summaryrefslogtreecommitdiff
path: root/tests/core/math
diff options
context:
space:
mode:
Diffstat (limited to 'tests/core/math')
-rw-r--r--tests/core/math/test_aabb.h20
-rw-r--r--tests/core/math/test_quaternion.h389
-rw-r--r--tests/core/math/test_transform_2d.h88
-rw-r--r--tests/core/math/test_transform_3d.h89
-rw-r--r--tests/core/math/test_vector4.h315
-rw-r--r--tests/core/math/test_vector4i.h148
6 files changed, 1036 insertions, 13 deletions
diff --git a/tests/core/math/test_aabb.h b/tests/core/math/test_aabb.h
index 526972a82f..447420fc12 100644
--- a/tests/core/math/test_aabb.h
+++ b/tests/core/math/test_aabb.h
@@ -299,34 +299,28 @@ TEST_CASE("[AABB] Get longest/shortest axis") {
"get_shortest_axis_size() should return the expected value.");
}
-#ifndef _MSC_VER
-#warning Support tests need to be re-done
-#endif
-
-/* Support function was actually broken. As it was fixed, the tests now fail. Tests need to be re-done.
-
TEST_CASE("[AABB] Get support") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
- aabb.get_support(Vector3(1, 0, 0)).is_equal_approx(Vector3(-1.5, 7, 3.5)),
+ aabb.get_support(Vector3(1, 0, 0)).is_equal_approx(Vector3(2.5, 2, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
- aabb.get_support(Vector3(0.5, 1, 0)).is_equal_approx(Vector3(-1.5, 2, 3.5)),
+ aabb.get_support(Vector3(0.5, 1, 0)).is_equal_approx(Vector3(2.5, 7, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
- aabb.get_support(Vector3(0.5, 1, -400)).is_equal_approx(Vector3(-1.5, 2, 3.5)),
+ aabb.get_support(Vector3(0.5, 1, -400)).is_equal_approx(Vector3(2.5, 7, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
- aabb.get_support(Vector3(0, -1, 0)).is_equal_approx(Vector3(2.5, 7, 3.5)),
+ aabb.get_support(Vector3(0, -1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
- aabb.get_support(Vector3(0, -0.1, 0)).is_equal_approx(Vector3(2.5, 7, 3.5)),
+ aabb.get_support(Vector3(0, -0.1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)),
"get_support() should return the expected value.");
CHECK_MESSAGE(
- aabb.get_support(Vector3()).is_equal_approx(Vector3(2.5, 7, 3.5)),
+ aabb.get_support(Vector3()).is_equal_approx(Vector3(-1.5, 2, -2.5)),
"get_support() should return the expected value with a null vector.");
}
-*/
+
TEST_CASE("[AABB] Grow") {
const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6));
CHECK_MESSAGE(
diff --git a/tests/core/math/test_quaternion.h b/tests/core/math/test_quaternion.h
new file mode 100644
index 0000000000..1b80ffba0b
--- /dev/null
+++ b/tests/core/math/test_quaternion.h
@@ -0,0 +1,389 @@
+/*************************************************************************/
+/* test_quaternion.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_QUATERNION_H
+#define TEST_QUATERNION_H
+
+#include "core/math/math_defs.h"
+#include "core/math/math_funcs.h"
+#include "core/math/quaternion.h"
+#include "core/math/vector3.h"
+
+#include "tests/test_macros.h"
+
+namespace TestQuaternion {
+
+Quaternion quat_euler_yxz_deg(Vector3 angle) {
+ double yaw = Math::deg_to_rad(angle[1]);
+ double pitch = Math::deg_to_rad(angle[0]);
+ double roll = Math::deg_to_rad(angle[2]);
+
+ // Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler
+ // constructor and quaternion product, both tested separately.
+ Quaternion q_y(Vector3(0.0, yaw, 0.0));
+ Quaternion q_p(Vector3(pitch, 0.0, 0.0));
+ Quaternion q_r(Vector3(0.0, 0.0, roll));
+ // Roll-Z is followed by Pitch-X, then Yaw-Y.
+ Quaternion q_yxz = q_y * q_p * q_r;
+
+ return q_yxz;
+}
+
+TEST_CASE("[Quaternion] Default Construct") {
+ Quaternion q;
+
+ CHECK(q[0] == 0.0);
+ CHECK(q[1] == 0.0);
+ CHECK(q[2] == 0.0);
+ CHECK(q[3] == 1.0);
+}
+
+TEST_CASE("[Quaternion] Construct x,y,z,w") {
+ // Values are taken from actual use in another project & are valid (except roundoff error).
+ Quaternion q(0.2391, 0.099, 0.3696, 0.8924);
+
+ CHECK(q[0] == doctest::Approx(0.2391));
+ CHECK(q[1] == doctest::Approx(0.099));
+ CHECK(q[2] == doctest::Approx(0.3696));
+ CHECK(q[3] == doctest::Approx(0.8924));
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 1") {
+ // Easy to visualize: 120 deg about X-axis.
+ Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0));
+
+ // 0.866 isn't close enough; doctest::Approx doesn't cut much slack!
+ CHECK(q[0] == doctest::Approx(0.866025)); // Sine of half the angle.
+ CHECK(q[1] == doctest::Approx(0.0));
+ CHECK(q[2] == doctest::Approx(0.0));
+ CHECK(q[3] == doctest::Approx(0.5)); // Cosine of half the angle.
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 2") {
+ // Easy to visualize: 30 deg about Y-axis.
+ Quaternion q(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0));
+
+ CHECK(q[0] == doctest::Approx(0.0));
+ CHECK(q[1] == doctest::Approx(0.258819)); // Sine of half the angle.
+ CHECK(q[2] == doctest::Approx(0.0));
+ CHECK(q[3] == doctest::Approx(0.965926)); // Cosine of half the angle.
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 3") {
+ // Easy to visualize: 60 deg about Z-axis.
+ Quaternion q(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0));
+
+ CHECK(q[0] == doctest::Approx(0.0));
+ CHECK(q[1] == doctest::Approx(0.0));
+ CHECK(q[2] == doctest::Approx(0.5)); // Sine of half the angle.
+ CHECK(q[3] == doctest::Approx(0.866025)); // Cosine of half the angle.
+}
+
+TEST_CASE("[Quaternion] Construct AxisAngle 4") {
+ // More complex & hard to visualize, so test w/ data from online calculator.
+ Vector3 axis(1.0, 2.0, 0.5);
+ Quaternion q(axis.normalized(), Math::deg_to_rad(35.0));
+
+ CHECK(q[0] == doctest::Approx(0.131239));
+ CHECK(q[1] == doctest::Approx(0.262478));
+ CHECK(q[2] == doctest::Approx(0.0656194));
+ CHECK(q[3] == doctest::Approx(0.953717));
+}
+
+TEST_CASE("[Quaternion] Construct from Quaternion") {
+ Vector3 axis(1.0, 2.0, 0.5);
+ Quaternion q_src(axis.normalized(), Math::deg_to_rad(35.0));
+ Quaternion q(q_src);
+
+ CHECK(q[0] == doctest::Approx(0.131239));
+ CHECK(q[1] == doctest::Approx(0.262478));
+ CHECK(q[2] == doctest::Approx(0.0656194));
+ CHECK(q[3] == doctest::Approx(0.953717));
+}
+
+TEST_CASE("[Quaternion] Construct Euler SingleAxis") {
+ double yaw = Math::deg_to_rad(45.0);
+ double pitch = Math::deg_to_rad(30.0);
+ double roll = Math::deg_to_rad(10.0);
+
+ Vector3 euler_y(0.0, yaw, 0.0);
+ Quaternion q_y(euler_y);
+ CHECK(q_y[0] == doctest::Approx(0.0));
+ CHECK(q_y[1] == doctest::Approx(0.382684));
+ CHECK(q_y[2] == doctest::Approx(0.0));
+ CHECK(q_y[3] == doctest::Approx(0.923879));
+
+ Vector3 euler_p(pitch, 0.0, 0.0);
+ Quaternion q_p(euler_p);
+ CHECK(q_p[0] == doctest::Approx(0.258819));
+ CHECK(q_p[1] == doctest::Approx(0.0));
+ CHECK(q_p[2] == doctest::Approx(0.0));
+ CHECK(q_p[3] == doctest::Approx(0.965926));
+
+ Vector3 euler_r(0.0, 0.0, roll);
+ Quaternion q_r(euler_r);
+ CHECK(q_r[0] == doctest::Approx(0.0));
+ CHECK(q_r[1] == doctest::Approx(0.0));
+ CHECK(q_r[2] == doctest::Approx(0.0871558));
+ CHECK(q_r[3] == doctest::Approx(0.996195));
+}
+
+TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") {
+ double yaw = Math::deg_to_rad(45.0);
+ double pitch = Math::deg_to_rad(30.0);
+ double roll = Math::deg_to_rad(10.0);
+
+ // Generate YXZ comparision data (Z-then-X-then-Y) using single-axis Euler
+ // constructor and quaternion product, both tested separately.
+ Vector3 euler_y(0.0, yaw, 0.0);
+ Quaternion q_y(euler_y);
+ Vector3 euler_p(pitch, 0.0, 0.0);
+ Quaternion q_p(euler_p);
+ Vector3 euler_r(0.0, 0.0, roll);
+ Quaternion q_r(euler_r);
+
+ // Roll-Z is followed by Pitch-X.
+ Quaternion check_xz = q_p * q_r;
+ // Then Yaw-Y follows both.
+ Quaternion check_yxz = q_y * check_xz;
+
+ // Test construction from YXZ Euler angles.
+ Vector3 euler_yxz(pitch, yaw, roll);
+ Quaternion q(euler_yxz);
+ CHECK(q[0] == doctest::Approx(check_yxz[0]));
+ CHECK(q[1] == doctest::Approx(check_yxz[1]));
+ CHECK(q[2] == doctest::Approx(check_yxz[2]));
+ CHECK(q[3] == doctest::Approx(check_yxz[3]));
+
+ // Sneak in a test of is_equal_approx.
+ CHECK(q.is_equal_approx(check_yxz));
+}
+
+TEST_CASE("[Quaternion] Construct Basis Euler") {
+ double yaw = Math::deg_to_rad(45.0);
+ double pitch = Math::deg_to_rad(30.0);
+ double roll = Math::deg_to_rad(10.0);
+ Vector3 euler_yxz(pitch, yaw, roll);
+ Quaternion q_yxz(euler_yxz);
+ Basis basis_axes(euler_yxz);
+ Quaternion q(basis_axes);
+ CHECK(q.is_equal_approx(q_yxz));
+}
+
+TEST_CASE("[Quaternion] Construct Basis Axes") {
+ // Arbitrary Euler angles.
+ Vector3 euler_yxz(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34));
+ // Basis vectors from online calculation of rotation matrix.
+ Vector3 i_unit(0.5545787, 0.1823950, 0.8118957);
+ Vector3 j_unit(-0.5249245, 0.8337420, 0.1712555);
+ Vector3 k_unit(-0.6456754, -0.5211586, 0.5581192);
+ // Quaternion from online calculation.
+ Quaternion q_calc(0.2016913, -0.4245716, 0.206033, 0.8582598);
+ // Quaternion from local calculation.
+ Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34));
+ // Quaternion from Euler angles constructor.
+ Quaternion q_euler(euler_yxz);
+ CHECK(q_calc.is_equal_approx(q_local));
+ CHECK(q_local.is_equal_approx(q_euler));
+
+ // Calculate Basis and construct Quaternion.
+ // When this is written, C++ Basis class does not construct from basis vectors.
+ // This is by design, but may be subject to change.
+ // Workaround by constructing Basis from Euler angles.
+ // basis_axes = Basis(i_unit, j_unit, k_unit);
+ Basis basis_axes(euler_yxz);
+ Quaternion q(basis_axes);
+
+ CHECK(basis_axes.get_column(0).is_equal_approx(i_unit));
+ CHECK(basis_axes.get_column(1).is_equal_approx(j_unit));
+ CHECK(basis_axes.get_column(2).is_equal_approx(k_unit));
+
+ CHECK(q.is_equal_approx(q_calc));
+ CHECK_FALSE(q.inverse().is_equal_approx(q_calc));
+ CHECK(q.is_equal_approx(q_local));
+ CHECK(q.is_equal_approx(q_euler));
+ CHECK(q[0] == doctest::Approx(0.2016913));
+ CHECK(q[1] == doctest::Approx(-0.4245716));
+ CHECK(q[2] == doctest::Approx(0.206033));
+ CHECK(q[3] == doctest::Approx(0.8582598));
+}
+
+TEST_CASE("[Quaternion] Product (book)") {
+ // Example from "Quaternions and Rotation Sequences" by Jack Kuipers, p. 108.
+ Quaternion p(1.0, -2.0, 1.0, 3.0);
+ Quaternion q(-1.0, 2.0, 3.0, 2.0);
+
+ Quaternion pq = p * q;
+ CHECK(pq[0] == doctest::Approx(-9.0));
+ CHECK(pq[1] == doctest::Approx(-2.0));
+ CHECK(pq[2] == doctest::Approx(11.0));
+ CHECK(pq[3] == doctest::Approx(8.0));
+}
+
+TEST_CASE("[Quaternion] Product") {
+ double yaw = Math::deg_to_rad(45.0);
+ double pitch = Math::deg_to_rad(30.0);
+ double roll = Math::deg_to_rad(10.0);
+
+ Vector3 euler_y(0.0, yaw, 0.0);
+ Quaternion q_y(euler_y);
+ CHECK(q_y[0] == doctest::Approx(0.0));
+ CHECK(q_y[1] == doctest::Approx(0.382684));
+ CHECK(q_y[2] == doctest::Approx(0.0));
+ CHECK(q_y[3] == doctest::Approx(0.923879));
+
+ Vector3 euler_p(pitch, 0.0, 0.0);
+ Quaternion q_p(euler_p);
+ CHECK(q_p[0] == doctest::Approx(0.258819));
+ CHECK(q_p[1] == doctest::Approx(0.0));
+ CHECK(q_p[2] == doctest::Approx(0.0));
+ CHECK(q_p[3] == doctest::Approx(0.965926));
+
+ Vector3 euler_r(0.0, 0.0, roll);
+ Quaternion q_r(euler_r);
+ CHECK(q_r[0] == doctest::Approx(0.0));
+ CHECK(q_r[1] == doctest::Approx(0.0));
+ CHECK(q_r[2] == doctest::Approx(0.0871558));
+ CHECK(q_r[3] == doctest::Approx(0.996195));
+
+ // Test ZYX dynamic-axes since test data is available online.
+ // Rotate first about X axis, then new Y axis, then new Z axis.
+ // (Godot uses YXZ Yaw-Pitch-Roll order).
+ Quaternion q_yp = q_y * q_p;
+ CHECK(q_yp[0] == doctest::Approx(0.239118));
+ CHECK(q_yp[1] == doctest::Approx(0.369644));
+ CHECK(q_yp[2] == doctest::Approx(-0.099046));
+ CHECK(q_yp[3] == doctest::Approx(0.892399));
+
+ Quaternion q_ryp = q_r * q_yp;
+ CHECK(q_ryp[0] == doctest::Approx(0.205991));
+ CHECK(q_ryp[1] == doctest::Approx(0.389078));
+ CHECK(q_ryp[2] == doctest::Approx(-0.0208912));
+ CHECK(q_ryp[3] == doctest::Approx(0.897636));
+}
+
+TEST_CASE("[Quaternion] xform unit vectors") {
+ // Easy to visualize: 120 deg about X-axis.
+ // Transform the i, j, & k unit vectors.
+ Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0));
+ Vector3 i_t = q.xform(Vector3(1.0, 0.0, 0.0));
+ Vector3 j_t = q.xform(Vector3(0.0, 1.0, 0.0));
+ Vector3 k_t = q.xform(Vector3(0.0, 0.0, 1.0));
+ //
+ CHECK(i_t.is_equal_approx(Vector3(1.0, 0.0, 0.0)));
+ CHECK(j_t.is_equal_approx(Vector3(0.0, -0.5, 0.866025)));
+ CHECK(k_t.is_equal_approx(Vector3(0.0, -0.866025, -0.5)));
+ CHECK(i_t.length_squared() == doctest::Approx(1.0));
+ CHECK(j_t.length_squared() == doctest::Approx(1.0));
+ CHECK(k_t.length_squared() == doctest::Approx(1.0));
+
+ // Easy to visualize: 30 deg about Y-axis.
+ q = Quaternion(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0));
+ i_t = q.xform(Vector3(1.0, 0.0, 0.0));
+ j_t = q.xform(Vector3(0.0, 1.0, 0.0));
+ k_t = q.xform(Vector3(0.0, 0.0, 1.0));
+ //
+ CHECK(i_t.is_equal_approx(Vector3(0.866025, 0.0, -0.5)));
+ CHECK(j_t.is_equal_approx(Vector3(0.0, 1.0, 0.0)));
+ CHECK(k_t.is_equal_approx(Vector3(0.5, 0.0, 0.866025)));
+ CHECK(i_t.length_squared() == doctest::Approx(1.0));
+ CHECK(j_t.length_squared() == doctest::Approx(1.0));
+ CHECK(k_t.length_squared() == doctest::Approx(1.0));
+
+ // Easy to visualize: 60 deg about Z-axis.
+ q = Quaternion(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0));
+ i_t = q.xform(Vector3(1.0, 0.0, 0.0));
+ j_t = q.xform(Vector3(0.0, 1.0, 0.0));
+ k_t = q.xform(Vector3(0.0, 0.0, 1.0));
+ //
+ CHECK(i_t.is_equal_approx(Vector3(0.5, 0.866025, 0.0)));
+ CHECK(j_t.is_equal_approx(Vector3(-0.866025, 0.5, 0.0)));
+ CHECK(k_t.is_equal_approx(Vector3(0.0, 0.0, 1.0)));
+ CHECK(i_t.length_squared() == doctest::Approx(1.0));
+ CHECK(j_t.length_squared() == doctest::Approx(1.0));
+ CHECK(k_t.length_squared() == doctest::Approx(1.0));
+}
+
+TEST_CASE("[Quaternion] xform vector") {
+ // Arbitrary quaternion rotates an arbitrary vector.
+ Vector3 euler_yzx(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34));
+ Basis basis_axes(euler_yzx);
+ Quaternion q(basis_axes);
+
+ Vector3 v_arb(3.0, 4.0, 5.0);
+ Vector3 v_rot = q.xform(v_arb);
+ Vector3 v_compare = basis_axes.xform(v_arb);
+
+ CHECK(v_rot.length_squared() == doctest::Approx(v_arb.length_squared()));
+ CHECK(v_rot.is_equal_approx(v_compare));
+}
+
+// Test vector xform for a single combination of Quaternion and Vector.
+void test_quat_vec_rotate(Vector3 euler_yzx, Vector3 v_in) {
+ Basis basis_axes(euler_yzx);
+ Quaternion q(basis_axes);
+
+ Vector3 v_rot = q.xform(v_in);
+ Vector3 v_compare = basis_axes.xform(v_in);
+
+ CHECK(v_rot.length_squared() == doctest::Approx(v_in.length_squared()));
+ CHECK(v_rot.is_equal_approx(v_compare));
+}
+
+TEST_CASE("[Stress][Quaternion] Many vector xforms") {
+ // Many arbitrary quaternions rotate many arbitrary vectors.
+ // For each trial, check that rotation by Quaternion yields same result as
+ // rotation by Basis.
+ const int STEPS = 100; // Number of test steps in each dimension
+ const double delta = 2.0 * Math_PI / STEPS; // Angle increment per step
+ const double delta_vec = 20.0 / STEPS; // Vector increment per step
+ Vector3 vec_arb(1.0, 1.0, 1.0);
+ double x_angle = -Math_PI;
+ double y_angle = -Math_PI;
+ double z_angle = -Math_PI;
+ for (double i = 0; i < STEPS; ++i) {
+ vec_arb[0] = -10.0 + i * delta_vec;
+ x_angle = i * delta - Math_PI;
+ for (double j = 0; j < STEPS; ++j) {
+ vec_arb[1] = -10.0 + j * delta_vec;
+ y_angle = j * delta - Math_PI;
+ for (double k = 0; k < STEPS; ++k) {
+ vec_arb[2] = -10.0 + k * delta_vec;
+ z_angle = k * delta - Math_PI;
+ Vector3 euler_yzx(x_angle, y_angle, z_angle);
+ test_quat_vec_rotate(euler_yzx, vec_arb);
+ }
+ }
+ }
+}
+
+} // namespace TestQuaternion
+
+#endif // TEST_QUATERNION_H
diff --git a/tests/core/math/test_transform_2d.h b/tests/core/math/test_transform_2d.h
new file mode 100644
index 0000000000..697bf63fc5
--- /dev/null
+++ b/tests/core/math/test_transform_2d.h
@@ -0,0 +1,88 @@
+/*************************************************************************/
+/* test_transform_2d.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_TRANSFORM_2D_H
+#define TEST_TRANSFORM_2D_H
+
+#include "core/math/transform_2d.h"
+
+#include "tests/test_macros.h"
+
+namespace TestTransform2D {
+
+Transform2D create_dummy_transform() {
+ return Transform2D(Vector2(1, 2), Vector2(3, 4), Vector2(5, 6));
+}
+
+Transform2D identity() {
+ return Transform2D();
+}
+
+TEST_CASE("[Transform2D] translation") {
+ Vector2 offset = Vector2(1, 2);
+
+ // Both versions should give the same result applied to identity.
+ CHECK(identity().translated(offset) == identity().translated_local(offset));
+
+ // Check both versions against left and right multiplications.
+ Transform2D orig = create_dummy_transform();
+ Transform2D T = identity().translated(offset);
+ CHECK(orig.translated(offset) == T * orig);
+ CHECK(orig.translated_local(offset) == orig * T);
+}
+
+TEST_CASE("[Transform2D] scaling") {
+ Vector2 scaling = Vector2(1, 2);
+
+ // Both versions should give the same result applied to identity.
+ CHECK(identity().scaled(scaling) == identity().scaled_local(scaling));
+
+ // Check both versions against left and right multiplications.
+ Transform2D orig = create_dummy_transform();
+ Transform2D S = identity().scaled(scaling);
+ CHECK(orig.scaled(scaling) == S * orig);
+ CHECK(orig.scaled_local(scaling) == orig * S);
+}
+
+TEST_CASE("[Transform2D] rotation") {
+ real_t phi = 1.0;
+
+ // Both versions should give the same result applied to identity.
+ CHECK(identity().rotated(phi) == identity().rotated_local(phi));
+
+ // Check both versions against left and right multiplications.
+ Transform2D orig = create_dummy_transform();
+ Transform2D R = identity().rotated(phi);
+ CHECK(orig.rotated(phi) == R * orig);
+ CHECK(orig.rotated_local(phi) == orig * R);
+}
+} // namespace TestTransform2D
+
+#endif // TEST_TRANSFORM_2D_H
diff --git a/tests/core/math/test_transform_3d.h b/tests/core/math/test_transform_3d.h
new file mode 100644
index 0000000000..da166b43f7
--- /dev/null
+++ b/tests/core/math/test_transform_3d.h
@@ -0,0 +1,89 @@
+/*************************************************************************/
+/* test_transform_3d.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_TRANSFORM_3D_H
+#define TEST_TRANSFORM_3D_H
+
+#include "core/math/transform_3d.h"
+
+#include "tests/test_macros.h"
+
+namespace TestTransform3D {
+
+Transform3D create_dummy_transform() {
+ return Transform3D(Basis(Vector3(1, 2, 3), Vector3(4, 5, 6), Vector3(7, 8, 9)), Vector3(10, 11, 12));
+}
+
+Transform3D identity() {
+ return Transform3D();
+}
+
+TEST_CASE("[Transform3D] translation") {
+ Vector3 offset = Vector3(1, 2, 3);
+
+ // Both versions should give the same result applied to identity.
+ CHECK(identity().translated(offset) == identity().translated_local(offset));
+
+ // Check both versions against left and right multiplications.
+ Transform3D orig = create_dummy_transform();
+ Transform3D T = identity().translated(offset);
+ CHECK(orig.translated(offset) == T * orig);
+ CHECK(orig.translated_local(offset) == orig * T);
+}
+
+TEST_CASE("[Transform3D] scaling") {
+ Vector3 scaling = Vector3(1, 2, 3);
+
+ // Both versions should give the same result applied to identity.
+ CHECK(identity().scaled(scaling) == identity().scaled_local(scaling));
+
+ // Check both versions against left and right multiplications.
+ Transform3D orig = create_dummy_transform();
+ Transform3D S = identity().scaled(scaling);
+ CHECK(orig.scaled(scaling) == S * orig);
+ CHECK(orig.scaled_local(scaling) == orig * S);
+}
+
+TEST_CASE("[Transform3D] rotation") {
+ Vector3 axis = Vector3(1, 2, 3).normalized();
+ real_t phi = 1.0;
+
+ // Both versions should give the same result applied to identity.
+ CHECK(identity().rotated(axis, phi) == identity().rotated_local(axis, phi));
+
+ // Check both versions against left and right multiplications.
+ Transform3D orig = create_dummy_transform();
+ Transform3D R = identity().rotated(axis, phi);
+ CHECK(orig.rotated(axis, phi) == R * orig);
+ CHECK(orig.rotated_local(axis, phi) == orig * R);
+}
+} // namespace TestTransform3D
+
+#endif // TEST_TRANSFORM_3D_H
diff --git a/tests/core/math/test_vector4.h b/tests/core/math/test_vector4.h
new file mode 100644
index 0000000000..ccf991401b
--- /dev/null
+++ b/tests/core/math/test_vector4.h
@@ -0,0 +1,315 @@
+/*************************************************************************/
+/* test_vector4.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_VECTOR4_H
+#define TEST_VECTOR4_H
+
+#include "core/math/vector4.h"
+#include "tests/test_macros.h"
+
+#define Math_SQRT3 1.7320508075688772935274463415059
+
+namespace TestVector4 {
+
+TEST_CASE("[Vector4] Axis methods") {
+ Vector4 vector = Vector4(1.2, 3.4, 5.6, -0.9);
+ CHECK_MESSAGE(
+ vector.max_axis_index() == Vector4::Axis::AXIS_Z,
+ "Vector4 max_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.min_axis_index() == Vector4::Axis::AXIS_W,
+ "Vector4 min_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.get_axis(vector.max_axis_index()) == (real_t)5.6,
+ "Vector4 get_axis should work as expected.");
+ CHECK_MESSAGE(
+ vector[vector.min_axis_index()] == (real_t)-0.9,
+ "Vector4 array operator should work as expected.");
+
+ vector.set_axis(Vector4::Axis::AXIS_Y, 4.7);
+ CHECK_MESSAGE(
+ vector.get_axis(Vector4::Axis::AXIS_Y) == (real_t)4.7,
+ "Vector4 set_axis should work as expected.");
+ vector[Vector4::Axis::AXIS_Y] = 3.7;
+ CHECK_MESSAGE(
+ vector[Vector4::Axis::AXIS_Y] == (real_t)3.7,
+ "Vector4 array operator setter should work as expected.");
+}
+
+TEST_CASE("[Vector4] Interpolation methods") {
+ const Vector4 vector1 = Vector4(1, 2, 3, 4);
+ const Vector4 vector2 = Vector4(4, 5, 6, 7);
+ CHECK_MESSAGE(
+ vector1.lerp(vector2, 0.5) == Vector4(2.5, 3.5, 4.5, 5.5),
+ "Vector4 lerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector4(2, 3, 4, 5)),
+ "Vector4 lerp should work as expected.");
+ CHECK_MESSAGE(
+ vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 0.5) == Vector4(2.375, 3.5, 4.625, 5.75),
+ "Vector4 cubic_interpolate should work as expected.");
+ CHECK_MESSAGE(
+ vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector4(1.851851940155029297, 2.962963104248046875, 4.074074268341064453, 5.185185185185)),
+ "Vector4 cubic_interpolate should work as expected.");
+}
+
+TEST_CASE("[Vector4] Length methods") {
+ const Vector4 vector1 = Vector4(10, 10, 10, 10);
+ const Vector4 vector2 = Vector4(20, 30, 40, 50);
+ CHECK_MESSAGE(
+ vector1.length_squared() == 400,
+ "Vector4 length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.length(), 20),
+ "Vector4 length should work as expected.");
+ CHECK_MESSAGE(
+ vector2.length_squared() == 5400,
+ "Vector4 length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector2.length(), (real_t)73.484692283495),
+ "Vector4 length should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.distance_to(vector2), (real_t)54.772255750517),
+ "Vector4 distance_to should work as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.distance_squared_to(vector2), 3000),
+ "Vector4 distance_squared_to should work as expected.");
+}
+
+TEST_CASE("[Vector4] Limiting methods") {
+ const Vector4 vector = Vector4(10, 10, 10, 10);
+ CHECK_MESSAGE(
+ Vector4(-5, 5, 15, -15).clamp(Vector4(), vector) == Vector4(0, 5, 10, 0),
+ "Vector4 clamp should work as expected.");
+ CHECK_MESSAGE(
+ vector.clamp(Vector4(0, 10, 15, 18), Vector4(5, 10, 20, 25)) == Vector4(5, 10, 15, 18),
+ "Vector4 clamp should work as expected.");
+}
+
+TEST_CASE("[Vector4] Normalization methods") {
+ CHECK_MESSAGE(
+ Vector4(1, 0, 0, 0).is_normalized() == true,
+ "Vector4 is_normalized should return true for a normalized vector.");
+ CHECK_MESSAGE(
+ Vector4(1, 1, 1, 1).is_normalized() == false,
+ "Vector4 is_normalized should return false for a non-normalized vector.");
+ CHECK_MESSAGE(
+ Vector4(1, 0, 0, 0).normalized() == Vector4(1, 0, 0, 0),
+ "Vector4 normalized should return the same vector for a normalized vector.");
+ CHECK_MESSAGE(
+ Vector4(1, 1, 0, 0).normalized().is_equal_approx(Vector4(Math_SQRT12, Math_SQRT12, 0, 0)),
+ "Vector4 normalized should work as expected.");
+ CHECK_MESSAGE(
+ Vector4(1, 1, 1, 1).normalized().is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)),
+ "Vector4 normalized should work as expected.");
+}
+
+TEST_CASE("[Vector4] Operators") {
+ const Vector4 decimal1 = Vector4(2.3, 4.9, 7.8, 3.2);
+ const Vector4 decimal2 = Vector4(1.2, 3.4, 5.6, 1.7);
+ const Vector4 power1 = Vector4(0.75, 1.5, 0.625, 0.125);
+ const Vector4 power2 = Vector4(0.5, 0.125, 0.25, 0.75);
+ const Vector4 int1 = Vector4(4, 5, 9, 2);
+ const Vector4 int2 = Vector4(1, 2, 3, 1);
+
+ CHECK_MESSAGE(
+ -decimal1 == Vector4(-2.3, -4.9, -7.8, -3.2),
+ "Vector4 change of sign should work as expected.");
+ CHECK_MESSAGE(
+ (decimal1 + decimal2).is_equal_approx(Vector4(3.5, 8.3, 13.4, 4.9)),
+ "Vector4 addition should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 + power2) == Vector4(1.25, 1.625, 0.875, 0.875),
+ "Vector4 addition with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 + int2) == Vector4(5, 7, 12, 3),
+ "Vector4 addition with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 - decimal2).is_equal_approx(Vector4(1.1, 1.5, 2.2, 1.5)),
+ "Vector4 subtraction should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 - power2) == Vector4(0.25, 1.375, 0.375, -0.625),
+ "Vector4 subtraction with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 - int2) == Vector4(3, 3, 6, 1),
+ "Vector4 subtraction with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 * decimal2).is_equal_approx(Vector4(2.76, 16.66, 43.68, 5.44)),
+ "Vector4 multiplication should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 * power2) == Vector4(0.375, 0.1875, 0.15625, 0.09375),
+ "Vector4 multiplication with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 * int2) == Vector4(4, 10, 27, 2),
+ "Vector4 multiplication with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 / decimal2).is_equal_approx(Vector4(1.91666666666666666, 1.44117647058823529, 1.39285714285714286, 1.88235294118)),
+ "Vector4 division should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 / power2) == Vector4(1.5, 12.0, 2.5, 1.0 / 6.0),
+ "Vector4 division with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 / int2) == Vector4(4, 2.5, 3, 2),
+ "Vector4 division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 * 2).is_equal_approx(Vector4(4.6, 9.8, 15.6, 6.4)),
+ "Vector4 multiplication should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 * 2) == Vector4(1.5, 3, 1.25, 0.25),
+ "Vector4 multiplication with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 * 2) == Vector4(8, 10, 18, 4),
+ "Vector4 multiplication with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (decimal1 / 2).is_equal_approx(Vector4(1.15, 2.45, 3.9, 1.6)),
+ "Vector4 division should behave as expected.");
+ CHECK_MESSAGE(
+ (power1 / 2) == Vector4(0.375, 0.75, 0.3125, 0.0625),
+ "Vector4 division with powers of two should give exact results.");
+ CHECK_MESSAGE(
+ (int1 / 2) == Vector4(2, 2.5, 4.5, 1),
+ "Vector4 division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ ((String)decimal1) == "(2.3, 4.9, 7.8, 3.2)",
+ "Vector4 cast to String should work as expected.");
+ CHECK_MESSAGE(
+ ((String)decimal2) == "(1.2, 3.4, 5.6, 1.7)",
+ "Vector4 cast to String should work as expected.");
+ CHECK_MESSAGE(
+ ((String)Vector4(9.7, 9.8, 9.9, -1.8)) == "(9.7, 9.8, 9.9, -1.8)",
+ "Vector4 cast to String should work as expected.");
+#ifdef REAL_T_IS_DOUBLE
+ CHECK_MESSAGE(
+ ((String)Vector4(Math_E, Math_SQRT2, Math_SQRT3, Math_SQRT3)) == "(2.71828182845905, 1.4142135623731, 1.73205080756888, 1.73205080756888)",
+ "Vector4 cast to String should print the correct amount of digits for real_t = double.");
+#else
+ CHECK_MESSAGE(
+ ((String)Vector4(Math_E, Math_SQRT2, Math_SQRT3, Math_SQRT3)) == "(2.718282, 1.414214, 1.732051, 1.732051)",
+ "Vector4 cast to String should print the correct amount of digits for real_t = float.");
+#endif // REAL_T_IS_DOUBLE
+}
+
+TEST_CASE("[Vector4] Other methods") {
+ const Vector4 vector = Vector4(1.2, 3.4, 5.6, 1.6);
+ CHECK_MESSAGE(
+ vector.direction_to(Vector4()).is_equal_approx(-vector.normalized()),
+ "Vector4 direction_to should work as expected.");
+ CHECK_MESSAGE(
+ Vector4(1, 1, 1, 1).direction_to(Vector4(2, 2, 2, 2)).is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)),
+ "Vector4 direction_to should work as expected.");
+ CHECK_MESSAGE(
+ vector.inverse().is_equal_approx(Vector4(1 / 1.2, 1 / 3.4, 1 / 5.6, 1 / 1.6)),
+ "Vector4 inverse should work as expected.");
+ CHECK_MESSAGE(
+ vector.posmod(2).is_equal_approx(Vector4(1.2, 1.4, 1.6, 1.6)),
+ "Vector4 posmod should work as expected.");
+ CHECK_MESSAGE(
+ (-vector).posmod(2).is_equal_approx(Vector4(0.8, 0.6, 0.4, 0.4)),
+ "Vector4 posmod should work as expected.");
+ CHECK_MESSAGE(
+ vector.posmodv(Vector4(1, 2, 3, 4)).is_equal_approx(Vector4(0.2, 1.4, 2.6, 1.6)),
+ "Vector4 posmodv should work as expected.");
+ CHECK_MESSAGE(
+ (-vector).posmodv(Vector4(2, 3, 4, 5)).is_equal_approx(Vector4(0.8, 2.6, 2.4, 3.4)),
+ "Vector4 posmodv should work as expected.");
+ CHECK_MESSAGE(
+ vector.snapped(Vector4(1, 1, 1, 1)) == Vector4(1, 3, 6, 2),
+ "Vector4 snapped to integers should be the same as rounding.");
+ CHECK_MESSAGE(
+ vector.snapped(Vector4(0.25, 0.25, 0.25, 0.25)) == Vector4(1.25, 3.5, 5.5, 1.5),
+ "Vector4 snapped to 0.25 should give exact results.");
+}
+
+TEST_CASE("[Vector4] Rounding methods") {
+ const Vector4 vector1 = Vector4(1.2, 3.4, 5.6, 1.6);
+ const Vector4 vector2 = Vector4(1.2, -3.4, -5.6, -1.6);
+ CHECK_MESSAGE(
+ vector1.abs() == vector1,
+ "Vector4 abs should work as expected.");
+ CHECK_MESSAGE(
+ vector2.abs() == vector1,
+ "Vector4 abs should work as expected.");
+ CHECK_MESSAGE(
+ vector1.ceil() == Vector4(2, 4, 6, 2),
+ "Vector4 ceil should work as expected.");
+ CHECK_MESSAGE(
+ vector2.ceil() == Vector4(2, -3, -5, -1),
+ "Vector4 ceil should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.floor() == Vector4(1, 3, 5, 1),
+ "Vector4 floor should work as expected.");
+ CHECK_MESSAGE(
+ vector2.floor() == Vector4(1, -4, -6, -2),
+ "Vector4 floor should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.round() == Vector4(1, 3, 6, 2),
+ "Vector4 round should work as expected.");
+ CHECK_MESSAGE(
+ vector2.round() == Vector4(1, -3, -6, -2),
+ "Vector4 round should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.sign() == Vector4(1, 1, 1, 1),
+ "Vector4 sign should work as expected.");
+ CHECK_MESSAGE(
+ vector2.sign() == Vector4(1, -1, -1, -1),
+ "Vector4 sign should work as expected.");
+}
+
+TEST_CASE("[Vector4] Linear algebra methods") {
+ const Vector4 vector_x = Vector4(1, 0, 0, 0);
+ const Vector4 vector_y = Vector4(0, 1, 0, 0);
+ const Vector4 vector1 = Vector4(1.7, 2.3, 1, 9.1);
+ const Vector4 vector2 = Vector4(-8.2, -16, 3, 2.4);
+
+ CHECK_MESSAGE(
+ vector_x.dot(vector_y) == 0.0,
+ "Vector4 dot product of perpendicular vectors should be zero.");
+ CHECK_MESSAGE(
+ vector_x.dot(vector_x) == 1.0,
+ "Vector4 dot product of identical unit vectors should be one.");
+ CHECK_MESSAGE(
+ (vector_x * 10).dot(vector_x * 10) == 100.0,
+ "Vector4 dot product of same direction vectors should behave as expected.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx((vector1 * 2).dot(vector2 * 4), (real_t)-25.9 * 8),
+ "Vector4 dot product should work as expected.");
+}
+} // namespace TestVector4
+
+#endif // TEST_VECTOR4_H
diff --git a/tests/core/math/test_vector4i.h b/tests/core/math/test_vector4i.h
new file mode 100644
index 0000000000..ac63001b24
--- /dev/null
+++ b/tests/core/math/test_vector4i.h
@@ -0,0 +1,148 @@
+/*************************************************************************/
+/* test_vector4i.h */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#ifndef TEST_VECTOR4I_H
+#define TEST_VECTOR4I_H
+
+#include "core/math/vector4i.h"
+#include "tests/test_macros.h"
+
+namespace TestVector4i {
+
+TEST_CASE("[Vector4i] Axis methods") {
+ Vector4i vector = Vector4i(1, 2, 3, 4);
+ CHECK_MESSAGE(
+ vector.max_axis_index() == Vector4i::Axis::AXIS_W,
+ "Vector4i max_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.min_axis_index() == Vector4i::Axis::AXIS_X,
+ "Vector4i min_axis_index should work as expected.");
+ CHECK_MESSAGE(
+ vector.get_axis(vector.max_axis_index()) == 4,
+ "Vector4i get_axis should work as expected.");
+ CHECK_MESSAGE(
+ vector[vector.min_axis_index()] == 1,
+ "Vector4i array operator should work as expected.");
+
+ vector.set_axis(Vector4i::Axis::AXIS_Y, 5);
+ CHECK_MESSAGE(
+ vector.get_axis(Vector4i::Axis::AXIS_Y) == 5,
+ "Vector4i set_axis should work as expected.");
+ vector[Vector4i::Axis::AXIS_Y] = 5;
+ CHECK_MESSAGE(
+ vector[Vector4i::Axis::AXIS_Y] == 5,
+ "Vector4i array operator setter should work as expected.");
+}
+
+TEST_CASE("[Vector4i] Clamp method") {
+ const Vector4i vector = Vector4i(10, 10, 10, 10);
+ CHECK_MESSAGE(
+ Vector4i(-5, 5, 15, INT_MAX).clamp(Vector4i(), vector) == Vector4i(0, 5, 10, 10),
+ "Vector4i clamp should work as expected.");
+ CHECK_MESSAGE(
+ vector.clamp(Vector4i(0, 10, 15, -10), Vector4i(5, 10, 20, -5)) == Vector4i(5, 10, 15, -5),
+ "Vector4i clamp should work as expected.");
+}
+
+TEST_CASE("[Vector4i] Length methods") {
+ const Vector4i vector1 = Vector4i(10, 10, 10, 10);
+ const Vector4i vector2 = Vector4i(20, 30, 40, 50);
+ CHECK_MESSAGE(
+ vector1.length_squared() == 400,
+ "Vector4i length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector1.length(), 20),
+ "Vector4i length should work as expected.");
+ CHECK_MESSAGE(
+ vector2.length_squared() == 5400,
+ "Vector4i length_squared should work as expected and return exact result.");
+ CHECK_MESSAGE(
+ Math::is_equal_approx(vector2.length(), 73.4846922835),
+ "Vector4i length should work as expected.");
+}
+
+TEST_CASE("[Vector4i] Operators") {
+ const Vector4i vector1 = Vector4i(4, 5, 9, 2);
+ const Vector4i vector2 = Vector4i(1, 2, 3, 4);
+
+ CHECK_MESSAGE(
+ -vector1 == Vector4i(-4, -5, -9, -2),
+ "Vector4i change of sign should work as expected.");
+ CHECK_MESSAGE(
+ (vector1 + vector2) == Vector4i(5, 7, 12, 6),
+ "Vector4i addition with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 - vector2) == Vector4i(3, 3, 6, -2),
+ "Vector4i subtraction with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 * vector2) == Vector4i(4, 10, 27, 8),
+ "Vector4i multiplication with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 / vector2) == Vector4i(4, 2, 3, 0),
+ "Vector4i division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ (vector1 * 2) == Vector4i(8, 10, 18, 4),
+ "Vector4i multiplication with integers should give exact results.");
+ CHECK_MESSAGE(
+ (vector1 / 2) == Vector4i(2, 2, 4, 1),
+ "Vector4i division with integers should give exact results.");
+
+ CHECK_MESSAGE(
+ ((Vector4)vector1) == Vector4(4, 5, 9, 2),
+ "Vector4i cast to Vector4 should work as expected.");
+ CHECK_MESSAGE(
+ ((Vector4)vector2) == Vector4(1, 2, 3, 4),
+ "Vector4i cast to Vector4 should work as expected.");
+ CHECK_MESSAGE(
+ Vector4i(Vector4(1.1, 2.9, 3.9, 100.5)) == Vector4i(1, 2, 3, 100),
+ "Vector4i constructed from Vector4 should work as expected.");
+}
+
+TEST_CASE("[Vector4i] Abs and sign methods") {
+ const Vector4i vector1 = Vector4i(1, 3, 5, 7);
+ const Vector4i vector2 = Vector4i(1, -3, -5, 7);
+ CHECK_MESSAGE(
+ vector1.abs() == vector1,
+ "Vector4i abs should work as expected.");
+ CHECK_MESSAGE(
+ vector2.abs() == vector1,
+ "Vector4i abs should work as expected.");
+
+ CHECK_MESSAGE(
+ vector1.sign() == Vector4i(1, 1, 1, 1),
+ "Vector4i sign should work as expected.");
+ CHECK_MESSAGE(
+ vector2.sign() == Vector4i(1, -1, -1, 1),
+ "Vector4i sign should work as expected.");
+}
+} // namespace TestVector4i
+
+#endif // TEST_VECTOR4I_H