diff options
Diffstat (limited to 'tests/core/math')
-rw-r--r-- | tests/core/math/test_aabb.h | 46 | ||||
-rw-r--r-- | tests/core/math/test_basis.h | 225 | ||||
-rw-r--r-- | tests/core/math/test_color.h | 6 | ||||
-rw-r--r-- | tests/core/math/test_expression.h | 20 | ||||
-rw-r--r-- | tests/core/math/test_geometry_2d.h | 26 | ||||
-rw-r--r-- | tests/core/math/test_geometry_3d.h | 2 | ||||
-rw-r--r-- | tests/core/math/test_math_funcs.h | 549 | ||||
-rw-r--r-- | tests/core/math/test_plane.h | 23 | ||||
-rw-r--r-- | tests/core/math/test_quaternion.h | 174 | ||||
-rw-r--r-- | tests/core/math/test_rect2.h | 45 | ||||
-rw-r--r-- | tests/core/math/test_rect2i.h | 16 | ||||
-rw-r--r-- | tests/core/math/test_transform_2d.h | 34 | ||||
-rw-r--r-- | tests/core/math/test_transform_3d.h | 23 | ||||
-rw-r--r-- | tests/core/math/test_vector2.h | 129 | ||||
-rw-r--r-- | tests/core/math/test_vector2i.h | 22 | ||||
-rw-r--r-- | tests/core/math/test_vector3.h | 150 | ||||
-rw-r--r-- | tests/core/math/test_vector3i.h | 20 | ||||
-rw-r--r-- | tests/core/math/test_vector4.h | 104 | ||||
-rw-r--r-- | tests/core/math/test_vector4i.h | 20 |
19 files changed, 1362 insertions, 272 deletions
diff --git a/tests/core/math/test_aabb.h b/tests/core/math/test_aabb.h index 447420fc12..23969556be 100644 --- a/tests/core/math/test_aabb.h +++ b/tests/core/math/test_aabb.h @@ -91,50 +91,55 @@ TEST_CASE("[AABB] Basic setters") { TEST_CASE("[AABB] Volume getters") { AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), 120), + aabb.get_volume() == doctest::Approx(120), "get_volume() should return the expected value with positive size."); CHECK_MESSAGE( - !aabb.has_no_volume(), + aabb.has_volume(), "Non-empty volumetric AABB should have a volume."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), -120), + aabb.get_volume() == doctest::Approx(-120), "get_volume() should return the expected value with negative size (1 component)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), 120), + aabb.get_volume() == doctest::Approx(120), "get_volume() should return the expected value with negative size (2 components)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6)); CHECK_MESSAGE( - Math::is_equal_approx(aabb.get_volume(), -120), + aabb.get_volume() == doctest::Approx(-120), "get_volume() should return the expected value with negative size (3 components)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6)); CHECK_MESSAGE( - aabb.has_no_volume(), + !aabb.has_volume(), "Non-empty flat AABB should not have a volume."); CHECK_MESSAGE( - AABB().has_no_volume(), + !AABB().has_volume(), "Empty AABB should not have a volume."); } TEST_CASE("[AABB] Surface getters") { AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( - !aabb.has_no_surface(), + aabb.has_surface(), "Non-empty volumetric AABB should have an surface."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6)); CHECK_MESSAGE( - !aabb.has_no_surface(), + aabb.has_surface(), "Non-empty flat AABB should have a surface."); + aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 0)); CHECK_MESSAGE( - AABB().has_no_surface(), + aabb.has_surface(), + "Non-empty linear AABB should have a surface."); + + CHECK_MESSAGE( + !AABB().has_surface(), "Empty AABB should not have an surface."); } @@ -384,6 +389,27 @@ TEST_CASE("[AABB] Expanding") { aabb.expand(Vector3(-20, 0, 0)).is_equal_approx(AABB(Vector3(-20, 0, -2.5), Vector3(22.5, 7, 6))), "expand() with non-contained point should return the expected AABB."); } + +TEST_CASE("[AABB] Finite number checks") { + const Vector3 x(0, 1, 2); + const Vector3 infinite(NAN, NAN, NAN); + + CHECK_MESSAGE( + AABB(x, x).is_finite(), + "AABB with all components finite should be finite"); + + CHECK_FALSE_MESSAGE( + AABB(infinite, x).is_finite(), + "AABB with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + AABB(x, infinite).is_finite(), + "AABB with one component infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + AABB(infinite, infinite).is_finite(), + "AABB with two components infinite should not be finite."); +} + } // namespace TestAABB #endif // TEST_AABB_H diff --git a/tests/core/math/test_basis.h b/tests/core/math/test_basis.h index ae8ca4acde..dce9d5cec3 100644 --- a/tests/core/math/test_basis.h +++ b/tests/core/math/test_basis.h @@ -38,16 +38,7 @@ namespace TestBasis { -enum RotOrder { - EulerXYZ, - EulerXZY, - EulerYZX, - EulerYXZ, - EulerZXY, - EulerZYX -}; - -Vector3 deg2rad(const Vector3 &p_rotation) { +Vector3 deg_to_rad(const Vector3 &p_rotation) { return p_rotation / 180.0 * Math_PI; } @@ -55,88 +46,26 @@ Vector3 rad2deg(const Vector3 &p_rotation) { return p_rotation / Math_PI * 180.0; } -Basis EulerToBasis(RotOrder mode, const Vector3 &p_rotation) { - Basis ret; - switch (mode) { - case EulerXYZ: - ret.set_euler(p_rotation, Basis::EULER_ORDER_XYZ); - break; - - case EulerXZY: - ret.set_euler(p_rotation, Basis::EULER_ORDER_XZY); - break; - - case EulerYZX: - ret.set_euler(p_rotation, Basis::EULER_ORDER_YZX); - break; - - case EulerYXZ: - ret.set_euler(p_rotation, Basis::EULER_ORDER_YXZ); - break; - - case EulerZXY: - ret.set_euler(p_rotation, Basis::EULER_ORDER_ZXY); - break; - - case EulerZYX: - ret.set_euler(p_rotation, Basis::EULER_ORDER_ZYX); - break; - - default: - // If you land here, Please integrate all rotation orders. - FAIL("This is not unreachable."); - } - - return ret; -} - -Vector3 BasisToEuler(RotOrder mode, const Basis &p_rotation) { - switch (mode) { - case EulerXYZ: - return p_rotation.get_euler(Basis::EULER_ORDER_XYZ); - - case EulerXZY: - return p_rotation.get_euler(Basis::EULER_ORDER_XZY); - - case EulerYZX: - return p_rotation.get_euler(Basis::EULER_ORDER_YZX); - - case EulerYXZ: - return p_rotation.get_euler(Basis::EULER_ORDER_YXZ); - - case EulerZXY: - return p_rotation.get_euler(Basis::EULER_ORDER_ZXY); - - case EulerZYX: - return p_rotation.get_euler(Basis::EULER_ORDER_ZYX); - - default: - // If you land here, Please integrate all rotation orders. - FAIL("This is not unreachable."); - return Vector3(); - } -} - -String get_rot_order_name(RotOrder ro) { +String get_rot_order_name(EulerOrder ro) { switch (ro) { - case EulerXYZ: + case EulerOrder::XYZ: return "XYZ"; - case EulerXZY: + case EulerOrder::XZY: return "XZY"; - case EulerYZX: + case EulerOrder::YZX: return "YZX"; - case EulerYXZ: + case EulerOrder::YXZ: return "YXZ"; - case EulerZXY: + case EulerOrder::ZXY: return "ZXY"; - case EulerZYX: + case EulerOrder::ZYX: return "ZYX"; default: return "[Not supported]"; } } -void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) { +void test_rotation(Vector3 deg_original_euler, EulerOrder rot_order) { // This test: // 1. Converts the rotation vector from deg to rad. // 2. Converts euler to basis. @@ -155,12 +84,12 @@ void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) { // are correct. // Euler to rotation - const Vector3 original_euler = deg2rad(deg_original_euler); - const Basis to_rotation = EulerToBasis(rot_order, original_euler); + const Vector3 original_euler = deg_to_rad(deg_original_euler); + const Basis to_rotation = Basis::from_euler(original_euler, rot_order); // Euler from rotation - const Vector3 euler_from_rotation = BasisToEuler(rot_order, to_rotation); - const Basis rotation_from_computed_euler = EulerToBasis(rot_order, euler_from_rotation); + const Vector3 euler_from_rotation = to_rotation.get_euler(rot_order); + const Basis rotation_from_computed_euler = Basis::from_euler(euler_from_rotation, rot_order); Basis res = to_rotation.inverse() * rotation_from_computed_euler; @@ -169,9 +98,8 @@ void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) { CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Fail due to Z %s\n", String(res.get_column(2))).utf8().ptr()); // Double check `to_rotation` decomposing with XYZ rotation order. - const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(Basis::EULER_ORDER_XYZ); - Basis rotation_from_xyz_computed_euler; - rotation_from_xyz_computed_euler.set_euler(euler_xyz_from_rotation, Basis::EULER_ORDER_XYZ); + const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(EulerOrder::XYZ); + Basis rotation_from_xyz_computed_euler = Basis::from_euler(euler_xyz_from_rotation, EulerOrder::XYZ); res = to_rotation.inverse() * rotation_from_xyz_computed_euler; @@ -185,13 +113,13 @@ void test_rotation(Vector3 deg_original_euler, RotOrder rot_order) { } TEST_CASE("[Basis] Euler conversions") { - Vector<RotOrder> rotorder_to_test; - rotorder_to_test.push_back(EulerXYZ); - rotorder_to_test.push_back(EulerXZY); - rotorder_to_test.push_back(EulerYZX); - rotorder_to_test.push_back(EulerYXZ); - rotorder_to_test.push_back(EulerZXY); - rotorder_to_test.push_back(EulerZYX); + Vector<EulerOrder> euler_order_to_test; + euler_order_to_test.push_back(EulerOrder::XYZ); + euler_order_to_test.push_back(EulerOrder::XZY); + euler_order_to_test.push_back(EulerOrder::YZX); + euler_order_to_test.push_back(EulerOrder::YXZ); + euler_order_to_test.push_back(EulerOrder::ZXY); + euler_order_to_test.push_back(EulerOrder::ZYX); Vector<Vector3> vectors_to_test; @@ -249,21 +177,21 @@ TEST_CASE("[Basis] Euler conversions") { vectors_to_test.push_back(Vector3(120.0, 150.0, -130.0)); vectors_to_test.push_back(Vector3(120.0, 150.0, 130.0)); - for (int h = 0; h < rotorder_to_test.size(); h += 1) { + for (int h = 0; h < euler_order_to_test.size(); h += 1) { for (int i = 0; i < vectors_to_test.size(); i += 1) { - test_rotation(vectors_to_test[i], rotorder_to_test[h]); + test_rotation(vectors_to_test[i], euler_order_to_test[h]); } } } TEST_CASE("[Stress][Basis] Euler conversions") { - Vector<RotOrder> rotorder_to_test; - rotorder_to_test.push_back(EulerXYZ); - rotorder_to_test.push_back(EulerXZY); - rotorder_to_test.push_back(EulerYZX); - rotorder_to_test.push_back(EulerYXZ); - rotorder_to_test.push_back(EulerZXY); - rotorder_to_test.push_back(EulerZYX); + Vector<EulerOrder> euler_order_to_test; + euler_order_to_test.push_back(EulerOrder::XYZ); + euler_order_to_test.push_back(EulerOrder::XZY); + euler_order_to_test.push_back(EulerOrder::YZX); + euler_order_to_test.push_back(EulerOrder::YXZ); + euler_order_to_test.push_back(EulerOrder::ZXY); + euler_order_to_test.push_back(EulerOrder::ZYX); Vector<Vector3> vectors_to_test; // Add 1000 random vectors with weirds numbers. @@ -275,12 +203,99 @@ TEST_CASE("[Stress][Basis] Euler conversions") { rng.randf_range(-1800, 1800))); } - for (int h = 0; h < rotorder_to_test.size(); h += 1) { + for (int h = 0; h < euler_order_to_test.size(); h += 1) { for (int i = 0; i < vectors_to_test.size(); i += 1) { - test_rotation(vectors_to_test[i], rotorder_to_test[h]); + test_rotation(vectors_to_test[i], euler_order_to_test[h]); } } } + +TEST_CASE("[Basis] Set axis angle") { + Vector3 axis; + real_t angle; + real_t pi = (real_t)Math_PI; + + // Testing the singularity when the angle is 0°. + Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1); + identity.get_axis_angle(axis, angle); + CHECK(angle == 0); + + // Testing the singularity when the angle is 180°. + Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1); + singularityPi.get_axis_angle(axis, angle); + CHECK(angle == doctest::Approx(pi)); + + // Testing reversing the an axis (of an 30° angle). + float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0)); + Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1); + Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1); + + z_positive.get_axis_angle(axis, angle); + CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0))); + CHECK(axis == Vector3(0, 0, 1)); + + z_negative.get_axis_angle(axis, angle); + CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0))); + CHECK(axis == Vector3(0, 0, -1)); + + // Testing a rotation of 90° on x-y-z. + Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0); + x90deg.get_axis_angle(axis, angle); + CHECK(angle == doctest::Approx(pi / (real_t)2)); + CHECK(axis == Vector3(1, 0, 0)); + + Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0); + y90deg.get_axis_angle(axis, angle); + CHECK(axis == Vector3(0, 1, 0)); + + Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1); + z90deg.get_axis_angle(axis, angle); + CHECK(axis == Vector3(0, 0, 1)); + + // Regression test: checks that the method returns a small angle (not 0). + Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad. + tiny.get_axis_angle(axis, angle); + CHECK(angle == doctest::Approx(0.001).epsilon(0.0001)); + + // Regression test: checks that the method returns an angle which is a number (not NaN) + Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024); + bugNan.get_axis_angle(axis, angle); + CHECK(!Math::is_nan(angle)); +} + +TEST_CASE("[Basis] Finite number checks") { + const Vector3 x(0, 1, 2); + const Vector3 infinite(NAN, NAN, NAN); + + CHECK_MESSAGE( + Basis(x, x, x).is_finite(), + "Basis with all components finite should be finite"); + + CHECK_FALSE_MESSAGE( + Basis(infinite, x, x).is_finite(), + "Basis with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Basis(x, infinite, x).is_finite(), + "Basis with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Basis(x, x, infinite).is_finite(), + "Basis with one component infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Basis(infinite, infinite, x).is_finite(), + "Basis with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Basis(infinite, x, infinite).is_finite(), + "Basis with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Basis(x, infinite, infinite).is_finite(), + "Basis with two components infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Basis(infinite, infinite, infinite).is_finite(), + "Basis with three components infinite should not be finite."); +} + } // namespace TestBasis #endif // TEST_BASIS_H diff --git a/tests/core/math/test_color.h b/tests/core/math/test_color.h index 51c3bc8bdc..c6550778e8 100644 --- a/tests/core/math/test_color.h +++ b/tests/core/math/test_color.h @@ -101,13 +101,13 @@ TEST_CASE("[Color] Reading methods") { const Color dark_blue = Color(0, 0, 0.5, 0.4); CHECK_MESSAGE( - Math::is_equal_approx(dark_blue.get_h(), 240.0f / 360.0f), + dark_blue.get_h() == doctest::Approx(240.0f / 360.0f), "The returned HSV hue should match the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(dark_blue.get_s(), 1.0f), + dark_blue.get_s() == doctest::Approx(1.0f), "The returned HSV saturation should match the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(dark_blue.get_v(), 0.5f), + dark_blue.get_v() == doctest::Approx(0.5f), "The returned HSV value should match the expected value."); } diff --git a/tests/core/math/test_expression.h b/tests/core/math/test_expression.h index 6e3be541b0..9734fd9f36 100644 --- a/tests/core/math/test_expression.h +++ b/tests/core/math/test_expression.h @@ -83,42 +83,42 @@ TEST_CASE("[Expression] Floating-point arithmetic") { expression.parse("-123.456") == OK, "Float identity should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), -123.456), + double(expression.execute()) == doctest::Approx(-123.456), "Float identity should return the expected result."); CHECK_MESSAGE( expression.parse("2.0 + 3.0") == OK, "Float addition should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 5), + double(expression.execute()) == doctest::Approx(5), "Float addition should return the expected result."); CHECK_MESSAGE( expression.parse("3.0 / 10") == OK, "Float / integer division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.3), + double(expression.execute()) == doctest::Approx(0.3), "Float / integer division should return the expected result."); CHECK_MESSAGE( expression.parse("3 / 10.0") == OK, "Basic integer / float division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.3), + double(expression.execute()) == doctest::Approx(0.3), "Basic integer / float division should return the expected result."); CHECK_MESSAGE( expression.parse("3.0 / 10.0") == OK, "Float / float division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.3), + double(expression.execute()) == doctest::Approx(0.3), "Float / float division should return the expected result."); CHECK_MESSAGE( expression.parse("2.5 * (6.0 + 14.25) / 2.0 - 5.12345") == OK, "Float multiplication-addition-subtraction-division should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 20.18905), + double(expression.execute()) == doctest::Approx(20.18905), "Float multiplication-addition-subtraction-division should return the expected result."); } @@ -129,7 +129,7 @@ TEST_CASE("[Expression] Scientific notation") { expression.parse("2.e5") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 200'000), + double(expression.execute()) == doctest::Approx(200'000), "The expression should return the expected result."); // The middle "e" is ignored here. @@ -137,14 +137,14 @@ TEST_CASE("[Expression] Scientific notation") { expression.parse("2e5") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 2e5), + double(expression.execute()) == doctest::Approx(2e5), "The expression should return the expected result."); CHECK_MESSAGE( expression.parse("2e.5") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 2), + double(expression.execute()) == doctest::Approx(2), "The expression should return the expected result."); } @@ -176,7 +176,7 @@ TEST_CASE("[Expression] Built-in functions") { expression.parse("snapped(sin(0.5), 0.01)") == OK, "The expression should parse successfully."); CHECK_MESSAGE( - Math::is_equal_approx(double(expression.execute()), 0.48), + double(expression.execute()) == doctest::Approx(0.48), "`snapped(sin(0.5), 0.01)` should return the expected result."); CHECK_MESSAGE( diff --git a/tests/core/math/test_geometry_2d.h b/tests/core/math/test_geometry_2d.h index db4e6e2177..27c9e7f58b 100644 --- a/tests/core/math/test_geometry_2d.h +++ b/tests/core/math/test_geometry_2d.h @@ -64,7 +64,7 @@ TEST_CASE("[Geometry2D] Point in triangle") { // This tests points on the edge of the triangle. They are treated as being outside the triangle. // In `is_point_in_circle` and `is_point_in_polygon` they are treated as being inside, so in order the make - // the behaviour consistent this may change in the future (see issue #44717 and PR #44274). + // the behavior consistent this may change in the future (see issue #44717 and PR #44274). CHECK_FALSE(Geometry2D::is_point_in_triangle(Vector2(1, 1), Vector2(-1, 1), Vector2(0, -1), Vector2(1, 1))); CHECK_FALSE(Geometry2D::is_point_in_triangle(Vector2(0, 1), Vector2(-1, 1), Vector2(0, -1), Vector2(1, 1))); } @@ -171,43 +171,43 @@ TEST_CASE("[Geometry2D] Segment intersection with circle") { real_t one = 1.0; CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0), one_quarter), + Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(4, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter), "Segment from inside to outside of circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0), three_quarters), + Geometry2D::segment_intersects_circle(Vector2(4, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(three_quarters), "Segment from outside to inside of circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0), one_quarter), + Geometry2D::segment_intersects_circle(Vector2(-2, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter), "Segment running through circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0), one_quarter), + Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(-2, 0), Vector2(0, 0), 1.0) == doctest::Approx(one_quarter), "Segment running through circle should intersect it."); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one), + Geometry2D::segment_intersects_circle(Vector2(0, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one), "Segment starting inside the circle and ending on the circle should intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0), zero), + Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(0, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero), "Segment starting on the circle and going inwards should intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0), zero), + Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(zero), "Segment starting on the circle and going outwards should intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0), one), + Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(1, 0), Vector2(0, 0), 1.0) == doctest::Approx(one), "Segment starting outside the circle and ending on the circle intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(-1, 0), Vector2(1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one), "Segment completely within the circle should not intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(1, 0), Vector2(-1, 0), Vector2(0, 0), 2.0) == doctest::Approx(minus_one), "Segment completely within the circle should not intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(2, 0), Vector2(3, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one), "Segment completely outside the circle should not intersect it"); CHECK_MESSAGE( - Math::is_equal_approx(Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0), minus_one), + Geometry2D::segment_intersects_circle(Vector2(3, 0), Vector2(2, 0), Vector2(0, 0), 1.0) == doctest::Approx(minus_one), "Segment completely outside the circle should not intersect it"); } diff --git a/tests/core/math/test_geometry_3d.h b/tests/core/math/test_geometry_3d.h index 99a4ef2d46..23bbf1e183 100644 --- a/tests/core/math/test_geometry_3d.h +++ b/tests/core/math/test_geometry_3d.h @@ -63,7 +63,7 @@ TEST_CASE("[Geometry3D] Closest Distance Between Segments") { p_1(p_p_1), p_2(p_p_2), p_3(p_p_3), p_4(p_p_4), want(p_want){}; }; Vector<Case> tt; - tt.push_back(Case(Vector3(1, -2, 0), Vector3(1, 2, 0), Vector3(-1, 2, 0), Vector3(-1, -2, 0), 0.0f)); + tt.push_back(Case(Vector3(1, -2, 0), Vector3(1, 2, 0), Vector3(-1, 2, 0), Vector3(-1, -2, 0), 2.0f)); for (int i = 0; i < tt.size(); ++i) { Case current_case = tt[i]; float out = Geometry3D::get_closest_distance_between_segments(current_case.p_1, current_case.p_2, current_case.p_3, current_case.p_4); diff --git a/tests/core/math/test_math_funcs.h b/tests/core/math/test_math_funcs.h new file mode 100644 index 0000000000..c9d14bbd21 --- /dev/null +++ b/tests/core/math/test_math_funcs.h @@ -0,0 +1,549 @@ +/*************************************************************************/ +/* test_math_funcs.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef TEST_MATH_FUNCS_H +#define TEST_MATH_FUNCS_H + +#include "tests/test_macros.h" + +namespace TestMath { + +TEST_CASE("[Math] C++ macros") { + CHECK(MIN(-2, 2) == -2); + CHECK(MIN(600, 2) == 2); + + CHECK(MAX(-2, 2) == 2); + CHECK(MAX(600, 2) == 600); + + CHECK(CLAMP(600, -2, 2) == 2); + CHECK(CLAMP(620, 600, 650) == 620); + // `max` is lower than `min`. + CHECK(CLAMP(620, 600, 50) == 50); + + CHECK(ABS(-5) == 5); + CHECK(ABS(0) == 0); + CHECK(ABS(5) == 5); + + CHECK(SIGN(-5) == -1.0); + CHECK(SIGN(0) == 0.0); + CHECK(SIGN(5) == 1.0); +} + +TEST_CASE("[Math] Power of two functions") { + CHECK(next_power_of_2(0) == 0); + CHECK(next_power_of_2(1) == 1); + CHECK(next_power_of_2(16) == 16); + CHECK(next_power_of_2(17) == 32); + CHECK(next_power_of_2(65535) == 65536); + + CHECK(previous_power_of_2(0) == 0); + CHECK(previous_power_of_2(1) == 1); + CHECK(previous_power_of_2(16) == 16); + CHECK(previous_power_of_2(17) == 16); + CHECK(previous_power_of_2(65535) == 32768); + + CHECK(closest_power_of_2(0) == 0); + CHECK(closest_power_of_2(1) == 1); + CHECK(closest_power_of_2(16) == 16); + CHECK(closest_power_of_2(17) == 16); + CHECK(closest_power_of_2(65535) == 65536); + + CHECK(get_shift_from_power_of_2(0) == -1); + CHECK(get_shift_from_power_of_2(1) == 0); + CHECK(get_shift_from_power_of_2(16) == 4); + CHECK(get_shift_from_power_of_2(17) == -1); + CHECK(get_shift_from_power_of_2(65535) == -1); + + CHECK(nearest_shift(0) == 0); + CHECK(nearest_shift(1) == 1); + CHECK(nearest_shift(16) == 5); + CHECK(nearest_shift(17) == 5); + CHECK(nearest_shift(65535) == 16); +} + +TEST_CASE_TEMPLATE("[Math] abs", T, int, float, double) { + CHECK(Math::abs((T)-1) == (T)1); + CHECK(Math::abs((T)0) == (T)0); + CHECK(Math::abs((T)1) == (T)1); + CHECK(Math::abs((T)0.1) == (T)0.1); +} + +TEST_CASE_TEMPLATE("[Math] round/floor/ceil", T, float, double) { + CHECK(Math::round((T)1.5) == (T)2.0); + CHECK(Math::round((T)1.6) == (T)2.0); + CHECK(Math::round((T)-1.5) == (T)-2.0); + CHECK(Math::round((T)-1.1) == (T)-1.0); + + CHECK(Math::floor((T)1.5) == (T)1.0); + CHECK(Math::floor((T)-1.5) == (T)-2.0); + + CHECK(Math::ceil((T)1.5) == (T)2.0); + CHECK(Math::ceil((T)-1.9) == (T)-1.0); +} + +TEST_CASE_TEMPLATE("[Math] sin/cos/tan", T, float, double) { + CHECK(Math::sin((T)-0.1) == doctest::Approx((T)-0.0998334166)); + CHECK(Math::sin((T)0.1) == doctest::Approx((T)0.0998334166)); + CHECK(Math::sin((T)0.5) == doctest::Approx((T)0.4794255386)); + CHECK(Math::sin((T)1.0) == doctest::Approx((T)0.8414709848)); + CHECK(Math::sin((T)1.5) == doctest::Approx((T)0.9974949866)); + CHECK(Math::sin((T)450.0) == doctest::Approx((T)-0.683283725)); + + CHECK(Math::cos((T)-0.1) == doctest::Approx((T)0.99500416530)); + CHECK(Math::cos((T)0.1) == doctest::Approx((T)0.9950041653)); + CHECK(Math::cos((T)0.5) == doctest::Approx((T)0.8775825619)); + CHECK(Math::cos((T)1.0) == doctest::Approx((T)0.5403023059)); + CHECK(Math::cos((T)1.5) == doctest::Approx((T)0.0707372017)); + CHECK(Math::cos((T)450.0) == doctest::Approx((T)-0.7301529642)); + + CHECK(Math::tan((T)-0.1) == doctest::Approx((T)-0.1003346721)); + CHECK(Math::tan((T)0.1) == doctest::Approx((T)0.1003346721)); + CHECK(Math::tan((T)0.5) == doctest::Approx((T)0.5463024898)); + CHECK(Math::tan((T)1.0) == doctest::Approx((T)1.5574077247)); + CHECK(Math::tan((T)1.5) == doctest::Approx((T)14.1014199472)); + CHECK(Math::tan((T)450.0) == doctest::Approx((T)0.9358090134)); +} + +TEST_CASE_TEMPLATE("[Math] sinh/cosh/tanh", T, float, double) { + CHECK(Math::sinh((T)-0.1) == doctest::Approx((T)-0.10016675)); + CHECK(Math::sinh((T)0.1) == doctest::Approx((T)0.10016675)); + CHECK(Math::sinh((T)0.5) == doctest::Approx((T)0.5210953055)); + CHECK(Math::sinh((T)1.0) == doctest::Approx((T)1.1752011936)); + CHECK(Math::sinh((T)1.5) == doctest::Approx((T)2.1292794551)); + + CHECK(Math::cosh((T)-0.1) == doctest::Approx((T)1.0050041681)); + CHECK(Math::cosh((T)0.1) == doctest::Approx((T)1.0050041681)); + CHECK(Math::cosh((T)0.5) == doctest::Approx((T)1.1276259652)); + CHECK(Math::cosh((T)1.0) == doctest::Approx((T)1.5430806348)); + CHECK(Math::cosh((T)1.5) == doctest::Approx((T)2.3524096152)); + + CHECK(Math::tanh((T)-0.1) == doctest::Approx((T)-0.0996679946)); + CHECK(Math::tanh((T)0.1) == doctest::Approx((T)0.0996679946)); + CHECK(Math::tanh((T)0.5) == doctest::Approx((T)0.4621171573)); + CHECK(Math::tanh((T)1.0) == doctest::Approx((T)0.761594156)); + CHECK(Math::tanh((T)1.5) == doctest::Approx((T)0.9051482536)); + CHECK(Math::tanh((T)450.0) == doctest::Approx((T)1.0)); +} + +TEST_CASE_TEMPLATE("[Math] asin/acos/atan", T, float, double) { + CHECK(Math::asin((T)-0.1) == doctest::Approx((T)-0.1001674212)); + CHECK(Math::asin((T)0.1) == doctest::Approx((T)0.1001674212)); + CHECK(Math::asin((T)0.5) == doctest::Approx((T)0.5235987756)); + CHECK(Math::asin((T)1.0) == doctest::Approx((T)1.5707963268)); + CHECK(Math::is_nan(Math::asin((T)1.5))); + CHECK(Math::is_nan(Math::asin((T)450.0))); + + CHECK(Math::acos((T)-0.1) == doctest::Approx((T)1.670963748)); + CHECK(Math::acos((T)0.1) == doctest::Approx((T)1.4706289056)); + CHECK(Math::acos((T)0.5) == doctest::Approx((T)1.0471975512)); + CHECK(Math::acos((T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::is_nan(Math::acos((T)1.5))); + CHECK(Math::is_nan(Math::acos((T)450.0))); + + CHECK(Math::atan((T)-0.1) == doctest::Approx((T)-0.0996686525)); + CHECK(Math::atan((T)0.1) == doctest::Approx((T)0.0996686525)); + CHECK(Math::atan((T)0.5) == doctest::Approx((T)0.463647609)); + CHECK(Math::atan((T)1.0) == doctest::Approx((T)0.7853981634)); + CHECK(Math::atan((T)1.5) == doctest::Approx((T)0.9827937232)); + CHECK(Math::atan((T)450.0) == doctest::Approx((T)1.5685741082)); +} + +TEST_CASE_TEMPLATE("[Math] sinc/sincn/atan2", T, float, double) { + CHECK(Math::sinc((T)-0.1) == doctest::Approx((T)0.9983341665)); + CHECK(Math::sinc((T)0.1) == doctest::Approx((T)0.9983341665)); + CHECK(Math::sinc((T)0.5) == doctest::Approx((T)0.9588510772)); + CHECK(Math::sinc((T)1.0) == doctest::Approx((T)0.8414709848)); + CHECK(Math::sinc((T)1.5) == doctest::Approx((T)0.6649966577)); + CHECK(Math::sinc((T)450.0) == doctest::Approx((T)-0.0015184083)); + + CHECK(Math::sincn((T)-0.1) == doctest::Approx((T)0.9836316431)); + CHECK(Math::sincn((T)0.1) == doctest::Approx((T)0.9836316431)); + CHECK(Math::sincn((T)0.5) == doctest::Approx((T)0.6366197724)); + CHECK(Math::sincn((T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::sincn((T)1.5) == doctest::Approx((T)-0.2122065908)); + CHECK(Math::sincn((T)450.0) == doctest::Approx((T)0.0)); + + CHECK(Math::atan2((T)-0.1, (T)0.5) == doctest::Approx((T)-0.1973955598)); + CHECK(Math::atan2((T)0.1, (T)-0.5) == doctest::Approx((T)2.9441970937)); + CHECK(Math::atan2((T)0.5, (T)1.5) == doctest::Approx((T)0.3217505544)); + CHECK(Math::atan2((T)1.0, (T)2.5) == doctest::Approx((T)0.3805063771)); + CHECK(Math::atan2((T)1.5, (T)1.0) == doctest::Approx((T)0.9827937232)); + CHECK(Math::atan2((T)450.0, (T)1.0) == doctest::Approx((T)1.5685741082)); +} + +TEST_CASE_TEMPLATE("[Math] pow/log/log2/exp/sqrt", T, float, double) { + CHECK(Math::pow((T)-0.1, (T)2.0) == doctest::Approx((T)0.01)); + CHECK(Math::pow((T)0.1, (T)2.5) == doctest::Approx((T)0.0031622777)); + CHECK(Math::pow((T)0.5, (T)0.5) == doctest::Approx((T)0.7071067812)); + CHECK(Math::pow((T)1.0, (T)1.0) == doctest::Approx((T)1.0)); + CHECK(Math::pow((T)1.5, (T)-1.0) == doctest::Approx((T)0.6666666667)); + CHECK(Math::pow((T)450.0, (T)-2.0) == doctest::Approx((T)0.0000049383)); + CHECK(Math::pow((T)450.0, (T)0.0) == doctest::Approx((T)1.0)); + + CHECK(Math::is_nan(Math::log((T)-0.1))); + CHECK(Math::log((T)0.1) == doctest::Approx((T)-2.302585093)); + CHECK(Math::log((T)0.5) == doctest::Approx((T)-0.6931471806)); + CHECK(Math::log((T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::log((T)1.5) == doctest::Approx((T)0.4054651081)); + CHECK(Math::log((T)450.0) == doctest::Approx((T)6.1092475828)); + + CHECK(Math::is_nan(Math::log2((T)-0.1))); + CHECK(Math::log2((T)0.1) == doctest::Approx((T)-3.3219280949)); + CHECK(Math::log2((T)0.5) == doctest::Approx((T)-1.0)); + CHECK(Math::log2((T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::log2((T)1.5) == doctest::Approx((T)0.5849625007)); + CHECK(Math::log2((T)450.0) == doctest::Approx((T)8.8137811912)); + + CHECK(Math::exp((T)-0.1) == doctest::Approx((T)0.904837418)); + CHECK(Math::exp((T)0.1) == doctest::Approx((T)1.1051709181)); + CHECK(Math::exp((T)0.5) == doctest::Approx((T)1.6487212707)); + CHECK(Math::exp((T)1.0) == doctest::Approx((T)2.7182818285)); + CHECK(Math::exp((T)1.5) == doctest::Approx((T)4.4816890703)); + + CHECK(Math::is_nan(Math::sqrt((T)-0.1))); + CHECK(Math::sqrt((T)0.1) == doctest::Approx((T)0.316228)); + CHECK(Math::sqrt((T)0.5) == doctest::Approx((T)0.707107)); + CHECK(Math::sqrt((T)1.0) == doctest::Approx((T)1.0)); + CHECK(Math::sqrt((T)1.5) == doctest::Approx((T)1.224745)); +} + +TEST_CASE_TEMPLATE("[Math] is_nan/is_inf", T, float, double) { + CHECK(!Math::is_nan((T)0.0)); + CHECK(Math::is_nan((T)NAN)); + + CHECK(!Math::is_inf((T)0.0)); + CHECK(Math::is_inf((T)INFINITY)); +} + +TEST_CASE_TEMPLATE("[Math] linear_to_db", T, float, double) { + CHECK(Math::linear_to_db((T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::linear_to_db((T)20.0) == doctest::Approx((T)26.0206)); + CHECK(Math::is_inf(Math::linear_to_db((T)0.0))); + CHECK(Math::is_nan(Math::linear_to_db((T)-20.0))); +} + +TEST_CASE_TEMPLATE("[Math] db_to_linear", T, float, double) { + CHECK(Math::db_to_linear((T)0.0) == doctest::Approx((T)1.0)); + CHECK(Math::db_to_linear((T)1.0) == doctest::Approx((T)1.122018)); + CHECK(Math::db_to_linear((T)20.0) == doctest::Approx((T)10.0)); + CHECK(Math::db_to_linear((T)-20.0) == doctest::Approx((T)0.1)); +} + +TEST_CASE_TEMPLATE("[Math] step_decimals", T, float, double) { + CHECK(Math::step_decimals((T)-0.5) == 1); + CHECK(Math::step_decimals((T)0) == 0); + CHECK(Math::step_decimals((T)1) == 0); + CHECK(Math::step_decimals((T)0.1) == 1); + CHECK(Math::step_decimals((T)0.01) == 2); + CHECK(Math::step_decimals((T)0.001) == 3); + CHECK(Math::step_decimals((T)0.0001) == 4); + CHECK(Math::step_decimals((T)0.00001) == 5); + CHECK(Math::step_decimals((T)0.000001) == 6); + CHECK(Math::step_decimals((T)0.0000001) == 7); + CHECK(Math::step_decimals((T)0.00000001) == 8); + CHECK(Math::step_decimals((T)0.000000001) == 9); + // Too many decimals to handle. + CHECK(Math::step_decimals((T)0.0000000001) == 0); +} + +TEST_CASE_TEMPLATE("[Math] range_step_decimals", T, float, double) { + CHECK(Math::range_step_decimals((T)0.000000001) == 9); + // Too many decimals to handle. + CHECK(Math::range_step_decimals((T)0.0000000001) == 0); + // Should be treated as a step of 0 for use by the editor. + CHECK(Math::range_step_decimals((T)0.0) == 16); + CHECK(Math::range_step_decimals((T)-0.5) == 16); +} + +TEST_CASE_TEMPLATE("[Math] lerp", T, float, double) { + CHECK(Math::lerp((T)2.0, (T)5.0, (T)-0.1) == doctest::Approx((T)1.7)); + CHECK(Math::lerp((T)2.0, (T)5.0, (T)0.0) == doctest::Approx((T)2.0)); + CHECK(Math::lerp((T)2.0, (T)5.0, (T)0.1) == doctest::Approx((T)2.3)); + CHECK(Math::lerp((T)2.0, (T)5.0, (T)1.0) == doctest::Approx((T)5.0)); + CHECK(Math::lerp((T)2.0, (T)5.0, (T)2.0) == doctest::Approx((T)8.0)); + + CHECK(Math::lerp((T)-2.0, (T)-5.0, (T)-0.1) == doctest::Approx((T)-1.7)); + CHECK(Math::lerp((T)-2.0, (T)-5.0, (T)0.0) == doctest::Approx((T)-2.0)); + CHECK(Math::lerp((T)-2.0, (T)-5.0, (T)0.1) == doctest::Approx((T)-2.3)); + CHECK(Math::lerp((T)-2.0, (T)-5.0, (T)1.0) == doctest::Approx((T)-5.0)); + CHECK(Math::lerp((T)-2.0, (T)-5.0, (T)2.0) == doctest::Approx((T)-8.0)); +} + +TEST_CASE_TEMPLATE("[Math] inverse_lerp", T, float, double) { + CHECK(Math::inverse_lerp((T)2.0, (T)5.0, (T)1.7) == doctest::Approx((T)-0.1)); + CHECK(Math::inverse_lerp((T)2.0, (T)5.0, (T)2.0) == doctest::Approx((T)0.0)); + CHECK(Math::inverse_lerp((T)2.0, (T)5.0, (T)2.3) == doctest::Approx((T)0.1)); + CHECK(Math::inverse_lerp((T)2.0, (T)5.0, (T)5.0) == doctest::Approx((T)1.0)); + CHECK(Math::inverse_lerp((T)2.0, (T)5.0, (T)8.0) == doctest::Approx((T)2.0)); + + CHECK(Math::inverse_lerp((T)-2.0, (T)-5.0, (T)-1.7) == doctest::Approx((T)-0.1)); + CHECK(Math::inverse_lerp((T)-2.0, (T)-5.0, (T)-2.0) == doctest::Approx((T)0.0)); + CHECK(Math::inverse_lerp((T)-2.0, (T)-5.0, (T)-2.3) == doctest::Approx((T)0.1)); + CHECK(Math::inverse_lerp((T)-2.0, (T)-5.0, (T)-5.0) == doctest::Approx((T)1.0)); + CHECK(Math::inverse_lerp((T)-2.0, (T)-5.0, (T)-8.0) == doctest::Approx((T)2.0)); +} + +TEST_CASE_TEMPLATE("[Math] remap", T, float, double) { + CHECK(Math::remap((T)50.0, (T)100.0, (T)200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)-500.0)); + CHECK(Math::remap((T)100.0, (T)100.0, (T)200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)0.0)); + CHECK(Math::remap((T)200.0, (T)100.0, (T)200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)1000.0)); + CHECK(Math::remap((T)250.0, (T)100.0, (T)200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)1500.0)); + + CHECK(Math::remap((T)-50.0, (T)-100.0, (T)-200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)-500.0)); + CHECK(Math::remap((T)-100.0, (T)-100.0, (T)-200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)0.0)); + CHECK(Math::remap((T)-200.0, (T)-100.0, (T)-200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)1000.0)); + CHECK(Math::remap((T)-250.0, (T)-100.0, (T)-200.0, (T)0.0, (T)1000.0) == doctest::Approx((T)1500.0)); + + CHECK(Math::remap((T)-50.0, (T)-100.0, (T)-200.0, (T)0.0, (T)-1000.0) == doctest::Approx((T)500.0)); + CHECK(Math::remap((T)-100.0, (T)-100.0, (T)-200.0, (T)0.0, (T)-1000.0) == doctest::Approx((T)0.0)); + CHECK(Math::remap((T)-200.0, (T)-100.0, (T)-200.0, (T)0.0, (T)-1000.0) == doctest::Approx((T)-1000.0)); + CHECK(Math::remap((T)-250.0, (T)-100.0, (T)-200.0, (T)0.0, (T)-1000.0) == doctest::Approx((T)-1500.0)); +} + +TEST_CASE_TEMPLATE("[Math] lerp_angle", T, float, double) { + // Counter-clockwise rotation. + CHECK(Math::lerp_angle((T)0.24 * Math_TAU, 0.75 * Math_TAU, 0.5) == doctest::Approx((T)-0.005 * Math_TAU)); + // Counter-clockwise rotation. + CHECK(Math::lerp_angle((T)0.25 * Math_TAU, 0.75 * Math_TAU, 0.5) == doctest::Approx((T)0.0)); + // Clockwise rotation. + CHECK(Math::lerp_angle((T)0.26 * Math_TAU, 0.75 * Math_TAU, 0.5) == doctest::Approx((T)0.505 * Math_TAU)); + + CHECK(Math::lerp_angle((T)-0.25 * Math_TAU, 1.25 * Math_TAU, 0.5) == doctest::Approx((T)-0.5 * Math_TAU)); + CHECK(Math::lerp_angle((T)0.72 * Math_TAU, 1.44 * Math_TAU, 0.96) == doctest::Approx((T)0.4512 * Math_TAU)); + CHECK(Math::lerp_angle((T)0.72 * Math_TAU, 1.44 * Math_TAU, 1.04) == doctest::Approx((T)0.4288 * Math_TAU)); + + // Initial and final angles are effectively identical, so the value returned + // should always be the same regardless of the `weight` parameter. + CHECK(Math::lerp_angle((T)-4 * Math_TAU, 4 * Math_TAU, -1.0) == doctest::Approx((T)-4.0 * Math_TAU)); + CHECK(Math::lerp_angle((T)-4 * Math_TAU, 4 * Math_TAU, 0.0) == doctest::Approx((T)-4.0 * Math_TAU)); + CHECK(Math::lerp_angle((T)-4 * Math_TAU, 4 * Math_TAU, 0.5) == doctest::Approx((T)-4.0 * Math_TAU)); + CHECK(Math::lerp_angle((T)-4 * Math_TAU, 4 * Math_TAU, 1.0) == doctest::Approx((T)-4.0 * Math_TAU)); + CHECK(Math::lerp_angle((T)-4 * Math_TAU, 4 * Math_TAU, 500.0) == doctest::Approx((T)-4.0 * Math_TAU)); +} + +TEST_CASE_TEMPLATE("[Math] move_toward", T, float, double) { + CHECK(Math::move_toward(2.0, 5.0, -1.0) == doctest::Approx((T)1.0)); + CHECK(Math::move_toward(2.0, 5.0, 2.5) == doctest::Approx((T)4.5)); + CHECK(Math::move_toward(2.0, 5.0, 4.0) == doctest::Approx((T)5.0)); + CHECK(Math::move_toward(-2.0, -5.0, -1.0) == doctest::Approx((T)-1.0)); + CHECK(Math::move_toward(-2.0, -5.0, 2.5) == doctest::Approx((T)-4.5)); + CHECK(Math::move_toward(-2.0, -5.0, 4.0) == doctest::Approx((T)-5.0)); +} + +TEST_CASE_TEMPLATE("[Math] smoothstep", T, float, double) { + CHECK(Math::smoothstep((T)0.0, (T)2.0, (T)-5.0) == doctest::Approx((T)0.0)); + CHECK(Math::smoothstep((T)0.0, (T)2.0, (T)0.5) == doctest::Approx((T)0.15625)); + CHECK(Math::smoothstep((T)0.0, (T)2.0, (T)1.0) == doctest::Approx((T)0.5)); + CHECK(Math::smoothstep((T)0.0, (T)2.0, (T)2.0) == doctest::Approx((T)1.0)); +} + +TEST_CASE("[Math] ease") { + CHECK(Math::ease(0.1, 1.0) == doctest::Approx(0.1)); + CHECK(Math::ease(0.1, 2.0) == doctest::Approx(0.01)); + CHECK(Math::ease(0.1, 0.5) == doctest::Approx(0.19)); + CHECK(Math::ease(0.1, 0.0) == doctest::Approx(0)); + CHECK(Math::ease(0.1, -0.5) == doctest::Approx(0.2236067977)); + CHECK(Math::ease(0.1, -1.0) == doctest::Approx(0.1)); + CHECK(Math::ease(0.1, -2.0) == doctest::Approx(0.02)); + + CHECK(Math::ease(-1.0, 1.0) == doctest::Approx(0)); + CHECK(Math::ease(-1.0, 2.0) == doctest::Approx(0)); + CHECK(Math::ease(-1.0, 0.5) == doctest::Approx(0)); + CHECK(Math::ease(-1.0, 0.0) == doctest::Approx(0)); + CHECK(Math::ease(-1.0, -0.5) == doctest::Approx(0)); + CHECK(Math::ease(-1.0, -1.0) == doctest::Approx(0)); + CHECK(Math::ease(-1.0, -2.0) == doctest::Approx(0)); +} + +TEST_CASE("[Math] snapped") { + CHECK(Math::snapped(0.5, 0.04) == doctest::Approx(0.52)); + CHECK(Math::snapped(-0.5, 0.04) == doctest::Approx(-0.48)); + CHECK(Math::snapped(0.0, 0.04) == doctest::Approx(0)); + CHECK(Math::snapped(128'000.025, 0.04) == doctest::Approx(128'000.04)); + + CHECK(Math::snapped(0.5, 400) == doctest::Approx(0)); + CHECK(Math::snapped(-0.5, 400) == doctest::Approx(0)); + CHECK(Math::snapped(0.0, 400) == doctest::Approx(0)); + CHECK(Math::snapped(128'000.025, 400) == doctest::Approx(128'000.0)); + + CHECK(Math::snapped(0.5, 0.0) == doctest::Approx(0.5)); + CHECK(Math::snapped(-0.5, 0.0) == doctest::Approx(-0.5)); + CHECK(Math::snapped(0.0, 0.0) == doctest::Approx(0.0)); + CHECK(Math::snapped(128'000.025, 0.0) == doctest::Approx(128'000.0)); + + CHECK(Math::snapped(0.5, -1.0) == doctest::Approx(0)); + CHECK(Math::snapped(-0.5, -1.0) == doctest::Approx(-1.0)); + CHECK(Math::snapped(0.0, -1.0) == doctest::Approx(0)); + CHECK(Math::snapped(128'000.025, -1.0) == doctest::Approx(128'000.0)); +} + +TEST_CASE("[Math] larger_prime") { + CHECK(Math::larger_prime(0) == 5); + CHECK(Math::larger_prime(1) == 5); + CHECK(Math::larger_prime(2) == 5); + CHECK(Math::larger_prime(5) == 13); + CHECK(Math::larger_prime(500) == 769); + CHECK(Math::larger_prime(1'000'000) == 1'572'869); + CHECK(Math::larger_prime(1'000'000'000) == 1'610'612'741); + + // The next prime is larger than `INT32_MAX` and is not present in the built-in prime table. + ERR_PRINT_OFF; + CHECK(Math::larger_prime(2'000'000'000) == 0); + ERR_PRINT_ON; +} + +TEST_CASE_TEMPLATE("[Math] fmod", T, float, double) { + CHECK(Math::fmod((T)-2.0, (T)0.3) == doctest::Approx((T)-0.2)); + CHECK(Math::fmod((T)0.0, (T)0.3) == doctest::Approx((T)0.0)); + CHECK(Math::fmod((T)2.0, (T)0.3) == doctest::Approx((T)0.2)); + + CHECK(Math::fmod((T)-2.0, (T)-0.3) == doctest::Approx((T)-0.2)); + CHECK(Math::fmod((T)0.0, (T)-0.3) == doctest::Approx((T)0.0)); + CHECK(Math::fmod((T)2.0, (T)-0.3) == doctest::Approx((T)0.2)); +} + +TEST_CASE_TEMPLATE("[Math] fposmod", T, float, double) { + CHECK(Math::fposmod((T)-2.0, (T)0.3) == doctest::Approx((T)0.1)); + CHECK(Math::fposmod((T)0.0, (T)0.3) == doctest::Approx((T)0.0)); + CHECK(Math::fposmod((T)2.0, (T)0.3) == doctest::Approx((T)0.2)); + + CHECK(Math::fposmod((T)-2.0, (T)-0.3) == doctest::Approx((T)-0.2)); + CHECK(Math::fposmod((T)0.0, (T)-0.3) == doctest::Approx((T)0.0)); + CHECK(Math::fposmod((T)2.0, (T)-0.3) == doctest::Approx((T)-0.1)); +} + +TEST_CASE_TEMPLATE("[Math] fposmodp", T, float, double) { + CHECK(Math::fposmodp((T)-2.0, (T)0.3) == doctest::Approx((T)0.1)); + CHECK(Math::fposmodp((T)0.0, (T)0.3) == doctest::Approx((T)0.0)); + CHECK(Math::fposmodp((T)2.0, (T)0.3) == doctest::Approx((T)0.2)); + + CHECK(Math::fposmodp((T)-2.0, (T)-0.3) == doctest::Approx((T)-0.5)); + CHECK(Math::fposmodp((T)0.0, (T)-0.3) == doctest::Approx((T)0.0)); + CHECK(Math::fposmodp((T)2.0, (T)-0.3) == doctest::Approx((T)0.2)); +} + +TEST_CASE("[Math] posmod") { + CHECK(Math::posmod(-20, 3) == 1); + CHECK(Math::posmod(0, 3) == 0); + CHECK(Math::posmod(20, 3) == 2); + CHECK(Math::posmod(-20, -3) == -2); + CHECK(Math::posmod(0, -3) == 0); + CHECK(Math::posmod(20, -3) == -1); +} + +TEST_CASE("[Math] wrapi") { + CHECK(Math::wrapi(-30, -20, 160) == 150); + CHECK(Math::wrapi(30, -20, 160) == 30); + CHECK(Math::wrapi(300, -20, 160) == 120); + CHECK(Math::wrapi(300'000'000'000, -20, 160) == 120); +} + +TEST_CASE_TEMPLATE("[Math] wrapf", T, float, double) { + CHECK(Math::wrapf((T)-30.0, (T)-20.0, (T)160.0) == doctest::Approx((T)150.0)); + CHECK(Math::wrapf((T)30.0, (T)-2.0, (T)160.0) == doctest::Approx((T)30.0)); + CHECK(Math::wrapf((T)300.0, (T)-20.0, (T)160.0) == doctest::Approx((T)120.0)); + + CHECK(Math::wrapf(300'000'000'000.0, -20.0, 160.0) == doctest::Approx((T)120.0)); + // float's precision is too low for 300'000'000'000.0, so we reduce it by a factor of 1000. + CHECK(Math::wrapf((float)300'000'000.0, (float)-20.0, (float)160.0) == doctest::Approx((T)128.0)); +} + +TEST_CASE_TEMPLATE("[Math] fract", T, float, double) { + CHECK(Math::fract((T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::fract((T)77.8) == doctest::Approx((T)0.8)); + CHECK(Math::fract((T)-10.1) == doctest::Approx((T)0.9)); +} + +TEST_CASE_TEMPLATE("[Math] pingpong", T, float, double) { + CHECK(Math::pingpong((T)0.0, (T)0.0) == doctest::Approx((T)0.0)); + CHECK(Math::pingpong((T)1.0, (T)1.0) == doctest::Approx((T)1.0)); + CHECK(Math::pingpong((T)0.5, (T)2.0) == doctest::Approx((T)0.5)); + CHECK(Math::pingpong((T)3.5, (T)2.0) == doctest::Approx((T)0.5)); + CHECK(Math::pingpong((T)11.5, (T)2.0) == doctest::Approx((T)0.5)); + CHECK(Math::pingpong((T)-2.5, (T)2.0) == doctest::Approx((T)1.5)); +} + +TEST_CASE_TEMPLATE("[Math] deg_to_rad/rad_to_deg", T, float, double) { + CHECK(Math::deg_to_rad((T)180.0) == doctest::Approx((T)Math_PI)); + CHECK(Math::deg_to_rad((T)-27.0) == doctest::Approx((T)-0.471239)); + + CHECK(Math::rad_to_deg((T)Math_PI) == doctest::Approx((T)180.0)); + CHECK(Math::rad_to_deg((T)-1.5) == doctest::Approx((T)-85.94366927)); +} + +TEST_CASE_TEMPLATE("[Math] cubic_interpolate", T, float, double) { + CHECK(Math::cubic_interpolate((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.0) == doctest::Approx((T)0.2)); + CHECK(Math::cubic_interpolate((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.25) == doctest::Approx((T)0.33125)); + CHECK(Math::cubic_interpolate((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.5) == doctest::Approx((T)0.5)); + CHECK(Math::cubic_interpolate((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.75) == doctest::Approx((T)0.66875)); + CHECK(Math::cubic_interpolate((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)1.0) == doctest::Approx((T)0.8)); + + CHECK(Math::cubic_interpolate((T)20.2, (T)30.1, (T)-100.0, (T)32.0, (T)-50.0) == doctest::Approx((T)-6662732.3)); + CHECK(Math::cubic_interpolate((T)20.2, (T)30.1, (T)-100.0, (T)32.0, (T)-5.0) == doctest::Approx((T)-9356.3)); + CHECK(Math::cubic_interpolate((T)20.2, (T)30.1, (T)-100.0, (T)32.0, (T)0.0) == doctest::Approx((T)20.2)); + CHECK(Math::cubic_interpolate((T)20.2, (T)30.1, (T)-100.0, (T)32.0, (T)1.0) == doctest::Approx((T)30.1)); + CHECK(Math::cubic_interpolate((T)20.2, (T)30.1, (T)-100.0, (T)32.0, (T)4.0) == doctest::Approx((T)1853.2)); +} + +TEST_CASE_TEMPLATE("[Math] cubic_interpolate_angle", T, float, double) { + CHECK(Math::cubic_interpolate_angle((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.0) == doctest::Approx((T)Math_PI * (1.0 / 6.0))); + CHECK(Math::cubic_interpolate_angle((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.25) == doctest::Approx((T)0.973566)); + CHECK(Math::cubic_interpolate_angle((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.5) == doctest::Approx((T)Math_PI / 2.0)); + CHECK(Math::cubic_interpolate_angle((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.75) == doctest::Approx((T)2.16803)); + CHECK(Math::cubic_interpolate_angle((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)1.0) == doctest::Approx((T)Math_PI * (5.0 / 6.0))); +} + +TEST_CASE_TEMPLATE("[Math] cubic_interpolate_in_time", T, float, double) { + CHECK(Math::cubic_interpolate_in_time((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.0, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::cubic_interpolate_in_time((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.25, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)0.1625)); + CHECK(Math::cubic_interpolate_in_time((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.5, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)0.4)); + CHECK(Math::cubic_interpolate_in_time((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)0.75, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)0.6375)); + CHECK(Math::cubic_interpolate_in_time((T)0.2, (T)0.8, (T)0.0, (T)1.0, (T)1.0, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)0.8)); +} + +TEST_CASE_TEMPLATE("[Math] cubic_interpolate_angle_in_time", T, float, double) { + CHECK(Math::cubic_interpolate_angle_in_time((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.0, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)0.0)); + CHECK(Math::cubic_interpolate_angle_in_time((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.25, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)0.494964)); + CHECK(Math::cubic_interpolate_angle_in_time((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.5, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)1.27627)); + CHECK(Math::cubic_interpolate_angle_in_time((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)0.75, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)2.07394)); + CHECK(Math::cubic_interpolate_angle_in_time((T)(Math_PI * (1.0 / 6.0)), (T)(Math_PI * (5.0 / 6.0)), (T)0.0, (T)Math_PI, (T)1.0, (T)0.5, (T)0.0, (T)1.0) == doctest::Approx((T)Math_PI * (5.0 / 6.0))); +} + +TEST_CASE_TEMPLATE("[Math] bezier_interpolate", T, float, double) { + CHECK(Math::bezier_interpolate((T)0.0, (T)0.2, (T)0.8, (T)1.0, (T)0.0) == doctest::Approx((T)0.0)); + CHECK(Math::bezier_interpolate((T)0.0, (T)0.2, (T)0.8, (T)1.0, (T)0.25) == doctest::Approx((T)0.2125)); + CHECK(Math::bezier_interpolate((T)0.0, (T)0.2, (T)0.8, (T)1.0, (T)0.5) == doctest::Approx((T)0.5)); + CHECK(Math::bezier_interpolate((T)0.0, (T)0.2, (T)0.8, (T)1.0, (T)0.75) == doctest::Approx((T)0.7875)); + CHECK(Math::bezier_interpolate((T)0.0, (T)0.2, (T)0.8, (T)1.0, (T)1.0) == doctest::Approx((T)1.0)); +} + +} // namespace TestMath + +#endif // TEST_MATH_FUNCS_H diff --git a/tests/core/math/test_plane.h b/tests/core/math/test_plane.h index d81a5af1ce..84d9a0ff7d 100644 --- a/tests/core/math/test_plane.h +++ b/tests/core/math/test_plane.h @@ -167,6 +167,29 @@ TEST_CASE("[Plane] Intersection") { vec_out.is_equal_approx(Vector3(1, 1, 1)), "intersects_segment() should modify vec_out to the expected result."); } + +TEST_CASE("[Plane] Finite number checks") { + const Vector3 x(0, 1, 2); + const Vector3 infinite_vec(NAN, NAN, NAN); + const real_t y = 0; + const real_t infinite_y = NAN; + + CHECK_MESSAGE( + Plane(x, y).is_finite(), + "Plane with all components finite should be finite"); + + CHECK_FALSE_MESSAGE( + Plane(x, infinite_y).is_finite(), + "Plane with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Plane(infinite_vec, y).is_finite(), + "Plane with one component infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Plane(infinite_vec, infinite_y).is_finite(), + "Plane with two components infinite should not be finite."); +} + } // namespace TestPlane #endif // TEST_PLANE_H diff --git a/tests/core/math/test_quaternion.h b/tests/core/math/test_quaternion.h index 94eef6c463..c3ae322991 100644 --- a/tests/core/math/test_quaternion.h +++ b/tests/core/math/test_quaternion.h @@ -41,15 +41,15 @@ namespace TestQuaternion { Quaternion quat_euler_yxz_deg(Vector3 angle) { - double yaw = Math::deg2rad(angle[1]); - double pitch = Math::deg2rad(angle[0]); - double roll = Math::deg2rad(angle[2]); + double yaw = Math::deg_to_rad(angle[1]); + double pitch = Math::deg_to_rad(angle[0]); + double roll = Math::deg_to_rad(angle[2]); // Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler // constructor and quaternion product, both tested separately. - Quaternion q_y(Vector3(0.0, yaw, 0.0)); - Quaternion q_p(Vector3(pitch, 0.0, 0.0)); - Quaternion q_r(Vector3(0.0, 0.0, roll)); + Quaternion q_y = Quaternion::from_euler(Vector3(0.0, yaw, 0.0)); + Quaternion q_p = Quaternion::from_euler(Vector3(pitch, 0.0, 0.0)); + Quaternion q_r = Quaternion::from_euler(Vector3(0.0, 0.0, roll)); // Roll-Z is followed by Pitch-X, then Yaw-Y. Quaternion q_yxz = q_y * q_p * q_r; @@ -77,7 +77,7 @@ TEST_CASE("[Quaternion] Construct x,y,z,w") { TEST_CASE("[Quaternion] Construct AxisAngle 1") { // Easy to visualize: 120 deg about X-axis. - Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg2rad(120.0)); + Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0)); // 0.866 isn't close enough; doctest::Approx doesn't cut much slack! CHECK(q[0] == doctest::Approx(0.866025)); // Sine of half the angle. @@ -88,7 +88,7 @@ TEST_CASE("[Quaternion] Construct AxisAngle 1") { TEST_CASE("[Quaternion] Construct AxisAngle 2") { // Easy to visualize: 30 deg about Y-axis. - Quaternion q(Vector3(0.0, 1.0, 0.0), Math::deg2rad(30.0)); + Quaternion q(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0)); CHECK(q[0] == doctest::Approx(0.0)); CHECK(q[1] == doctest::Approx(0.258819)); // Sine of half the angle. @@ -98,7 +98,7 @@ TEST_CASE("[Quaternion] Construct AxisAngle 2") { TEST_CASE("[Quaternion] Construct AxisAngle 3") { // Easy to visualize: 60 deg about Z-axis. - Quaternion q(Vector3(0.0, 0.0, 1.0), Math::deg2rad(60.0)); + Quaternion q(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0)); CHECK(q[0] == doctest::Approx(0.0)); CHECK(q[1] == doctest::Approx(0.0)); @@ -109,7 +109,7 @@ TEST_CASE("[Quaternion] Construct AxisAngle 3") { TEST_CASE("[Quaternion] Construct AxisAngle 4") { // More complex & hard to visualize, so test w/ data from online calculator. Vector3 axis(1.0, 2.0, 0.5); - Quaternion q(axis.normalized(), Math::deg2rad(35.0)); + Quaternion q(axis.normalized(), Math::deg_to_rad(35.0)); CHECK(q[0] == doctest::Approx(0.131239)); CHECK(q[1] == doctest::Approx(0.262478)); @@ -119,7 +119,7 @@ TEST_CASE("[Quaternion] Construct AxisAngle 4") { TEST_CASE("[Quaternion] Construct from Quaternion") { Vector3 axis(1.0, 2.0, 0.5); - Quaternion q_src(axis.normalized(), Math::deg2rad(35.0)); + Quaternion q_src(axis.normalized(), Math::deg_to_rad(35.0)); Quaternion q(q_src); CHECK(q[0] == doctest::Approx(0.131239)); @@ -129,26 +129,26 @@ TEST_CASE("[Quaternion] Construct from Quaternion") { } TEST_CASE("[Quaternion] Construct Euler SingleAxis") { - double yaw = Math::deg2rad(45.0); - double pitch = Math::deg2rad(30.0); - double roll = Math::deg2rad(10.0); + double yaw = Math::deg_to_rad(45.0); + double pitch = Math::deg_to_rad(30.0); + double roll = Math::deg_to_rad(10.0); Vector3 euler_y(0.0, yaw, 0.0); - Quaternion q_y(euler_y); + Quaternion q_y = Quaternion::from_euler(euler_y); CHECK(q_y[0] == doctest::Approx(0.0)); CHECK(q_y[1] == doctest::Approx(0.382684)); CHECK(q_y[2] == doctest::Approx(0.0)); CHECK(q_y[3] == doctest::Approx(0.923879)); Vector3 euler_p(pitch, 0.0, 0.0); - Quaternion q_p(euler_p); + Quaternion q_p = Quaternion::from_euler(euler_p); CHECK(q_p[0] == doctest::Approx(0.258819)); CHECK(q_p[1] == doctest::Approx(0.0)); CHECK(q_p[2] == doctest::Approx(0.0)); CHECK(q_p[3] == doctest::Approx(0.965926)); Vector3 euler_r(0.0, 0.0, roll); - Quaternion q_r(euler_r); + Quaternion q_r = Quaternion::from_euler(euler_r); CHECK(q_r[0] == doctest::Approx(0.0)); CHECK(q_r[1] == doctest::Approx(0.0)); CHECK(q_r[2] == doctest::Approx(0.0871558)); @@ -156,50 +156,50 @@ TEST_CASE("[Quaternion] Construct Euler SingleAxis") { } TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") { - double yaw = Math::deg2rad(45.0); - double pitch = Math::deg2rad(30.0); - double roll = Math::deg2rad(10.0); + double yaw = Math::deg_to_rad(45.0); + double pitch = Math::deg_to_rad(30.0); + double roll = Math::deg_to_rad(10.0); - // Generate YXZ comparision data (Z-then-X-then-Y) using single-axis Euler + // Generate YXZ comparison data (Z-then-X-then-Y) using single-axis Euler // constructor and quaternion product, both tested separately. Vector3 euler_y(0.0, yaw, 0.0); - Quaternion q_y(euler_y); + Quaternion q_y = Quaternion::from_euler(euler_y); Vector3 euler_p(pitch, 0.0, 0.0); - Quaternion q_p(euler_p); + Quaternion q_p = Quaternion::from_euler(euler_p); Vector3 euler_r(0.0, 0.0, roll); - Quaternion q_r(euler_r); + Quaternion q_r = Quaternion::from_euler(euler_r); - // Roll-Z is followed by Pitch-X. - Quaternion check_xz = q_p * q_r; - // Then Yaw-Y follows both. - Quaternion check_yxz = q_y * check_xz; + // Instrinsically, Yaw-Y then Pitch-X then Roll-Z. + // Extrinsically, Roll-Z is followed by Pitch-X, then Yaw-Y. + Quaternion check_yxz = q_y * q_p * q_r; // Test construction from YXZ Euler angles. Vector3 euler_yxz(pitch, yaw, roll); - Quaternion q(euler_yxz); + Quaternion q = Quaternion::from_euler(euler_yxz); CHECK(q[0] == doctest::Approx(check_yxz[0])); CHECK(q[1] == doctest::Approx(check_yxz[1])); CHECK(q[2] == doctest::Approx(check_yxz[2])); CHECK(q[3] == doctest::Approx(check_yxz[3])); - // Sneak in a test of is_equal_approx. CHECK(q.is_equal_approx(check_yxz)); + CHECK(q.get_euler().is_equal_approx(euler_yxz)); + CHECK(check_yxz.get_euler().is_equal_approx(euler_yxz)); } TEST_CASE("[Quaternion] Construct Basis Euler") { - double yaw = Math::deg2rad(45.0); - double pitch = Math::deg2rad(30.0); - double roll = Math::deg2rad(10.0); + double yaw = Math::deg_to_rad(45.0); + double pitch = Math::deg_to_rad(30.0); + double roll = Math::deg_to_rad(10.0); Vector3 euler_yxz(pitch, yaw, roll); - Quaternion q_yxz(euler_yxz); - Basis basis_axes(euler_yxz); + Quaternion q_yxz = Quaternion::from_euler(euler_yxz); + Basis basis_axes = Basis::from_euler(euler_yxz); Quaternion q(basis_axes); CHECK(q.is_equal_approx(q_yxz)); } TEST_CASE("[Quaternion] Construct Basis Axes") { // Arbitrary Euler angles. - Vector3 euler_yxz(Math::deg2rad(31.41), Math::deg2rad(-49.16), Math::deg2rad(12.34)); + Vector3 euler_yxz(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34)); // Basis vectors from online calculation of rotation matrix. Vector3 i_unit(0.5545787, 0.1823950, 0.8118957); Vector3 j_unit(-0.5249245, 0.8337420, 0.1712555); @@ -209,7 +209,7 @@ TEST_CASE("[Quaternion] Construct Basis Axes") { // Quaternion from local calculation. Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34)); // Quaternion from Euler angles constructor. - Quaternion q_euler(euler_yxz); + Quaternion q_euler = Quaternion::from_euler(euler_yxz); CHECK(q_calc.is_equal_approx(q_local)); CHECK(q_local.is_equal_approx(q_euler)); @@ -218,7 +218,7 @@ TEST_CASE("[Quaternion] Construct Basis Axes") { // This is by design, but may be subject to change. // Workaround by constructing Basis from Euler angles. // basis_axes = Basis(i_unit, j_unit, k_unit); - Basis basis_axes(euler_yxz); + Basis basis_axes = Basis::from_euler(euler_yxz); Quaternion q(basis_axes); CHECK(basis_axes.get_column(0).is_equal_approx(i_unit)); @@ -235,6 +235,23 @@ TEST_CASE("[Quaternion] Construct Basis Axes") { CHECK(q[3] == doctest::Approx(0.8582598)); } +TEST_CASE("[Quaternion] Get Euler Orders") { + double x = Math::deg_to_rad(30.0); + double y = Math::deg_to_rad(45.0); + double z = Math::deg_to_rad(10.0); + Vector3 euler(x, y, z); + for (int i = 0; i < 6; i++) { + EulerOrder order = (EulerOrder)i; + Basis basis = Basis::from_euler(euler, order); + Quaternion q = Quaternion(basis); + Vector3 check = q.get_euler(order); + CHECK_MESSAGE(check.is_equal_approx(euler), + "Quaternion get_euler method should return the original angles."); + CHECK_MESSAGE(check.is_equal_approx(basis.get_euler(order)), + "Quaternion get_euler method should behave the same as Basis get_euler."); + } +} + TEST_CASE("[Quaternion] Product (book)") { // Example from "Quaternions and Rotation Sequences" by Jack Kuipers, p. 108. Quaternion p(1.0, -2.0, 1.0, 3.0); @@ -248,26 +265,26 @@ TEST_CASE("[Quaternion] Product (book)") { } TEST_CASE("[Quaternion] Product") { - double yaw = Math::deg2rad(45.0); - double pitch = Math::deg2rad(30.0); - double roll = Math::deg2rad(10.0); + double yaw = Math::deg_to_rad(45.0); + double pitch = Math::deg_to_rad(30.0); + double roll = Math::deg_to_rad(10.0); Vector3 euler_y(0.0, yaw, 0.0); - Quaternion q_y(euler_y); + Quaternion q_y = Quaternion::from_euler(euler_y); CHECK(q_y[0] == doctest::Approx(0.0)); CHECK(q_y[1] == doctest::Approx(0.382684)); CHECK(q_y[2] == doctest::Approx(0.0)); CHECK(q_y[3] == doctest::Approx(0.923879)); Vector3 euler_p(pitch, 0.0, 0.0); - Quaternion q_p(euler_p); + Quaternion q_p = Quaternion::from_euler(euler_p); CHECK(q_p[0] == doctest::Approx(0.258819)); CHECK(q_p[1] == doctest::Approx(0.0)); CHECK(q_p[2] == doctest::Approx(0.0)); CHECK(q_p[3] == doctest::Approx(0.965926)); Vector3 euler_r(0.0, 0.0, roll); - Quaternion q_r(euler_r); + Quaternion q_r = Quaternion::from_euler(euler_r); CHECK(q_r[0] == doctest::Approx(0.0)); CHECK(q_r[1] == doctest::Approx(0.0)); CHECK(q_r[2] == doctest::Approx(0.0871558)); @@ -292,7 +309,7 @@ TEST_CASE("[Quaternion] Product") { TEST_CASE("[Quaternion] xform unit vectors") { // Easy to visualize: 120 deg about X-axis. // Transform the i, j, & k unit vectors. - Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg2rad(120.0)); + Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg_to_rad(120.0)); Vector3 i_t = q.xform(Vector3(1.0, 0.0, 0.0)); Vector3 j_t = q.xform(Vector3(0.0, 1.0, 0.0)); Vector3 k_t = q.xform(Vector3(0.0, 0.0, 1.0)); @@ -305,7 +322,7 @@ TEST_CASE("[Quaternion] xform unit vectors") { CHECK(k_t.length_squared() == doctest::Approx(1.0)); // Easy to visualize: 30 deg about Y-axis. - q = Quaternion(Vector3(0.0, 1.0, 0.0), Math::deg2rad(30.0)); + q = Quaternion(Vector3(0.0, 1.0, 0.0), Math::deg_to_rad(30.0)); i_t = q.xform(Vector3(1.0, 0.0, 0.0)); j_t = q.xform(Vector3(0.0, 1.0, 0.0)); k_t = q.xform(Vector3(0.0, 0.0, 1.0)); @@ -318,7 +335,7 @@ TEST_CASE("[Quaternion] xform unit vectors") { CHECK(k_t.length_squared() == doctest::Approx(1.0)); // Easy to visualize: 60 deg about Z-axis. - q = Quaternion(Vector3(0.0, 0.0, 1.0), Math::deg2rad(60.0)); + q = Quaternion(Vector3(0.0, 0.0, 1.0), Math::deg_to_rad(60.0)); i_t = q.xform(Vector3(1.0, 0.0, 0.0)); j_t = q.xform(Vector3(0.0, 1.0, 0.0)); k_t = q.xform(Vector3(0.0, 0.0, 1.0)); @@ -333,8 +350,8 @@ TEST_CASE("[Quaternion] xform unit vectors") { TEST_CASE("[Quaternion] xform vector") { // Arbitrary quaternion rotates an arbitrary vector. - Vector3 euler_yzx(Math::deg2rad(31.41), Math::deg2rad(-49.16), Math::deg2rad(12.34)); - Basis basis_axes(euler_yzx); + Vector3 euler_yzx(Math::deg_to_rad(31.41), Math::deg_to_rad(-49.16), Math::deg_to_rad(12.34)); + Basis basis_axes = Basis::from_euler(euler_yzx); Quaternion q(basis_axes); Vector3 v_arb(3.0, 4.0, 5.0); @@ -347,7 +364,7 @@ TEST_CASE("[Quaternion] xform vector") { // Test vector xform for a single combination of Quaternion and Vector. void test_quat_vec_rotate(Vector3 euler_yzx, Vector3 v_in) { - Basis basis_axes(euler_yzx); + Basis basis_axes = Basis::from_euler(euler_yzx); Quaternion q(basis_axes); Vector3 v_rot = q.xform(v_in); @@ -384,6 +401,63 @@ TEST_CASE("[Stress][Quaternion] Many vector xforms") { } } +TEST_CASE("[Quaternion] Finite number checks") { + const real_t x = NAN; + + CHECK_MESSAGE( + Quaternion(0, 1, 2, 3).is_finite(), + "Quaternion with all components finite should be finite"); + + CHECK_FALSE_MESSAGE( + Quaternion(x, 1, 2, 3).is_finite(), + "Quaternion with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(0, x, 2, 3).is_finite(), + "Quaternion with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(0, 1, x, 3).is_finite(), + "Quaternion with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(0, 1, 2, x).is_finite(), + "Quaternion with one component infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Quaternion(x, x, 2, 3).is_finite(), + "Quaternion with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(x, 1, x, 3).is_finite(), + "Quaternion with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(x, 1, 2, x).is_finite(), + "Quaternion with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(0, x, x, 3).is_finite(), + "Quaternion with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(0, x, 2, x).is_finite(), + "Quaternion with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(0, 1, x, x).is_finite(), + "Quaternion with two components infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Quaternion(0, x, x, x).is_finite(), + "Quaternion with three components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(x, 1, x, x).is_finite(), + "Quaternion with three components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(x, x, 2, x).is_finite(), + "Quaternion with three components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Quaternion(x, x, x, 3).is_finite(), + "Quaternion with three components infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Quaternion(x, x, x, x).is_finite(), + "Quaternion with four components infinite should not be finite."); +} + } // namespace TestQuaternion #endif // TEST_QUATERNION_H diff --git a/tests/core/math/test_rect2.h b/tests/core/math/test_rect2.h index 0b1106ac3c..9984823331 100644 --- a/tests/core/math/test_rect2.h +++ b/tests/core/math/test_rect2.h @@ -102,33 +102,33 @@ TEST_CASE("[Rect2] Basic setters") { TEST_CASE("[Rect2] Area getters") { CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, 1280, 720).get_area(), 921'600), + Rect2(0, 100, 1280, 720).get_area() == doctest::Approx(921'600), "get_area() should return the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, -1280, -720).get_area(), 921'600), + Rect2(0, 100, -1280, -720).get_area() == doctest::Approx(921'600), "get_area() should return the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, 1280, -720).get_area(), -921'600), + Rect2(0, 100, 1280, -720).get_area() == doctest::Approx(-921'600), "get_area() should return the expected value."); CHECK_MESSAGE( - Math::is_equal_approx(Rect2(0, 100, -1280, 720).get_area(), -921'600), + Rect2(0, 100, -1280, 720).get_area() == doctest::Approx(-921'600), "get_area() should return the expected value."); CHECK_MESSAGE( Math::is_zero_approx(Rect2(0, 100, 0, 720).get_area()), "get_area() should return the expected value."); CHECK_MESSAGE( - !Rect2(0, 100, 1280, 720).has_no_area(), - "has_no_area() should return the expected value on Rect2 with an area."); + Rect2(0, 100, 1280, 720).has_area(), + "has_area() should return the expected value on Rect2 with an area."); CHECK_MESSAGE( - Rect2(0, 100, 0, 500).has_no_area(), - "has_no_area() should return the expected value on Rect2 with no area."); + !Rect2(0, 100, 0, 500).has_area(), + "has_area() should return the expected value on Rect2 with no area."); CHECK_MESSAGE( - Rect2(0, 100, 500, 0).has_no_area(), - "has_no_area() should return the expected value on Rect2 with no area."); + !Rect2(0, 100, 500, 0).has_area(), + "has_area() should return the expected value on Rect2 with no area."); CHECK_MESSAGE( - Rect2(0, 100, 0, 0).has_no_area(), - "has_no_area() should return the expected value on Rect2 with no area."); + !Rect2(0, 100, 0, 0).has_area(), + "has_area() should return the expected value on Rect2 with no area."); } TEST_CASE("[Rect2] Absolute coordinates") { @@ -300,6 +300,27 @@ TEST_CASE("[Rect2] Merging") { Rect2(0, 100, 1280, 720).merge(Rect2(-4000, -4000, 100, 100)).is_equal_approx(Rect2(-4000, -4000, 5280, 4820)), "merge() with non-enclosed Rect2 should return the expected result."); } + +TEST_CASE("[Rect2] Finite number checks") { + const Vector2 x(0, 1); + const Vector2 infinite(NAN, NAN); + + CHECK_MESSAGE( + Rect2(x, x).is_finite(), + "Rect2 with all components finite should be finite"); + + CHECK_FALSE_MESSAGE( + Rect2(infinite, x).is_finite(), + "Rect2 with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Rect2(x, infinite).is_finite(), + "Rect2 with one component infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Rect2(infinite, infinite).is_finite(), + "Rect2 with two components infinite should not be finite."); +} + } // namespace TestRect2 #endif // TEST_RECT2_H diff --git a/tests/core/math/test_rect2i.h b/tests/core/math/test_rect2i.h index 0d1a088a66..4005300e1f 100644 --- a/tests/core/math/test_rect2i.h +++ b/tests/core/math/test_rect2i.h @@ -118,17 +118,17 @@ TEST_CASE("[Rect2i] Area getters") { "get_area() should return the expected value."); CHECK_MESSAGE( - !Rect2i(0, 100, 1280, 720).has_no_area(), - "has_no_area() should return the expected value on Rect2i with an area."); + Rect2i(0, 100, 1280, 720).has_area(), + "has_area() should return the expected value on Rect2i with an area."); CHECK_MESSAGE( - Rect2i(0, 100, 0, 500).has_no_area(), - "has_no_area() should return the expected value on Rect2i with no area."); + !Rect2i(0, 100, 0, 500).has_area(), + "has_area() should return the expected value on Rect2i with no area."); CHECK_MESSAGE( - Rect2i(0, 100, 500, 0).has_no_area(), - "has_no_area() should return the expected value on Rect2i with no area."); + !Rect2i(0, 100, 500, 0).has_area(), + "has_area() should return the expected value on Rect2i with no area."); CHECK_MESSAGE( - Rect2i(0, 100, 0, 0).has_no_area(), - "has_no_area() should return the expected value on Rect2i with no area."); + !Rect2i(0, 100, 0, 0).has_area(), + "has_area() should return the expected value on Rect2i with no area."); } TEST_CASE("[Rect2i] Absolute coordinates") { diff --git a/tests/core/math/test_transform_2d.h b/tests/core/math/test_transform_2d.h index 697bf63fc5..ab51bcd7da 100644 --- a/tests/core/math/test_transform_2d.h +++ b/tests/core/math/test_transform_2d.h @@ -83,6 +83,40 @@ TEST_CASE("[Transform2D] rotation") { CHECK(orig.rotated(phi) == R * orig); CHECK(orig.rotated_local(phi) == orig * R); } + +TEST_CASE("[Transform2D] Finite number checks") { + const Vector2 x(0, 1); + const Vector2 infinite(NAN, NAN); + + CHECK_MESSAGE( + Transform2D(x, x, x).is_finite(), + "Transform2D with all components finite should be finite"); + + CHECK_FALSE_MESSAGE( + Transform2D(infinite, x, x).is_finite(), + "Transform2D with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Transform2D(x, infinite, x).is_finite(), + "Transform2D with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Transform2D(x, x, infinite).is_finite(), + "Transform2D with one component infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Transform2D(infinite, infinite, x).is_finite(), + "Transform2D with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Transform2D(infinite, x, infinite).is_finite(), + "Transform2D with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Transform2D(x, infinite, infinite).is_finite(), + "Transform2D with two components infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Transform2D(infinite, infinite, infinite).is_finite(), + "Transform2D with three components infinite should not be finite."); +} + } // namespace TestTransform2D #endif // TEST_TRANSFORM_2D_H diff --git a/tests/core/math/test_transform_3d.h b/tests/core/math/test_transform_3d.h index da166b43f7..d2730f3577 100644 --- a/tests/core/math/test_transform_3d.h +++ b/tests/core/math/test_transform_3d.h @@ -84,6 +84,29 @@ TEST_CASE("[Transform3D] rotation") { CHECK(orig.rotated(axis, phi) == R * orig); CHECK(orig.rotated_local(axis, phi) == orig * R); } + +TEST_CASE("[Transform3D] Finite number checks") { + const Vector3 y(0, 1, 2); + const Vector3 infinite_vec(NAN, NAN, NAN); + const Basis x(y, y, y); + const Basis infinite_basis(infinite_vec, infinite_vec, infinite_vec); + + CHECK_MESSAGE( + Transform3D(x, y).is_finite(), + "Transform3D with all components finite should be finite"); + + CHECK_FALSE_MESSAGE( + Transform3D(x, infinite_vec).is_finite(), + "Transform3D with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Transform3D(infinite_basis, y).is_finite(), + "Transform3D with one component infinite should not be finite."); + + CHECK_FALSE_MESSAGE( + Transform3D(infinite_basis, infinite_vec).is_finite(), + "Transform3D with two components infinite should not be finite."); +} + } // namespace TestTransform3D #endif // TEST_TRANSFORM_3D_H diff --git a/tests/core/math/test_vector2.h b/tests/core/math/test_vector2.h index 9b7800164a..8f8fccd717 100644 --- a/tests/core/math/test_vector2.h +++ b/tests/core/math/test_vector2.h @@ -37,20 +37,28 @@ namespace TestVector2 { +TEST_CASE("[Vector2] Constructor methods") { + const Vector2 vector_empty = Vector2(); + const Vector2 vector_zero = Vector2(0.0, 0.0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector2 Constructor with no inputs should return a zero Vector2."); +} + TEST_CASE("[Vector2] Angle methods") { const Vector2 vector_x = Vector2(1, 0); const Vector2 vector_y = Vector2(0, 1); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), + vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector2 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_y.angle_to(vector_x), (real_t)-Math_TAU / 4), + vector_y.angle_to(vector_x) == doctest::Approx((real_t)-Math_TAU / 4), "Vector2 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to_point(vector_y), (real_t)Math_TAU * 3 / 8), + vector_x.angle_to_point(vector_y) == doctest::Approx((real_t)Math_TAU * 3 / 8), "Vector2 angle_to_point should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_y.angle_to_point(vector_x), (real_t)-Math_TAU / 8), + vector_y.angle_to_point(vector_x) == doctest::Approx((real_t)-Math_TAU / 8), "Vector2 angle_to_point should work as expected."); } @@ -102,10 +110,13 @@ TEST_CASE("[Vector2] Interpolation methods") { Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5), "Vector2 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919), + Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)), + "Vector2 slerp should work as expected."); + CHECK_MESSAGE( + vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)4.31959610746631919), "Vector2 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), + vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)), "Vector2 slerp with different length input should return a vector with an interpolated angle."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5), @@ -125,19 +136,19 @@ TEST_CASE("[Vector2] Length methods") { vector1.length_squared() == 200, "Vector2 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT2), + vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT2), "Vector2 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 1300, "Vector2 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), (real_t)36.05551275463989293119), + vector2.length() == doctest::Approx((real_t)36.05551275463989293119), "Vector2 length should work as expected."); CHECK_MESSAGE( vector1.distance_squared_to(vector2) == 500, "Vector2 distance_squared_to should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_to(vector2), (real_t)22.36067977499789696409), + vector1.distance_to(vector2) == doctest::Approx((real_t)22.36067977499789696409), "Vector2 distance_to should work as expected."); } @@ -171,6 +182,15 @@ TEST_CASE("[Vector2] Normalization methods") { CHECK_MESSAGE( Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 normalized should work as expected."); + + Vector2 vector = Vector2(3.2, -5.4); + vector.normalize(); + CHECK_MESSAGE( + vector == Vector2(3.2, -5.4).normalized(), + "Vector2 normalize should convert same way as Vector2 normalized."); + CHECK_MESSAGE( + vector.is_equal_approx(Vector2(0.509802390301732898898, -0.860291533634174266891)), + "Vector2 normalize should work as expected."); } TEST_CASE("[Vector2] Operators") { @@ -274,14 +294,16 @@ TEST_CASE("[Vector2] Operators") { TEST_CASE("[Vector2] Other methods") { const Vector2 vector = Vector2(1.2, 3.4); CHECK_MESSAGE( - Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4), + vector.aspect() == doctest::Approx((real_t)1.2 / (real_t)3.4), "Vector2 aspect should work as expected."); + CHECK_MESSAGE( vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()), "Vector2 direction_to should work as expected."); CHECK_MESSAGE( Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 direction_to should work as expected."); + CHECK_MESSAGE( vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)), "Vector2 posmod should work as expected."); @@ -294,10 +316,21 @@ TEST_CASE("[Vector2] Other methods") { CHECK_MESSAGE( (-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)), "Vector2 posmodv should work as expected."); + + CHECK_MESSAGE( + vector.rotated(Math_TAU).is_equal_approx(Vector2(1.2, 3.4)), + "Vector2 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)), "Vector2 rotated should work as expected."); CHECK_MESSAGE( + vector.rotated(Math_TAU / 3).is_equal_approx(Vector2(-3.544486372867091398996, -0.660769515458673623883)), + "Vector2 rotated should work as expected."); + CHECK_MESSAGE( + vector.rotated(Math_TAU / 2).is_equal_approx(vector.rotated(Math_TAU / -2)), + "Vector2 rotated should work as expected."); + + CHECK_MESSAGE( vector.snapped(Vector2(1, 1)) == Vector2(1, 3), "Vector2 snapped to integers should be the same as rounding."); CHECK_MESSAGE( @@ -306,23 +339,57 @@ TEST_CASE("[Vector2] Other methods") { CHECK_MESSAGE( vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5), "Vector2 snapped to 0.25 should give exact results."); + + CHECK_MESSAGE( + Vector2(1.2, 2.5).is_equal_approx(vector.min(Vector2(3.0, 2.5))), + "Vector2 min should return expected value."); + + CHECK_MESSAGE( + Vector2(5.3, 3.4).is_equal_approx(vector.max(Vector2(5.3, 2.0))), + "Vector2 max should return expected value."); } TEST_CASE("[Vector2] Plane methods") { const Vector2 vector = Vector2(1.2, 3.4); const Vector2 vector_y = Vector2(0, 1); + const Vector2 vector_normal = Vector2(0.95879811270838721622267, 0.2840883296913739899919); + const Vector2 vector_non_normal = Vector2(5.4, 1.6); CHECK_MESSAGE( vector.bounce(vector_y) == Vector2(1.2, -3.4), "Vector2 bounce on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.bounce(vector_normal).is_equal_approx(Vector2(-2.85851197982345523329, 2.197477931904161412358)), + "Vector2 bounce with normal should return expected value."); + CHECK_MESSAGE( vector.reflect(vector_y) == Vector2(-1.2, 3.4), "Vector2 reflect on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.reflect(vector_normal).is_equal_approx(Vector2(2.85851197982345523329, -2.197477931904161412358)), + "Vector2 reflect with normal should return expected value."); + CHECK_MESSAGE( vector.project(vector_y) == Vector2(0, 3.4), - "Vector2 projected on the X axis should only give the Y component."); + "Vector2 projected on the Y axis should only give the Y component."); + CHECK_MESSAGE( + vector.project(vector_normal).is_equal_approx(Vector2(2.0292559899117276166, 0.60126103404791929382)), + "Vector2 projected on a normal should return expected value."); CHECK_MESSAGE( vector.slide(vector_y) == Vector2(1.2, 0), "Vector2 slide on a plane with normal of the Y axis should set the Y to zero."); + CHECK_MESSAGE( + vector.slide(vector_normal).is_equal_approx(Vector2(-0.8292559899117276166456, 2.798738965952080706179)), + "Vector2 slide with normal should return expected value."); + // There's probably a better way to test these ones? + ERR_PRINT_OFF; + CHECK_MESSAGE( + vector.bounce(vector_non_normal).is_equal_approx(Vector2()), + "Vector2 bounce should return empty Vector2 with non-normalized input."); + CHECK_MESSAGE( + vector.reflect(vector_non_normal).is_equal_approx(Vector2()), + "Vector2 reflect should return empty Vector2 with non-normalized input."); + CHECK_MESSAGE( + vector.slide(vector_non_normal).is_equal_approx(Vector2()), + "Vector2 slide should return empty Vector2 with non-normalized input."); + ERR_PRINT_ON; } TEST_CASE("[Vector2] Rounding methods") { @@ -367,12 +434,20 @@ TEST_CASE("[Vector2] Rounding methods") { TEST_CASE("[Vector2] Linear algebra methods") { const Vector2 vector_x = Vector2(1, 0); const Vector2 vector_y = Vector2(0, 1); + const Vector2 a = Vector2(3.5, 8.5); + const Vector2 b = Vector2(5.2, 4.6); CHECK_MESSAGE( vector_x.cross(vector_y) == 1, "Vector2 cross product of X and Y should give 1."); CHECK_MESSAGE( vector_y.cross(vector_x) == -1, "Vector2 cross product of Y and X should give negative 1."); + CHECK_MESSAGE( + a.cross(b) == doctest::Approx((real_t)-28.1), + "Vector2 cross should return expected value."); + CHECK_MESSAGE( + Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-28.1), + "Vector2 cross should return expected value."); CHECK_MESSAGE( vector_x.dot(vector_y) == 0.0, @@ -383,7 +458,39 @@ TEST_CASE("[Vector2] Linear algebra methods") { CHECK_MESSAGE( (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector2 dot product of same direction vectors should behave as expected."); + CHECK_MESSAGE( + a.dot(b) == doctest::Approx((real_t)57.3), + "Vector2 dot should return expected value."); + CHECK_MESSAGE( + Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)) == doctest::Approx((real_t)-57.3), + "Vector2 dot should return expected value."); +} + +TEST_CASE("[Vector2] Finite number checks") { + const double infinite[] = { NAN, INFINITY, -INFINITY }; + + CHECK_MESSAGE( + Vector2(0, 1).is_finite(), + "Vector2(0, 1) should be finite"); + + for (double x : infinite) { + CHECK_FALSE_MESSAGE( + Vector2(x, 1).is_finite(), + "Vector2 with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector2(0, x).is_finite(), + "Vector2 with one component infinite should not be finite."); + } + + for (double x : infinite) { + for (double y : infinite) { + CHECK_FALSE_MESSAGE( + Vector2(x, y).is_finite(), + "Vector2 with two components infinite should not be finite."); + } + } } + } // namespace TestVector2 #endif // TEST_VECTOR2_H diff --git a/tests/core/math/test_vector2i.h b/tests/core/math/test_vector2i.h index 841bb793a4..c7a0dccdcc 100644 --- a/tests/core/math/test_vector2i.h +++ b/tests/core/math/test_vector2i.h @@ -37,6 +37,14 @@ namespace TestVector2i { +TEST_CASE("[Vector2i] Constructor methods") { + const Vector2i vector_empty = Vector2i(); + const Vector2i vector_zero = Vector2i(0, 0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector2i Constructor with no inputs should return a zero Vector2i."); +} + TEST_CASE("[Vector2i] Axis methods") { Vector2i vector = Vector2i(2, 3); CHECK_MESSAGE( @@ -71,13 +79,13 @@ TEST_CASE("[Vector2i] Length methods") { vector1.length_squared() == 200, "Vector2i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * Math_SQRT2), + vector1.length() == doctest::Approx(10 * Math_SQRT2), "Vector2i length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 1300, "Vector2i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), 36.05551275463989293119), + vector2.length() == doctest::Approx(36.05551275463989293119), "Vector2i length should work as expected."); } @@ -119,8 +127,16 @@ TEST_CASE("[Vector2i] Operators") { TEST_CASE("[Vector2i] Other methods") { const Vector2i vector = Vector2i(1, 3); CHECK_MESSAGE( - Math::is_equal_approx(vector.aspect(), (real_t)1.0 / (real_t)3.0), + vector.aspect() == doctest::Approx((real_t)1.0 / (real_t)3.0), "Vector2i aspect should work as expected."); + + CHECK_MESSAGE( + Vector2i(1, 2) == vector.min(Vector2i(3, 2)), + "Vector2i min should return expected value."); + + CHECK_MESSAGE( + Vector2i(5, 3) == vector.max(Vector2i(5, 2)), + "Vector2i max should return expected value."); } TEST_CASE("[Vector2i] Abs and sign methods") { diff --git a/tests/core/math/test_vector3.h b/tests/core/math/test_vector3.h index 6f99fada2b..89d73ee6de 100644 --- a/tests/core/math/test_vector3.h +++ b/tests/core/math/test_vector3.h @@ -39,31 +39,39 @@ namespace TestVector3 { +TEST_CASE("[Vector3] Constructor methods") { + const Vector3 vector_empty = Vector3(); + const Vector3 vector_zero = Vector3(0.0, 0.0, 0.0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector3 Constructor with no inputs should return a zero Vector3."); +} + TEST_CASE("[Vector3] Angle methods") { const Vector3 vector_x = Vector3(1, 0, 0); const Vector3 vector_y = Vector3(0, 1, 0); const Vector3 vector_yz = Vector3(0, 1, 1); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), + vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.angle_to(vector_yz), (real_t)Math_TAU / 4), + vector_x.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_yz.angle_to(vector_x), (real_t)Math_TAU / 4), + vector_yz.angle_to(vector_x) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_y.angle_to(vector_yz), (real_t)Math_TAU / 8), + vector_y.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 8), "Vector3 angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.signed_angle_to(vector_y, vector_y), (real_t)Math_TAU / 4), + vector_x.signed_angle_to(vector_y, vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 signed_angle_to edge case should be positive."); CHECK_MESSAGE( - Math::is_equal_approx(vector_x.signed_angle_to(vector_yz, vector_y), (real_t)Math_TAU / -4), + vector_x.signed_angle_to(vector_yz, vector_y) == doctest::Approx((real_t)Math_TAU / -4), "Vector3 signed_angle_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector_yz.signed_angle_to(vector_x, vector_y), (real_t)Math_TAU / 4), + vector_yz.signed_angle_to(vector_x, vector_y) == doctest::Approx((real_t)Math_TAU / 4), "Vector3 signed_angle_to should work as expected."); } @@ -76,16 +84,12 @@ TEST_CASE("[Vector3] Axis methods") { vector.min_axis_index() == Vector3::Axis::AXIS_X, "Vector3 min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == (real_t)5.6, - "Vector3 get_axis should work as expected."); + vector[vector.max_axis_index()] == (real_t)5.6, + "Vector3 array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == (real_t)1.2, "Vector3 array operator should work as expected."); - vector.set_axis(Vector3::Axis::AXIS_Y, 4.7); - CHECK_MESSAGE( - vector.get_axis(Vector3::Axis::AXIS_Y) == (real_t)4.7, - "Vector3 set_axis should work as expected."); vector[Vector3::Axis::AXIS_Y] = 3.7; CHECK_MESSAGE( vector[Vector3::Axis::AXIS_Y] == (real_t)3.7, @@ -123,10 +127,13 @@ TEST_CASE("[Vector3] Interpolation methods") { Vector3(1, 1, 1).slerp(Vector3(), 0.5) == Vector3(0.5, 0.5, 0.5), "Vector3 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)6.25831088708303172), + Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)), + "Vector3 slerp should work as expected."); + CHECK_MESSAGE( + vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)6.25831088708303172), "Vector3 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), + vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)), "Vector3 slerp with different length input should return a vector with an interpolated angle."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625), @@ -146,19 +153,19 @@ TEST_CASE("[Vector3] Length methods") { vector1.length_squared() == 300, "Vector3 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT3), + vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT3), "Vector3 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 2900, "Vector3 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), (real_t)53.8516480713450403125), + vector2.length() == doctest::Approx((real_t)53.8516480713450403125), "Vector3 length should work as expected."); CHECK_MESSAGE( vector1.distance_squared_to(vector2) == 1400, "Vector3 distance_squared_to should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_to(vector2), (real_t)37.41657386773941385584), + vector1.distance_to(vector2) == doctest::Approx((real_t)37.41657386773941385584), "Vector3 distance_to should work as expected."); } @@ -195,6 +202,15 @@ TEST_CASE("[Vector3] Normalization methods") { CHECK_MESSAGE( Vector3(1, 1, 1).normalized().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)), "Vector3 normalized should work as expected."); + + Vector3 vector = Vector3(3.2, -5.4, 6); + vector.normalize(); + CHECK_MESSAGE( + vector == Vector3(3.2, -5.4, 6).normalized(), + "Vector3 normalize should convert same way as Vector3 normalized."); + CHECK_MESSAGE( + vector.is_equal_approx(Vector3(0.368522751763902980457, -0.621882143601586279522, 0.6909801595573180883585)), + "Vector3 normalize should work as expected."); } TEST_CASE("[Vector3] Operators") { @@ -318,10 +334,21 @@ TEST_CASE("[Vector3] Other methods") { CHECK_MESSAGE( (-vector).posmodv(Vector3(2, 3, 4)).is_equal_approx(Vector3(0.8, 2.6, 2.4)), "Vector3 posmodv should work as expected."); + + CHECK_MESSAGE( + vector.rotated(Vector3(0, 1, 0), Math_TAU).is_equal_approx(vector), + "Vector3 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Vector3(0, 1, 0), Math_TAU / 4).is_equal_approx(Vector3(5.6, 3.4, -1.2)), "Vector3 rotated should work as expected."); CHECK_MESSAGE( + vector.rotated(Vector3(1, 0, 0), Math_TAU / 3).is_equal_approx(Vector3(1.2, -6.54974226119285642, 0.1444863728670914)), + "Vector3 rotated should work as expected."); + CHECK_MESSAGE( + vector.rotated(Vector3(0, 0, 1), Math_TAU / 2).is_equal_approx(vector.rotated(Vector3(0, 0, 1), Math_TAU / -2)), + "Vector3 rotated should work as expected."); + + CHECK_MESSAGE( vector.snapped(Vector3(1, 1, 1)) == Vector3(1, 3, 6), "Vector3 snapped to integers should be the same as rounding."); CHECK_MESSAGE( @@ -332,18 +359,44 @@ TEST_CASE("[Vector3] Other methods") { TEST_CASE("[Vector3] Plane methods") { const Vector3 vector = Vector3(1.2, 3.4, 5.6); const Vector3 vector_y = Vector3(0, 1, 0); + const Vector3 vector_normal = Vector3(0.88763458893247992491, 0.26300284116517923701, 0.37806658417494515320); + const Vector3 vector_non_normal = Vector3(5.4, 1.6, 2.3); CHECK_MESSAGE( vector.bounce(vector_y) == Vector3(1.2, -3.4, 5.6), "Vector3 bounce on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.bounce(vector_normal).is_equal_approx(Vector3(-6.0369629829775736287, 1.25571467171034855444, 2.517589840583626047)), + "Vector3 bounce with normal should return expected value."); + CHECK_MESSAGE( vector.reflect(vector_y) == Vector3(-1.2, 3.4, -5.6), "Vector3 reflect on a plane with normal of the Y axis should."); CHECK_MESSAGE( + vector.reflect(vector_normal).is_equal_approx(Vector3(6.0369629829775736287, -1.25571467171034855444, -2.517589840583626047)), + "Vector3 reflect with normal should return expected value."); + CHECK_MESSAGE( vector.project(vector_y) == Vector3(0, 3.4, 0), - "Vector3 projected on the X axis should only give the Y component."); + "Vector3 projected on the Y axis should only give the Y component."); + CHECK_MESSAGE( + vector.project(vector_normal).is_equal_approx(Vector3(3.61848149148878681437, 1.0721426641448257227776, 1.54120507970818697649)), + "Vector3 projected on a normal should return expected value."); CHECK_MESSAGE( vector.slide(vector_y) == Vector3(1.2, 0, 5.6), "Vector3 slide on a plane with normal of the Y axis should set the Y to zero."); + CHECK_MESSAGE( + vector.slide(vector_normal).is_equal_approx(Vector3(-2.41848149148878681437, 2.32785733585517427722237, 4.0587949202918130235)), + "Vector3 slide with normal should return expected value."); + // There's probably a better way to test these ones? + ERR_PRINT_OFF; + CHECK_MESSAGE( + vector.bounce(vector_non_normal).is_equal_approx(Vector3()), + "Vector3 bounce should return empty Vector3 with non-normalized input."); + CHECK_MESSAGE( + vector.reflect(vector_non_normal).is_equal_approx(Vector3()), + "Vector3 reflect should return empty Vector3 with non-normalized input."); + CHECK_MESSAGE( + vector.slide(vector_non_normal).is_equal_approx(Vector3()), + "Vector3 slide should return empty Vector3 with non-normalized input."); + ERR_PRINT_ON; } TEST_CASE("[Vector3] Rounding methods") { @@ -389,6 +442,8 @@ TEST_CASE("[Vector3] Linear algebra methods") { const Vector3 vector_x = Vector3(1, 0, 0); const Vector3 vector_y = Vector3(0, 1, 0); const Vector3 vector_z = Vector3(0, 0, 1); + const Vector3 a = Vector3(3.5, 8.5, 2.3); + const Vector3 b = Vector3(5.2, 4.6, 7.8); CHECK_MESSAGE( vector_x.cross(vector_y) == vector_z, "Vector3 cross product of X and Y should give Z."); @@ -401,6 +456,12 @@ TEST_CASE("[Vector3] Linear algebra methods") { CHECK_MESSAGE( vector_z.cross(vector_x) == vector_y, "Vector3 cross product of Z and X should give Y."); + CHECK_MESSAGE( + a.cross(b).is_equal_approx(Vector3(55.72, -15.34, -28.1)), + "Vector3 cross should return expected value."); + CHECK_MESSAGE( + Vector3(-a.x, a.y, -a.z).cross(Vector3(b.x, -b.y, b.z)).is_equal_approx(Vector3(55.72, 15.34, -28.1)), + "Vector2 cross should return expected value."); CHECK_MESSAGE( vector_x.dot(vector_y) == 0.0, @@ -411,7 +472,58 @@ TEST_CASE("[Vector3] Linear algebra methods") { CHECK_MESSAGE( (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector3 dot product of same direction vectors should behave as expected."); + CHECK_MESSAGE( + a.dot(b) == doctest::Approx((real_t)75.24), + "Vector3 dot should return expected value."); + CHECK_MESSAGE( + Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)) == doctest::Approx((real_t)-75.24), + "Vector3 dot should return expected value."); +} + +TEST_CASE("[Vector3] Finite number checks") { + const double infinite[] = { NAN, INFINITY, -INFINITY }; + + CHECK_MESSAGE( + Vector3(0, 1, 2).is_finite(), + "Vector3(0, 1, 2) should be finite"); + + for (double x : infinite) { + CHECK_FALSE_MESSAGE( + Vector3(x, 1, 2).is_finite(), + "Vector3 with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector3(0, x, 2).is_finite(), + "Vector3 with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector3(0, 1, x).is_finite(), + "Vector3 with one component infinite should not be finite."); + } + + for (double x : infinite) { + for (double y : infinite) { + CHECK_FALSE_MESSAGE( + Vector3(x, y, 2).is_finite(), + "Vector3 with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector3(x, 1, y).is_finite(), + "Vector3 with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector3(0, x, y).is_finite(), + "Vector3 with two components infinite should not be finite."); + } + } + + for (double x : infinite) { + for (double y : infinite) { + for (double z : infinite) { + CHECK_FALSE_MESSAGE( + Vector3(x, y, z).is_finite(), + "Vector3 with three components infinite should not be finite."); + } + } + } } + } // namespace TestVector3 #endif // TEST_VECTOR3_H diff --git a/tests/core/math/test_vector3i.h b/tests/core/math/test_vector3i.h index b1c6944eba..56578f99eb 100644 --- a/tests/core/math/test_vector3i.h +++ b/tests/core/math/test_vector3i.h @@ -36,6 +36,14 @@ namespace TestVector3i { +TEST_CASE("[Vector3i] Constructor methods") { + const Vector3i vector_empty = Vector3i(); + const Vector3i vector_zero = Vector3i(0, 0, 0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector3i Constructor with no inputs should return a zero Vector3i."); +} + TEST_CASE("[Vector3i] Axis methods") { Vector3i vector = Vector3i(1, 2, 3); CHECK_MESSAGE( @@ -45,16 +53,12 @@ TEST_CASE("[Vector3i] Axis methods") { vector.min_axis_index() == Vector3i::Axis::AXIS_X, "Vector3i min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == 3, - "Vector3i get_axis should work as expected."); + vector[vector.max_axis_index()] == 3, + "Vector3i array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == 1, "Vector3i array operator should work as expected."); - vector.set_axis(Vector3i::Axis::AXIS_Y, 4); - CHECK_MESSAGE( - vector.get_axis(Vector3i::Axis::AXIS_Y) == 4, - "Vector3i set_axis should work as expected."); vector[Vector3i::Axis::AXIS_Y] = 5; CHECK_MESSAGE( vector[Vector3i::Axis::AXIS_Y] == 5, @@ -78,13 +82,13 @@ TEST_CASE("[Vector3i] Length methods") { vector1.length_squared() == 300, "Vector3i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 10 * Math_SQRT3), + vector1.length() == doctest::Approx(10 * Math_SQRT3), "Vector3i length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 2900, "Vector3i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), 53.8516480713450403125), + vector2.length() == doctest::Approx(53.8516480713450403125), "Vector3i length should work as expected."); } diff --git a/tests/core/math/test_vector4.h b/tests/core/math/test_vector4.h index ccf991401b..6ed85661cb 100644 --- a/tests/core/math/test_vector4.h +++ b/tests/core/math/test_vector4.h @@ -38,6 +38,14 @@ namespace TestVector4 { +TEST_CASE("[Vector4] Constructor methods") { + const Vector4 vector_empty = Vector4(); + const Vector4 vector_zero = Vector4(0.0, 0.0, 0.0, 0.0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector4 Constructor with no inputs should return a zero Vector4."); +} + TEST_CASE("[Vector4] Axis methods") { Vector4 vector = Vector4(1.2, 3.4, 5.6, -0.9); CHECK_MESSAGE( @@ -47,16 +55,12 @@ TEST_CASE("[Vector4] Axis methods") { vector.min_axis_index() == Vector4::Axis::AXIS_W, "Vector4 min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == (real_t)5.6, - "Vector4 get_axis should work as expected."); + vector[vector.max_axis_index()] == (real_t)5.6, + "Vector4 array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == (real_t)-0.9, "Vector4 array operator should work as expected."); - vector.set_axis(Vector4::Axis::AXIS_Y, 4.7); - CHECK_MESSAGE( - vector.get_axis(Vector4::Axis::AXIS_Y) == (real_t)4.7, - "Vector4 set_axis should work as expected."); vector[Vector4::Axis::AXIS_Y] = 3.7; CHECK_MESSAGE( vector[Vector4::Axis::AXIS_Y] == (real_t)3.7, @@ -87,19 +91,19 @@ TEST_CASE("[Vector4] Length methods") { vector1.length_squared() == 400, "Vector4 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 20), + vector1.length() == doctest::Approx(20), "Vector4 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 5400, "Vector4 length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), (real_t)73.484692283495), + vector2.length() == doctest::Approx((real_t)73.484692283495), "Vector4 length should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_to(vector2), (real_t)54.772255750517), + vector1.distance_to(vector2) == doctest::Approx((real_t)54.772255750517), "Vector4 distance_to should work as expected."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.distance_squared_to(vector2), 3000), + vector1.distance_squared_to(vector2) == doctest::Approx(3000), "Vector4 distance_squared_to should work as expected."); } @@ -307,9 +311,87 @@ TEST_CASE("[Vector4] Linear algebra methods") { (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector4 dot product of same direction vectors should behave as expected."); CHECK_MESSAGE( - Math::is_equal_approx((vector1 * 2).dot(vector2 * 4), (real_t)-25.9 * 8), + (vector1 * 2).dot(vector2 * 4) == doctest::Approx((real_t)-25.9 * 8), "Vector4 dot product should work as expected."); } + +TEST_CASE("[Vector4] Finite number checks") { + const double infinite[] = { NAN, INFINITY, -INFINITY }; + + CHECK_MESSAGE( + Vector4(0, 1, 2, 3).is_finite(), + "Vector4(0, 1, 2, 3) should be finite"); + + for (double x : infinite) { + CHECK_FALSE_MESSAGE( + Vector4(x, 1, 2, 3).is_finite(), + "Vector4 with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(0, x, 2, 3).is_finite(), + "Vector4 with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(0, 1, x, 3).is_finite(), + "Vector4 with one component infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(0, 1, 2, x).is_finite(), + "Vector4 with one component infinite should not be finite."); + } + + for (double x : infinite) { + for (double y : infinite) { + CHECK_FALSE_MESSAGE( + Vector4(x, y, 2, 3).is_finite(), + "Vector4 with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(x, 1, y, 3).is_finite(), + "Vector4 with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(x, 1, 2, y).is_finite(), + "Vector4 with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(0, x, y, 3).is_finite(), + "Vector4 with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(0, x, 2, y).is_finite(), + "Vector4 with two components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(0, 1, x, y).is_finite(), + "Vector4 with two components infinite should not be finite."); + } + } + + for (double x : infinite) { + for (double y : infinite) { + for (double z : infinite) { + CHECK_FALSE_MESSAGE( + Vector4(0, x, y, z).is_finite(), + "Vector4 with three components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(x, 1, y, z).is_finite(), + "Vector4 with three components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(x, y, 2, z).is_finite(), + "Vector4 with three components infinite should not be finite."); + CHECK_FALSE_MESSAGE( + Vector4(x, y, z, 3).is_finite(), + "Vector4 with three components infinite should not be finite."); + } + } + } + + for (double x : infinite) { + for (double y : infinite) { + for (double z : infinite) { + for (double w : infinite) { + CHECK_FALSE_MESSAGE( + Vector4(x, y, z, w).is_finite(), + "Vector4 with four components infinite should not be finite."); + } + } + } + } +} + } // namespace TestVector4 #endif // TEST_VECTOR4_H diff --git a/tests/core/math/test_vector4i.h b/tests/core/math/test_vector4i.h index ac63001b24..30d38607dd 100644 --- a/tests/core/math/test_vector4i.h +++ b/tests/core/math/test_vector4i.h @@ -36,6 +36,14 @@ namespace TestVector4i { +TEST_CASE("[Vector4i] Constructor methods") { + const Vector4i vector_empty = Vector4i(); + const Vector4i vector_zero = Vector4i(0, 0, 0, 0); + CHECK_MESSAGE( + vector_empty == vector_zero, + "Vector4i Constructor with no inputs should return a zero Vector4i."); +} + TEST_CASE("[Vector4i] Axis methods") { Vector4i vector = Vector4i(1, 2, 3, 4); CHECK_MESSAGE( @@ -45,16 +53,12 @@ TEST_CASE("[Vector4i] Axis methods") { vector.min_axis_index() == Vector4i::Axis::AXIS_X, "Vector4i min_axis_index should work as expected."); CHECK_MESSAGE( - vector.get_axis(vector.max_axis_index()) == 4, - "Vector4i get_axis should work as expected."); + vector[vector.max_axis_index()] == 4, + "Vector4i array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == 1, "Vector4i array operator should work as expected."); - vector.set_axis(Vector4i::Axis::AXIS_Y, 5); - CHECK_MESSAGE( - vector.get_axis(Vector4i::Axis::AXIS_Y) == 5, - "Vector4i set_axis should work as expected."); vector[Vector4i::Axis::AXIS_Y] = 5; CHECK_MESSAGE( vector[Vector4i::Axis::AXIS_Y] == 5, @@ -78,13 +82,13 @@ TEST_CASE("[Vector4i] Length methods") { vector1.length_squared() == 400, "Vector4i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector1.length(), 20), + vector1.length() == doctest::Approx(20), "Vector4i length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 5400, "Vector4i length_squared should work as expected and return exact result."); CHECK_MESSAGE( - Math::is_equal_approx(vector2.length(), 73.4846922835), + vector2.length() == doctest::Approx(73.4846922835), "Vector4i length should work as expected."); } |