTimeList& times = GetKeyTimeList(joined); + + aiQuatKey* out_quat = new aiQuatKey[times.size()]; + aiVectorKey* out_scale = new aiVectorKey[times.size()]; + aiVectorKey* out_translation = new aiVectorKey[times.size()]; + + if (times.size()) + { + ConvertTransformOrder_TRStoSRT(out_quat, out_scale, out_translation, + scaling, + translation, + rotation, + times, + max_time, + min_time, + target.RotationOrder(), + def_scale, + def_translate, + def_rot); + } + + // XXX remove duplicates / redundant keys which this operation did + // likely produce if not all three channels were equally dense. + + na->mNumScalingKeys = static_cast<unsigned int>(times.size()); + na->mNumRotationKeys = na->mNumScalingKeys; + na->mNumPositionKeys = na->mNumScalingKeys; + + na->mScalingKeys = out_scale; + na->mRotationKeys = out_quat; + na->mPositionKeys = out_translation; + } + else { + + // if a particular transformation is not given, grab it from + // the corresponding node to meet the semantics of aiNodeAnim, + // which requires all of rotation, scaling and translation + // to be set. + if (chain[TransformationComp_Scaling] != iter_end) { + ConvertScaleKeys(na.get(), (*chain[TransformationComp_Scaling]).second, + layer_map, + start, stop, + max_time, + min_time); + } + else { + na->mScalingKeys = new aiVectorKey[1]; + na->mNumScalingKeys = 1; + + na->mScalingKeys[0].mTime = 0.; + na->mScalingKeys[0].mValue = PropertyGet(props, "Lcl Scaling", + aiVector3D(1.f, 1.f, 1.f)); + } + + if (chain[TransformationComp_Rotation] != iter_end) { + ConvertRotationKeys(na.get(), (*chain[TransformationComp_Rotation]).second, + layer_map, + start, stop, + max_time, + min_time, + target.RotationOrder()); + } + else { + na->mRotationKeys = new aiQuatKey[1]; + na->mNumRotationKeys = 1; + + na->mRotationKeys[0].mTime = 0.; + na->mRotationKeys[0].mValue = EulerToQuaternion( + PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f)), + target.RotationOrder()); + } + + if (chain[TransformationComp_Translation] != iter_end) { + ConvertTranslationKeys(na.get(), (*chain[TransformationComp_Translation]).second, + layer_map, + start, stop, + max_time, + min_time); + } + else { + na->mPositionKeys = new aiVectorKey[1]; + na->mNumPositionKeys = 1; + + na->mPositionKeys[0].mTime = 0.; + na->mPositionKeys[0].mValue = PropertyGet(props, "Lcl Translation", + aiVector3D(0.f, 0.f, 0.f)); + } + + } + return na.release(); + } + + FBXConverter::KeyFrameListList FBXConverter::GetKeyframeList(const std::vector<const AnimationCurveNode*>& nodes, int64_t start, int64_t stop) + { + KeyFrameListList inputs; + inputs.reserve(nodes.size() * 3); + + //give some breathing room for rounding errors + int64_t adj_start = start - 10000; + int64_t adj_stop = stop + 10000; + + for (const AnimationCurveNode* node : nodes) { + ai_assert(node); + + const AnimationCurveMap& curves = node->Curves(); + for (const AnimationCurveMap::value_type& kv : curves) { + + unsigned int mapto; + if (kv.first == "d|X") { + mapto = 0; + } + else if (kv.first == "d|Y") { + mapto = 1; + } + else if (kv.first == "d|Z") { + mapto = 2; + } + else { + FBXImporter::LogWarn("ignoring scale animation curve, did not recognize target component"); + continue; + } + + const AnimationCurve* const curve = kv.second; + ai_assert(curve->GetKeys().size() == curve->GetValues().size() && curve->GetKeys().size()); + + //get values within the start/stop time window + std::shared_ptr<KeyTimeList> Keys(new KeyTimeList()); + std::shared_ptr<KeyValueList> Values(new KeyValueList()); + const size_t count = curve->GetKeys().size(); + Keys->reserve(count); + Values->reserve(count); + for (size_t n = 0; n < count; n++) + { + int64_t k = curve->GetKeys().at(n); + if (k >= adj_start && k <= adj_stop) + { + Keys->push_back(k); + Values->push_back(curve->GetValues().at(n)); + } + } + + inputs.push_back(std::make_tuple(Keys, Values, mapto)); + } + } + return inputs; // pray for NRVO :-) + } + + + KeyTimeList FBXConverter::GetKeyTimeList(const KeyFrameListList& inputs) { + ai_assert(!inputs.empty()); + + // reserve some space upfront - it is likely that the key-frame lists + // have matching time values, so max(of all key-frame lists) should + // be a good estimate. + KeyTimeList keys; + + size_t estimate = 0; + for (const KeyFrameList& kfl : inputs) { + estimate = std::max(estimate, std::get<0>(kfl)->size()); + } + + keys.reserve(estimate); + + std::vector<unsigned int> next_pos; + next_pos.resize(inputs.size(), 0); + + const size_t count = inputs.size(); + while (true) { + + int64_t min_tick = std::numeric_limits<int64_t>::max(); + for (size_t i = 0; i < count; ++i) { + const KeyFrameList& kfl = inputs[i]; + + if (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) < min_tick) { + min_tick = std::get<0>(kfl)->at(next_pos[i]); + } + } + + if (min_tick == std::numeric_limits<int64_t>::max()) { + break; + } + keys.push_back(min_tick); + + for (size_t i = 0; i < count; ++i) { + const KeyFrameList& kfl = inputs[i]; + + + while (std::get<0>(kfl)->size() > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == min_tick) { + ++next_pos[i]; + } + } + } + + return keys; + } + + void FBXConverter::InterpolateKeys(aiVectorKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs, + const aiVector3D& def_value, + double& max_time, + double& min_time) { + ai_assert(!keys.empty()); + ai_assert(nullptr != valOut); + + std::vector<unsigned int> next_pos; + const size_t count(inputs.size()); + + next_pos.resize(inputs.size(), 0); + + for (KeyTimeList::value_type time : keys) { + ai_real result[3] = { def_value.x, def_value.y, def_value.z }; + + for (size_t i = 0; i < count; ++i) { + const KeyFrameList& kfl = inputs[i]; + + const size_t ksize = std::get<0>(kfl)->size(); + if (ksize == 0) { + continue; + } + if (ksize > next_pos[i] && std::get<0>(kfl)->at(next_pos[i]) == time) { + ++next_pos[i]; + } + + const size_t id0 = next_pos[i] > 0 ? next_pos[i] - 1 : 0; + const size_t id1 = next_pos[i] == ksize ? ksize - 1 : next_pos[i]; + + // use lerp for interpolation + const KeyValueList::value_type valueA = std::get<1>(kfl)->at(id0); + const KeyValueList::value_type valueB = std::get<1>(kfl)->at(id1); + + const KeyTimeList::value_type timeA = std::get<0>(kfl)->at(id0); + const KeyTimeList::value_type timeB = std::get<0>(kfl)->at(id1); + + const ai_real factor = timeB == timeA ? ai_real(0.) : static_cast<ai_real>((time - timeA)) / (timeB - timeA); + const ai_real interpValue = static_cast<ai_real>(valueA + (valueB - valueA) * factor); + + result[std::get<2>(kfl)] = interpValue; + } + + // magic value to convert fbx times to seconds + valOut->mTime = CONVERT_FBX_TIME(time) * anim_fps; + + min_time = std::min(min_time, valOut->mTime); + max_time = std::max(max_time, valOut->mTime); + + valOut->mValue.x = result[0]; + valOut->mValue.y = result[1]; + valOut->mValue.z = result[2]; + + ++valOut; + } + } + + void FBXConverter::InterpolateKeys(aiQuatKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs, + const aiVector3D& def_value, + double& maxTime, + double& minTime, + Model::RotOrder order) + { + ai_assert(!keys.empty()); + ai_assert(nullptr != valOut); + + std::unique_ptr<aiVectorKey[]> temp(new aiVectorKey[keys.size()]); + InterpolateKeys(temp.get(), keys, inputs, def_value, maxTime, minTime); + + aiMatrix4x4 m; + + aiQuaternion lastq; + + for (size_t i = 0, c = keys.size(); i < c; ++i) { + + valOut[i].mTime = temp[i].mTime; + + GetRotationMatrix(order, temp[i].mValue, m); + aiQuaternion quat = aiQuaternion(aiMatrix3x3(m)); + + // take shortest path by checking the inner product + // http://www.3dkingdoms.com/weekly/weekly.php?a=36 + if (quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0) + { + quat.x = -quat.x; + quat.y = -quat.y; + quat.z = -quat.z; + quat.w = -quat.w; + } + lastq = quat; + + valOut[i].mValue = quat; + } + } + + void FBXConverter::ConvertTransformOrder_TRStoSRT(aiQuatKey* out_quat, aiVectorKey* out_scale, + aiVectorKey* out_translation, + const KeyFrameListList& scaling, + const KeyFrameListList& translation, + const KeyFrameListList& rotation, + const KeyTimeList& times, + double& maxTime, + double& minTime, + Model::RotOrder order, + const aiVector3D& def_scale, + const aiVector3D& def_translate, + const aiVector3D& def_rotation) + { + if (rotation.size()) { + InterpolateKeys(out_quat, times, rotation, def_rotation, maxTime, minTime, order); + } + else { + for (size_t i = 0; i < times.size(); ++i) { + out_quat[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps; + out_quat[i].mValue = EulerToQuaternion(def_rotation, order); + } + } + + if (scaling.size()) { + InterpolateKeys(out_scale, times, scaling, def_scale, maxTime, minTime); + } + else { + for (size_t i = 0; i < times.size(); ++i) { + out_scale[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps; + out_scale[i].mValue = def_scale; + } + } + + if (translation.size()) { + InterpolateKeys(out_translation, times, translation, def_translate, maxTime, minTime); + } + else { + for (size_t i = 0; i < times.size(); ++i) { + out_translation[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps; + out_translation[i].mValue = def_translate; + } + } + + const size_t count = times.size(); + for (size_t i = 0; i < count; ++i) { + aiQuaternion& r = out_quat[i].mValue; + aiVector3D& s = out_scale[i].mValue; + aiVector3D& t = out_translation[i].mValue; + + aiMatrix4x4 mat, temp; + aiMatrix4x4::Translation(t, mat); + mat *= aiMatrix4x4(r.GetMatrix()); + mat *= aiMatrix4x4::Scaling(s, temp); + + mat.Decompose(s, r, t); + } + } + + aiQuaternion FBXConverter::EulerToQuaternion(const aiVector3D& rot, Model::RotOrder order) + { + aiMatrix4x4 m; + GetRotationMatrix(order, rot, m); + + return aiQuaternion(aiMatrix3x3(m)); + } + + void FBXConverter::ConvertScaleKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& /*layers*/, + int64_t start, int64_t stop, + double& maxTime, + double& minTime) + { + ai_assert(nodes.size()); + + // XXX for now, assume scale should be blended geometrically (i.e. two + // layers should be multiplied with each other). There is a FBX + // property in the layer to specify the behaviour, though. + + const KeyFrameListList& inputs = GetKeyframeList(nodes, start, stop); + const KeyTimeList& keys = GetKeyTimeList(inputs); + + na->mNumScalingKeys = static_cast<unsigned int>(keys.size()); + na->mScalingKeys = new aiVectorKey[keys.size()]; + if (keys.size() > 0) + InterpolateKeys(na->mScalingKeys, keys, inputs, aiVector3D(1.0f, 1.0f, 1.0f), maxTime, minTime); + } + + void FBXConverter::ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, + const LayerMap& /*layers*/, + int64_t start, int64_t stop, + double& maxTime, + double& minTime) + { + ai_assert(nodes.size()); + + // XXX see notes in ConvertScaleKeys() + const KeyFrameListList& inputs = GetKeyframeList(nodes, start, stop); + const KeyTimeList& keys = GetKeyTimeList(inputs); + + na->mNumPositionKeys = static_cast<unsigned int>(keys.size()); + na->mPositionKeys = new aiVectorKey[keys.size()]; + if (keys.size() > 0) + InterpolateKeys(na->mPositionKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime); + } + + void FBXConverter::ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, + const LayerMap& /*layers*/, + int64_t start, int64_t stop, + double& maxTime, + double& minTime, + Model::RotOrder order) + { + ai_assert(nodes.size()); + + // XXX see notes in ConvertScaleKeys() + const std::vector< KeyFrameList >& inputs = GetKeyframeList(nodes, start, stop); + const KeyTimeList& keys = GetKeyTimeList(inputs); + + na->mNumRotationKeys = static_cast<unsigned int>(keys.size()); + na->mRotationKeys = new aiQuatKey[keys.size()]; + if (!keys.empty()) { + InterpolateKeys(na->mRotationKeys, keys, inputs, aiVector3D(0.0f, 0.0f, 0.0f), maxTime, minTime, order); + } + } + + void FBXConverter::ConvertGlobalSettings() { + if (nullptr == out) { + return; + } + + out->mMetaData = aiMetadata::Alloc(15); + out->mMetaData->Set(0, "UpAxis", doc.GlobalSettings().UpAxis()); + out->mMetaData->Set(1, "UpAxisSign", doc.GlobalSettings().UpAxisSign()); + out->mMetaData->Set(2, "FrontAxis", doc.GlobalSettings().FrontAxis()); + out->mMetaData->Set(3, "FrontAxisSign", doc.GlobalSettings().FrontAxisSign()); + out->mMetaData->Set(4, "CoordAxis", doc.GlobalSettings().CoordAxis()); + out->mMetaData->Set(5, "CoordAxisSign", doc.GlobalSettings().CoordAxisSign()); + out->mMetaData->Set(6, "OriginalUpAxis", doc.GlobalSettings().OriginalUpAxis()); + out->mMetaData->Set(7, "OriginalUpAxisSign", doc.GlobalSettings().OriginalUpAxisSign()); + out->mMetaData->Set(8, "UnitScaleFactor", (double)doc.GlobalSettings().UnitScaleFactor()); + out->mMetaData->Set(9, "OriginalUnitScaleFactor", doc.GlobalSettings().OriginalUnitScaleFactor()); + out->mMetaData->Set(10, "AmbientColor", doc.GlobalSettings().AmbientColor()); + out->mMetaData->Set(11, "FrameRate", (int)doc.GlobalSettings().TimeMode()); + out->mMetaData->Set(12, "TimeSpanStart", doc.GlobalSettings().TimeSpanStart()); + out->mMetaData->Set(13, "TimeSpanStop", doc.GlobalSettings().TimeSpanStop()); + out->mMetaData->Set(14, "CustomFrameRate", doc.GlobalSettings().CustomFrameRate()); + } + + void FBXConverter::TransferDataToScene() + { + ai_assert(!out->mMeshes); + ai_assert(!out->mNumMeshes); + + // note: the trailing () ensures initialization with NULL - not + // many C++ users seem to know this, so pointing it out to avoid + // confusion why this code works. + + if (meshes.size()) { + out->mMeshes = new aiMesh*[meshes.size()](); + out->mNumMeshes = static_cast<unsigned int>(meshes.size()); + + std::swap_ranges(meshes.begin(), meshes.end(), out->mMeshes); + } + + if (materials.size()) { + out->mMaterials = new aiMaterial*[materials.size()](); + out->mNumMaterials = static_cast<unsigned int>(materials.size()); + + std::swap_ranges(materials.begin(), materials.end(), out->mMaterials); + } + + if (animations.size()) { + out->mAnimations = new aiAnimation*[animations.size()](); + out->mNumAnimations = static_cast<unsigned int>(animations.size()); + + std::swap_ranges(animations.begin(), animations.end(), out->mAnimations); + } + + if (lights.size()) { + out->mLights = new aiLight*[lights.size()](); + out->mNumLights = static_cast<unsigned int>(lights.size()); + + std::swap_ranges(lights.begin(), lights.end(), out->mLights); + } + + if (cameras.size()) { + out->mCameras = new aiCamera*[cameras.size()](); + out->mNumCameras = static_cast<unsigned int>(cameras.size()); + + std::swap_ranges(cameras.begin(), cameras.end(), out->mCameras); + } + + if (textures.size()) { + out->mTextures = new aiTexture*[textures.size()](); + out->mNumTextures = static_cast<unsigned int>(textures.size()); + + std::swap_ranges(textures.begin(), textures.end(), out->mTextures); + } + } + + // ------------------------------------------------------------------------------------------------ + void ConvertToAssimpScene(aiScene* out, const Document& doc) + { + FBXConverter converter(out, doc); + } + + } // !FBX +} // !Assimp + +#endif |