summaryrefslogtreecommitdiff
path: root/tests/core
diff options
context:
space:
mode:
Diffstat (limited to 'tests/core')
-rw-r--r--tests/core/io/test_json.h2
-rw-r--r--tests/core/math/test_aabb.h8
-rw-r--r--tests/core/math/test_basis.h10
-rw-r--r--tests/core/math/test_color.h6
-rw-r--r--tests/core/math/test_expression.h20
-rw-r--r--tests/core/math/test_geometry_2d.h24
-rw-r--r--tests/core/math/test_rect2.h8
-rw-r--r--tests/core/math/test_vector2.h28
-rw-r--r--tests/core/math/test_vector2i.h6
-rw-r--r--tests/core/math/test_vector3.h28
-rw-r--r--tests/core/math/test_vector3i.h4
-rw-r--r--tests/core/math/test_vector4.h10
-rw-r--r--tests/core/math/test_vector4i.h4
-rw-r--r--tests/core/string/test_string.h8
14 files changed, 87 insertions, 79 deletions
diff --git a/tests/core/io/test_json.h b/tests/core/io/test_json.h
index 478cf1766e..af450da3b8 100644
--- a/tests/core/io/test_json.h
+++ b/tests/core/io/test_json.h
@@ -83,7 +83,7 @@ TEST_CASE("[JSON] Parsing single data types") {
json.get_error_line() == 0,
"Parsing a floating-point number as JSON should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(json.get_data()), 0.123456),
+ double(json.get_data()) == doctest::Approx(0.123456),
"Parsing a floating-point number as JSON should return the expected value.");
json.parse("\"hello\"");
diff --git a/tests/core/math/test_aabb.h b/tests/core/math/test_aabb.h
index ebaf441abf..23969556be 100644
--- a/tests/core/math/test_aabb.h
+++ b/tests/core/math/test_aabb.h
@@ -91,7 +91,7 @@ TEST_CASE("[AABB] Basic setters") {
TEST_CASE("[AABB] Volume getters") {
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), 120),
+ aabb.get_volume() == doctest::Approx(120),
"get_volume() should return the expected value with positive size.");
CHECK_MESSAGE(
aabb.has_volume(),
@@ -99,17 +99,17 @@ TEST_CASE("[AABB] Volume getters") {
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), -120),
+ aabb.get_volume() == doctest::Approx(-120),
"get_volume() should return the expected value with negative size (1 component).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), 120),
+ aabb.get_volume() == doctest::Approx(120),
"get_volume() should return the expected value with negative size (2 components).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), -120),
+ aabb.get_volume() == doctest::Approx(-120),
"get_volume() should return the expected value with negative size (3 components).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
diff --git a/tests/core/math/test_basis.h b/tests/core/math/test_basis.h
index a4099ebf7d..dce9d5cec3 100644
--- a/tests/core/math/test_basis.h
+++ b/tests/core/math/test_basis.h
@@ -223,7 +223,7 @@ TEST_CASE("[Basis] Set axis angle") {
// Testing the singularity when the angle is 180°.
Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1);
singularityPi.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, pi));
+ CHECK(angle == doctest::Approx(pi));
// Testing reversing the an axis (of an 30° angle).
float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0));
@@ -231,17 +231,17 @@ TEST_CASE("[Basis] Set axis angle") {
Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1);
z_positive.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0)));
+ CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
CHECK(axis == Vector3(0, 0, 1));
z_negative.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0)));
+ CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
CHECK(axis == Vector3(0, 0, -1));
// Testing a rotation of 90° on x-y-z.
Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0);
x90deg.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, pi / (real_t)2));
+ CHECK(angle == doctest::Approx(pi / (real_t)2));
CHECK(axis == Vector3(1, 0, 0));
Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0);
@@ -255,7 +255,7 @@ TEST_CASE("[Basis] Set axis angle") {
// Regression test: checks that the method returns a small angle (not 0).
Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad.
tiny.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, (real_t)0.001, (real_t)0.0001));
+ CHECK(angle == doctest::Approx(0.001).epsilon(0.0001));
// Regression test: checks that the method returns an angle which is a number (not NaN)
Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024);
diff --git a/tests/core/math/test_color.h b/tests/core/math/test_color.h
index 51c3bc8bdc..c6550778e8 100644
--- a/tests/core/math/test_color.h
+++ b/tests/core/math/test_color.h
@@ -101,13 +101,13 @@ TEST_CASE("[Color] Reading methods") {
const Color dark_blue = Color(0, 0, 0.5, 0.4);
CHECK_MESSAGE(
- Math::is_equal_approx(dark_blue.get_h(), 240.0f / 360.0f),
+ dark_blue.get_h() == doctest::Approx(240.0f / 360.0f),
"The returned HSV hue should match the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(dark_blue.get_s(), 1.0f),
+ dark_blue.get_s() == doctest::Approx(1.0f),
"The returned HSV saturation should match the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(dark_blue.get_v(), 0.5f),
+ dark_blue.get_v() == doctest::Approx(0.5f),
"The returned HSV value should match the expected value.");
}
diff --git a/tests/core/math/test_expression.h b/tests/core/math/test_expression.h
index 6e3be541b0..9734fd9f36 100644
--- a/tests/core/math/test_expression.h
+++ b/tests/core/math/test_expression.h
@@ -83,42 +83,42 @@ TEST_CASE("[Expression] Floating-point arithmetic") {
expression.parse("-123.456") == OK,
"Float identity should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), -123.456),
+ double(expression.execute()) == doctest::Approx(-123.456),
"Float identity should return the expected result.");
CHECK_MESSAGE(
expression.parse("2.0 + 3.0") == OK,
"Float addition should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 5),
+ double(expression.execute()) == doctest::Approx(5),
"Float addition should return the expected result.");
CHECK_MESSAGE(
expression.parse("3.0 / 10") == OK,
"Float / integer division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.3),
+ double(expression.execute()) == doctest::Approx(0.3),
"Float / integer division should return the expected result.");
CHECK_MESSAGE(
expression.parse("3 / 10.0") == OK,
"Basic integer / float division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.3),
+ double(expression.execute()) == doctest::Approx(0.3),
"Basic integer / float division should return the expected result.");
CHECK_MESSAGE(
expression.parse("3.0 / 10.0") == OK,
"Float / float division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.3),
+ double(expression.execute()) == doctest::Approx(0.3),
"Float / float division should return the expected result.");
CHECK_MESSAGE(
expression.parse("2.5 * (6.0 + 14.25) / 2.0 - 5.12345") == OK,
"Float multiplication-addition-subtraction-division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 20.18905),
+ double(expression.execute()) == doctest::Approx(20.18905),
"Float multiplication-addition-subtraction-division should return the expected result.");
}
@@ -129,7 +129,7 @@ TEST_CASE("[Expression] Scientific notation") {
expression.parse("2.e5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 200'000),
+ double(expression.execute()) == doctest::Approx(200'000),
"The expression should return the expected result.");
// The middle "e" is ignored here.
@@ -137,14 +137,14 @@ TEST_CASE("[Expression] Scientific notation") {
expression.parse("2e5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 2e5),
+ double(expression.execute()) == doctest::Approx(2e5),
"The expression should return the expected result.");
CHECK_MESSAGE(
expression.parse("2e.5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 2),
+ double(expression.execute()) == doctest::Approx(2),
"The expression should return the expected result.");
}
@@ -176,7 +176,7 @@ TEST_CASE("[Expression] Built-in functions") {
expression.parse("snapped(sin(0.5), 0.01)") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.48),
+ double(expression.execute()) == doctest::Approx(0.48),
"`snapped(sin(0.5), 0.01)` should return the expected result.");
CHECK_MESSAGE(
diff --git a/tests/core/math/test_geometry_2d.h b/tests/core/math/test_geometry_2d.h
index 54893a0b87..27c9e7f58b 100644
--- a/tests/core/math/test_geometry_2d.h
+++ b/tests/core/math/test_geometry_2d.h
@@ -171,43 +171,43 @@ TEST_CASE("[Geometry2D] Segment intersection with circle") {
real_t one = 1.0;
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0), one_quarter),
+ Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter),
"Segment from inside to outside of circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0), three_quarters),
+ Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(three_quarters),
"Segment from outside to inside of circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0), one_quarter),
+ Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter),
"Segment running through circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0), one_quarter),
+ Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter),
"Segment running through circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one),
+ Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one),
"Segment starting inside the circle and ending on the circle should intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0), zero),
+ Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero),
"Segment starting on the circle and going inwards should intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0), zero),
+ Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero),
"Segment starting on the circle and going outwards should intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one),
+ Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one),
"Segment starting outside the circle and ending on the circle intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one),
"Segment completely within the circle should not intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one),
"Segment completely within the circle should not intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one),
"Segment completely outside the circle should not intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one),
"Segment completely outside the circle should not intersect it");
}
diff --git a/tests/core/math/test_rect2.h b/tests/core/math/test_rect2.h
index d784875c1c..9984823331 100644
--- a/tests/core/math/test_rect2.h
+++ b/tests/core/math/test_rect2.h
@@ -102,16 +102,16 @@ TEST_CASE("[Rect2] Basic setters") {
TEST_CASE("[Rect2] Area getters") {
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, 1280, 720).get_area(), 921'600),
+ Rect2(0, 100, 1280, 720).get_area() == doctest::Approx(921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, -1280, -720).get_area(), 921'600),
+ Rect2(0, 100, -1280, -720).get_area() == doctest::Approx(921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, 1280, -720).get_area(), -921'600),
+ Rect2(0, 100, 1280, -720).get_area() == doctest::Approx(-921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, -1280, 720).get_area(), -921'600),
+ Rect2(0, 100, -1280, 720).get_area() == doctest::Approx(-921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_zero_approx(Rect2(0, 100, 0, 720).get_area()),
diff --git a/tests/core/math/test_vector2.h b/tests/core/math/test_vector2.h
index f7e9259329..8f8fccd717 100644
--- a/tests/core/math/test_vector2.h
+++ b/tests/core/math/test_vector2.h
@@ -49,16 +49,16 @@ TEST_CASE("[Vector2] Angle methods") {
const Vector2 vector_x = Vector2(1, 0);
const Vector2 vector_y = Vector2(0, 1);
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4),
+ vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector2 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_y.angle_to(vector_x), (real_t)-Math_TAU / 4),
+ vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math_TAU / 4),
"Vector2 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to_point(vector_y), (real_t)Math_TAU * 3 / 8),
+ vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math_TAU * 3 / 8),
"Vector2 angle_to_point should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_y.angle_to_point(vector_x), (real_t)-Math_TAU / 8),
+ vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math_TAU / 8),
"Vector2 angle_to_point should work as expected.");
}
@@ -113,10 +113,10 @@ TEST_CASE("[Vector2] Interpolation methods") {
Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)),
"Vector2 slerp should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919),
+ vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919),
"Vector2 slerp with different length input should return a vector with an interpolated length.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)),
+ vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
"Vector2 slerp with different length input should return a vector with an interpolated angle.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5),
@@ -136,19 +136,19 @@ TEST_CASE("[Vector2] Length methods") {
vector1.length_squared() == 200,
"Vector2 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT2),
+ vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT2),
"Vector2 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 1300,
"Vector2 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), (real_t)36.05551275463989293119),
+ vector2.length() == doctest::Approx((real_t)36.05551275463989293119),
"Vector2 length should work as expected.");
CHECK_MESSAGE(
vector1.distance_squared_to(vector2) == 500,
"Vector2 distance_squared_to should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_to(vector2), (real_t)22.36067977499789696409),
+ vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409),
"Vector2 distance_to should work as expected.");
}
@@ -294,7 +294,7 @@ TEST_CASE("[Vector2] Operators") {
TEST_CASE("[Vector2] Other methods") {
const Vector2 vector = Vector2(1.2, 3.4);
CHECK_MESSAGE(
- Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4),
+ vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4),
"Vector2 aspect should work as expected.");
CHECK_MESSAGE(
@@ -443,10 +443,10 @@ TEST_CASE("[Vector2] Linear algebra methods") {
vector_y.cross(vector_x) == -1,
"Vector2 cross product of Y and X should give negative 1.");
CHECK_MESSAGE(
- Math::is_equal_approx(a.cross(b), (real_t)-28.1),
+ a.cross(b) == doctest::Approx((real_t)-28.1),
"Vector2 cross should return expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)), (real_t)-28.1),
+ Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1),
"Vector2 cross should return expected value.");
CHECK_MESSAGE(
@@ -459,10 +459,10 @@ TEST_CASE("[Vector2] Linear algebra methods") {
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector2 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(a.dot(b), (real_t)57.3),
+ a.dot(b) == doctest::Approx((real_t)57.3),
"Vector2 dot should return expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)), (real_t)-57.3),
+ Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3),
"Vector2 dot should return expected value.");
}
diff --git a/tests/core/math/test_vector2i.h b/tests/core/math/test_vector2i.h
index 49b0632e3c..c7a0dccdcc 100644
--- a/tests/core/math/test_vector2i.h
+++ b/tests/core/math/test_vector2i.h
@@ -79,13 +79,13 @@ TEST_CASE("[Vector2i] Length methods") {
vector1.length_squared() == 200,
"Vector2i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * Math_SQRT2),
+ vector1.length() == doctest::Approx(10 * Math_SQRT2),
"Vector2i length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 1300,
"Vector2i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), 36.05551275463989293119),
+ vector2.length() == doctest::Approx(36.05551275463989293119),
"Vector2i length should work as expected.");
}
@@ -127,7 +127,7 @@ TEST_CASE("[Vector2i] Operators") {
TEST_CASE("[Vector2i] Other methods") {
const Vector2i vector = Vector2i(1, 3);
CHECK_MESSAGE(
- Math::is_equal_approx(vector.aspect(), (real_t)1.0 / (real_t)3.0),
+ vector.aspect() == doctest::Approx((real_t)1.0 / (real_t)3.0),
"Vector2i aspect should work as expected.");
CHECK_MESSAGE(
diff --git a/tests/core/math/test_vector3.h b/tests/core/math/test_vector3.h
index 77d3a9d93c..89d73ee6de 100644
--- a/tests/core/math/test_vector3.h
+++ b/tests/core/math/test_vector3.h
@@ -52,26 +52,26 @@ TEST_CASE("[Vector3] Angle methods") {
const Vector3 vector_y = Vector3(0, 1, 0);
const Vector3 vector_yz = Vector3(0, 1, 1);
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4),
+ vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to(vector_yz), (real_t)Math_TAU / 4),
+ vector_x.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_yz.angle_to(vector_x), (real_t)Math_TAU / 4),
+ vector_yz.angle_to(vector_x) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_y.angle_to(vector_yz), (real_t)Math_TAU / 8),
+ vector_y.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 8),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.signed_angle_to(vector_y, vector_y), (real_t)Math_TAU / 4),
+ vector_x.signed_angle_to(vector_y, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 signed_angle_to edge case should be positive.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.signed_angle_to(vector_yz, vector_y), (real_t)Math_TAU / -4),
+ vector_x.signed_angle_to(vector_yz, vector_y) == doctest::Approx((real_t)Math_TAU / -4),
"Vector3 signed_angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_yz.signed_angle_to(vector_x, vector_y), (real_t)Math_TAU / 4),
+ vector_yz.signed_angle_to(vector_x, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 signed_angle_to should work as expected.");
}
@@ -130,10 +130,10 @@ TEST_CASE("[Vector3] Interpolation methods") {
Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)),
"Vector3 slerp should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172),
+ vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)6.25831088708303172),
"Vector3 slerp with different length input should return a vector with an interpolated length.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)),
+ vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
"Vector3 slerp with different length input should return a vector with an interpolated angle.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625),
@@ -153,19 +153,19 @@ TEST_CASE("[Vector3] Length methods") {
vector1.length_squared() == 300,
"Vector3 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT3),
+ vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT3),
"Vector3 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 2900,
"Vector3 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), (real_t)53.8516480713450403125),
+ vector2.length() == doctest::Approx((real_t)53.8516480713450403125),
"Vector3 length should work as expected.");
CHECK_MESSAGE(
vector1.distance_squared_to(vector2) == 1400,
"Vector3 distance_squared_to should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_to(vector2), (real_t)37.41657386773941385584),
+ vector1.distance_to(vector2) == doctest::Approx((real_t)37.41657386773941385584),
"Vector3 distance_to should work as expected.");
}
@@ -473,10 +473,10 @@ TEST_CASE("[Vector3] Linear algebra methods") {
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector3 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(a.dot(b), (real_t)75.24),
+ a.dot(b) == doctest::Approx((real_t)75.24),
"Vector3 dot should return expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)), (real_t)-75.24),
+ Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)) == doctest::Approx((real_t)-75.24),
"Vector3 dot should return expected value.");
}
diff --git a/tests/core/math/test_vector3i.h b/tests/core/math/test_vector3i.h
index 2050b222d0..56578f99eb 100644
--- a/tests/core/math/test_vector3i.h
+++ b/tests/core/math/test_vector3i.h
@@ -82,13 +82,13 @@ TEST_CASE("[Vector3i] Length methods") {
vector1.length_squared() == 300,
"Vector3i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * Math_SQRT3),
+ vector1.length() == doctest::Approx(10 * Math_SQRT3),
"Vector3i length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 2900,
"Vector3i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), 53.8516480713450403125),
+ vector2.length() == doctest::Approx(53.8516480713450403125),
"Vector3i length should work as expected.");
}
diff --git a/tests/core/math/test_vector4.h b/tests/core/math/test_vector4.h
index b31db56f67..6ed85661cb 100644
--- a/tests/core/math/test_vector4.h
+++ b/tests/core/math/test_vector4.h
@@ -91,19 +91,19 @@ TEST_CASE("[Vector4] Length methods") {
vector1.length_squared() == 400,
"Vector4 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 20),
+ vector1.length() == doctest::Approx(20),
"Vector4 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 5400,
"Vector4 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), (real_t)73.484692283495),
+ vector2.length() == doctest::Approx((real_t)73.484692283495),
"Vector4 length should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_to(vector2), (real_t)54.772255750517),
+ vector1.distance_to(vector2) == doctest::Approx((real_t)54.772255750517),
"Vector4 distance_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_squared_to(vector2), 3000),
+ vector1.distance_squared_to(vector2) == doctest::Approx(3000),
"Vector4 distance_squared_to should work as expected.");
}
@@ -311,7 +311,7 @@ TEST_CASE("[Vector4] Linear algebra methods") {
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector4 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx((vector1 * 2).dot(vector2 * 4), (real_t)-25.9 * 8),
+ (vector1 * 2).dot(vector2 * 4) == doctest::Approx((real_t)-25.9 * 8),
"Vector4 dot product should work as expected.");
}
diff --git a/tests/core/math/test_vector4i.h b/tests/core/math/test_vector4i.h
index 309162c3f7..30d38607dd 100644
--- a/tests/core/math/test_vector4i.h
+++ b/tests/core/math/test_vector4i.h
@@ -82,13 +82,13 @@ TEST_CASE("[Vector4i] Length methods") {
vector1.length_squared() == 400,
"Vector4i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 20),
+ vector1.length() == doctest::Approx(20),
"Vector4i length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 5400,
"Vector4i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), 73.4846922835),
+ vector2.length() == doctest::Approx(73.4846922835),
"Vector4i length should work as expected.");
}
diff --git a/tests/core/string/test_string.h b/tests/core/string/test_string.h
index cd1b421ce8..7e4e3aa9f0 100644
--- a/tests/core/string/test_string.h
+++ b/tests/core/string/test_string.h
@@ -485,6 +485,7 @@ TEST_CASE("[String] Splitting") {
const char *slices_l[3] = { "Mars", "Jupiter", "Saturn,Uranus" };
const char *slices_r[3] = { "Mars,Jupiter", "Saturn", "Uranus" };
+ const char *slices_3[4] = { "t", "e", "s", "t" };
l = s.split(",", true, 2);
CHECK(l.size() == 3);
@@ -498,6 +499,13 @@ TEST_CASE("[String] Splitting") {
CHECK(l[i] == slices_r[i]);
}
+ s = "test";
+ l = s.split();
+ CHECK(l.size() == 4);
+ for (int i = 0; i < l.size(); i++) {
+ CHECK(l[i] == slices_3[i]);
+ }
+
s = "Mars Jupiter Saturn Uranus";
const char *slices_s[4] = { "Mars", "Jupiter", "Saturn", "Uranus" };
l = s.split_spaces();