diff options
Diffstat (limited to 'tests')
-rw-r--r-- | tests/core/input/test_input_event_key.h | 2 | ||||
-rw-r--r-- | tests/core/math/test_basis.h | 57 | ||||
-rw-r--r-- | tests/core/math/test_quaternion.h | 2 | ||||
-rw-r--r-- | tests/core/math/test_vector2.h | 83 | ||||
-rw-r--r-- | tests/core/math/test_vector2i.h | 16 | ||||
-rw-r--r-- | tests/core/math/test_vector3.h | 81 | ||||
-rw-r--r-- | tests/core/math/test_vector3i.h | 16 | ||||
-rw-r--r-- | tests/core/math/test_vector4.h | 16 | ||||
-rw-r--r-- | tests/core/math/test_vector4i.h | 16 | ||||
-rw-r--r-- | tests/core/object/test_class_db.h | 4 | ||||
-rw-r--r-- | tests/core/string/test_string.h | 16 | ||||
-rw-r--r-- | tests/scene/test_audio_stream_wav.h | 2 | ||||
-rw-r--r-- | tests/scene/test_bit_map.h | 6 |
13 files changed, 283 insertions, 34 deletions
diff --git a/tests/core/input/test_input_event_key.h b/tests/core/input/test_input_event_key.h index 4c9cd2002c..ef0a656b18 100644 --- a/tests/core/input/test_input_event_key.h +++ b/tests/core/input/test_input_event_key.h @@ -118,7 +118,7 @@ TEST_CASE("[InputEventKey] Key correctly converts itself to text") { InputEventKey none_key2; - // Key is None without modifers with a physical key. + // Key is None without modifiers with a physical key. none_key2.set_keycode(Key::NONE); none_key2.set_physical_keycode(Key::ENTER); diff --git a/tests/core/math/test_basis.h b/tests/core/math/test_basis.h index ae8ca4acde..b6493c5726 100644 --- a/tests/core/math/test_basis.h +++ b/tests/core/math/test_basis.h @@ -47,7 +47,7 @@ enum RotOrder { EulerZYX }; -Vector3 deg2rad(const Vector3 &p_rotation) { +Vector3 deg_to_rad(const Vector3 &p_rotation) { return p_rotation / 180.0 * Math_PI; } @@ -155,7 +155,7 @@ void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) { // are correct. // Euler to rotation - const Vector3 original_euler = deg2rad(deg_original_euler); + const Vector3 original_euler = deg_to_rad(deg_original_euler); const Basis to_rotation = EulerToBasis(rot_order, original_euler); // Euler from rotation @@ -281,6 +281,59 @@ TEST_CASE("[Stress][Basis] Euler conversions") { } } } + +TEST_CASE("[Basis] Set axis angle") { + Vector3 axis; + real_t angle; + real_t pi = (real_t)Math_PI; + + // Testing the singularity when the angle is 0°. + Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1); + identity.get_axis_angle(axis, angle); + CHECK(angle == 0); + + // Testing the singularity when the angle is 180°. + Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1); + singularityPi.get_axis_angle(axis, angle); + CHECK(Math::is_equal_approx(angle, pi)); + + // Testing reversing the an axis (of an 30° angle). + float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0)); + Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1); + Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1); + + z_positive.get_axis_angle(axis, angle); + CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0))); + CHECK(axis == Vector3(0, 0, 1)); + + z_negative.get_axis_angle(axis, angle); + CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0))); + CHECK(axis == Vector3(0, 0, -1)); + + // Testing a rotation of 90° on x-y-z. + Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0); + x90deg.get_axis_angle(axis, angle); + CHECK(Math::is_equal_approx(angle, pi / (real_t)2)); + CHECK(axis == Vector3(1, 0, 0)); + + Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0); + y90deg.get_axis_angle(axis, angle); + CHECK(axis == Vector3(0, 1, 0)); + + Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1); + z90deg.get_axis_angle(axis, angle); + CHECK(axis == Vector3(0, 0, 1)); + + // Regression test: checks that the method returns a small angle (not 0). + Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad. + tiny.get_axis_angle(axis, angle); + CHECK(Math::is_equal_approx(angle, (real_t)0.001, (real_t)0.0001)); + + // Regression test: checks that the method returns an angle which is a number (not NaN) + Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024); + bugNan.get_axis_angle(axis, angle); + CHECK(!Math::is_nan(angle)); +} } // namespace TestBasis #endif // TEST_BASIS_H diff --git a/tests/core/math/test_quaternion.h b/tests/core/math/test_quaternion.h index 1b80ffba0b..63d30759bb 100644 --- a/tests/core/math/test_quaternion.h +++ b/tests/core/math/test_quaternion.h @@ -160,7 +160,7 @@ TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") { double pitch = Math::deg_to_rad(30.0); double roll = Math::deg_to_rad(10.0); - // Generate YXZ comparision data (Z-then-X-then-Y) using single-axis Euler + // Generate YXZ comparison data (Z-then-X-then-Y) using single-axis Euler // constructor and quaternion product, both tested separately. Vector3 euler_y(0.0, yaw, 0.0); Quaternion q_y(euler_y); diff --git a/tests/core/math/test_vector2.h b/tests/core/math/test_vector2.h index 9b7800164a..0d7f1163e4 100644 --- a/tests/core/math/test_vector2.h +++ b/tests/core/math/test_vector2.h @@ -37,6 +37,14 @@ namespace TestVector2 { +TEST_CASE("[Vector2] Constructor methods") { + const Vector2 vector_empty = Vector2(); + const Vector2 vector_zero = Vector2(0.0, 0.0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector2 Constructor with no inputs should return a zero Vector2."); +} + TEST_CASE("[Vector2] Angle methods") { const Vector2 vector_x = Vector2(1, 0); const Vector2 vector_y = Vector2(0, 1); @@ -102,6 +110,9 @@ TEST_CASE("[Vector2] Interpolation methods") { Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5), "Vector2 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( + Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)), + "Vector2 slerp should work as expected."); + CHECK_MESSAGE( Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919), "Vector2 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( @@ -171,6 +182,15 @@ TEST_CASE("[Vector2] Normalization methods") { CHECK_MESSAGE( Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 normalized should work as expected."); + + Vector2 vector = Vector2(3.2, -5.4); + vector.normalize(); + CHECK_MESSAGE( + vector == Vector2(3.2, -5.4).normalized(), + "Vector2 normalize should convert same way as Vector2 normalized."); + CHECK_MESSAGE( + vector.is_equal_approx(Vector2(0.509802390301732898898, -0.860291533634174266891)), + "Vector2 normalize should work as expected."); } TEST_CASE("[Vector2] Operators") { @@ -276,12 +296,14 @@ TEST_CASE("[Vector2] Other methods") { CHECK_MESSAGE( Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4), "Vector2 aspect should work as expected."); + CHECK_MESSAGE( vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()), "Vector2 direction_to should work as expected."); CHECK_MESSAGE( Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 direction_to should work as expected."); + CHECK_MESSAGE( vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)), "Vector2 posmod should work as expected."); @@ -294,10 +316,21 @@ TEST_CASE("[Vector2] Other methods") { CHECK_MESSAGE( (-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)), "Vector2 posmodv should work as expected."); + + CHECK_MESSAGE( + vector.rotated(Math_TAU).is_equal_approx(Vector2(1.2, 3.4)), + "Vector2 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)), "Vector2 rotated should work as expected."); CHECK_MESSAGE( + vector.rotated(Math_TAU / 3).is_equal_approx(Vector2(-3.544486372867091398996, -0.660769515458673623883)), + "Vector2 rotated should work as expected."); + CHECK_MESSAGE( + vector.rotated(Math_TAU / 2).is_equal_approx(vector.rotated(Math_TAU / -2)), + "Vector2 rotated should work as expected."); + + CHECK_MESSAGE( vector.snapped(Vector2(1, 1)) == Vector2(1, 3), "Vector2 snapped to integers should be the same as rounding."); CHECK_MESSAGE( @@ -306,23 +339,57 @@ TEST_CASE("[Vector2] Other methods") { CHECK_MESSAGE( vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5), "Vector2 snapped to 0.25 should give exact results."); + + CHECK_MESSAGE( + Vector2(1.2, 2.5).is_equal_approx(vector.min(Vector2(3.0, 2.5))), + "Vector2 min should return expected value."); + + CHECK_MESSAGE( + Vector2(5.3, 3.4).is_equal_approx(vector.max(Vector2(5.3, 2.0))), + "Vector2 max should return expected value."); } TEST_CASE("[Vector2] Plane methods") { const Vector2 vector = Vector2(1.2, 3.4); const Vector2 vector_y = Vector2(0, 1); + const Vector2 vector_normal = Vector2(0.95879811270838721622267, 0.2840883296913739899919); + const Vector2 vector_non_normal = Vector2(5.4, 1.6); CHECK_MESSAGE( vector.bounce(vector_y) == Vector2(1.2, -3.4), "Vector2 bounce on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.bounce(vector_normal).is_equal_approx(Vector2(-2.85851197982345523329, 2.197477931904161412358)), + "Vector2 bounce with normal should return expected value."); + CHECK_MESSAGE( vector.reflect(vector_y) == Vector2(-1.2, 3.4), "Vector2 reflect on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.reflect(vector_normal).is_equal_approx(Vector2(2.85851197982345523329, -2.197477931904161412358)), + "Vector2 reflect with normal should return expected value."); + CHECK_MESSAGE( vector.project(vector_y) == Vector2(0, 3.4), - "Vector2 projected on the X axis should only give the Y component."); + "Vector2 projected on the Y axis should only give the Y component."); + CHECK_MESSAGE( + vector.project(vector_normal).is_equal_approx(Vector2(2.0292559899117276166, 0.60126103404791929382)), + "Vector2 projected on a normal should return expected value."); CHECK_MESSAGE( vector.slide(vector_y) == Vector2(1.2, 0), "Vector2 slide on a plane with normal of the Y axis should set the Y to zero."); + CHECK_MESSAGE( + vector.slide(vector_normal).is_equal_approx(Vector2(-0.8292559899117276166456, 2.798738965952080706179)), + "Vector2 slide with normal should return expected value."); + // There's probably a better way to test these ones? + ERR_PRINT_OFF; + CHECK_MESSAGE( + vector.bounce(vector_non_normal).is_equal_approx(Vector2()), + "Vector2 bounce should return empty Vector2 with non-normalised input."); + CHECK_MESSAGE( + vector.reflect(vector_non_normal).is_equal_approx(Vector2()), + "Vector2 reflect should return empty Vector2 with non-normalised input."); + CHECK_MESSAGE( + vector.slide(vector_non_normal).is_equal_approx(Vector2()), + "Vector2 slide should return empty Vector2 with non-normalised input."); + ERR_PRINT_ON; } TEST_CASE("[Vector2] Rounding methods") { @@ -367,12 +434,20 @@ TEST_CASE("[Vector2] Rounding methods") { TEST_CASE("[Vector2] Linear algebra methods") { const Vector2 vector_x = Vector2(1, 0); const Vector2 vector_y = Vector2(0, 1); + const Vector2 a = Vector2(3.5, 8.5); + const Vector2 b = Vector2(5.2, 4.6); CHECK_MESSAGE( vector_x.cross(vector_y) == 1, "Vector2 cross product of X and Y should give 1."); CHECK_MESSAGE( vector_y.cross(vector_x) == -1, "Vector2 cross product of Y and X should give negative 1."); + CHECK_MESSAGE( + Math::is_equal_approx(a.cross(b), (real_t)-28.1), + "Vector2 cross should return expected value."); + CHECK_MESSAGE( + Math::is_equal_approx(Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)), (real_t)-28.1), + "Vector2 cross should return expected value."); CHECK_MESSAGE( vector_x.dot(vector_y) == 0.0, @@ -383,6 +458,12 @@ TEST_CASE("[Vector2] Linear algebra methods") { CHECK_MESSAGE( (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector2 dot product of same direction vectors should behave as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(a.dot(b), (real_t)57.3), + "Vector2 dot should return expected value."); + CHECK_MESSAGE( + Math::is_equal_approx(Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)), (real_t)-57.3), + "Vector2 dot should return expected value."); } } // namespace TestVector2 diff --git a/tests/core/math/test_vector2i.h b/tests/core/math/test_vector2i.h index 841bb793a4..49b0632e3c 100644 --- a/tests/core/math/test_vector2i.h +++ b/tests/core/math/test_vector2i.h @@ -37,6 +37,14 @@ namespace TestVector2i { +TEST_CASE("[Vector2i] Constructor methods") { + const Vector2i vector_empty = Vector2i(); + const Vector2i vector_zero = Vector2i(0, 0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector2i Constructor with no inputs should return a zero Vector2i."); +} + TEST_CASE("[Vector2i] Axis methods") { Vector2i vector = Vector2i(2, 3); CHECK_MESSAGE( @@ -121,6 +129,14 @@ TEST_CASE("[Vector2i] Other methods") { CHECK_MESSAGE( Math::is_equal_approx(vector.aspect(), (real_t)1.0 / (real_t)3.0), "Vector2i aspect should work as expected."); + + CHECK_MESSAGE( + Vector2i(1, 2) == vector.min(Vector2i(3, 2)), + "Vector2i min should return expected value."); + + CHECK_MESSAGE( + Vector2i(5, 3) == vector.max(Vector2i(5, 2)), + "Vector2i max should return expected value."); } TEST_CASE("[Vector2i] Abs and sign methods") { diff --git a/tests/core/math/test_vector3.h b/tests/core/math/test_vector3.h index 6f99fada2b..be271bad1f 100644 --- a/tests/core/math/test_vector3.h +++ b/tests/core/math/test_vector3.h @@ -39,6 +39,14 @@ namespace TestVector3 { +TEST_CASE("[Vector3] Constructor methods") { + const Vector3 vector_empty = Vector3(); + const Vector3 vector_zero = Vector3(0.0, 0.0, 0.0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector3 Constructor with no inputs should return a zero Vector3."); +} + TEST_CASE("[Vector3] Angle methods") { const Vector3 vector_x = Vector3(1, 0, 0); const Vector3 vector_y = Vector3(0, 1, 0); @@ -76,16 +84,12 @@ TEST_CASE("[Vector3] Axis methods") { vector.min_axis_index() == Vector3::Axis::AXIS_X, "Vector3 min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == (real_t)5.6, - "Vector3 get_axis should work as expected."); + vector[vector.max_axis_index()] == (real_t)5.6, + "Vector3 array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == (real_t)1.2, "Vector3 array operator should work as expected."); - vector.set_axis(Vector3::Axis::AXIS_Y, 4.7); - CHECK_MESSAGE( - vector.get_axis(Vector3::Axis::AXIS_Y) == (real_t)4.7, - "Vector3 set_axis should work as expected."); vector[Vector3::Axis::AXIS_Y] = 3.7; CHECK_MESSAGE( vector[Vector3::Axis::AXIS_Y] == (real_t)3.7, @@ -123,6 +127,9 @@ TEST_CASE("[Vector3] Interpolation methods") { Vector3(1, 1, 1).slerp(Vector3(), 0.5) == Vector3(0.5, 0.5, 0.5), "Vector3 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( + Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)), + "Vector3 slerp should work as expected."); + CHECK_MESSAGE( Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172), "Vector3 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( @@ -195,6 +202,15 @@ TEST_CASE("[Vector3] Normalization methods") { CHECK_MESSAGE( Vector3(1, 1, 1).normalized().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), "Vector3 normalized should work as expected."); + + Vector3 vector = Vector3(3.2, -5.4, 6); + vector.normalize(); + CHECK_MESSAGE( + vector == Vector3(3.2, -5.4, 6).normalized(), + "Vector3 normalize should convert same way as Vector3 normalized."); + CHECK_MESSAGE( + vector.is_equal_approx(Vector3(0.368522751763902980457, -0.621882143601586279522, 0.6909801595573180883585)), + "Vector3 normalize should work as expected."); } TEST_CASE("[Vector3] Operators") { @@ -318,10 +334,21 @@ TEST_CASE("[Vector3] Other methods") { CHECK_MESSAGE( (-vector).posmodv(Vector3(2, 3, 4)).is_equal_approx(Vector3(0.8, 2.6, 2.4)), "Vector3 posmodv should work as expected."); + + CHECK_MESSAGE( + vector.rotated(Vector3(0, 1, 0), Math_TAU).is_equal_approx(vector), + "Vector3 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Vector3(0, 1, 0), Math_TAU / 4).is_equal_approx(Vector3(5.6, 3.4, -1.2)), "Vector3 rotated should work as expected."); CHECK_MESSAGE( + vector.rotated(Vector3(1, 0, 0), Math_TAU / 3).is_equal_approx(Vector3(1.2, -6.54974226119285642, 0.1444863728670914)), + "Vector3 rotated should work as expected."); + CHECK_MESSAGE( + vector.rotated(Vector3(0, 0, 1), Math_TAU / 2).is_equal_approx(vector.rotated(Vector3(0, 0, 1), Math_TAU / -2)), + "Vector3 rotated should work as expected."); + + CHECK_MESSAGE( vector.snapped(Vector3(1, 1, 1)) == Vector3(1, 3, 6), "Vector3 snapped to integers should be the same as rounding."); CHECK_MESSAGE( @@ -332,18 +359,44 @@ TEST_CASE("[Vector3] Other methods") { TEST_CASE("[Vector3] Plane methods") { const Vector3 vector = Vector3(1.2, 3.4, 5.6); const Vector3 vector_y = Vector3(0, 1, 0); + const Vector3 vector_normal = Vector3(0.88763458893247992491, 0.26300284116517923701, 0.37806658417494515320); + const Vector3 vector_non_normal = Vector3(5.4, 1.6, 2.3); CHECK_MESSAGE( vector.bounce(vector_y) == Vector3(1.2, -3.4, 5.6), "Vector3 bounce on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.bounce(vector_normal).is_equal_approx(Vector3(-6.0369629829775736287, 1.25571467171034855444, 2.517589840583626047)), + "Vector3 bounce with normal should return expected value."); + CHECK_MESSAGE( vector.reflect(vector_y) == Vector3(-1.2, 3.4, -5.6), "Vector3 reflect on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.reflect(vector_normal).is_equal_approx(Vector3(6.0369629829775736287, -1.25571467171034855444, -2.517589840583626047)), + "Vector3 reflect with normal should return expected value."); + CHECK_MESSAGE( vector.project(vector_y) == Vector3(0, 3.4, 0), - "Vector3 projected on the X axis should only give the Y component."); + "Vector3 projected on the Y axis should only give the Y component."); + CHECK_MESSAGE( + vector.project(vector_normal).is_equal_approx(Vector3(3.61848149148878681437, 1.0721426641448257227776, 1.54120507970818697649)), + "Vector3 projected on a normal should return expected value."); CHECK_MESSAGE( vector.slide(vector_y) == Vector3(1.2, 0, 5.6), "Vector3 slide on a plane with normal of the Y axis should set the Y to zero."); + CHECK_MESSAGE( + vector.slide(vector_normal).is_equal_approx(Vector3(-2.41848149148878681437, 2.32785733585517427722237, 4.0587949202918130235)), + "Vector3 slide with normal should return expected value."); + // There's probably a better way to test these ones? + ERR_PRINT_OFF; + CHECK_MESSAGE( + vector.bounce(vector_non_normal).is_equal_approx(Vector3()), + "Vector3 bounce should return empty Vector3 with non-normalised input."); + CHECK_MESSAGE( + vector.reflect(vector_non_normal).is_equal_approx(Vector3()), + "Vector3 reflect should return empty Vector3 with non-normalised input."); + CHECK_MESSAGE( + vector.slide(vector_non_normal).is_equal_approx(Vector3()), + "Vector3 slide should return empty Vector3 with non-normalised input."); + ERR_PRINT_ON; } TEST_CASE("[Vector3] Rounding methods") { @@ -389,6 +442,8 @@ TEST_CASE("[Vector3] Linear algebra methods") { const Vector3 vector_x = Vector3(1, 0, 0); const Vector3 vector_y = Vector3(0, 1, 0); const Vector3 vector_z = Vector3(0, 0, 1); + const Vector3 a = Vector3(3.5, 8.5, 2.3); + const Vector3 b = Vector3(5.2, 4.6, 7.8); CHECK_MESSAGE( vector_x.cross(vector_y) == vector_z, "Vector3 cross product of X and Y should give Z."); @@ -401,6 +456,12 @@ TEST_CASE("[Vector3] Linear algebra methods") { CHECK_MESSAGE( vector_z.cross(vector_x) == vector_y, "Vector3 cross product of Z and X should give Y."); + CHECK_MESSAGE( + a.cross(b).is_equal_approx(Vector3(55.72, -15.34, -28.1)), + "Vector3 cross should return expected value."); + CHECK_MESSAGE( + Vector3(-a.x, a.y, -a.z).cross(Vector3(b.x, -b.y, b.z)).is_equal_approx(Vector3(55.72, 15.34, -28.1)), + "Vector2 cross should return expected value."); CHECK_MESSAGE( vector_x.dot(vector_y) == 0.0, @@ -411,6 +472,12 @@ TEST_CASE("[Vector3] Linear algebra methods") { CHECK_MESSAGE( (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector3 dot product of same direction vectors should behave as expected."); + CHECK_MESSAGE( + Math::is_equal_approx(a.dot(b), (real_t)75.24), + "Vector3 dot should return expected value."); + CHECK_MESSAGE( + Math::is_equal_approx(Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)), (real_t)-75.24), + "Vector3 dot should return expected value."); } } // namespace TestVector3 diff --git a/tests/core/math/test_vector3i.h b/tests/core/math/test_vector3i.h index b1c6944eba..2050b222d0 100644 --- a/tests/core/math/test_vector3i.h +++ b/tests/core/math/test_vector3i.h @@ -36,6 +36,14 @@ namespace TestVector3i { +TEST_CASE("[Vector3i] Constructor methods") { + const Vector3i vector_empty = Vector3i(); + const Vector3i vector_zero = Vector3i(0, 0, 0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector3i Constructor with no inputs should return a zero Vector3i."); +} + TEST_CASE("[Vector3i] Axis methods") { Vector3i vector = Vector3i(1, 2, 3); CHECK_MESSAGE( @@ -45,16 +53,12 @@ TEST_CASE("[Vector3i] Axis methods") { vector.min_axis_index() == Vector3i::Axis::AXIS_X, "Vector3i min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == 3, - "Vector3i get_axis should work as expected."); + vector[vector.max_axis_index()] == 3, + "Vector3i array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == 1, "Vector3i array operator should work as expected."); - vector.set_axis(Vector3i::Axis::AXIS_Y, 4); - CHECK_MESSAGE( - vector.get_axis(Vector3i::Axis::AXIS_Y) == 4, - "Vector3i set_axis should work as expected."); vector[Vector3i::Axis::AXIS_Y] = 5; CHECK_MESSAGE( vector[Vector3i::Axis::AXIS_Y] == 5, diff --git a/tests/core/math/test_vector4.h b/tests/core/math/test_vector4.h index ccf991401b..3f50f16635 100644 --- a/tests/core/math/test_vector4.h +++ b/tests/core/math/test_vector4.h @@ -38,6 +38,14 @@ namespace TestVector4 { +TEST_CASE("[Vector4] Constructor methods") { + const Vector4 vector_empty = Vector4(); + const Vector4 vector_zero = Vector4(0.0, 0.0, 0.0, 0.0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector4 Constructor with no inputs should return a zero Vector4."); +} + TEST_CASE("[Vector4] Axis methods") { Vector4 vector = Vector4(1.2, 3.4, 5.6, -0.9); CHECK_MESSAGE( @@ -47,16 +55,12 @@ TEST_CASE("[Vector4] Axis methods") { vector.min_axis_index() == Vector4::Axis::AXIS_W, "Vector4 min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == (real_t)5.6, - "Vector4 get_axis should work as expected."); + vector[vector.max_axis_index()] == (real_t)5.6, + "Vector4 array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == (real_t)-0.9, "Vector4 array operator should work as expected."); - vector.set_axis(Vector4::Axis::AXIS_Y, 4.7); - CHECK_MESSAGE( - vector.get_axis(Vector4::Axis::AXIS_Y) == (real_t)4.7, - "Vector4 set_axis should work as expected."); vector[Vector4::Axis::AXIS_Y] = 3.7; CHECK_MESSAGE( vector[Vector4::Axis::AXIS_Y] == (real_t)3.7, diff --git a/tests/core/math/test_vector4i.h b/tests/core/math/test_vector4i.h index ac63001b24..309162c3f7 100644 --- a/tests/core/math/test_vector4i.h +++ b/tests/core/math/test_vector4i.h @@ -36,6 +36,14 @@ namespace TestVector4i { +TEST_CASE("[Vector4i] Constructor methods") { + const Vector4i vector_empty = Vector4i(); + const Vector4i vector_zero = Vector4i(0, 0, 0, 0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector4i Constructor with no inputs should return a zero Vector4i."); +} + TEST_CASE("[Vector4i] Axis methods") { Vector4i vector = Vector4i(1, 2, 3, 4); CHECK_MESSAGE( @@ -45,16 +53,12 @@ TEST_CASE("[Vector4i] Axis methods") { vector.min_axis_index() == Vector4i::Axis::AXIS_X, "Vector4i min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == 4, - "Vector4i get_axis should work as expected."); + vector[vector.max_axis_index()] == 4, + "Vector4i array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == 1, "Vector4i array operator should work as expected."); - vector.set_axis(Vector4i::Axis::AXIS_Y, 5); - CHECK_MESSAGE( - vector.get_axis(Vector4i::Axis::AXIS_Y) == 5, - "Vector4i set_axis should work as expected."); vector[Vector4i::Axis::AXIS_Y] = 5; CHECK_MESSAGE( vector[Vector4i::Axis::AXIS_Y] == 5, diff --git a/tests/core/object/test_class_db.h b/tests/core/object/test_class_db.h index 208923edb9..b0375c63b9 100644 --- a/tests/core/object/test_class_db.h +++ b/tests/core/object/test_class_db.h @@ -666,6 +666,10 @@ void add_exposed_classes(Context &r_context) { } else { exposed_class.methods.push_back(method); } + + if (method.is_virtual) { + TEST_COND(String(method.name)[0] != '_', "Virtual method ", String(method.name), " does not start with underscore."); + } } // Add signals diff --git a/tests/core/string/test_string.h b/tests/core/string/test_string.h index d97da05c04..969f5fc096 100644 --- a/tests/core/string/test_string.h +++ b/tests/core/string/test_string.h @@ -740,6 +740,14 @@ TEST_CASE("[String] sprintf") { REQUIRE(error == false); CHECK(output == String("fish 99.990000 frog")); + // Real (infinity) left-padded + format = "fish %11f frog"; + args.clear(); + args.push_back(INFINITY); + output = format.sprintf(args, &error); + REQUIRE(error == false); + CHECK(output == String("fish inf frog")); + // Real right-padded. format = "fish %-11f frog"; args.clear(); @@ -840,6 +848,14 @@ TEST_CASE("[String] sprintf") { REQUIRE(error == false); CHECK(output == String("fish ( 19.990000, 1.000000, -2.050000) frog")); + // Vector left-padded with inf/nan + format = "fish %11v frog"; + args.clear(); + args.push_back(Variant(Vector2(INFINITY, NAN))); + output = format.sprintf(args, &error); + REQUIRE(error == false); + CHECK(output == String("fish ( inf, nan) frog")); + // Vector right-padded. format = "fish %-11v frog"; args.clear(); diff --git a/tests/scene/test_audio_stream_wav.h b/tests/scene/test_audio_stream_wav.h index cf369c115b..4ba431dfc2 100644 --- a/tests/scene/test_audio_stream_wav.h +++ b/tests/scene/test_audio_stream_wav.h @@ -138,7 +138,7 @@ void run_test(String file_name, AudioStreamWAV::Format data_format, bool stereo, CHECK(stream->get_data() == test_data); SUBCASE("Stream length is computed properly") { - CHECK(Math::is_equal_approx(stream->get_length(), wav_count / wav_rate)); + CHECK(Math::is_equal_approx(stream->get_length(), double(wav_count / wav_rate))); } SUBCASE("Stream can be saved as .wav") { diff --git a/tests/scene/test_bit_map.h b/tests/scene/test_bit_map.h index 53afdc38f7..635449181e 100644 --- a/tests/scene/test_bit_map.h +++ b/tests/scene/test_bit_map.h @@ -183,7 +183,7 @@ TEST_CASE("[BitMap] Get true bit count") { CHECK(bit_map.get_true_bit_count() == 0); bit_map.create(dim); - CHECK_MESSAGE(bit_map.get_true_bit_count() == 0, "Unitialized bit map should have no true bits"); + CHECK_MESSAGE(bit_map.get_true_bit_count() == 0, "Uninitialized bit map should have no true bits"); bit_map.set_bit_rect(Rect2i{ 0, 0, 256, 256 }, true); CHECK(bit_map.get_true_bit_count() == 65536); bit_map.set_bitv(Point2i{ 0, 0 }, false); @@ -196,7 +196,7 @@ TEST_CASE("[BitMap] Get size") { const Size2i dim{ 256, 256 }; BitMap bit_map{}; - CHECK_MESSAGE(bit_map.get_size() == Size2i(0, 0), "Unitialized bit map should have a size of 0x0"); + CHECK_MESSAGE(bit_map.get_size() == Size2i(0, 0), "Uninitialized bit map should have a size of 0x0"); bit_map.create(dim); CHECK(bit_map.get_size() == Size2i(256, 256)); @@ -390,7 +390,7 @@ TEST_CASE("[BitMap] Convert to image") { bit_map.create(dim); img = bit_map.convert_to_image(); CHECK_MESSAGE(img->get_size() == dim, "Image should have the same dimensions as the BitMap"); - CHECK_MESSAGE(img->get_pixel(0, 0).is_equal_approx(Color(0, 0, 0)), "BitMap is intialized to all 0's, so Image should be all black"); + CHECK_MESSAGE(img->get_pixel(0, 0).is_equal_approx(Color(0, 0, 0)), "BitMap is initialized to all 0's, so Image should be all black"); reset_bit_map(bit_map); bit_map.set_bit_rect(Rect2i(0, 0, 128, 128), true); |