summaryrefslogtreecommitdiff
path: root/servers/visual/rasterizer_rd/shaders/giprobe.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'servers/visual/rasterizer_rd/shaders/giprobe.glsl')
-rw-r--r--servers/visual/rasterizer_rd/shaders/giprobe.glsl543
1 files changed, 543 insertions, 0 deletions
diff --git a/servers/visual/rasterizer_rd/shaders/giprobe.glsl b/servers/visual/rasterizer_rd/shaders/giprobe.glsl
new file mode 100644
index 0000000000..35b8d6ba6b
--- /dev/null
+++ b/servers/visual/rasterizer_rd/shaders/giprobe.glsl
@@ -0,0 +1,543 @@
+[compute]
+
+#version 450
+
+VERSION_DEFINES
+
+layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
+
+#define NO_CHILDREN 0xFFFFFFFF
+#define GREY_VEC vec3(0.33333,0.33333,0.33333)
+
+struct CellChildren {
+ uint children[8];
+};
+
+layout(set=0,binding=1,std430) buffer CellChildrenBuffer {
+ CellChildren data[];
+} cell_children;
+
+struct CellData {
+ uint position; // xyz 10 bits
+ uint albedo; //rgb albedo
+ uint emission; //rgb normalized with e as multiplier
+ uint normal; //RGB normal encoded
+};
+
+layout(set=0,binding=2,std430) buffer CellDataBuffer {
+ CellData data[];
+} cell_data;
+
+#define LIGHT_TYPE_DIRECTIONAL 0
+#define LIGHT_TYPE_OMNI 1
+#define LIGHT_TYPE_SPOT 2
+
+#ifdef MODE_COMPUTE_LIGHT
+
+struct Light {
+
+ uint type;
+ float energy;
+ float radius;
+ float attenuation;
+
+ vec3 color;
+ float spot_angle_radians;
+
+ vec3 position;
+ float spot_attenuation;
+
+ vec3 direction;
+ bool has_shadow;
+};
+
+
+layout(set=0,binding=3,std140) uniform Lights {
+ Light data[MAX_LIGHTS];
+} lights;
+
+
+
+#endif // MODE COMPUTE LIGHT
+
+
+#ifdef MODE_SECOND_BOUNCE
+
+layout (set=0,binding=5) uniform texture3D color_texture;
+layout (set=0,binding=6) uniform sampler texture_sampler;
+
+#ifdef MODE_ANISOTROPIC
+layout (set=0,binding=7) uniform texture3D aniso_pos_texture;
+layout (set=0,binding=8) uniform texture3D aniso_neg_texture;
+#endif // MODE ANISOTROPIC
+
+#endif // MODE_SECOND_BOUNCE
+
+
+layout(push_constant, binding = 0, std430) uniform Params {
+
+ ivec3 limits;
+ uint stack_size;
+
+ float emission_scale;
+ float propagation;
+ float dynamic_range;
+
+ uint light_count;
+ uint cell_offset;
+ uint cell_count;
+ float aniso_strength;
+ uint pad;
+
+} params;
+
+
+layout(set=0,binding=4,std430) buffer Outputs {
+ vec4 data[];
+} outputs;
+
+#ifdef MODE_WRITE_TEXTURE
+
+layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
+
+#ifdef MODE_ANISOTROPIC
+
+layout (r16ui,set=0,binding=6) uniform restrict writeonly uimage3D aniso_pos_tex;
+layout (r16ui,set=0,binding=7) uniform restrict writeonly uimage3D aniso_neg_tex;
+
+#endif
+
+
+#endif
+
+
+#ifdef MODE_COMPUTE_LIGHT
+
+uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) {
+
+ uint result = NO_CHILDREN;
+
+ ivec3 size = ivec3(max(max(params.limits.x,params.limits.y),params.limits.z));
+
+ while (distance > -distance_adv) { //use this to avoid precision errors
+
+ uint cell = 0;
+
+ ivec3 pos = ivec3(from);
+
+ if (all(greaterThanEqual(pos,ivec3(0))) && all(lessThan(pos,size))) {
+
+ ivec3 ofs = ivec3(0);
+ ivec3 half_size = size / 2;
+
+ for (int i = 0; i < params.stack_size - 1; i++) {
+
+ bvec3 greater = greaterThanEqual(pos,ofs+half_size);
+
+ ofs += mix(ivec3(0),half_size,greater);
+
+ uint child = 0; //wonder if this can be done faster
+ if (greater.x) {
+ child|=1;
+ }
+ if (greater.y) {
+ child|=2;
+ }
+ if (greater.z) {
+ child|=4;
+ }
+
+ cell = cell_children.data[cell].children[child];
+ if (cell == NO_CHILDREN)
+ break;
+
+ half_size >>= ivec3(1);
+ }
+
+ if ( cell != NO_CHILDREN) {
+ return cell; //found cell!
+ }
+
+ }
+
+ from += direction * distance_adv;
+ distance -= distance_adv;
+ }
+
+ return NO_CHILDREN;
+}
+
+bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) {
+
+
+ if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) {
+
+ light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
+ attenuation = 1.0;
+
+ } else {
+
+ light_pos = lights.data[light].position;
+ float distance = length(pos - light_pos);
+ if (distance >= lights.data[light].radius) {
+ return false;
+ }
+
+
+ attenuation = pow( clamp( 1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation );
+
+
+ if (lights.data[light].type==LIGHT_TYPE_SPOT) {
+
+ vec3 rel = normalize(pos - light_pos);
+ float angle = acos(dot(rel,lights.data[light].direction));
+ if (angle > lights.data[light].spot_angle_radians) {
+ return false;
+ }
+
+ float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1);
+ attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation);
+ }
+ }
+
+ return true;
+}
+
+float get_normal_advance(vec3 p_normal) {
+
+ vec3 normal = p_normal;
+ vec3 unorm = abs(normal);
+
+ if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
+ // x code
+ unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
+ } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
+ // y code
+ unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
+ } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
+ // z code
+ unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
+ } else {
+ // oh-no we messed up code
+ // has to be
+ unorm = vec3(1.0, 0.0, 0.0);
+ }
+
+ return 1.0 / dot(normal,unorm);
+}
+
+#endif
+
+
+
+
+void main() {
+
+ uint cell_index = gl_GlobalInvocationID.x;;
+ if (cell_index >= params.cell_count) {
+ return;
+ }
+ cell_index += params.cell_offset;
+
+ uvec3 posu = uvec3(cell_data.data[cell_index].position&0x7FF,(cell_data.data[cell_index].position>>11)&0x3FF,cell_data.data[cell_index].position>>21);
+ vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);
+
+/////////////////COMPUTE LIGHT///////////////////////////////
+
+#ifdef MODE_COMPUTE_LIGHT
+
+ vec3 pos = vec3(posu) + vec3(0.5);
+
+ vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission&0x3FF,(cell_data.data[cell_index].emission>>10)&0x7FF,cell_data.data[cell_index].emission>>21)) * params.emission_scale;
+ vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
+
+#ifdef MODE_ANISOTROPIC
+ vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
+ const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
+#else
+ vec3 accum = vec3(0.0);
+#endif
+
+ for(uint i=0;i<params.light_count;i++) {
+
+ float attenuation;
+ vec3 light_pos;
+
+ if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) {
+ continue;
+ }
+
+ vec3 light_dir = pos - light_pos;
+ float distance = length(light_dir);
+ light_dir=normalize(light_dir);
+
+ if (length(normal.xyz) > 0.2 && dot(normal.xyz,light_dir)>=0) {
+ continue; //not facing the light
+ }
+
+ if (lights.data[i].has_shadow) {
+
+ float distance_adv = get_normal_advance(light_dir);
+
+
+ distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
+
+ vec3 from = pos - light_dir * distance; //approximate
+ from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion
+
+
+
+ uint result = raymarch(distance,distance_adv,from,light_dir);
+
+ if (result != cell_index) {
+ continue; //was occluded
+ }
+ }
+
+ vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy;
+
+#ifdef MODE_ANISOTROPIC
+ for(uint j=0;j<6;j++) {
+
+ accum[j]+=max(0.0,dot(accum_dirs[j],-light_dir))*light+emission;
+ }
+#else
+ if (length(normal.xyz) > 0.2) {
+ accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission;
+ } else {
+ //all directions
+ accum+=light+emission;
+ }
+#endif
+ }
+
+
+#ifdef MODE_ANISOTROPIC
+
+ outputs.data[cell_index*6+0]=vec4(accum[0],0.0);
+ outputs.data[cell_index*6+1]=vec4(accum[1],0.0);
+ outputs.data[cell_index*6+2]=vec4(accum[2],0.0);
+ outputs.data[cell_index*6+3]=vec4(accum[3],0.0);
+ outputs.data[cell_index*6+4]=vec4(accum[4],0.0);
+ outputs.data[cell_index*6+5]=vec4(accum[5],0.0);
+#else
+ outputs.data[cell_index]=vec4(accum,0.0);
+
+#endif
+
+
+
+#endif //MODE_COMPUTE_LIGHT
+
+/////////////////SECOND BOUNCE///////////////////////////////
+#ifdef MODE_SECOND_BOUNCE
+ vec3 pos = vec3(posu) + vec3(0.5);
+ ivec3 ipos = ivec3(posu);
+ vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
+
+
+#ifdef MODE_ANISOTROPIC
+ vec3 accum[6];
+ const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
+
+ /*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range;
+ vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb;
+ vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb;
+ accum[0]=src_col * src_aniso_pos.x;
+ accum[1]=src_col * src_aniso_neg.x;
+ accum[2]=src_col * src_aniso_pos.y;
+ accum[3]=src_col * src_aniso_neg.y;
+ accum[4]=src_col * src_aniso_pos.z;
+ accum[5]=src_col * src_aniso_neg.z;*/
+
+ accum[0] = outputs.data[cell_index*6+0].rgb;
+ accum[1] = outputs.data[cell_index*6+1].rgb;
+ accum[2] = outputs.data[cell_index*6+2].rgb;
+ accum[3] = outputs.data[cell_index*6+3].rgb;
+ accum[4] = outputs.data[cell_index*6+4].rgb;
+ accum[5] = outputs.data[cell_index*6+5].rgb;
+
+#else
+ vec3 accum = outputs.data[cell_index].rgb;
+
+#endif
+
+ if (length(normal.xyz) > 0.2) {
+
+ vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
+ vec3 tangent = normalize(cross(v0, normal.xyz));
+ vec3 bitangent = normalize(cross(tangent, normal.xyz));
+ mat3 normal_mat = mat3(tangent, bitangent, normal.xyz);
+
+#define MAX_CONE_DIRS 6
+
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
+ vec3(0.0, 0.0, 1.0),
+ vec3(0.866025, 0.0, 0.5),
+ vec3(0.267617, 0.823639, 0.5),
+ vec3(-0.700629, 0.509037, 0.5),
+ vec3(-0.700629, -0.509037, 0.5),
+ vec3(0.267617, -0.823639, 0.5));
+
+ float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
+ float tan_half_angle = 0.577;
+
+ for (int i = 0; i < MAX_CONE_DIRS; i++) {
+
+ vec3 direction = normal_mat * cone_dirs[i];
+ vec4 color = vec4(0.0);
+ {
+
+ float dist = 1.5;
+ float max_distance = length(vec3(params.limits));
+ vec3 cell_size = 1.0 / vec3(params.limits);
+
+#ifdef MODE_ANISOTROPIC
+ vec3 aniso_normal = mix(direction,normal.xyz,params.aniso_strength);
+#endif
+ while (dist < max_distance && color.a < 0.95) {
+ float diameter = max(1.0, 2.0 * tan_half_angle * dist);
+ vec3 uvw_pos = (pos + dist * direction) * cell_size;
+ float half_diameter = diameter * 0.5;
+ //check if outside, then break
+ //if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) {
+ // break;
+ //}
+
+ float log2_diameter = log2(diameter);
+ vec4 scolor = textureLod(sampler3D(color_texture,texture_sampler), uvw_pos, log2_diameter);
+#ifdef MODE_ANISOTROPIC
+
+ vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
+ vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
+
+ scolor.rgb*=dot(max(vec3(0.0),(aniso_normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-aniso_normal * aniso_neg)),vec3(1.0));
+#endif
+ float a = (1.0 - color.a);
+ color += a * scolor;
+ dist += half_diameter;
+
+ }
+
+ }
+ color *= cone_weights[i] * params.dynamic_range; //restore range
+#ifdef MODE_ANISOTROPIC
+ for(uint j=0;j<6;j++) {
+
+ accum[j]+=max(0.0,dot(accum_dirs[j],direction))*color.rgb;
+ }
+#else
+ accum+=color.rgb;
+#endif
+ }
+ }
+
+#ifdef MODE_ANISOTROPIC
+
+ outputs.data[cell_index*6+0]=vec4(accum[0],0.0);
+ outputs.data[cell_index*6+1]=vec4(accum[1],0.0);
+ outputs.data[cell_index*6+2]=vec4(accum[2],0.0);
+ outputs.data[cell_index*6+3]=vec4(accum[3],0.0);
+ outputs.data[cell_index*6+4]=vec4(accum[4],0.0);
+ outputs.data[cell_index*6+5]=vec4(accum[5],0.0);
+#else
+ outputs.data[cell_index]=vec4(accum,0.0);
+
+#endif
+
+#endif // MODE_SECOND_BOUNCE
+/////////////////UPDATE MIPMAPS///////////////////////////////
+
+#ifdef MODE_UPDATE_MIPMAPS
+
+ {
+#ifdef MODE_ANISOTROPIC
+ vec3 light_accum[6] = vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
+#else
+ vec3 light_accum = vec3(0.0);
+#endif
+ float count = 0.0;
+ for(uint i=0;i<8;i++) {
+ uint child_index = cell_children.data[cell_index].children[i];
+ if (child_index==NO_CHILDREN) {
+ continue;
+ }
+#ifdef MODE_ANISOTROPIC
+ light_accum[0] += outputs.data[child_index*6+0].rgb;
+ light_accum[1] += outputs.data[child_index*6+1].rgb;
+ light_accum[2] += outputs.data[child_index*6+2].rgb;
+ light_accum[3] += outputs.data[child_index*6+3].rgb;
+ light_accum[4] += outputs.data[child_index*6+4].rgb;
+ light_accum[5] += outputs.data[child_index*6+5].rgb;
+
+#else
+ light_accum += outputs.data[child_index].rgb;
+
+#endif
+
+ count+=1.0;
+ }
+
+ float divisor = mix(8.0,count,params.propagation);
+#ifdef MODE_ANISOTROPIC
+ outputs.data[cell_index*6+0]=vec4(light_accum[0] / divisor,0.0);
+ outputs.data[cell_index*6+1]=vec4(light_accum[1] / divisor,0.0);
+ outputs.data[cell_index*6+2]=vec4(light_accum[2] / divisor,0.0);
+ outputs.data[cell_index*6+3]=vec4(light_accum[3] / divisor,0.0);
+ outputs.data[cell_index*6+4]=vec4(light_accum[4] / divisor,0.0);
+ outputs.data[cell_index*6+5]=vec4(light_accum[5] / divisor,0.0);
+
+#else
+ outputs.data[cell_index]=vec4(light_accum / divisor,0.0);
+#endif
+
+
+
+ }
+#endif
+
+///////////////////WRITE TEXTURE/////////////////////////////
+
+#ifdef MODE_WRITE_TEXTURE
+ {
+
+#ifdef MODE_ANISOTROPIC
+ vec3 accum_total = vec3(0.0);
+ accum_total += outputs.data[cell_index*6+0].rgb;
+ accum_total += outputs.data[cell_index*6+1].rgb;
+ accum_total += outputs.data[cell_index*6+2].rgb;
+ accum_total += outputs.data[cell_index*6+3].rgb;
+ accum_total += outputs.data[cell_index*6+4].rgb;
+ accum_total += outputs.data[cell_index*6+5].rgb;
+
+ float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001);
+ vec3 iso_positive = vec3(dot(outputs.data[cell_index*6+0].rgb,GREY_VEC),dot(outputs.data[cell_index*6+2].rgb,GREY_VEC),dot(outputs.data[cell_index*6+4].rgb,GREY_VEC))/vec3(accum_total_energy);
+ vec3 iso_negative = vec3(dot(outputs.data[cell_index*6+1].rgb,GREY_VEC),dot(outputs.data[cell_index*6+3].rgb,GREY_VEC),dot(outputs.data[cell_index*6+5].rgb,GREY_VEC))/vec3(accum_total_energy);
+
+
+ {
+ uint aniso_pos = uint(clamp(iso_positive.b * 31.0,0.0,31.0));
+ aniso_pos |= uint(clamp(iso_positive.g * 63.0,0.0,63.0))<<5;
+ aniso_pos |= uint(clamp(iso_positive.r * 31.0,0.0,31.0))<<11;
+ imageStore(aniso_pos_tex,ivec3(posu),uvec4(aniso_pos));
+ }
+
+ {
+ uint aniso_neg = uint(clamp(iso_negative.b * 31.0,0.0,31.0));
+ aniso_neg |= uint(clamp(iso_negative.g * 63.0,0.0,63.0))<<5;
+ aniso_neg |= uint(clamp(iso_negative.r * 31.0,0.0,31.0))<<11;
+ imageStore(aniso_neg_tex,ivec3(posu),uvec4(aniso_neg));
+ }
+
+ imageStore(color_tex,ivec3(posu),vec4(accum_total / params.dynamic_range ,albedo.a));
+
+#else
+
+ imageStore(color_tex,ivec3(posu),vec4(outputs.data[cell_index].rgb / params.dynamic_range,albedo.a));
+
+#endif
+
+
+ }
+#endif
+}