summaryrefslogtreecommitdiff
path: root/tests/core
diff options
context:
space:
mode:
Diffstat (limited to 'tests/core')
-rw-r--r--tests/core/input/test_input_event_key.h2
-rw-r--r--tests/core/io/test_image.h6
-rw-r--r--tests/core/io/test_json.h2
-rw-r--r--tests/core/math/test_aabb.h8
-rw-r--r--tests/core/math/test_basis.h144
-rw-r--r--tests/core/math/test_color.h6
-rw-r--r--tests/core/math/test_expression.h20
-rw-r--r--tests/core/math/test_geometry_2d.h26
-rw-r--r--tests/core/math/test_math_funcs.h556
-rw-r--r--tests/core/math/test_quaternion.h65
-rw-r--r--tests/core/math/test_rect2.h8
-rw-r--r--tests/core/math/test_vector2.h34
-rw-r--r--tests/core/math/test_vector2i.h6
-rw-r--r--tests/core/math/test_vector3.h34
-rw-r--r--tests/core/math/test_vector3i.h4
-rw-r--r--tests/core/math/test_vector4.h10
-rw-r--r--tests/core/math/test_vector4i.h4
-rw-r--r--tests/core/string/test_string.h8
18 files changed, 726 insertions, 217 deletions
diff --git a/tests/core/input/test_input_event_key.h b/tests/core/input/test_input_event_key.h
index ef0a656b18..b852f3ccb9 100644
--- a/tests/core/input/test_input_event_key.h
+++ b/tests/core/input/test_input_event_key.h
@@ -102,7 +102,7 @@ TEST_CASE("[InputEventKey] Key correctly converts itself to text") {
// as text. These cases are a bit weird, since None has no textual representation
// (find_keycode_name(Key::NONE) results in a nullptr). Thus, these tests look weird
// with only (Physical) or a lonely modifier with (Physical) but (as far as I
- // understand the code, that is intended behaviour.
+ // understand the code, that is intended behavior.
// Key is None without a physical key.
none_key.set_keycode(Key::NONE);
diff --git a/tests/core/io/test_image.h b/tests/core/io/test_image.h
index 38b616cda0..1559c59b5c 100644
--- a/tests/core/io/test_image.h
+++ b/tests/core/io/test_image.h
@@ -124,7 +124,7 @@ TEST_CASE("[Image] Saving and loading") {
image_jpg->load_jpg_from_buffer(data_jpg) == OK,
"The JPG image should load successfully.");
- // Load WEBP
+ // Load WebP
Ref<Image> image_webp = memnew(Image());
Ref<FileAccess> f_webp = FileAccess::open(TestUtils::get_data_path("images/icon.webp"), FileAccess::READ, &err);
PackedByteArray data_webp;
@@ -132,7 +132,7 @@ TEST_CASE("[Image] Saving and loading") {
f_webp->get_buffer(data_webp.ptrw(), f_webp->get_length());
CHECK_MESSAGE(
image_webp->load_webp_from_buffer(data_webp) == OK,
- "The WEBP image should load successfully.");
+ "The WebP image should load successfully.");
// Load PNG
Ref<Image> image_png = memnew(Image());
@@ -162,7 +162,7 @@ TEST_CASE("[Image] Basic getters") {
CHECK(image->get_size() == Vector2(8, 4));
CHECK(image->get_format() == Image::FORMAT_LA8);
CHECK(image->get_used_rect() == Rect2i(0, 0, 0, 0));
- Ref<Image> image_get_rect = image->get_rect(Rect2i(0, 0, 2, 1));
+ Ref<Image> image_get_rect = image->get_region(Rect2i(0, 0, 2, 1));
CHECK(image_get_rect->get_size() == Vector2(2, 1));
}
diff --git a/tests/core/io/test_json.h b/tests/core/io/test_json.h
index 478cf1766e..af450da3b8 100644
--- a/tests/core/io/test_json.h
+++ b/tests/core/io/test_json.h
@@ -83,7 +83,7 @@ TEST_CASE("[JSON] Parsing single data types") {
json.get_error_line() == 0,
"Parsing a floating-point number as JSON should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(json.get_data()), 0.123456),
+ double(json.get_data()) == doctest::Approx(0.123456),
"Parsing a floating-point number as JSON should return the expected value.");
json.parse("\"hello\"");
diff --git a/tests/core/math/test_aabb.h b/tests/core/math/test_aabb.h
index ebaf441abf..23969556be 100644
--- a/tests/core/math/test_aabb.h
+++ b/tests/core/math/test_aabb.h
@@ -91,7 +91,7 @@ TEST_CASE("[AABB] Basic setters") {
TEST_CASE("[AABB] Volume getters") {
AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), 120),
+ aabb.get_volume() == doctest::Approx(120),
"get_volume() should return the expected value with positive size.");
CHECK_MESSAGE(
aabb.has_volume(),
@@ -99,17 +99,17 @@ TEST_CASE("[AABB] Volume getters") {
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), -120),
+ aabb.get_volume() == doctest::Approx(-120),
"get_volume() should return the expected value with negative size (1 component).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), 120),
+ aabb.get_volume() == doctest::Approx(120),
"get_volume() should return the expected value with negative size (2 components).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6));
CHECK_MESSAGE(
- Math::is_equal_approx(aabb.get_volume(), -120),
+ aabb.get_volume() == doctest::Approx(-120),
"get_volume() should return the expected value with negative size (3 components).");
aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6));
diff --git a/tests/core/math/test_basis.h b/tests/core/math/test_basis.h
index a65020597a..dce9d5cec3 100644
--- a/tests/core/math/test_basis.h
+++ b/tests/core/math/test_basis.h
@@ -38,15 +38,6 @@
namespace TestBasis {
-enum RotOrder {
- EulerXYZ,
- EulerXZY,
- EulerYZX,
- EulerYXZ,
- EulerZXY,
- EulerZYX
-};
-
Vector3 deg_to_rad(const Vector3 &p_rotation) {
return p_rotation / 180.0 * Math_PI;
}
@@ -55,88 +46,26 @@ Vector3 rad2deg(const Vector3 &p_rotation) {
return p_rotation / Math_PI * 180.0;
}
-Basis EulerToBasis(RotOrder mode, const Vector3 &p_rotation) {
- Basis ret;
- switch (mode) {
- case EulerXYZ:
- ret.set_euler(p_rotation, Basis::EULER_ORDER_XYZ);
- break;
-
- case EulerXZY:
- ret.set_euler(p_rotation, Basis::EULER_ORDER_XZY);
- break;
-
- case EulerYZX:
- ret.set_euler(p_rotation, Basis::EULER_ORDER_YZX);
- break;
-
- case EulerYXZ:
- ret.set_euler(p_rotation, Basis::EULER_ORDER_YXZ);
- break;
-
- case EulerZXY:
- ret.set_euler(p_rotation, Basis::EULER_ORDER_ZXY);
- break;
-
- case EulerZYX:
- ret.set_euler(p_rotation, Basis::EULER_ORDER_ZYX);
- break;
-
- default:
- // If you land here, Please integrate all rotation orders.
- FAIL("This is not unreachable.");
- }
-
- return ret;
-}
-
-Vector3 BasisToEuler(RotOrder mode, const Basis &p_rotation) {
- switch (mode) {
- case EulerXYZ:
- return p_rotation.get_euler(Basis::EULER_ORDER_XYZ);
-
- case EulerXZY:
- return p_rotation.get_euler(Basis::EULER_ORDER_XZY);
-
- case EulerYZX:
- return p_rotation.get_euler(Basis::EULER_ORDER_YZX);
-
- case EulerYXZ:
- return p_rotation.get_euler(Basis::EULER_ORDER_YXZ);
-
- case EulerZXY:
- return p_rotation.get_euler(Basis::EULER_ORDER_ZXY);
-
- case EulerZYX:
- return p_rotation.get_euler(Basis::EULER_ORDER_ZYX);
-
- default:
- // If you land here, Please integrate all rotation orders.
- FAIL("This is not unreachable.");
- return Vector3();
- }
-}
-
-String get_rot_order_name(RotOrder ro) {
+String get_rot_order_name(EulerOrder ro) {
switch (ro) {
- case EulerXYZ:
+ case EulerOrder::XYZ:
return "XYZ";
- case EulerXZY:
+ case EulerOrder::XZY:
return "XZY";
- case EulerYZX:
+ case EulerOrder::YZX:
return "YZX";
- case EulerYXZ:
+ case EulerOrder::YXZ:
return "YXZ";
- case EulerZXY:
+ case EulerOrder::ZXY:
return "ZXY";
- case EulerZYX:
+ case EulerOrder::ZYX:
return "ZYX";
default:
return "[Not supported]";
}
}
-void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) {
+void test_rotation(Vector3 deg_original_euler, EulerOrder rot_order) {
// This test:
// 1. Converts the rotation vector from deg to rad.
// 2. Converts euler to basis.
@@ -156,11 +85,11 @@ void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) {
// Euler to rotation
const Vector3 original_euler = deg_to_rad(deg_original_euler);
- const Basis to_rotation = EulerToBasis(rot_order, original_euler);
+ const Basis to_rotation = Basis::from_euler(original_euler, rot_order);
// Euler from rotation
- const Vector3 euler_from_rotation = BasisToEuler(rot_order, to_rotation);
- const Basis rotation_from_computed_euler = EulerToBasis(rot_order, euler_from_rotation);
+ const Vector3 euler_from_rotation = to_rotation.get_euler(rot_order);
+ const Basis rotation_from_computed_euler = Basis::from_euler(euler_from_rotation, rot_order);
Basis res = to_rotation.inverse() * rotation_from_computed_euler;
@@ -169,9 +98,8 @@ void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) {
CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Fail due to Z %s\n", String(res.get_column(2))).utf8().ptr());
// Double check `to_rotation` decomposing with XYZ rotation order.
- const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(Basis::EULER_ORDER_XYZ);
- Basis rotation_from_xyz_computed_euler;
- rotation_from_xyz_computed_euler.set_euler(euler_xyz_from_rotation, Basis::EULER_ORDER_XYZ);
+ const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(EulerOrder::XYZ);
+ Basis rotation_from_xyz_computed_euler = Basis::from_euler(euler_xyz_from_rotation, EulerOrder::XYZ);
res = to_rotation.inverse() * rotation_from_xyz_computed_euler;
@@ -185,13 +113,13 @@ void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) {
}
TEST_CASE("[Basis] Euler conversions") {
- Vector<RotOrder> rotorder_to_test;
- rotorder_to_test.push_back(EulerXYZ);
- rotorder_to_test.push_back(EulerXZY);
- rotorder_to_test.push_back(EulerYZX);
- rotorder_to_test.push_back(EulerYXZ);
- rotorder_to_test.push_back(EulerZXY);
- rotorder_to_test.push_back(EulerZYX);
+ Vector<EulerOrder> euler_order_to_test;
+ euler_order_to_test.push_back(EulerOrder::XYZ);
+ euler_order_to_test.push_back(EulerOrder::XZY);
+ euler_order_to_test.push_back(EulerOrder::YZX);
+ euler_order_to_test.push_back(EulerOrder::YXZ);
+ euler_order_to_test.push_back(EulerOrder::ZXY);
+ euler_order_to_test.push_back(EulerOrder::ZYX);
Vector<Vector3> vectors_to_test;
@@ -249,21 +177,21 @@ TEST_CASE("[Basis] Euler conversions") {
vectors_to_test.push_back(Vector3(120.0, 150.0, -130.0));
vectors_to_test.push_back(Vector3(120.0, 150.0, 130.0));
- for (int h = 0; h < rotorder_to_test.size(); h += 1) {
+ for (int h = 0; h < euler_order_to_test.size(); h += 1) {
for (int i = 0; i < vectors_to_test.size(); i += 1) {
- test_rotation(vectors_to_test[i], rotorder_to_test[h]);
+ test_rotation(vectors_to_test[i], euler_order_to_test[h]);
}
}
}
TEST_CASE("[Stress][Basis] Euler conversions") {
- Vector<RotOrder> rotorder_to_test;
- rotorder_to_test.push_back(EulerXYZ);
- rotorder_to_test.push_back(EulerXZY);
- rotorder_to_test.push_back(EulerYZX);
- rotorder_to_test.push_back(EulerYXZ);
- rotorder_to_test.push_back(EulerZXY);
- rotorder_to_test.push_back(EulerZYX);
+ Vector<EulerOrder> euler_order_to_test;
+ euler_order_to_test.push_back(EulerOrder::XYZ);
+ euler_order_to_test.push_back(EulerOrder::XZY);
+ euler_order_to_test.push_back(EulerOrder::YZX);
+ euler_order_to_test.push_back(EulerOrder::YXZ);
+ euler_order_to_test.push_back(EulerOrder::ZXY);
+ euler_order_to_test.push_back(EulerOrder::ZYX);
Vector<Vector3> vectors_to_test;
// Add 1000 random vectors with weirds numbers.
@@ -275,9 +203,9 @@ TEST_CASE("[Stress][Basis] Euler conversions") {
rng.randf_range(-1800, 1800)));
}
- for (int h = 0; h < rotorder_to_test.size(); h += 1) {
+ for (int h = 0; h < euler_order_to_test.size(); h += 1) {
for (int i = 0; i < vectors_to_test.size(); i += 1) {
- test_rotation(vectors_to_test[i], rotorder_to_test[h]);
+ test_rotation(vectors_to_test[i], euler_order_to_test[h]);
}
}
}
@@ -295,7 +223,7 @@ TEST_CASE("[Basis] Set axis angle") {
// Testing the singularity when the angle is 180°.
Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1);
singularityPi.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, pi));
+ CHECK(angle == doctest::Approx(pi));
// Testing reversing the an axis (of an 30° angle).
float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0));
@@ -303,17 +231,17 @@ TEST_CASE("[Basis] Set axis angle") {
Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1);
z_positive.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0)));
+ CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
CHECK(axis == Vector3(0, 0, 1));
z_negative.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, Math::deg_to_rad((real_t)30.0)));
+ CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0)));
CHECK(axis == Vector3(0, 0, -1));
// Testing a rotation of 90° on x-y-z.
Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0);
x90deg.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, pi / (real_t)2));
+ CHECK(angle == doctest::Approx(pi / (real_t)2));
CHECK(axis == Vector3(1, 0, 0));
Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0);
@@ -327,7 +255,7 @@ TEST_CASE("[Basis] Set axis angle") {
// Regression test: checks that the method returns a small angle (not 0).
Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad.
tiny.get_axis_angle(axis, angle);
- CHECK(Math::is_equal_approx(angle, (real_t)0.001, (real_t)0.0001));
+ CHECK(angle == doctest::Approx(0.001).epsilon(0.0001));
// Regression test: checks that the method returns an angle which is a number (not NaN)
Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024);
diff --git a/tests/core/math/test_color.h b/tests/core/math/test_color.h
index 51c3bc8bdc..c6550778e8 100644
--- a/tests/core/math/test_color.h
+++ b/tests/core/math/test_color.h
@@ -101,13 +101,13 @@ TEST_CASE("[Color] Reading methods") {
const Color dark_blue = Color(0, 0, 0.5, 0.4);
CHECK_MESSAGE(
- Math::is_equal_approx(dark_blue.get_h(), 240.0f / 360.0f),
+ dark_blue.get_h() == doctest::Approx(240.0f / 360.0f),
"The returned HSV hue should match the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(dark_blue.get_s(), 1.0f),
+ dark_blue.get_s() == doctest::Approx(1.0f),
"The returned HSV saturation should match the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(dark_blue.get_v(), 0.5f),
+ dark_blue.get_v() == doctest::Approx(0.5f),
"The returned HSV value should match the expected value.");
}
diff --git a/tests/core/math/test_expression.h b/tests/core/math/test_expression.h
index 6e3be541b0..9734fd9f36 100644
--- a/tests/core/math/test_expression.h
+++ b/tests/core/math/test_expression.h
@@ -83,42 +83,42 @@ TEST_CASE("[Expression] Floating-point arithmetic") {
expression.parse("-123.456") == OK,
"Float identity should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), -123.456),
+ double(expression.execute()) == doctest::Approx(-123.456),
"Float identity should return the expected result.");
CHECK_MESSAGE(
expression.parse("2.0 + 3.0") == OK,
"Float addition should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 5),
+ double(expression.execute()) == doctest::Approx(5),
"Float addition should return the expected result.");
CHECK_MESSAGE(
expression.parse("3.0 / 10") == OK,
"Float / integer division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.3),
+ double(expression.execute()) == doctest::Approx(0.3),
"Float / integer division should return the expected result.");
CHECK_MESSAGE(
expression.parse("3 / 10.0") == OK,
"Basic integer / float division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.3),
+ double(expression.execute()) == doctest::Approx(0.3),
"Basic integer / float division should return the expected result.");
CHECK_MESSAGE(
expression.parse("3.0 / 10.0") == OK,
"Float / float division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.3),
+ double(expression.execute()) == doctest::Approx(0.3),
"Float / float division should return the expected result.");
CHECK_MESSAGE(
expression.parse("2.5 * (6.0 + 14.25) / 2.0 - 5.12345") == OK,
"Float multiplication-addition-subtraction-division should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 20.18905),
+ double(expression.execute()) == doctest::Approx(20.18905),
"Float multiplication-addition-subtraction-division should return the expected result.");
}
@@ -129,7 +129,7 @@ TEST_CASE("[Expression] Scientific notation") {
expression.parse("2.e5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 200'000),
+ double(expression.execute()) == doctest::Approx(200'000),
"The expression should return the expected result.");
// The middle "e" is ignored here.
@@ -137,14 +137,14 @@ TEST_CASE("[Expression] Scientific notation") {
expression.parse("2e5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 2e5),
+ double(expression.execute()) == doctest::Approx(2e5),
"The expression should return the expected result.");
CHECK_MESSAGE(
expression.parse("2e.5") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 2),
+ double(expression.execute()) == doctest::Approx(2),
"The expression should return the expected result.");
}
@@ -176,7 +176,7 @@ TEST_CASE("[Expression] Built-in functions") {
expression.parse("snapped(sin(0.5), 0.01)") == OK,
"The expression should parse successfully.");
CHECK_MESSAGE(
- Math::is_equal_approx(double(expression.execute()), 0.48),
+ double(expression.execute()) == doctest::Approx(0.48),
"`snapped(sin(0.5), 0.01)` should return the expected result.");
CHECK_MESSAGE(
diff --git a/tests/core/math/test_geometry_2d.h b/tests/core/math/test_geometry_2d.h
index db4e6e2177..27c9e7f58b 100644
--- a/tests/core/math/test_geometry_2d.h
+++ b/tests/core/math/test_geometry_2d.h
@@ -64,7 +64,7 @@ TEST_CASE("[Geometry2D] Point in triangle") {
// This tests points on the edge of the triangle. They are treated as being outside the triangle.
// In `is_point_in_circle` and `is_point_in_polygon` they are treated as being inside, so in order the make
- // the behaviour consistent this may change in the future (see issue #44717 and PR #44274).
+ // the behavior consistent this may change in the future (see issue #44717 and PR #44274).
CHECK_FALSE(Geometry2D::is_point_in_triangle(Vector2(1, 1), Vector2(-1, 1), Vector2(0, -1), Vector2(1, 1)));
CHECK_FALSE(Geometry2D::is_point_in_triangle(Vector2(0, 1), Vector2(-1, 1), Vector2(0, -1), Vector2(1, 1)));
}
@@ -171,43 +171,43 @@ TEST_CASE("[Geometry2D] Segment intersection with circle") {
real_t one = 1.0;
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0), one_quarter),
+ Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter),
"Segment from inside to outside of circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0), three_quarters),
+ Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(three_quarters),
"Segment from outside to inside of circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0), one_quarter),
+ Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter),
"Segment running through circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0), one_quarter),
+ Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter),
"Segment running through circle should intersect it.");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one),
+ Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one),
"Segment starting inside the circle and ending on the circle should intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0), zero),
+ Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero),
"Segment starting on the circle and going inwards should intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0), zero),
+ Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero),
"Segment starting on the circle and going outwards should intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one),
+ Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one),
"Segment starting outside the circle and ending on the circle intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one),
"Segment completely within the circle should not intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one),
"Segment completely within the circle should not intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one),
"Segment completely outside the circle should not intersect it");
CHECK_MESSAGE(
- Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0), minus_one),
+ Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one),
"Segment completely outside the circle should not intersect it");
}
diff --git a/tests/core/math/test_math_funcs.h b/tests/core/math/test_math_funcs.h
new file mode 100644
index 0000000000..c468e73b74
--- /dev/null
+++ b/tests/core/math/test_math_funcs.h
@@ -0,0 +1,556 @@
+/*************************************************************************/
+/* test_math_funcs.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_MATH_FUNCS_H
+#define TEST_MATH_FUNCS_H
+
+#include "tests/test_macros.h"
+
+namespace TestMath {
+
+TEST_CASE("[Math] C++ macros") {
+ CHECK(MIN(-2, 2) == -2);
+ CHECK(MIN(600, 2) == 2);
+
+ CHECK(MAX(-2, 2) == 2);
+ CHECK(MAX(600, 2) == 600);
+
+ CHECK(CLAMP(600, -2, 2) == 2);
+ CHECK(CLAMP(620, 600, 650) == 620);
+ // `max` is lower than `min`.
+ CHECK(CLAMP(620, 600, 50) == 50);
+
+ CHECK(ABS(-5) == 5);
+ CHECK(ABS(0) == 0);
+ CHECK(ABS(5) == 5);
+
+ CHECK(SIGN(-5) == -1.0);
+ CHECK(SIGN(0) == 0.0);
+ CHECK(SIGN(5) == 1.0);
+}
+
+TEST_CASE("[Math] Power of two functions") {
+ CHECK(next_power_of_2(0) == 0);
+ CHECK(next_power_of_2(1) == 1);
+ CHECK(next_power_of_2(16) == 16);
+ CHECK(next_power_of_2(17) == 32);
+ CHECK(next_power_of_2(65535) == 65536);
+
+ CHECK(previous_power_of_2(0) == 0);
+ CHECK(previous_power_of_2(1) == 1);
+ CHECK(previous_power_of_2(16) == 16);
+ CHECK(previous_power_of_2(17) == 16);
+ CHECK(previous_power_of_2(65535) == 32768);
+
+ CHECK(closest_power_of_2(0) == 0);
+ CHECK(closest_power_of_2(1) == 1);
+ CHECK(closest_power_of_2(16) == 16);
+ CHECK(closest_power_of_2(17) == 16);
+ CHECK(closest_power_of_2(65535) == 65536);
+
+ CHECK(get_shift_from_power_of_2(0) == -1);
+ CHECK(get_shift_from_power_of_2(1) == 0);
+ CHECK(get_shift_from_power_of_2(16) == 4);
+ CHECK(get_shift_from_power_of_2(17) == -1);
+ CHECK(get_shift_from_power_of_2(65535) == -1);
+
+ CHECK(nearest_shift(0) == 0);
+ CHECK(nearest_shift(1) == 1);
+ CHECK(nearest_shift(16) == 5);
+ CHECK(nearest_shift(17) == 5);
+ CHECK(nearest_shift(65535) == 16);
+}
+
+TEST_CASE("[Math] abs") {
+ // int
+ CHECK(Math::abs(-1) == 1);
+ CHECK(Math::abs(0) == 0);
+ CHECK(Math::abs(1) == 1);
+
+ // double
+ CHECK(Math::abs(-0.1) == 0.1);
+ CHECK(Math::abs(0.0) == 0.0);
+ CHECK(Math::abs(0.1) == 0.1);
+
+ // float
+ CHECK(Math::abs(-0.1f) == 0.1f);
+ CHECK(Math::abs(0.0f) == 0.0f);
+ CHECK(Math::abs(0.1f) == 0.1f);
+}
+
+TEST_CASE("[Math] round/floor/ceil") {
+ CHECK(Math::round(1.5) == 2.0);
+ CHECK(Math::round(1.6) == 2.0);
+ CHECK(Math::round(-1.5) == -2.0);
+ CHECK(Math::round(-1.1) == -1.0);
+
+ CHECK(Math::floor(1.5) == 1.0);
+ CHECK(Math::floor(-1.5) == -2.0);
+
+ CHECK(Math::ceil(1.5) == 2.0);
+ CHECK(Math::ceil(-1.9) == -1.0);
+}
+
+TEST_CASE("[Math] sin/cos/tan") {
+ CHECK(Math::sin(-0.1) == doctest::Approx(-0.0998334166));
+ CHECK(Math::sin(0.1) == doctest::Approx(0.0998334166));
+ CHECK(Math::sin(0.5) == doctest::Approx(0.4794255386));
+ CHECK(Math::sin(1.0) == doctest::Approx(0.8414709848));
+ CHECK(Math::sin(1.5) == doctest::Approx(0.9974949866));
+ CHECK(Math::sin(450.0) == doctest::Approx(-0.683283725));
+
+ CHECK(Math::cos(-0.1) == doctest::Approx(0.99500416530));
+ CHECK(Math::cos(0.1) == doctest::Approx(0.9950041653));
+ CHECK(Math::cos(0.5) == doctest::Approx(0.8775825619));
+ CHECK(Math::cos(1.0) == doctest::Approx(0.5403023059));
+ CHECK(Math::cos(1.5) == doctest::Approx(0.0707372017));
+ CHECK(Math::cos(450.0) == doctest::Approx(-0.7301529642));
+
+ CHECK(Math::tan(-0.1) == doctest::Approx(-0.1003346721));
+ CHECK(Math::tan(0.1) == doctest::Approx(0.1003346721));
+ CHECK(Math::tan(0.5) == doctest::Approx(0.5463024898));
+ CHECK(Math::tan(1.0) == doctest::Approx(1.5574077247));
+ CHECK(Math::tan(1.5) == doctest::Approx(14.1014199472));
+ CHECK(Math::tan(450.0) == doctest::Approx(0.9358090134));
+}
+
+TEST_CASE("[Math] sinh/cosh/tanh") {
+ CHECK(Math::sinh(-0.1) == doctest::Approx(-0.10016675));
+ CHECK(Math::sinh(0.1) == doctest::Approx(0.10016675));
+ CHECK(Math::sinh(0.5) == doctest::Approx(0.5210953055));
+ CHECK(Math::sinh(1.0) == doctest::Approx(1.1752011936));
+ CHECK(Math::sinh(1.5) == doctest::Approx(2.1292794551));
+
+ CHECK(Math::cosh(-0.1) == doctest::Approx(1.0050041681));
+ CHECK(Math::cosh(0.1) == doctest::Approx(1.0050041681));
+ CHECK(Math::cosh(0.5) == doctest::Approx(1.1276259652));
+ CHECK(Math::cosh(1.0) == doctest::Approx(1.5430806348));
+ CHECK(Math::cosh(1.5) == doctest::Approx(2.3524096152));
+
+ CHECK(Math::tanh(-0.1) == doctest::Approx(-0.0996679946));
+ CHECK(Math::tanh(0.1) == doctest::Approx(0.0996679946));
+ CHECK(Math::tanh(0.5) == doctest::Approx(0.4621171573));
+ CHECK(Math::tanh(1.0) == doctest::Approx(0.761594156));
+ CHECK(Math::tanh(1.5) == doctest::Approx(0.9051482536));
+ CHECK(Math::tanh(450.0) == doctest::Approx(1.0));
+}
+
+TEST_CASE("[Math] asin/acos/atan") {
+ CHECK(Math::asin(-0.1) == doctest::Approx(-0.1001674212));
+ CHECK(Math::asin(0.1) == doctest::Approx(0.1001674212));
+ CHECK(Math::asin(0.5) == doctest::Approx(0.5235987756));
+ CHECK(Math::asin(1.0) == doctest::Approx(1.5707963268));
+ CHECK(Math::is_nan(Math::asin(1.5)));
+ CHECK(Math::is_nan(Math::asin(450.0)));
+
+ CHECK(Math::acos(-0.1) == doctest::Approx(1.670963748));
+ CHECK(Math::acos(0.1) == doctest::Approx(1.4706289056));
+ CHECK(Math::acos(0.5) == doctest::Approx(1.0471975512));
+ CHECK(Math::acos(1.0) == doctest::Approx(0.0));
+ CHECK(Math::is_nan(Math::acos(1.5)));
+ CHECK(Math::is_nan(Math::acos(450.0)));
+
+ CHECK(Math::atan(-0.1) == doctest::Approx(-0.0996686525));
+ CHECK(Math::atan(0.1) == doctest::Approx(0.0996686525));
+ CHECK(Math::atan(0.5) == doctest::Approx(0.463647609));
+ CHECK(Math::atan(1.0) == doctest::Approx(0.7853981634));
+ CHECK(Math::atan(1.5) == doctest::Approx(0.9827937232));
+ CHECK(Math::atan(450.0) == doctest::Approx(1.5685741082));
+}
+
+TEST_CASE("[Math] sinc/sincn/atan2") {
+ CHECK(Math::sinc(-0.1) == doctest::Approx(0.9983341665));
+ CHECK(Math::sinc(0.1) == doctest::Approx(0.9983341665));
+ CHECK(Math::sinc(0.5) == doctest::Approx(0.9588510772));
+ CHECK(Math::sinc(1.0) == doctest::Approx(0.8414709848));
+ CHECK(Math::sinc(1.5) == doctest::Approx(0.6649966577));
+ CHECK(Math::sinc(450.0) == doctest::Approx(-0.0015184083));
+
+ CHECK(Math::sincn(-0.1) == doctest::Approx(0.9836316431));
+ CHECK(Math::sincn(0.1) == doctest::Approx(0.9836316431));
+ CHECK(Math::sincn(0.5) == doctest::Approx(0.6366197724));
+ CHECK(Math::sincn(1.0) == doctest::Approx(0.0));
+ CHECK(Math::sincn(1.5) == doctest::Approx(-0.2122065908));
+ CHECK(Math::sincn(450.0) == doctest::Approx(0.0));
+
+ CHECK(Math::atan2(-0.1, 0.5) == doctest::Approx(-0.1973955598));
+ CHECK(Math::atan2(0.1, -0.5) == doctest::Approx(2.9441970937));
+ CHECK(Math::atan2(0.5, 1.5) == doctest::Approx(0.3217505544));
+ CHECK(Math::atan2(1.0, 2.5) == doctest::Approx(0.3805063771));
+ CHECK(Math::atan2(1.5, 1.0) == doctest::Approx(0.9827937232));
+ CHECK(Math::atan2(450.0, 1.0) == doctest::Approx(1.5685741082));
+}
+
+TEST_CASE("[Math] pow/log/log2/exp/sqrt") {
+ CHECK(Math::pow(-0.1, 2.0) == doctest::Approx(0.01));
+ CHECK(Math::pow(0.1, 2.5) == doctest::Approx(0.0031622777));
+ CHECK(Math::pow(0.5, 0.5) == doctest::Approx(0.7071067812));
+ CHECK(Math::pow(1.0, 1.0) == doctest::Approx(1.0));
+ CHECK(Math::pow(1.5, -1.0) == doctest::Approx(0.6666666667));
+ CHECK(Math::pow(450.0, -2.0) == doctest::Approx(0.0000049383));
+ CHECK(Math::pow(450.0, 0.0) == doctest::Approx(1.0));
+
+ CHECK(Math::is_nan(Math::log(-0.1)));
+ CHECK(Math::log(0.1) == doctest::Approx(-2.302585093));
+ CHECK(Math::log(0.5) == doctest::Approx(-0.6931471806));
+ CHECK(Math::log(1.0) == doctest::Approx(0.0));
+ CHECK(Math::log(1.5) == doctest::Approx(0.4054651081));
+ CHECK(Math::log(450.0) == doctest::Approx(6.1092475828));
+
+ CHECK(Math::is_nan(Math::log2(-0.1)));
+ CHECK(Math::log2(0.1) == doctest::Approx(-3.3219280949));
+ CHECK(Math::log2(0.5) == doctest::Approx(-1.0));
+ CHECK(Math::log2(1.0) == doctest::Approx(0.0));
+ CHECK(Math::log2(1.5) == doctest::Approx(0.5849625007));
+ CHECK(Math::log2(450.0) == doctest::Approx(8.8137811912));
+
+ CHECK(Math::exp(-0.1) == doctest::Approx(0.904837418));
+ CHECK(Math::exp(0.1) == doctest::Approx(1.1051709181));
+ CHECK(Math::exp(0.5) == doctest::Approx(1.6487212707));
+ CHECK(Math::exp(1.0) == doctest::Approx(2.7182818285));
+ CHECK(Math::exp(1.5) == doctest::Approx(4.4816890703));
+
+ CHECK(Math::is_nan(Math::sqrt(-0.1)));
+ CHECK(Math::sqrt(0.1) == doctest::Approx(0.316228));
+ CHECK(Math::sqrt(0.5) == doctest::Approx(0.707107));
+ CHECK(Math::sqrt(1.0) == doctest::Approx(1.0));
+ CHECK(Math::sqrt(1.5) == doctest::Approx(1.224745));
+}
+
+TEST_CASE("[Math] is_nan/is_inf") {
+ CHECK(!Math::is_nan(0.0));
+ CHECK(Math::is_nan(NAN));
+
+ CHECK(!Math::is_inf(0.0));
+ CHECK(Math::is_inf(INFINITY));
+}
+
+TEST_CASE("[Math] linear_to_db") {
+ CHECK(Math::linear_to_db(1.0) == doctest::Approx(0.0));
+ CHECK(Math::linear_to_db(20.0) == doctest::Approx(26.0206));
+ CHECK(Math::is_inf(Math::linear_to_db(0.0)));
+ CHECK(Math::is_nan(Math::linear_to_db(-20.0)));
+}
+
+TEST_CASE("[Math] db_to_linear") {
+ CHECK(Math::db_to_linear(0.0) == doctest::Approx(1.0));
+ CHECK(Math::db_to_linear(1.0) == doctest::Approx(1.122018));
+ CHECK(Math::db_to_linear(20.0) == doctest::Approx(10.0));
+ CHECK(Math::db_to_linear(-20.0) == doctest::Approx(0.1));
+}
+
+TEST_CASE("[Math] step_decimals") {
+ CHECK(Math::step_decimals(-0.5) == 1);
+ CHECK(Math::step_decimals(0) == 0);
+ CHECK(Math::step_decimals(1) == 0);
+ CHECK(Math::step_decimals(0.1) == 1);
+ CHECK(Math::step_decimals(0.01) == 2);
+ CHECK(Math::step_decimals(0.001) == 3);
+ CHECK(Math::step_decimals(0.0001) == 4);
+ CHECK(Math::step_decimals(0.00001) == 5);
+ CHECK(Math::step_decimals(0.000001) == 6);
+ CHECK(Math::step_decimals(0.0000001) == 7);
+ CHECK(Math::step_decimals(0.00000001) == 8);
+ CHECK(Math::step_decimals(0.000000001) == 9);
+ // Too many decimals to handle.
+ CHECK(Math::step_decimals(0.0000000001) == 0);
+}
+
+TEST_CASE("[Math] range_step_decimals") {
+ CHECK(Math::range_step_decimals(0.000000001) == 9);
+ // Too many decimals to handle.
+ CHECK(Math::range_step_decimals(0.0000000001) == 0);
+ // Should be treated as a step of 0 for use by the editor.
+ CHECK(Math::range_step_decimals(0.0) == 16);
+ CHECK(Math::range_step_decimals(-0.5) == 16);
+}
+
+TEST_CASE("[Math] lerp") {
+ CHECK(Math::lerp(2.0, 5.0, -0.1) == doctest::Approx(1.7));
+ CHECK(Math::lerp(2.0, 5.0, 0.0) == doctest::Approx(2.0));
+ CHECK(Math::lerp(2.0, 5.0, 0.1) == doctest::Approx(2.3));
+ CHECK(Math::lerp(2.0, 5.0, 1.0) == doctest::Approx(5.0));
+ CHECK(Math::lerp(2.0, 5.0, 2.0) == doctest::Approx(8.0));
+
+ CHECK(Math::lerp(-2.0, -5.0, -0.1) == doctest::Approx(-1.7));
+ CHECK(Math::lerp(-2.0, -5.0, 0.0) == doctest::Approx(-2.0));
+ CHECK(Math::lerp(-2.0, -5.0, 0.1) == doctest::Approx(-2.3));
+ CHECK(Math::lerp(-2.0, -5.0, 1.0) == doctest::Approx(-5.0));
+ CHECK(Math::lerp(-2.0, -5.0, 2.0) == doctest::Approx(-8.0));
+}
+
+TEST_CASE("[Math] inverse_lerp") {
+ CHECK(Math::inverse_lerp(2.0, 5.0, 1.7) == doctest::Approx(-0.1));
+ CHECK(Math::inverse_lerp(2.0, 5.0, 2.0) == doctest::Approx(0.0));
+ CHECK(Math::inverse_lerp(2.0, 5.0, 2.3) == doctest::Approx(0.1));
+ CHECK(Math::inverse_lerp(2.0, 5.0, 5.0) == doctest::Approx(1.0));
+ CHECK(Math::inverse_lerp(2.0, 5.0, 8.0) == doctest::Approx(2.0));
+
+ CHECK(Math::inverse_lerp(-2.0, -5.0, -1.7) == doctest::Approx(-0.1));
+ CHECK(Math::inverse_lerp(-2.0, -5.0, -2.0) == doctest::Approx(0.0));
+ CHECK(Math::inverse_lerp(-2.0, -5.0, -2.3) == doctest::Approx(0.1));
+ CHECK(Math::inverse_lerp(-2.0, -5.0, -5.0) == doctest::Approx(1.0));
+ CHECK(Math::inverse_lerp(-2.0, -5.0, -8.0) == doctest::Approx(2.0));
+}
+
+TEST_CASE("[Math] remap") {
+ CHECK(Math::remap(50.0, 100.0, 200.0, 0.0, 1000.0) == doctest::Approx(-500.0));
+ CHECK(Math::remap(100.0, 100.0, 200.0, 0.0, 1000.0) == doctest::Approx(0.0));
+ CHECK(Math::remap(200.0, 100.0, 200.0, 0.0, 1000.0) == doctest::Approx(1000.0));
+ CHECK(Math::remap(250.0, 100.0, 200.0, 0.0, 1000.0) == doctest::Approx(1500.0));
+
+ CHECK(Math::remap(-50.0, -100.0, -200.0, 0.0, 1000.0) == doctest::Approx(-500.0));
+ CHECK(Math::remap(-100.0, -100.0, -200.0, 0.0, 1000.0) == doctest::Approx(0.0));
+ CHECK(Math::remap(-200.0, -100.0, -200.0, 0.0, 1000.0) == doctest::Approx(1000.0));
+ CHECK(Math::remap(-250.0, -100.0, -200.0, 0.0, 1000.0) == doctest::Approx(1500.0));
+
+ CHECK(Math::remap(-50.0, -100.0, -200.0, 0.0, -1000.0) == doctest::Approx(500.0));
+ CHECK(Math::remap(-100.0, -100.0, -200.0, 0.0, -1000.0) == doctest::Approx(0.0));
+ CHECK(Math::remap(-200.0, -100.0, -200.0, 0.0, -1000.0) == doctest::Approx(-1000.0));
+ CHECK(Math::remap(-250.0, -100.0, -200.0, 0.0, -1000.0) == doctest::Approx(-1500.0));
+}
+
+TEST_CASE("[Math] lerp_angle") {
+ // Counter-clockwise rotation.
+ CHECK(Math::lerp_angle(0.24 * Math_TAU, 0.75 * Math_TAU, 0.5) == doctest::Approx(-0.005 * Math_TAU));
+ // Counter-clockwise rotation.
+ CHECK(Math::lerp_angle(0.25 * Math_TAU, 0.75 * Math_TAU, 0.5) == doctest::Approx(0.0));
+ // Clockwise rotation.
+ CHECK(Math::lerp_angle(0.26 * Math_TAU, 0.75 * Math_TAU, 0.5) == doctest::Approx(0.505 * Math_TAU));
+
+ CHECK(Math::lerp_angle(-0.25 * Math_TAU, 1.25 * Math_TAU, 0.5) == doctest::Approx(-0.5 * Math_TAU));
+ CHECK(Math::lerp_angle(0.72 * Math_TAU, 1.44 * Math_TAU, 0.96) == doctest::Approx(0.4512 * Math_TAU));
+ CHECK(Math::lerp_angle(0.72 * Math_TAU, 1.44 * Math_TAU, 1.04) == doctest::Approx(0.4288 * Math_TAU));
+
+ // Initial and final angles are effectively identical, so the value returned
+ // should always be the same regardless of the `weight` parameter.
+ CHECK(Math::lerp_angle(-4 * Math_TAU, 4 * Math_TAU, -1.0) == doctest::Approx(-4.0 * Math_TAU));
+ CHECK(Math::lerp_angle(-4 * Math_TAU, 4 * Math_TAU, 0.0) == doctest::Approx(-4.0 * Math_TAU));
+ CHECK(Math::lerp_angle(-4 * Math_TAU, 4 * Math_TAU, 0.5) == doctest::Approx(-4.0 * Math_TAU));
+ CHECK(Math::lerp_angle(-4 * Math_TAU, 4 * Math_TAU, 1.0) == doctest::Approx(-4.0 * Math_TAU));
+ CHECK(Math::lerp_angle(-4 * Math_TAU, 4 * Math_TAU, 500.0) == doctest::Approx(-4.0 * Math_TAU));
+}
+
+TEST_CASE("[Math] move_toward") {
+ CHECK(Math::move_toward(2.0, 5.0, -1.0) == doctest::Approx(1.0));
+ CHECK(Math::move_toward(2.0, 5.0, 2.5) == doctest::Approx(4.5));
+ CHECK(Math::move_toward(2.0, 5.0, 4.0) == doctest::Approx(5.0));
+ CHECK(Math::move_toward(-2.0, -5.0, -1.0) == doctest::Approx(-1.0));
+ CHECK(Math::move_toward(-2.0, -5.0, 2.5) == doctest::Approx(-4.5));
+ CHECK(Math::move_toward(-2.0, -5.0, 4.0) == doctest::Approx(-5.0));
+}
+
+TEST_CASE("[Math] smoothstep") {
+ CHECK(Math::smoothstep(0.0, 2.0, -5.0) == doctest::Approx(0.0));
+ CHECK(Math::smoothstep(0.0, 2.0, 0.5) == doctest::Approx(0.15625));
+ CHECK(Math::smoothstep(0.0, 2.0, 1.0) == doctest::Approx(0.5));
+ CHECK(Math::smoothstep(0.0, 2.0, 2.0) == doctest::Approx(1.0));
+}
+
+TEST_CASE("[Math] ease") {
+ CHECK(Math::ease(0.1, 1.0) == doctest::Approx(0.1));
+ CHECK(Math::ease(0.1, 2.0) == doctest::Approx(0.01));
+ CHECK(Math::ease(0.1, 0.5) == doctest::Approx(0.19));
+ CHECK(Math::ease(0.1, 0.0) == doctest::Approx(0));
+ CHECK(Math::ease(0.1, -0.5) == doctest::Approx(0.2236067977));
+ CHECK(Math::ease(0.1, -1.0) == doctest::Approx(0.1));
+ CHECK(Math::ease(0.1, -2.0) == doctest::Approx(0.02));
+
+ CHECK(Math::ease(-1.0, 1.0) == doctest::Approx(0));
+ CHECK(Math::ease(-1.0, 2.0) == doctest::Approx(0));
+ CHECK(Math::ease(-1.0, 0.5) == doctest::Approx(0));
+ CHECK(Math::ease(-1.0, 0.0) == doctest::Approx(0));
+ CHECK(Math::ease(-1.0, -0.5) == doctest::Approx(0));
+ CHECK(Math::ease(-1.0, -1.0) == doctest::Approx(0));
+ CHECK(Math::ease(-1.0, -2.0) == doctest::Approx(0));
+}
+
+TEST_CASE("[Math] snapped") {
+ CHECK(Math::snapped(0.5, 0.04) == doctest::Approx(0.52));
+ CHECK(Math::snapped(-0.5, 0.04) == doctest::Approx(-0.48));
+ CHECK(Math::snapped(0.0, 0.04) == doctest::Approx(0));
+ CHECK(Math::snapped(128'000.025, 0.04) == doctest::Approx(128'000.04));
+
+ CHECK(Math::snapped(0.5, 400) == doctest::Approx(0));
+ CHECK(Math::snapped(-0.5, 400) == doctest::Approx(0));
+ CHECK(Math::snapped(0.0, 400) == doctest::Approx(0));
+ CHECK(Math::snapped(128'000.025, 400) == doctest::Approx(128'000.0));
+
+ CHECK(Math::snapped(0.5, 0.0) == doctest::Approx(0.5));
+ CHECK(Math::snapped(-0.5, 0.0) == doctest::Approx(-0.5));
+ CHECK(Math::snapped(0.0, 0.0) == doctest::Approx(0.0));
+ CHECK(Math::snapped(128'000.025, 0.0) == doctest::Approx(128'000.0));
+
+ CHECK(Math::snapped(0.5, -1.0) == doctest::Approx(0));
+ CHECK(Math::snapped(-0.5, -1.0) == doctest::Approx(-1.0));
+ CHECK(Math::snapped(0.0, -1.0) == doctest::Approx(0));
+ CHECK(Math::snapped(128'000.025, -1.0) == doctest::Approx(128'000.0));
+}
+
+TEST_CASE("[Math] larger_prime") {
+ CHECK(Math::larger_prime(0) == 5);
+ CHECK(Math::larger_prime(1) == 5);
+ CHECK(Math::larger_prime(2) == 5);
+ CHECK(Math::larger_prime(5) == 13);
+ CHECK(Math::larger_prime(500) == 769);
+ CHECK(Math::larger_prime(1'000'000) == 1'572'869);
+ CHECK(Math::larger_prime(1'000'000'000) == 1'610'612'741);
+
+ // The next prime is larger than `INT32_MAX` and is not present in the built-in prime table.
+ ERR_PRINT_OFF;
+ CHECK(Math::larger_prime(2'000'000'000) == 0);
+ ERR_PRINT_ON;
+}
+
+TEST_CASE("[Math] fmod") {
+ CHECK(Math::fmod(-2.0, 0.3) == doctest::Approx(-0.2));
+ CHECK(Math::fmod(0.0, 0.3) == doctest::Approx(0.0));
+ CHECK(Math::fmod(2.0, 0.3) == doctest::Approx(0.2));
+
+ CHECK(Math::fmod(-2.0, -0.3) == doctest::Approx(-0.2));
+ CHECK(Math::fmod(0.0, -0.3) == doctest::Approx(0.0));
+ CHECK(Math::fmod(2.0, -0.3) == doctest::Approx(0.2));
+}
+
+TEST_CASE("[Math] fposmod") {
+ CHECK(Math::fposmod(-2.0, 0.3) == doctest::Approx(0.1));
+ CHECK(Math::fposmod(0.0, 0.3) == doctest::Approx(0.0));
+ CHECK(Math::fposmod(2.0, 0.3) == doctest::Approx(0.2));
+
+ CHECK(Math::fposmod(-2.0, -0.3) == doctest::Approx(-0.2));
+ CHECK(Math::fposmod(0.0, -0.3) == doctest::Approx(0.0));
+ CHECK(Math::fposmod(2.0, -0.3) == doctest::Approx(-0.1));
+}
+
+TEST_CASE("[Math] fposmodp") {
+ CHECK(Math::fposmodp(-2.0, 0.3) == doctest::Approx(0.1));
+ CHECK(Math::fposmodp(0.0, 0.3) == doctest::Approx(0.0));
+ CHECK(Math::fposmodp(2.0, 0.3) == doctest::Approx(0.2));
+
+ CHECK(Math::fposmodp(-2.0, -0.3) == doctest::Approx(-0.5));
+ CHECK(Math::fposmodp(0.0, -0.3) == doctest::Approx(0.0));
+ CHECK(Math::fposmodp(2.0, -0.3) == doctest::Approx(0.2));
+}
+
+TEST_CASE("[Math] posmod") {
+ CHECK(Math::posmod(-20, 3) == 1);
+ CHECK(Math::posmod(0, 3) == 0);
+ CHECK(Math::posmod(20, 3) == 2);
+ CHECK(Math::posmod(-20, -3) == -2);
+ CHECK(Math::posmod(0, -3) == 0);
+ CHECK(Math::posmod(20, -3) == -1);
+}
+
+TEST_CASE("[Math] wrapi") {
+ CHECK(Math::wrapi(-30, -20, 160) == 150);
+ CHECK(Math::wrapi(30, -20, 160) == 30);
+ CHECK(Math::wrapi(300, -20, 160) == 120);
+ CHECK(Math::wrapi(300'000'000'000, -20, 160) == 120);
+}
+
+TEST_CASE("[Math] wrapf") {
+ CHECK(Math::wrapf(-30.0, -20.0, 160.0) == doctest::Approx(150.0));
+ CHECK(Math::wrapf(30.0, -2.0, 160.0) == doctest::Approx(30.0));
+ CHECK(Math::wrapf(300.0, -20.0, 160.0) == doctest::Approx(120.0));
+ CHECK(Math::wrapf(300'000'000'000.0, -20.0, 160.0) == doctest::Approx(120.0));
+}
+
+TEST_CASE("[Math] fract") {
+ CHECK(Math::fract(1.0) == doctest::Approx(0.0));
+ CHECK(Math::fract(77.8) == doctest::Approx(0.8));
+ CHECK(Math::fract(-10.1) == doctest::Approx(0.9));
+}
+
+TEST_CASE("[Math] pingpong") {
+ CHECK(Math::pingpong(0.0, 0.0) == doctest::Approx(0.0));
+ CHECK(Math::pingpong(1.0, 1.0) == doctest::Approx(1.0));
+ CHECK(Math::pingpong(0.5, 2.0) == doctest::Approx(0.5));
+ CHECK(Math::pingpong(3.5, 2.0) == doctest::Approx(0.5));
+ CHECK(Math::pingpong(11.5, 2.0) == doctest::Approx(0.5));
+ CHECK(Math::pingpong(-2.5, 2.0) == doctest::Approx(1.5));
+}
+
+TEST_CASE("[Math] deg_to_rad/rad_to_deg") {
+ CHECK(Math::deg_to_rad(180.0) == doctest::Approx(Math_PI));
+ CHECK(Math::deg_to_rad(-27.0) == doctest::Approx(-0.471239));
+
+ CHECK(Math::rad_to_deg(Math_PI) == doctest::Approx(180.0));
+ CHECK(Math::rad_to_deg(-1.5) == doctest::Approx(-85.94366927));
+}
+
+TEST_CASE("[Math] cubic_interpolate") {
+ CHECK(Math::cubic_interpolate(0.2, 0.8, 0.0, 1.0, 0.0) == doctest::Approx(0.2));
+ CHECK(Math::cubic_interpolate(0.2, 0.8, 0.0, 1.0, 0.25) == doctest::Approx(0.33125));
+ CHECK(Math::cubic_interpolate(0.2, 0.8, 0.0, 1.0, 0.5) == doctest::Approx(0.5));
+ CHECK(Math::cubic_interpolate(0.2, 0.8, 0.0, 1.0, 0.75) == doctest::Approx(0.66875));
+ CHECK(Math::cubic_interpolate(0.2, 0.8, 0.0, 1.0, 1.0) == doctest::Approx(0.8));
+
+ CHECK(Math::cubic_interpolate(20.2, 30.1, -100.0, 32.0, -50.0) == doctest::Approx(-6662732.3));
+ CHECK(Math::cubic_interpolate(20.2, 30.1, -100.0, 32.0, -5.0) == doctest::Approx(-9356.3));
+ CHECK(Math::cubic_interpolate(20.2, 30.1, -100.0, 32.0, 0.0) == doctest::Approx(20.2));
+ CHECK(Math::cubic_interpolate(20.2, 30.1, -100.0, 32.0, 1.0) == doctest::Approx(30.1));
+ CHECK(Math::cubic_interpolate(20.2, 30.1, -100.0, 32.0, 4.0) == doctest::Approx(1853.2));
+}
+
+TEST_CASE("[Math] cubic_interpolate_angle") {
+ CHECK(Math::cubic_interpolate_angle(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.0) == doctest::Approx(Math_PI * (1.0 / 6.0)));
+ CHECK(Math::cubic_interpolate_angle(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.25) == doctest::Approx(0.973566));
+ CHECK(Math::cubic_interpolate_angle(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.5) == doctest::Approx(Math_PI / 2.0));
+ CHECK(Math::cubic_interpolate_angle(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.75) == doctest::Approx(2.16803));
+ CHECK(Math::cubic_interpolate_angle(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 1.0) == doctest::Approx(Math_PI * (5.0 / 6.0)));
+}
+
+TEST_CASE("[Math] cubic_interpolate_in_time") {
+ CHECK(Math::cubic_interpolate_in_time(0.2, 0.8, 0.0, 1.0, 0.0, 0.5, 0.0, 1.0) == doctest::Approx(0.0));
+ CHECK(Math::cubic_interpolate_in_time(0.2, 0.8, 0.0, 1.0, 0.25, 0.5, 0.0, 1.0) == doctest::Approx(0.1625));
+ CHECK(Math::cubic_interpolate_in_time(0.2, 0.8, 0.0, 1.0, 0.5, 0.5, 0.0, 1.0) == doctest::Approx(0.4));
+ CHECK(Math::cubic_interpolate_in_time(0.2, 0.8, 0.0, 1.0, 0.75, 0.5, 0.0, 1.0) == doctest::Approx(0.6375));
+ CHECK(Math::cubic_interpolate_in_time(0.2, 0.8, 0.0, 1.0, 1.0, 0.5, 0.0, 1.0) == doctest::Approx(0.8));
+}
+
+TEST_CASE("[Math] cubic_interpolate_angle_in_time") {
+ CHECK(Math::cubic_interpolate_angle_in_time(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.0, 0.5, 0.0, 1.0) == doctest::Approx(0.0));
+ CHECK(Math::cubic_interpolate_angle_in_time(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.25, 0.5, 0.0, 1.0) == doctest::Approx(0.494964));
+ CHECK(Math::cubic_interpolate_angle_in_time(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.5, 0.5, 0.0, 1.0) == doctest::Approx(1.27627));
+ CHECK(Math::cubic_interpolate_angle_in_time(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 0.75, 0.5, 0.0, 1.0) == doctest::Approx(2.07394));
+ CHECK(Math::cubic_interpolate_angle_in_time(Math_PI * (1.0 / 6.0), Math_PI * (5.0 / 6.0), 0.0, Math_PI, 1.0, 0.5, 0.0, 1.0) == doctest::Approx(Math_PI * (5.0 / 6.0)));
+}
+
+TEST_CASE("[Math] bezier_interpolate") {
+ CHECK(Math::bezier_interpolate(0.0, 0.2, 0.8, 1.0, 0.0) == doctest::Approx(0.0));
+ CHECK(Math::bezier_interpolate(0.0, 0.2, 0.8, 1.0, 0.25) == doctest::Approx(0.2125));
+ CHECK(Math::bezier_interpolate(0.0, 0.2, 0.8, 1.0, 0.5) == doctest::Approx(0.5));
+ CHECK(Math::bezier_interpolate(0.0, 0.2, 0.8, 1.0, 0.75) == doctest::Approx(0.7875));
+ CHECK(Math::bezier_interpolate(0.0, 0.2, 0.8, 1.0, 1.0) == doctest::Approx(1.0));
+}
+
+} // namespace TestMath
+
+#endif // TEST_MATH_FUNCS_H
diff --git a/tests/core/math/test_quaternion.h b/tests/core/math/test_quaternion.h
index d1912cbf42..c3ae322991 100644
--- a/tests/core/math/test_quaternion.h
+++ b/tests/core/math/test_quaternion.h
@@ -47,9 +47,9 @@ Quaternion quat_euler_yxz_deg(Vector3 angle) {
// Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler
// constructor and quaternion product, both tested separately.
- Quaternion q_y(Vector3(0.0, yaw, 0.0));
- Quaternion q_p(Vector3(pitch, 0.0, 0.0));
- Quaternion q_r(Vector3(0.0, 0.0, roll));
+ Quaternion q_y = Quaternion::from_euler(Vector3(0.0, yaw, 0.0));
+ Quaternion q_p = Quaternion::from_euler(Vector3(pitch, 0.0, 0.0));
+ Quaternion q_r = Quaternion::from_euler(Vector3(0.0, 0.0, roll));
// Roll-Z is followed by Pitch-X, then Yaw-Y.
Quaternion q_yxz = q_y * q_p * q_r;
@@ -134,21 +134,21 @@ TEST_CASE("[Quaternion] Construct Euler SingleAxis") {
double roll = Math::deg_to_rad(10.0);
Vector3 euler_y(0.0, yaw, 0.0);
- Quaternion q_y(euler_y);
+ Quaternion q_y = Quaternion::from_euler(euler_y);
CHECK(q_y[0] == doctest::Approx(0.0));
CHECK(q_y[1] == doctest::Approx(0.382684));
CHECK(q_y[2] == doctest::Approx(0.0));
CHECK(q_y[3] == doctest::Approx(0.923879));
Vector3 euler_p(pitch, 0.0, 0.0);
- Quaternion q_p(euler_p);
+ Quaternion q_p = Quaternion::from_euler(euler_p);
CHECK(q_p[0] == doctest::Approx(0.258819));
CHECK(q_p[1] == doctest::Approx(0.0));
CHECK(q_p[2] == doctest::Approx(0.0));
CHECK(q_p[3] == doctest::Approx(0.965926));
Vector3 euler_r(0.0, 0.0, roll);
- Quaternion q_r(euler_r);
+ Quaternion q_r = Quaternion::from_euler(euler_r);
CHECK(q_r[0] == doctest::Approx(0.0));
CHECK(q_r[1] == doctest::Approx(0.0));
CHECK(q_r[2] == doctest::Approx(0.0871558));
@@ -163,27 +163,27 @@ TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") {
// Generate YXZ comparison data (Z-then-X-then-Y) using single-axis Euler
// constructor and quaternion product, both tested separately.
Vector3 euler_y(0.0, yaw, 0.0);
- Quaternion q_y(euler_y);
+ Quaternion q_y = Quaternion::from_euler(euler_y);
Vector3 euler_p(pitch, 0.0, 0.0);
- Quaternion q_p(euler_p);
+ Quaternion q_p = Quaternion::from_euler(euler_p);
Vector3 euler_r(0.0, 0.0, roll);
- Quaternion q_r(euler_r);
+ Quaternion q_r = Quaternion::from_euler(euler_r);
- // Roll-Z is followed by Pitch-X.
- Quaternion check_xz = q_p * q_r;
- // Then Yaw-Y follows both.
- Quaternion check_yxz = q_y * check_xz;
+ // Instrinsically, Yaw-Y then Pitch-X then Roll-Z.
+ // Extrinsically, Roll-Z is followed by Pitch-X, then Yaw-Y.
+ Quaternion check_yxz = q_y * q_p * q_r;
// Test construction from YXZ Euler angles.
Vector3 euler_yxz(pitch, yaw, roll);
- Quaternion q(euler_yxz);
+ Quaternion q = Quaternion::from_euler(euler_yxz);
CHECK(q[0] == doctest::Approx(check_yxz[0]));
CHECK(q[1] == doctest::Approx(check_yxz[1]));
CHECK(q[2] == doctest::Approx(check_yxz[2]));
CHECK(q[3] == doctest::Approx(check_yxz[3]));
- // Sneak in a test of is_equal_approx.
CHECK(q.is_equal_approx(check_yxz));
+ CHECK(q.get_euler().is_equal_approx(euler_yxz));
+ CHECK(check_yxz.get_euler().is_equal_approx(euler_yxz));
}
TEST_CASE("[Quaternion] Construct Basis Euler") {
@@ -191,8 +191,8 @@ TEST_CASE("[Quaternion] Construct Basis Euler") {
double pitch = Math::deg_to_rad(30.0);
double roll = Math::deg_to_rad(10.0);
Vector3 euler_yxz(pitch, yaw, roll);
- Quaternion q_yxz(euler_yxz);
- Basis basis_axes(euler_yxz);
+ Quaternion q_yxz = Quaternion::from_euler(euler_yxz);
+ Basis basis_axes = Basis::from_euler(euler_yxz);
Quaternion q(basis_axes);
CHECK(q.is_equal_approx(q_yxz));
}
@@ -209,7 +209,7 @@ TEST_CASE("[Quaternion] Construct Basis Axes") {
// Quaternion from local calculation.
Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34));
// Quaternion from Euler angles constructor.
- Quaternion q_euler(euler_yxz);
+ Quaternion q_euler = Quaternion::from_euler(euler_yxz);
CHECK(q_calc.is_equal_approx(q_local));
CHECK(q_local.is_equal_approx(q_euler));
@@ -218,7 +218,7 @@ TEST_CASE("[Quaternion] Construct Basis Axes") {
// This is by design, but may be subject to change.
// Workaround by constructing Basis from Euler angles.
// basis_axes = Basis(i_unit, j_unit, k_unit);
- Basis basis_axes(euler_yxz);
+ Basis basis_axes = Basis::from_euler(euler_yxz);
Quaternion q(basis_axes);
CHECK(basis_axes.get_column(0).is_equal_approx(i_unit));
@@ -235,6 +235,23 @@ TEST_CASE("[Quaternion] Construct Basis Axes") {
CHECK(q[3] == doctest::Approx(0.8582598));
}
+TEST_CASE("[Quaternion] Get Euler Orders") {
+ double x = Math::deg_to_rad(30.0);
+ double y = Math::deg_to_rad(45.0);
+ double z = Math::deg_to_rad(10.0);
+ Vector3 euler(x, y, z);
+ for (int i = 0; i < 6; i++) {
+ EulerOrder order = (EulerOrder)i;
+ Basis basis = Basis::from_euler(euler, order);
+ Quaternion q = Quaternion(basis);
+ Vector3 check = q.get_euler(order);
+ CHECK_MESSAGE(check.is_equal_approx(euler),
+ "Quaternion get_euler method should return the original angles.");
+ CHECK_MESSAGE(check.is_equal_approx(basis.get_euler(order)),
+ "Quaternion get_euler method should behave the same as Basis get_euler.");
+ }
+}
+
TEST_CASE("[Quaternion] Product (book)") {
// Example from "Quaternions and Rotation Sequences" by Jack Kuipers, p. 108.
Quaternion p(1.0, -2.0, 1.0, 3.0);
@@ -253,21 +270,21 @@ TEST_CASE("[Quaternion] Product") {
double roll = Math::deg_to_rad(10.0);
Vector3 euler_y(0.0, yaw, 0.0);
- Quaternion q_y(euler_y);
+ Quaternion q_y = Quaternion::from_euler(euler_y);
CHECK(q_y[0] == doctest::Approx(0.0));
CHECK(q_y[1] == doctest::Approx(0.382684));
CHECK(q_y[2] == doctest::Approx(0.0));
CHECK(q_y[3] == doctest::Approx(0.923879));
Vector3 euler_p(pitch, 0.0, 0.0);
- Quaternion q_p(euler_p);
+ Quaternion q_p = Quaternion::from_euler(euler_p);
CHECK(q_p[0] == doctest::Approx(0.258819));
CHECK(q_p[1] == doctest::Approx(0.0));
CHECK(q_p[2] == doctest::Approx(0.0));
CHECK(q_p[3] == doctest::Approx(0.965926));
Vector3 euler_r(0.0, 0.0, roll);
- Quaternion q_r(euler_r);
+ Quaternion q_r = Quaternion::from_euler(euler_r);
CHECK(q_r[0] == doctest::Approx(0.0));
CHECK(q_r[1] == doctest::Approx(0.0));
CHECK(q_r[2] == doctest::Approx(0.0871558));
@@ -334,7 +351,7 @@ TEST_CASE("[Quaternion] xform unit vectors") {
TEST_CASE("[Quaternion] xform vector") {
// Arbitrary quaternion rotates an arbitrary vector.
Vector3 euler_yzx(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34));
- Basis basis_axes(euler_yzx);
+ Basis basis_axes = Basis::from_euler(euler_yzx);
Quaternion q(basis_axes);
Vector3 v_arb(3.0, 4.0, 5.0);
@@ -347,7 +364,7 @@ TEST_CASE("[Quaternion] xform vector") {
// Test vector xform for a single combination of Quaternion and Vector.
void test_quat_vec_rotate(Vector3 euler_yzx, Vector3 v_in) {
- Basis basis_axes(euler_yzx);
+ Basis basis_axes = Basis::from_euler(euler_yzx);
Quaternion q(basis_axes);
Vector3 v_rot = q.xform(v_in);
diff --git a/tests/core/math/test_rect2.h b/tests/core/math/test_rect2.h
index d784875c1c..9984823331 100644
--- a/tests/core/math/test_rect2.h
+++ b/tests/core/math/test_rect2.h
@@ -102,16 +102,16 @@ TEST_CASE("[Rect2] Basic setters") {
TEST_CASE("[Rect2] Area getters") {
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, 1280, 720).get_area(), 921'600),
+ Rect2(0, 100, 1280, 720).get_area() == doctest::Approx(921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, -1280, -720).get_area(), 921'600),
+ Rect2(0, 100, -1280, -720).get_area() == doctest::Approx(921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, 1280, -720).get_area(), -921'600),
+ Rect2(0, 100, 1280, -720).get_area() == doctest::Approx(-921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Rect2(0, 100, -1280, 720).get_area(), -921'600),
+ Rect2(0, 100, -1280, 720).get_area() == doctest::Approx(-921'600),
"get_area() should return the expected value.");
CHECK_MESSAGE(
Math::is_zero_approx(Rect2(0, 100, 0, 720).get_area()),
diff --git a/tests/core/math/test_vector2.h b/tests/core/math/test_vector2.h
index a87b9ffc02..8f8fccd717 100644
--- a/tests/core/math/test_vector2.h
+++ b/tests/core/math/test_vector2.h
@@ -49,16 +49,16 @@ TEST_CASE("[Vector2] Angle methods") {
const Vector2 vector_x = Vector2(1, 0);
const Vector2 vector_y = Vector2(0, 1);
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4),
+ vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector2 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_y.angle_to(vector_x), (real_t)-Math_TAU / 4),
+ vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math_TAU / 4),
"Vector2 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to_point(vector_y), (real_t)Math_TAU * 3 / 8),
+ vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math_TAU * 3 / 8),
"Vector2 angle_to_point should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_y.angle_to_point(vector_x), (real_t)-Math_TAU / 8),
+ vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math_TAU / 8),
"Vector2 angle_to_point should work as expected.");
}
@@ -113,10 +113,10 @@ TEST_CASE("[Vector2] Interpolation methods") {
Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)),
"Vector2 slerp should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919),
+ vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919),
"Vector2 slerp with different length input should return a vector with an interpolated length.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)),
+ vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
"Vector2 slerp with different length input should return a vector with an interpolated angle.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5),
@@ -136,19 +136,19 @@ TEST_CASE("[Vector2] Length methods") {
vector1.length_squared() == 200,
"Vector2 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT2),
+ vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT2),
"Vector2 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 1300,
"Vector2 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), (real_t)36.05551275463989293119),
+ vector2.length() == doctest::Approx((real_t)36.05551275463989293119),
"Vector2 length should work as expected.");
CHECK_MESSAGE(
vector1.distance_squared_to(vector2) == 500,
"Vector2 distance_squared_to should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_to(vector2), (real_t)22.36067977499789696409),
+ vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409),
"Vector2 distance_to should work as expected.");
}
@@ -294,7 +294,7 @@ TEST_CASE("[Vector2] Operators") {
TEST_CASE("[Vector2] Other methods") {
const Vector2 vector = Vector2(1.2, 3.4);
CHECK_MESSAGE(
- Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4),
+ vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4),
"Vector2 aspect should work as expected.");
CHECK_MESSAGE(
@@ -382,13 +382,13 @@ TEST_CASE("[Vector2] Plane methods") {
ERR_PRINT_OFF;
CHECK_MESSAGE(
vector.bounce(vector_non_normal).is_equal_approx(Vector2()),
- "Vector2 bounce should return empty Vector2 with non-normalised input.");
+ "Vector2 bounce should return empty Vector2 with non-normalized input.");
CHECK_MESSAGE(
vector.reflect(vector_non_normal).is_equal_approx(Vector2()),
- "Vector2 reflect should return empty Vector2 with non-normalised input.");
+ "Vector2 reflect should return empty Vector2 with non-normalized input.");
CHECK_MESSAGE(
vector.slide(vector_non_normal).is_equal_approx(Vector2()),
- "Vector2 slide should return empty Vector2 with non-normalised input.");
+ "Vector2 slide should return empty Vector2 with non-normalized input.");
ERR_PRINT_ON;
}
@@ -443,10 +443,10 @@ TEST_CASE("[Vector2] Linear algebra methods") {
vector_y.cross(vector_x) == -1,
"Vector2 cross product of Y and X should give negative 1.");
CHECK_MESSAGE(
- Math::is_equal_approx(a.cross(b), (real_t)-28.1),
+ a.cross(b) == doctest::Approx((real_t)-28.1),
"Vector2 cross should return expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)), (real_t)-28.1),
+ Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1),
"Vector2 cross should return expected value.");
CHECK_MESSAGE(
@@ -459,10 +459,10 @@ TEST_CASE("[Vector2] Linear algebra methods") {
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector2 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(a.dot(b), (real_t)57.3),
+ a.dot(b) == doctest::Approx((real_t)57.3),
"Vector2 dot should return expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)), (real_t)-57.3),
+ Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3),
"Vector2 dot should return expected value.");
}
diff --git a/tests/core/math/test_vector2i.h b/tests/core/math/test_vector2i.h
index 49b0632e3c..c7a0dccdcc 100644
--- a/tests/core/math/test_vector2i.h
+++ b/tests/core/math/test_vector2i.h
@@ -79,13 +79,13 @@ TEST_CASE("[Vector2i] Length methods") {
vector1.length_squared() == 200,
"Vector2i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * Math_SQRT2),
+ vector1.length() == doctest::Approx(10 * Math_SQRT2),
"Vector2i length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 1300,
"Vector2i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), 36.05551275463989293119),
+ vector2.length() == doctest::Approx(36.05551275463989293119),
"Vector2i length should work as expected.");
}
@@ -127,7 +127,7 @@ TEST_CASE("[Vector2i] Operators") {
TEST_CASE("[Vector2i] Other methods") {
const Vector2i vector = Vector2i(1, 3);
CHECK_MESSAGE(
- Math::is_equal_approx(vector.aspect(), (real_t)1.0 / (real_t)3.0),
+ vector.aspect() == doctest::Approx((real_t)1.0 / (real_t)3.0),
"Vector2i aspect should work as expected.");
CHECK_MESSAGE(
diff --git a/tests/core/math/test_vector3.h b/tests/core/math/test_vector3.h
index 4932cd04db..89d73ee6de 100644
--- a/tests/core/math/test_vector3.h
+++ b/tests/core/math/test_vector3.h
@@ -52,26 +52,26 @@ TEST_CASE("[Vector3] Angle methods") {
const Vector3 vector_y = Vector3(0, 1, 0);
const Vector3 vector_yz = Vector3(0, 1, 1);
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4),
+ vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.angle_to(vector_yz), (real_t)Math_TAU / 4),
+ vector_x.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_yz.angle_to(vector_x), (real_t)Math_TAU / 4),
+ vector_yz.angle_to(vector_x) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_y.angle_to(vector_yz), (real_t)Math_TAU / 8),
+ vector_y.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 8),
"Vector3 angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.signed_angle_to(vector_y, vector_y), (real_t)Math_TAU / 4),
+ vector_x.signed_angle_to(vector_y, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 signed_angle_to edge case should be positive.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_x.signed_angle_to(vector_yz, vector_y), (real_t)Math_TAU / -4),
+ vector_x.signed_angle_to(vector_yz, vector_y) == doctest::Approx((real_t)Math_TAU / -4),
"Vector3 signed_angle_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector_yz.signed_angle_to(vector_x, vector_y), (real_t)Math_TAU / 4),
+ vector_yz.signed_angle_to(vector_x, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
"Vector3 signed_angle_to should work as expected.");
}
@@ -130,10 +130,10 @@ TEST_CASE("[Vector3] Interpolation methods") {
Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)),
"Vector3 slerp should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172),
+ vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)6.25831088708303172),
"Vector3 slerp with different length input should return a vector with an interpolated length.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)),
+ vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
"Vector3 slerp with different length input should return a vector with an interpolated angle.");
CHECK_MESSAGE(
vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625),
@@ -153,19 +153,19 @@ TEST_CASE("[Vector3] Length methods") {
vector1.length_squared() == 300,
"Vector3 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT3),
+ vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT3),
"Vector3 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 2900,
"Vector3 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), (real_t)53.8516480713450403125),
+ vector2.length() == doctest::Approx((real_t)53.8516480713450403125),
"Vector3 length should work as expected.");
CHECK_MESSAGE(
vector1.distance_squared_to(vector2) == 1400,
"Vector3 distance_squared_to should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_to(vector2), (real_t)37.41657386773941385584),
+ vector1.distance_to(vector2) == doctest::Approx((real_t)37.41657386773941385584),
"Vector3 distance_to should work as expected.");
}
@@ -389,13 +389,13 @@ TEST_CASE("[Vector3] Plane methods") {
ERR_PRINT_OFF;
CHECK_MESSAGE(
vector.bounce(vector_non_normal).is_equal_approx(Vector3()),
- "Vector3 bounce should return empty Vector3 with non-normalised input.");
+ "Vector3 bounce should return empty Vector3 with non-normalized input.");
CHECK_MESSAGE(
vector.reflect(vector_non_normal).is_equal_approx(Vector3()),
- "Vector3 reflect should return empty Vector3 with non-normalised input.");
+ "Vector3 reflect should return empty Vector3 with non-normalized input.");
CHECK_MESSAGE(
vector.slide(vector_non_normal).is_equal_approx(Vector3()),
- "Vector3 slide should return empty Vector3 with non-normalised input.");
+ "Vector3 slide should return empty Vector3 with non-normalized input.");
ERR_PRINT_ON;
}
@@ -473,10 +473,10 @@ TEST_CASE("[Vector3] Linear algebra methods") {
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector3 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(a.dot(b), (real_t)75.24),
+ a.dot(b) == doctest::Approx((real_t)75.24),
"Vector3 dot should return expected value.");
CHECK_MESSAGE(
- Math::is_equal_approx(Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)), (real_t)-75.24),
+ Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)) == doctest::Approx((real_t)-75.24),
"Vector3 dot should return expected value.");
}
diff --git a/tests/core/math/test_vector3i.h b/tests/core/math/test_vector3i.h
index 2050b222d0..56578f99eb 100644
--- a/tests/core/math/test_vector3i.h
+++ b/tests/core/math/test_vector3i.h
@@ -82,13 +82,13 @@ TEST_CASE("[Vector3i] Length methods") {
vector1.length_squared() == 300,
"Vector3i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 10 * Math_SQRT3),
+ vector1.length() == doctest::Approx(10 * Math_SQRT3),
"Vector3i length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 2900,
"Vector3i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), 53.8516480713450403125),
+ vector2.length() == doctest::Approx(53.8516480713450403125),
"Vector3i length should work as expected.");
}
diff --git a/tests/core/math/test_vector4.h b/tests/core/math/test_vector4.h
index b31db56f67..6ed85661cb 100644
--- a/tests/core/math/test_vector4.h
+++ b/tests/core/math/test_vector4.h
@@ -91,19 +91,19 @@ TEST_CASE("[Vector4] Length methods") {
vector1.length_squared() == 400,
"Vector4 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 20),
+ vector1.length() == doctest::Approx(20),
"Vector4 length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 5400,
"Vector4 length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), (real_t)73.484692283495),
+ vector2.length() == doctest::Approx((real_t)73.484692283495),
"Vector4 length should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_to(vector2), (real_t)54.772255750517),
+ vector1.distance_to(vector2) == doctest::Approx((real_t)54.772255750517),
"Vector4 distance_to should work as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.distance_squared_to(vector2), 3000),
+ vector1.distance_squared_to(vector2) == doctest::Approx(3000),
"Vector4 distance_squared_to should work as expected.");
}
@@ -311,7 +311,7 @@ TEST_CASE("[Vector4] Linear algebra methods") {
(vector_x * 10).dot(vector_x * 10) == 100.0,
"Vector4 dot product of same direction vectors should behave as expected.");
CHECK_MESSAGE(
- Math::is_equal_approx((vector1 * 2).dot(vector2 * 4), (real_t)-25.9 * 8),
+ (vector1 * 2).dot(vector2 * 4) == doctest::Approx((real_t)-25.9 * 8),
"Vector4 dot product should work as expected.");
}
diff --git a/tests/core/math/test_vector4i.h b/tests/core/math/test_vector4i.h
index 309162c3f7..30d38607dd 100644
--- a/tests/core/math/test_vector4i.h
+++ b/tests/core/math/test_vector4i.h
@@ -82,13 +82,13 @@ TEST_CASE("[Vector4i] Length methods") {
vector1.length_squared() == 400,
"Vector4i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector1.length(), 20),
+ vector1.length() == doctest::Approx(20),
"Vector4i length should work as expected.");
CHECK_MESSAGE(
vector2.length_squared() == 5400,
"Vector4i length_squared should work as expected and return exact result.");
CHECK_MESSAGE(
- Math::is_equal_approx(vector2.length(), 73.4846922835),
+ vector2.length() == doctest::Approx(73.4846922835),
"Vector4i length should work as expected.");
}
diff --git a/tests/core/string/test_string.h b/tests/core/string/test_string.h
index cd1b421ce8..7e4e3aa9f0 100644
--- a/tests/core/string/test_string.h
+++ b/tests/core/string/test_string.h
@@ -485,6 +485,7 @@ TEST_CASE("[String] Splitting") {
const char *slices_l[3] = { "Mars", "Jupiter", "Saturn,Uranus" };
const char *slices_r[3] = { "Mars,Jupiter", "Saturn", "Uranus" };
+ const char *slices_3[4] = { "t", "e", "s", "t" };
l = s.split(",", true, 2);
CHECK(l.size() == 3);
@@ -498,6 +499,13 @@ TEST_CASE("[String] Splitting") {
CHECK(l[i] == slices_r[i]);
}
+ s = "test";
+ l = s.split();
+ CHECK(l.size() == 4);
+ for (int i = 0; i < l.size(); i++) {
+ CHECK(l[i] == slices_3[i]);
+ }
+
s = "Mars Jupiter Saturn Uranus";
const char *slices_s[4] = { "Mars", "Jupiter", "Saturn", "Uranus" };
l = s.split_spaces();