diff options
Diffstat (limited to 'tests/core/math/test_quaternion.h')
-rw-r--r-- | tests/core/math/test_quaternion.h | 389 |
1 files changed, 389 insertions, 0 deletions
diff --git a/tests/core/math/test_quaternion.h b/tests/core/math/test_quaternion.h new file mode 100644 index 0000000000..94eef6c463 --- /dev/null +++ b/tests/core/math/test_quaternion.h @@ -0,0 +1,389 @@ +/*************************************************************************/ +/* test_quaternion.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef TEST_QUATERNION_H +#define TEST_QUATERNION_H + +#include "core/math/math_defs.h" +#include "core/math/math_funcs.h" +#include "core/math/quaternion.h" +#include "core/math/vector3.h" + +#include "tests/test_macros.h" + +namespace TestQuaternion { + +Quaternion quat_euler_yxz_deg(Vector3 angle) { + double yaw = Math::deg2rad(angle[1]); + double pitch = Math::deg2rad(angle[0]); + double roll = Math::deg2rad(angle[2]); + + // Generate YXZ (Z-then-X-then-Y) Quaternion using single-axis Euler + // constructor and quaternion product, both tested separately. + Quaternion q_y(Vector3(0.0, yaw, 0.0)); + Quaternion q_p(Vector3(pitch, 0.0, 0.0)); + Quaternion q_r(Vector3(0.0, 0.0, roll)); + // Roll-Z is followed by Pitch-X, then Yaw-Y. + Quaternion q_yxz = q_y * q_p * q_r; + + return q_yxz; +} + +TEST_CASE("[Quaternion] Default Construct") { + Quaternion q; + + CHECK(q[0] == 0.0); + CHECK(q[1] == 0.0); + CHECK(q[2] == 0.0); + CHECK(q[3] == 1.0); +} + +TEST_CASE("[Quaternion] Construct x,y,z,w") { + // Values are taken from actual use in another project & are valid (except roundoff error). + Quaternion q(0.2391, 0.099, 0.3696, 0.8924); + + CHECK(q[0] == doctest::Approx(0.2391)); + CHECK(q[1] == doctest::Approx(0.099)); + CHECK(q[2] == doctest::Approx(0.3696)); + CHECK(q[3] == doctest::Approx(0.8924)); +} + +TEST_CASE("[Quaternion] Construct AxisAngle 1") { + // Easy to visualize: 120 deg about X-axis. + Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg2rad(120.0)); + + // 0.866 isn't close enough; doctest::Approx doesn't cut much slack! + CHECK(q[0] == doctest::Approx(0.866025)); // Sine of half the angle. + CHECK(q[1] == doctest::Approx(0.0)); + CHECK(q[2] == doctest::Approx(0.0)); + CHECK(q[3] == doctest::Approx(0.5)); // Cosine of half the angle. +} + +TEST_CASE("[Quaternion] Construct AxisAngle 2") { + // Easy to visualize: 30 deg about Y-axis. + Quaternion q(Vector3(0.0, 1.0, 0.0), Math::deg2rad(30.0)); + + CHECK(q[0] == doctest::Approx(0.0)); + CHECK(q[1] == doctest::Approx(0.258819)); // Sine of half the angle. + CHECK(q[2] == doctest::Approx(0.0)); + CHECK(q[3] == doctest::Approx(0.965926)); // Cosine of half the angle. +} + +TEST_CASE("[Quaternion] Construct AxisAngle 3") { + // Easy to visualize: 60 deg about Z-axis. + Quaternion q(Vector3(0.0, 0.0, 1.0), Math::deg2rad(60.0)); + + CHECK(q[0] == doctest::Approx(0.0)); + CHECK(q[1] == doctest::Approx(0.0)); + CHECK(q[2] == doctest::Approx(0.5)); // Sine of half the angle. + CHECK(q[3] == doctest::Approx(0.866025)); // Cosine of half the angle. +} + +TEST_CASE("[Quaternion] Construct AxisAngle 4") { + // More complex & hard to visualize, so test w/ data from online calculator. + Vector3 axis(1.0, 2.0, 0.5); + Quaternion q(axis.normalized(), Math::deg2rad(35.0)); + + CHECK(q[0] == doctest::Approx(0.131239)); + CHECK(q[1] == doctest::Approx(0.262478)); + CHECK(q[2] == doctest::Approx(0.0656194)); + CHECK(q[3] == doctest::Approx(0.953717)); +} + +TEST_CASE("[Quaternion] Construct from Quaternion") { + Vector3 axis(1.0, 2.0, 0.5); + Quaternion q_src(axis.normalized(), Math::deg2rad(35.0)); + Quaternion q(q_src); + + CHECK(q[0] == doctest::Approx(0.131239)); + CHECK(q[1] == doctest::Approx(0.262478)); + CHECK(q[2] == doctest::Approx(0.0656194)); + CHECK(q[3] == doctest::Approx(0.953717)); +} + +TEST_CASE("[Quaternion] Construct Euler SingleAxis") { + double yaw = Math::deg2rad(45.0); + double pitch = Math::deg2rad(30.0); + double roll = Math::deg2rad(10.0); + + Vector3 euler_y(0.0, yaw, 0.0); + Quaternion q_y(euler_y); + CHECK(q_y[0] == doctest::Approx(0.0)); + CHECK(q_y[1] == doctest::Approx(0.382684)); + CHECK(q_y[2] == doctest::Approx(0.0)); + CHECK(q_y[3] == doctest::Approx(0.923879)); + + Vector3 euler_p(pitch, 0.0, 0.0); + Quaternion q_p(euler_p); + CHECK(q_p[0] == doctest::Approx(0.258819)); + CHECK(q_p[1] == doctest::Approx(0.0)); + CHECK(q_p[2] == doctest::Approx(0.0)); + CHECK(q_p[3] == doctest::Approx(0.965926)); + + Vector3 euler_r(0.0, 0.0, roll); + Quaternion q_r(euler_r); + CHECK(q_r[0] == doctest::Approx(0.0)); + CHECK(q_r[1] == doctest::Approx(0.0)); + CHECK(q_r[2] == doctest::Approx(0.0871558)); + CHECK(q_r[3] == doctest::Approx(0.996195)); +} + +TEST_CASE("[Quaternion] Construct Euler YXZ dynamic axes") { + double yaw = Math::deg2rad(45.0); + double pitch = Math::deg2rad(30.0); + double roll = Math::deg2rad(10.0); + + // Generate YXZ comparision data (Z-then-X-then-Y) using single-axis Euler + // constructor and quaternion product, both tested separately. + Vector3 euler_y(0.0, yaw, 0.0); + Quaternion q_y(euler_y); + Vector3 euler_p(pitch, 0.0, 0.0); + Quaternion q_p(euler_p); + Vector3 euler_r(0.0, 0.0, roll); + Quaternion q_r(euler_r); + + // Roll-Z is followed by Pitch-X. + Quaternion check_xz = q_p * q_r; + // Then Yaw-Y follows both. + Quaternion check_yxz = q_y * check_xz; + + // Test construction from YXZ Euler angles. + Vector3 euler_yxz(pitch, yaw, roll); + Quaternion q(euler_yxz); + CHECK(q[0] == doctest::Approx(check_yxz[0])); + CHECK(q[1] == doctest::Approx(check_yxz[1])); + CHECK(q[2] == doctest::Approx(check_yxz[2])); + CHECK(q[3] == doctest::Approx(check_yxz[3])); + + // Sneak in a test of is_equal_approx. + CHECK(q.is_equal_approx(check_yxz)); +} + +TEST_CASE("[Quaternion] Construct Basis Euler") { + double yaw = Math::deg2rad(45.0); + double pitch = Math::deg2rad(30.0); + double roll = Math::deg2rad(10.0); + Vector3 euler_yxz(pitch, yaw, roll); + Quaternion q_yxz(euler_yxz); + Basis basis_axes(euler_yxz); + Quaternion q(basis_axes); + CHECK(q.is_equal_approx(q_yxz)); +} + +TEST_CASE("[Quaternion] Construct Basis Axes") { + // Arbitrary Euler angles. + Vector3 euler_yxz(Math::deg2rad(31.41), Math::deg2rad(-49.16), Math::deg2rad(12.34)); + // Basis vectors from online calculation of rotation matrix. + Vector3 i_unit(0.5545787, 0.1823950, 0.8118957); + Vector3 j_unit(-0.5249245, 0.8337420, 0.1712555); + Vector3 k_unit(-0.6456754, -0.5211586, 0.5581192); + // Quaternion from online calculation. + Quaternion q_calc(0.2016913, -0.4245716, 0.206033, 0.8582598); + // Quaternion from local calculation. + Quaternion q_local = quat_euler_yxz_deg(Vector3(31.41, -49.16, 12.34)); + // Quaternion from Euler angles constructor. + Quaternion q_euler(euler_yxz); + CHECK(q_calc.is_equal_approx(q_local)); + CHECK(q_local.is_equal_approx(q_euler)); + + // Calculate Basis and construct Quaternion. + // When this is written, C++ Basis class does not construct from basis vectors. + // This is by design, but may be subject to change. + // Workaround by constructing Basis from Euler angles. + // basis_axes = Basis(i_unit, j_unit, k_unit); + Basis basis_axes(euler_yxz); + Quaternion q(basis_axes); + + CHECK(basis_axes.get_column(0).is_equal_approx(i_unit)); + CHECK(basis_axes.get_column(1).is_equal_approx(j_unit)); + CHECK(basis_axes.get_column(2).is_equal_approx(k_unit)); + + CHECK(q.is_equal_approx(q_calc)); + CHECK_FALSE(q.inverse().is_equal_approx(q_calc)); + CHECK(q.is_equal_approx(q_local)); + CHECK(q.is_equal_approx(q_euler)); + CHECK(q[0] == doctest::Approx(0.2016913)); + CHECK(q[1] == doctest::Approx(-0.4245716)); + CHECK(q[2] == doctest::Approx(0.206033)); + CHECK(q[3] == doctest::Approx(0.8582598)); +} + +TEST_CASE("[Quaternion] Product (book)") { + // Example from "Quaternions and Rotation Sequences" by Jack Kuipers, p. 108. + Quaternion p(1.0, -2.0, 1.0, 3.0); + Quaternion q(-1.0, 2.0, 3.0, 2.0); + + Quaternion pq = p * q; + CHECK(pq[0] == doctest::Approx(-9.0)); + CHECK(pq[1] == doctest::Approx(-2.0)); + CHECK(pq[2] == doctest::Approx(11.0)); + CHECK(pq[3] == doctest::Approx(8.0)); +} + +TEST_CASE("[Quaternion] Product") { + double yaw = Math::deg2rad(45.0); + double pitch = Math::deg2rad(30.0); + double roll = Math::deg2rad(10.0); + + Vector3 euler_y(0.0, yaw, 0.0); + Quaternion q_y(euler_y); + CHECK(q_y[0] == doctest::Approx(0.0)); + CHECK(q_y[1] == doctest::Approx(0.382684)); + CHECK(q_y[2] == doctest::Approx(0.0)); + CHECK(q_y[3] == doctest::Approx(0.923879)); + + Vector3 euler_p(pitch, 0.0, 0.0); + Quaternion q_p(euler_p); + CHECK(q_p[0] == doctest::Approx(0.258819)); + CHECK(q_p[1] == doctest::Approx(0.0)); + CHECK(q_p[2] == doctest::Approx(0.0)); + CHECK(q_p[3] == doctest::Approx(0.965926)); + + Vector3 euler_r(0.0, 0.0, roll); + Quaternion q_r(euler_r); + CHECK(q_r[0] == doctest::Approx(0.0)); + CHECK(q_r[1] == doctest::Approx(0.0)); + CHECK(q_r[2] == doctest::Approx(0.0871558)); + CHECK(q_r[3] == doctest::Approx(0.996195)); + + // Test ZYX dynamic-axes since test data is available online. + // Rotate first about X axis, then new Y axis, then new Z axis. + // (Godot uses YXZ Yaw-Pitch-Roll order). + Quaternion q_yp = q_y * q_p; + CHECK(q_yp[0] == doctest::Approx(0.239118)); + CHECK(q_yp[1] == doctest::Approx(0.369644)); + CHECK(q_yp[2] == doctest::Approx(-0.099046)); + CHECK(q_yp[3] == doctest::Approx(0.892399)); + + Quaternion q_ryp = q_r * q_yp; + CHECK(q_ryp[0] == doctest::Approx(0.205991)); + CHECK(q_ryp[1] == doctest::Approx(0.389078)); + CHECK(q_ryp[2] == doctest::Approx(-0.0208912)); + CHECK(q_ryp[3] == doctest::Approx(0.897636)); +} + +TEST_CASE("[Quaternion] xform unit vectors") { + // Easy to visualize: 120 deg about X-axis. + // Transform the i, j, & k unit vectors. + Quaternion q(Vector3(1.0, 0.0, 0.0), Math::deg2rad(120.0)); + Vector3 i_t = q.xform(Vector3(1.0, 0.0, 0.0)); + Vector3 j_t = q.xform(Vector3(0.0, 1.0, 0.0)); + Vector3 k_t = q.xform(Vector3(0.0, 0.0, 1.0)); + // + CHECK(i_t.is_equal_approx(Vector3(1.0, 0.0, 0.0))); + CHECK(j_t.is_equal_approx(Vector3(0.0, -0.5, 0.866025))); + CHECK(k_t.is_equal_approx(Vector3(0.0, -0.866025, -0.5))); + CHECK(i_t.length_squared() == doctest::Approx(1.0)); + CHECK(j_t.length_squared() == doctest::Approx(1.0)); + CHECK(k_t.length_squared() == doctest::Approx(1.0)); + + // Easy to visualize: 30 deg about Y-axis. + q = Quaternion(Vector3(0.0, 1.0, 0.0), Math::deg2rad(30.0)); + i_t = q.xform(Vector3(1.0, 0.0, 0.0)); + j_t = q.xform(Vector3(0.0, 1.0, 0.0)); + k_t = q.xform(Vector3(0.0, 0.0, 1.0)); + // + CHECK(i_t.is_equal_approx(Vector3(0.866025, 0.0, -0.5))); + CHECK(j_t.is_equal_approx(Vector3(0.0, 1.0, 0.0))); + CHECK(k_t.is_equal_approx(Vector3(0.5, 0.0, 0.866025))); + CHECK(i_t.length_squared() == doctest::Approx(1.0)); + CHECK(j_t.length_squared() == doctest::Approx(1.0)); + CHECK(k_t.length_squared() == doctest::Approx(1.0)); + + // Easy to visualize: 60 deg about Z-axis. + q = Quaternion(Vector3(0.0, 0.0, 1.0), Math::deg2rad(60.0)); + i_t = q.xform(Vector3(1.0, 0.0, 0.0)); + j_t = q.xform(Vector3(0.0, 1.0, 0.0)); + k_t = q.xform(Vector3(0.0, 0.0, 1.0)); + // + CHECK(i_t.is_equal_approx(Vector3(0.5, 0.866025, 0.0))); + CHECK(j_t.is_equal_approx(Vector3(-0.866025, 0.5, 0.0))); + CHECK(k_t.is_equal_approx(Vector3(0.0, 0.0, 1.0))); + CHECK(i_t.length_squared() == doctest::Approx(1.0)); + CHECK(j_t.length_squared() == doctest::Approx(1.0)); + CHECK(k_t.length_squared() == doctest::Approx(1.0)); +} + +TEST_CASE("[Quaternion] xform vector") { + // Arbitrary quaternion rotates an arbitrary vector. + Vector3 euler_yzx(Math::deg2rad(31.41), Math::deg2rad(-49.16), Math::deg2rad(12.34)); + Basis basis_axes(euler_yzx); + Quaternion q(basis_axes); + + Vector3 v_arb(3.0, 4.0, 5.0); + Vector3 v_rot = q.xform(v_arb); + Vector3 v_compare = basis_axes.xform(v_arb); + + CHECK(v_rot.length_squared() == doctest::Approx(v_arb.length_squared())); + CHECK(v_rot.is_equal_approx(v_compare)); +} + +// Test vector xform for a single combination of Quaternion and Vector. +void test_quat_vec_rotate(Vector3 euler_yzx, Vector3 v_in) { + Basis basis_axes(euler_yzx); + Quaternion q(basis_axes); + + Vector3 v_rot = q.xform(v_in); + Vector3 v_compare = basis_axes.xform(v_in); + + CHECK(v_rot.length_squared() == doctest::Approx(v_in.length_squared())); + CHECK(v_rot.is_equal_approx(v_compare)); +} + +TEST_CASE("[Stress][Quaternion] Many vector xforms") { + // Many arbitrary quaternions rotate many arbitrary vectors. + // For each trial, check that rotation by Quaternion yields same result as + // rotation by Basis. + const int STEPS = 100; // Number of test steps in each dimension + const double delta = 2.0 * Math_PI / STEPS; // Angle increment per step + const double delta_vec = 20.0 / STEPS; // Vector increment per step + Vector3 vec_arb(1.0, 1.0, 1.0); + double x_angle = -Math_PI; + double y_angle = -Math_PI; + double z_angle = -Math_PI; + for (double i = 0; i < STEPS; ++i) { + vec_arb[0] = -10.0 + i * delta_vec; + x_angle = i * delta - Math_PI; + for (double j = 0; j < STEPS; ++j) { + vec_arb[1] = -10.0 + j * delta_vec; + y_angle = j * delta - Math_PI; + for (double k = 0; k < STEPS; ++k) { + vec_arb[2] = -10.0 + k * delta_vec; + z_angle = k * delta - Math_PI; + Vector3 euler_yzx(x_angle, y_angle, z_angle); + test_quat_vec_rotate(euler_yzx, vec_arb); + } + } + } +} + +} // namespace TestQuaternion + +#endif // TEST_QUATERNION_H |