summaryrefslogtreecommitdiff
path: root/tests/test_aabb.h
diff options
context:
space:
mode:
Diffstat (limited to 'tests/test_aabb.h')
-rw-r--r--tests/test_aabb.h375
1 files changed, 375 insertions, 0 deletions
diff --git a/tests/test_aabb.h b/tests/test_aabb.h
new file mode 100644
index 0000000000..8acd2a9963
--- /dev/null
+++ b/tests/test_aabb.h
@@ -0,0 +1,375 @@
+/*************************************************************************/
+/* test_aabb.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_AABB_H
+#define TEST_AABB_H
+
+#include "core/math/aabb.h"
+#include "core/string/print_string.h"
+#include "tests/test_macros.h"
+
+#include "thirdparty/doctest/doctest.h"
+
+namespace TestAABB {
+
+TEST_CASE("[AABB] Constructor methods") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ const AABB aabb_copy = AABB(aabb);
+
+ CHECK_MESSAGE(
+ aabb == aabb_copy,
+ "AABBs created with the same dimensions but by different methods should be equal.");
+}
+
+TEST_CASE("[AABB] String conversion") {
+ CHECK_MESSAGE(
+ String(AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6))) == "-1.5, 2, -2.5 - 4, 5, 6",
+ "The string representation shouild match the expected value.");
+}
+
+TEST_CASE("[AABB] Basic getters") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ aabb.get_position().is_equal_approx(Vector3(-1.5, 2, -2.5)),
+ "get_position() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_size().is_equal_approx(Vector3(4, 5, 6)),
+ "get_size() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_end().is_equal_approx(Vector3(2.5, 7, 3.5)),
+ "get_end() should return the expected value.");
+}
+
+TEST_CASE("[AABB] Basic setters") {
+ AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ aabb.set_end(Vector3(100, 0, 100));
+ CHECK_MESSAGE(
+ aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(101.5, -2, 102.5))),
+ "set_end() should result in the expected AABB.");
+
+ aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ aabb.set_position(Vector3(-1000, -2000, -3000));
+ CHECK_MESSAGE(
+ aabb.is_equal_approx(AABB(Vector3(-1000, -2000, -3000), Vector3(4, 5, 6))),
+ "set_position() should result in the expected AABB.");
+
+ aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ aabb.set_size(Vector3(0, 0, -50));
+ CHECK_MESSAGE(
+ aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(0, 0, -50))),
+ "set_size() should result in the expected AABB.");
+}
+
+TEST_CASE("[AABB] Area getters") {
+ AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ Math::is_equal_approx(aabb.get_area(), 120),
+ "get_area() should return the expected value with positive size.");
+ CHECK_MESSAGE(
+ !aabb.has_no_area(),
+ "Non-empty volumetric AABB should have an area.");
+
+ aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6));
+ CHECK_MESSAGE(
+ Math::is_equal_approx(aabb.get_area(), -120),
+ "get_area() should return the expected value with negative size (1 component).");
+
+ aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6));
+ CHECK_MESSAGE(
+ Math::is_equal_approx(aabb.get_area(), 120),
+ "get_area() should return the expected value with negative size (2 components).");
+
+ aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6));
+ CHECK_MESSAGE(
+ Math::is_equal_approx(aabb.get_area(), -120),
+ "get_area() should return the expected value with negative size (3 components).");
+
+ aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
+ CHECK_MESSAGE(
+ aabb.has_no_area(),
+ "Non-empty flat AABB should not have an area.");
+
+ CHECK_MESSAGE(
+ AABB().has_no_area(),
+ "Empty AABB should not have an area.");
+}
+
+TEST_CASE("[AABB] Surface getters") {
+ AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ !aabb.has_no_surface(),
+ "Non-empty volumetric AABB should have an surface.");
+
+ aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
+ CHECK_MESSAGE(
+ !aabb.has_no_surface(),
+ "Non-empty flat AABB should have a surface.");
+
+ CHECK_MESSAGE(
+ AABB().has_no_surface(),
+ "Empty AABB should not have an surface.");
+}
+
+TEST_CASE("[AABB] Intersection") {
+ const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+
+ AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.intersects(aabb_small),
+ "intersects() with fully contained AABB (touching the edge) should return the expected result.");
+
+ aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.intersects(aabb_small),
+ "intersects() with partially contained AABB (overflowing on Y axis) should return the expected result.");
+
+ aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ !aabb_big.intersects(aabb_small),
+ "intersects() with non-contained AABB should return the expected result.");
+
+ aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.intersection(aabb_small).is_equal_approx(aabb_small),
+ "intersection() with fully contained AABB (touching the edge) should return the expected result.");
+
+ aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.intersection(aabb_small).is_equal_approx(AABB(Vector3(0.5, 2, -2), Vector3(1, 0.5, 1))),
+ "intersection() with partially contained AABB (overflowing on Y axis) should return the expected result.");
+
+ aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.intersection(aabb_small).is_equal_approx(AABB()),
+ "intersection() with non-contained AABB should return the expected result.");
+
+ CHECK_MESSAGE(
+ aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 4)),
+ "intersects_plane() should return the expected result.");
+ CHECK_MESSAGE(
+ aabb_big.intersects_plane(Plane(Vector3(0, -1, 0), -4)),
+ "intersects_plane() should return the expected result.");
+ CHECK_MESSAGE(
+ !aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 200)),
+ "intersects_plane() should return the expected result.");
+
+ CHECK_MESSAGE(
+ aabb_big.intersects_segment(Vector3(1, 3, 0), Vector3(0, 3, 0)),
+ "intersects_segment() should return the expected result.");
+ CHECK_MESSAGE(
+ aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, -300, 0)),
+ "intersects_segment() should return the expected result.");
+ CHECK_MESSAGE(
+ aabb_big.intersects_segment(Vector3(-50, 3, -50), Vector3(50, 3, 50)),
+ "intersects_segment() should return the expected result.");
+ CHECK_MESSAGE(
+ !aabb_big.intersects_segment(Vector3(-50, 25, -50), Vector3(50, 25, 50)),
+ "intersects_segment() should return the expected result.");
+ CHECK_MESSAGE(
+ aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, 3, 0)),
+ "intersects_segment() should return the expected result with segment of length 0.");
+ CHECK_MESSAGE(
+ !aabb_big.intersects_segment(Vector3(0, 300, 0), Vector3(0, 300, 0)),
+ "intersects_segment() should return the expected result with segment of length 0.");
+}
+
+TEST_CASE("[AABB] Merging") {
+ const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+
+ AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.merge(aabb_small).is_equal_approx(aabb_big),
+ "merge() with fully contained AABB (touching the edge) should return the expected result.");
+
+ aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, 1.5, -2.5), Vector3(4, 5.5, 6))),
+ "merge() with partially contained AABB (overflowing on Y axis) should return the expected result.");
+
+ aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, -10, -10), Vector3(12.5, 17, 13.5))),
+ "merge() with non-contained AABB should return the expected result.");
+}
+
+TEST_CASE("[AABB] Encloses") {
+ const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+
+ AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ aabb_big.encloses(aabb_small),
+ "encloses() with fully contained AABB (touching the edge) should return the expected result.");
+
+ aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ !aabb_big.encloses(aabb_small),
+ "encloses() with partially contained AABB (overflowing on Y axis) should return the expected result.");
+
+ aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1));
+ CHECK_MESSAGE(
+ !aabb_big.encloses(aabb_small),
+ "encloses() with non-contained AABB should return the expected result.");
+}
+
+TEST_CASE("[AABB] Get endpoints") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ aabb.get_endpoint(0).is_equal_approx(Vector3(-1.5, 2, -2.5)),
+ "The endpoint at index 0 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(1).is_equal_approx(Vector3(-1.5, 2, 3.5)),
+ "The endpoint at index 1 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(2).is_equal_approx(Vector3(-1.5, 7, -2.5)),
+ "The endpoint at index 2 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(3).is_equal_approx(Vector3(-1.5, 7, 3.5)),
+ "The endpoint at index 3 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(4).is_equal_approx(Vector3(2.5, 2, -2.5)),
+ "The endpoint at index 4 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(5).is_equal_approx(Vector3(2.5, 2, 3.5)),
+ "The endpoint at index 5 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(6).is_equal_approx(Vector3(2.5, 7, -2.5)),
+ "The endpoint at index 6 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(7).is_equal_approx(Vector3(2.5, 7, 3.5)),
+ "The endpoint at index 7 should match the expected value.");
+
+ ERR_PRINT_OFF;
+ CHECK_MESSAGE(
+ aabb.get_endpoint(8).is_equal_approx(Vector3()),
+ "The endpoint at invalid index 8 should match the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_endpoint(-1).is_equal_approx(Vector3()),
+ "The endpoint at invalid index -1 should match the expected value.");
+ ERR_PRINT_ON;
+}
+
+TEST_CASE("[AABB] Get longest/shortest axis") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ aabb.get_longest_axis().is_equal_approx(Vector3(0, 0, 1)),
+ "get_longest_axis() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_longest_axis_index() == Vector3::AXIS_Z,
+ "get_longest_axis() should return the expected value.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(aabb.get_longest_axis_size(), 6),
+ "get_longest_axis() should return the expected value.");
+
+ CHECK_MESSAGE(
+ aabb.get_shortest_axis().is_equal_approx(Vector3(1, 0, 0)),
+ "get_shortest_axis() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_shortest_axis_index() == Vector3::AXIS_X,
+ "get_shortest_axis() should return the expected value.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(aabb.get_shortest_axis_size(), 4),
+ "get_shortest_axis() should return the expected value.");
+}
+
+TEST_CASE("[AABB] Get support") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ aabb.get_support(Vector3(1, 0, 0)).is_equal_approx(Vector3(-1.5, 7, 3.5)),
+ "get_support() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_support(Vector3(0.5, 1, 0)).is_equal_approx(Vector3(-1.5, 2, 3.5)),
+ "get_support() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_support(Vector3(0.5, 1, -400)).is_equal_approx(Vector3(-1.5, 2, 3.5)),
+ "get_support() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_support(Vector3(0, -1, 0)).is_equal_approx(Vector3(2.5, 7, 3.5)),
+ "get_support() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_support(Vector3(0, -0.1, 0)).is_equal_approx(Vector3(2.5, 7, 3.5)),
+ "get_support() should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.get_support(Vector3()).is_equal_approx(Vector3(2.5, 7, 3.5)),
+ "get_support() should return the expected value with a null vector.");
+}
+
+TEST_CASE("[AABB] Grow") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ aabb.grow(0.25).is_equal_approx(AABB(Vector3(-1.75, 1.75, -2.75), Vector3(4.5, 5.5, 6.5))),
+ "grow() with positive value should return the expected AABB.");
+ CHECK_MESSAGE(
+ aabb.grow(-0.25).is_equal_approx(AABB(Vector3(-1.25, 2.25, -2.25), Vector3(3.5, 4.5, 5.5))),
+ "grow() with negative value should return the expected AABB.");
+ CHECK_MESSAGE(
+ aabb.grow(-10).is_equal_approx(AABB(Vector3(8.5, 12, 7.5), Vector3(-16, -15, -14))),
+ "grow() with large negative value should return the expected AABB.");
+}
+
+TEST_CASE("[AABB] Has point") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ aabb.has_point(Vector3(-1, 3, 0)),
+ "has_point() with contained point should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.has_point(Vector3(2, 3, 0)),
+ "has_point() with contained point should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.has_point(Vector3(-1.5, 3, 0)),
+ "has_point() with contained point on negative edge should return the expected value.");
+ CHECK_MESSAGE(
+ aabb.has_point(Vector3(2.5, 3, 0)),
+ "has_point() with contained point on positive edge should return the expected value.");
+ CHECK_MESSAGE(
+ !aabb.has_point(Vector3(-20, 0, 0)),
+ "has_point() with non-contained point should return the expected value.");
+}
+
+TEST_CASE("[AABB] Expanding") {
+ const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
+ CHECK_MESSAGE(
+ aabb.expand(Vector3(-1, 3, 0)).is_equal_approx(aabb),
+ "expand() with contained point should return the expected AABB.");
+ CHECK_MESSAGE(
+ aabb.expand(Vector3(2, 3, 0)).is_equal_approx(aabb),
+ "expand() with contained point should return the expected AABB.");
+ CHECK_MESSAGE(
+ aabb.expand(Vector3(-1.5, 3, 0)).is_equal_approx(aabb),
+ "expand() with contained point on negative edge should return the expected AABB.");
+ CHECK_MESSAGE(
+ aabb.expand(Vector3(2.5, 3, 0)).is_equal_approx(aabb),
+ "expand() with contained point on positive edge should return the expected AABB.");
+ CHECK_MESSAGE(
+ aabb.expand(Vector3(-20, 0, 0)).is_equal_approx(AABB(Vector3(-20, 0, -2.5), Vector3(22.5, 7, 6))),
+ "expand() with non-contained point should return the expected AABB.");
+}
+} // namespace TestAABB
+
+#endif // TEST_AABB_H