summaryrefslogtreecommitdiff
path: root/servers/visual/rasterizer_rd/shaders/giprobe.glsl
diff options
context:
space:
mode:
Diffstat (limited to 'servers/visual/rasterizer_rd/shaders/giprobe.glsl')
-rw-r--r--servers/visual/rasterizer_rd/shaders/giprobe.glsl788
1 files changed, 0 insertions, 788 deletions
diff --git a/servers/visual/rasterizer_rd/shaders/giprobe.glsl b/servers/visual/rasterizer_rd/shaders/giprobe.glsl
deleted file mode 100644
index fd09f96a57..0000000000
--- a/servers/visual/rasterizer_rd/shaders/giprobe.glsl
+++ /dev/null
@@ -1,788 +0,0 @@
-/* clang-format off */
-[compute]
-
-#version 450
-
-VERSION_DEFINES
-
-#ifdef MODE_DYNAMIC
-layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
-#else
-layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
-#endif
-/* clang-format on */
-
-#ifndef MODE_DYNAMIC
-
-#define NO_CHILDREN 0xFFFFFFFF
-#define GREY_VEC vec3(0.33333, 0.33333, 0.33333)
-
-struct CellChildren {
- uint children[8];
-};
-
-layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
- CellChildren data[];
-}
-cell_children;
-
-struct CellData {
- uint position; // xyz 10 bits
- uint albedo; //rgb albedo
- uint emission; //rgb normalized with e as multiplier
- uint normal; //RGB normal encoded
-};
-
-layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
- CellData data[];
-}
-cell_data;
-
-#endif // MODE DYNAMIC
-
-#define LIGHT_TYPE_DIRECTIONAL 0
-#define LIGHT_TYPE_OMNI 1
-#define LIGHT_TYPE_SPOT 2
-
-#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING)
-
-struct Light {
-
- uint type;
- float energy;
- float radius;
- float attenuation;
-
- vec3 color;
- float spot_angle_radians;
-
- vec3 position;
- float spot_attenuation;
-
- vec3 direction;
- bool has_shadow;
-};
-
-layout(set = 0, binding = 3, std140) uniform Lights {
- Light data[MAX_LIGHTS];
-}
-lights;
-
-#endif // MODE COMPUTE LIGHT
-
-#ifdef MODE_SECOND_BOUNCE
-
-layout(set = 0, binding = 5) uniform texture3D color_texture;
-
-#ifdef MODE_ANISOTROPIC
-layout(set = 0, binding = 7) uniform texture3D aniso_pos_texture;
-layout(set = 0, binding = 8) uniform texture3D aniso_neg_texture;
-#endif // MODE ANISOTROPIC
-
-#endif // MODE_SECOND_BOUNCE
-
-#ifndef MODE_DYNAMIC
-
-layout(push_constant, binding = 0, std430) uniform Params {
- ivec3 limits;
- uint stack_size;
-
- float emission_scale;
- float propagation;
- float dynamic_range;
-
- uint light_count;
- uint cell_offset;
- uint cell_count;
- float aniso_strength;
- uint pad;
-}
-params;
-
-layout(set = 0, binding = 4, std430) buffer Outputs {
- vec4 data[];
-}
-outputs;
-
-#endif // MODE DYNAMIC
-
-layout(set = 0, binding = 9) uniform texture3D texture_sdf;
-layout(set = 0, binding = 10) uniform sampler texture_sampler;
-
-#ifdef MODE_WRITE_TEXTURE
-
-layout(rgba8, set = 0, binding = 5) uniform restrict writeonly image3D color_tex;
-
-#ifdef MODE_ANISOTROPIC
-
-layout(r16ui, set = 0, binding = 6) uniform restrict writeonly uimage3D aniso_pos_tex;
-layout(r16ui, set = 0, binding = 7) uniform restrict writeonly uimage3D aniso_neg_tex;
-
-#endif
-
-#endif
-
-#ifdef MODE_DYNAMIC
-
-layout(push_constant, binding = 0, std430) uniform Params {
- ivec3 limits;
- uint light_count; //when not lighting
- ivec3 x_dir;
- float z_base;
- ivec3 y_dir;
- float z_sign;
- ivec3 z_dir;
- float pos_multiplier;
- ivec2 rect_pos;
- ivec2 rect_size;
- ivec2 prev_rect_ofs;
- ivec2 prev_rect_size;
- bool flip_x;
- bool flip_y;
- float dynamic_range;
- bool on_mipmap;
- float propagation;
- float pad[3];
-}
-params;
-
-#ifdef MODE_DYNAMIC_LIGHTING
-
-layout(rgba8, set = 0, binding = 5) uniform restrict readonly image2D source_albedo;
-layout(rgba8, set = 0, binding = 6) uniform restrict readonly image2D source_normal;
-layout(rgba8, set = 0, binding = 7) uniform restrict readonly image2D source_orm;
-//layout (set=0,binding=8) uniform texture2D source_depth;
-layout(rgba16f, set = 0, binding = 11) uniform restrict image2D emission;
-layout(r32f, set = 0, binding = 12) uniform restrict image2D depth;
-
-#endif
-
-#ifdef MODE_DYNAMIC_SHRINK
-
-layout(rgba16f, set = 0, binding = 5) uniform restrict readonly image2D source_light;
-layout(r32f, set = 0, binding = 6) uniform restrict readonly image2D source_depth;
-
-#ifdef MODE_DYNAMIC_SHRINK_WRITE
-
-layout(rgba16f, set = 0, binding = 7) uniform restrict writeonly image2D light;
-layout(r32f, set = 0, binding = 8) uniform restrict writeonly image2D depth;
-
-#endif // MODE_DYNAMIC_SHRINK_WRITE
-
-#ifdef MODE_DYNAMIC_SHRINK_PLOT
-
-layout(rgba8, set = 0, binding = 11) uniform restrict image3D color_texture;
-
-#ifdef MODE_ANISOTROPIC
-
-layout(r16ui, set = 0, binding = 12) uniform restrict writeonly uimage3D aniso_pos_texture;
-layout(r16ui, set = 0, binding = 13) uniform restrict writeonly uimage3D aniso_neg_texture;
-
-#endif // MODE ANISOTROPIC
-
-#endif //MODE_DYNAMIC_SHRINK_PLOT
-
-#endif // MODE_DYNAMIC_SHRINK
-
-//layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
-
-#endif // MODE DYNAMIC
-
-#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING)
-
-float raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
-
- vec3 cell_size = 1.0 / vec3(params.limits);
- float occlusion = 1.0;
- while (distance > 0.5) { //use this to avoid precision errors
- float advance = texture(sampler3D(texture_sdf, texture_sampler), from * cell_size).r * 255.0 - 1.0;
- if (advance < 0.0) {
- occlusion = 0.0;
- break;
- }
-
- occlusion = min(advance, occlusion);
-
- advance = max(distance_adv, advance - mod(advance, distance_adv)); //should always advance in multiples of distance_adv
-
- from += direction * advance;
- distance -= advance;
- }
-
- return occlusion; //max(0.0,distance);
-}
-
-bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3 light_pos) {
-
- if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
-
- light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
- attenuation = 1.0;
-
- } else {
-
- light_pos = lights.data[light].position;
- float distance = length(pos - light_pos);
- if (distance >= lights.data[light].radius) {
- return false;
- }
-
- attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation);
-
- if (lights.data[light].type == LIGHT_TYPE_SPOT) {
-
- vec3 rel = normalize(pos - light_pos);
- float angle = acos(dot(rel, lights.data[light].direction));
- if (angle > lights.data[light].spot_angle_radians) {
- return false;
- }
-
- float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1);
- attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation);
- }
- }
-
- return true;
-}
-
-float get_normal_advance(vec3 p_normal) {
-
- vec3 normal = p_normal;
- vec3 unorm = abs(normal);
-
- if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
- // x code
- unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
- } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
- // y code
- unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
- } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
- // z code
- unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
- } else {
- // oh-no we messed up code
- // has to be
- unorm = vec3(1.0, 0.0, 0.0);
- }
-
- return 1.0 / dot(normal, unorm);
-}
-
-void clip_segment(vec4 plane, vec3 begin, inout vec3 end) {
-
- vec3 segment = begin - end;
- float den = dot(plane.xyz, segment);
-
- //printf("den is %i\n",den);
- if (den < 0.0001) {
- return;
- }
-
- float dist = (dot(plane.xyz, begin) - plane.w) / den;
-
- if (dist < 0.0001 || dist > 1.0001) {
- return;
- }
-
- end = begin + segment * -dist;
-}
-
-bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, inout vec3 light_dir) {
- float attenuation;
- vec3 light_pos;
-
- if (!compute_light_vector(index, pos, attenuation, light_pos)) {
- return false;
- }
-
- light_dir = normalize(pos - light_pos);
-
- if (attenuation < 0.01 || (length(normal) > 0.2 && dot(normal, light_dir) >= 0)) {
- return false; //not facing the light, or attenuation is near zero
- }
-
- if (lights.data[index].has_shadow) {
-
- float distance_adv = get_normal_advance(light_dir);
-
- vec3 to = pos;
- if (length(normal) > 0.2) {
- to += normal * distance_adv * 0.51;
- } else {
- to -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion
- }
-
- //clip
- clip_segment(mix(vec4(-1.0, 0.0, 0.0, 0.0), vec4(1.0, 0.0, 0.0, float(params.limits.x - 1)), bvec4(light_dir.x < 0.0)), to, light_pos);
- clip_segment(mix(vec4(0.0, -1.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, float(params.limits.y - 1)), bvec4(light_dir.y < 0.0)), to, light_pos);
- clip_segment(mix(vec4(0.0, 0.0, -1.0, 0.0), vec4(0.0, 0.0, 1.0, float(params.limits.z - 1)), bvec4(light_dir.z < 0.0)), to, light_pos);
-
- float distance = length(to - light_pos);
- if (distance < 0.1) {
- return false; // hit
- }
-
- distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
- light_pos = to - light_dir * distance;
-
- //from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion
-
- /*float dist = raymarch(distance,distance_adv,light_pos,light_dir);
-
- if (dist > distance_adv) {
- return false;
- }
-
- attenuation *= 1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
- */
-
- float occlusion = raymarch(distance, distance_adv, light_pos, light_dir);
-
- if (occlusion == 0.0) {
- return false;
- }
-
- attenuation *= occlusion; //1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
- }
-
- light = lights.data[index].color * attenuation * lights.data[index].energy;
- return true;
-}
-
-#endif // MODE COMPUTE LIGHT
-
-void main() {
-
-#ifndef MODE_DYNAMIC
-
- uint cell_index = gl_GlobalInvocationID.x;
- if (cell_index >= params.cell_count) {
- return;
- }
- cell_index += params.cell_offset;
-
- uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21);
- vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);
-
-#endif
-
- /////////////////COMPUTE LIGHT///////////////////////////////
-
-#ifdef MODE_COMPUTE_LIGHT
-
- vec3 pos = vec3(posu) + vec3(0.5);
-
- vec3 emission = vec3(uvec3(cell_data.data[cell_index].emission & 0x1ff, (cell_data.data[cell_index].emission >> 9) & 0x1ff, (cell_data.data[cell_index].emission >> 18) & 0x1ff)) * pow(2.0, float(cell_data.data[cell_index].emission >> 27) - 15.0 - 9.0);
- vec3 normal = unpackSnorm4x8(cell_data.data[cell_index].normal).xyz;
-
-#ifdef MODE_ANISOTROPIC
- vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
- const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
-#else
- vec3 accum = vec3(0.0);
-#endif
-
- for (uint i = 0; i < params.light_count; i++) {
-
- vec3 light;
- vec3 light_dir;
- if (!compute_light_at_pos(i, pos, normal.xyz, light, light_dir)) {
- continue;
- }
-
- light *= albedo.rgb;
-
-#ifdef MODE_ANISOTROPIC
- for (uint j = 0; j < 6; j++) {
-
- accum[j] += max(0.0, dot(accum_dirs[j], -light_dir)) * light;
- }
-#else
- if (length(normal) > 0.2) {
- accum += max(0.0, dot(normal, -light_dir)) * light;
- } else {
- //all directions
- accum += light;
- }
-#endif
- }
-
-#ifdef MODE_ANISOTROPIC
-
- for (uint i = 0; i < 6; i++) {
- vec3 light = accum[i];
- if (length(normal) > 0.2) {
- light += max(0.0, dot(accum_dirs[i], -normal)) * emission;
- } else {
- light += emission;
- }
-
- outputs.data[cell_index * 6 + i] = vec4(light, 0.0);
- }
-
-#else
- outputs.data[cell_index] = vec4(accum + emission, 0.0);
-
-#endif
-
-#endif //MODE_COMPUTE_LIGHT
-
- /////////////////SECOND BOUNCE///////////////////////////////
-
-#ifdef MODE_SECOND_BOUNCE
- vec3 pos = vec3(posu) + vec3(0.5);
- ivec3 ipos = ivec3(posu);
- vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
-
-#ifdef MODE_ANISOTROPIC
- vec3 accum[6];
- const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
-
- /*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range;
- vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb;
- vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb;
- accum[0]=src_col * src_aniso_pos.x;
- accum[1]=src_col * src_aniso_neg.x;
- accum[2]=src_col * src_aniso_pos.y;
- accum[3]=src_col * src_aniso_neg.y;
- accum[4]=src_col * src_aniso_pos.z;
- accum[5]=src_col * src_aniso_neg.z;*/
-
- accum[0] = outputs.data[cell_index * 6 + 0].rgb;
- accum[1] = outputs.data[cell_index * 6 + 1].rgb;
- accum[2] = outputs.data[cell_index * 6 + 2].rgb;
- accum[3] = outputs.data[cell_index * 6 + 3].rgb;
- accum[4] = outputs.data[cell_index * 6 + 4].rgb;
- accum[5] = outputs.data[cell_index * 6 + 5].rgb;
-
-#else
- vec3 accum = outputs.data[cell_index].rgb;
-
-#endif
-
- if (length(normal.xyz) > 0.2) {
-
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal.xyz));
- vec3 bitangent = normalize(cross(tangent, normal.xyz));
- mat3 normal_mat = mat3(tangent, bitangent, normal.xyz);
-
-#define MAX_CONE_DIRS 6
-
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
- vec3(0.0, 0.0, 1.0),
- vec3(0.866025, 0.0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5));
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
- float tan_half_angle = 0.577;
-
- for (int i = 0; i < MAX_CONE_DIRS; i++) {
-
- vec3 direction = normal_mat * cone_dirs[i];
- vec4 color = vec4(0.0);
- {
-
- float dist = 1.5;
- float max_distance = length(vec3(params.limits));
- vec3 cell_size = 1.0 / vec3(params.limits);
-
-#ifdef MODE_ANISOTROPIC
- vec3 aniso_normal = mix(direction, normal.xyz, params.aniso_strength);
-#endif
- while (dist < max_distance && color.a < 0.95) {
- float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec3 uvw_pos = (pos + dist * direction) * cell_size;
- float half_diameter = diameter * 0.5;
- //check if outside, then break
- //if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) {
- // break;
- //}
-
- float log2_diameter = log2(diameter);
- vec4 scolor = textureLod(sampler3D(color_texture, texture_sampler), uvw_pos, log2_diameter);
-#ifdef MODE_ANISOTROPIC
-
- vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture, texture_sampler), uvw_pos, log2_diameter).rgb;
- vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture, texture_sampler), uvw_pos, log2_diameter).rgb;
-
- scolor.rgb *= dot(max(vec3(0.0), (aniso_normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-aniso_normal * aniso_neg)), vec3(1.0));
-#endif
- float a = (1.0 - color.a);
- color += a * scolor;
- dist += half_diameter;
- }
- }
- color *= cone_weights[i] * vec4(albedo.rgb, 1.0) * params.dynamic_range; //restore range
-#ifdef MODE_ANISOTROPIC
- for (uint j = 0; j < 6; j++) {
-
- accum[j] += max(0.0, dot(accum_dirs[j], direction)) * color.rgb;
- }
-#else
- accum += color.rgb;
-#endif
- }
- }
-
-#ifdef MODE_ANISOTROPIC
-
- outputs.data[cell_index * 6 + 0] = vec4(accum[0], 0.0);
- outputs.data[cell_index * 6 + 1] = vec4(accum[1], 0.0);
- outputs.data[cell_index * 6 + 2] = vec4(accum[2], 0.0);
- outputs.data[cell_index * 6 + 3] = vec4(accum[3], 0.0);
- outputs.data[cell_index * 6 + 4] = vec4(accum[4], 0.0);
- outputs.data[cell_index * 6 + 5] = vec4(accum[5], 0.0);
-#else
- outputs.data[cell_index] = vec4(accum, 0.0);
-
-#endif
-
-#endif // MODE_SECOND_BOUNCE
-
- /////////////////UPDATE MIPMAPS///////////////////////////////
-
-#ifdef MODE_UPDATE_MIPMAPS
-
- {
-#ifdef MODE_ANISOTROPIC
- vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
-#else
- vec3 light_accum = vec3(0.0);
-#endif
- float count = 0.0;
- for (uint i = 0; i < 8; i++) {
- uint child_index = cell_children.data[cell_index].children[i];
- if (child_index == NO_CHILDREN) {
- continue;
- }
-#ifdef MODE_ANISOTROPIC
- light_accum[0] += outputs.data[child_index * 6 + 0].rgb;
- light_accum[1] += outputs.data[child_index * 6 + 1].rgb;
- light_accum[2] += outputs.data[child_index * 6 + 2].rgb;
- light_accum[3] += outputs.data[child_index * 6 + 3].rgb;
- light_accum[4] += outputs.data[child_index * 6 + 4].rgb;
- light_accum[5] += outputs.data[child_index * 6 + 5].rgb;
-
-#else
- light_accum += outputs.data[child_index].rgb;
-
-#endif
-
- count += 1.0;
- }
-
- float divisor = mix(8.0, count, params.propagation);
-#ifdef MODE_ANISOTROPIC
- outputs.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0);
- outputs.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0);
- outputs.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0);
- outputs.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0);
- outputs.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0);
- outputs.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0);
-
-#else
- outputs.data[cell_index] = vec4(light_accum / divisor, 0.0);
-#endif
- }
-#endif
-
- ///////////////////WRITE TEXTURE/////////////////////////////
-
-#ifdef MODE_WRITE_TEXTURE
- {
-
-#ifdef MODE_ANISOTROPIC
- vec3 accum_total = vec3(0.0);
- accum_total += outputs.data[cell_index * 6 + 0].rgb;
- accum_total += outputs.data[cell_index * 6 + 1].rgb;
- accum_total += outputs.data[cell_index * 6 + 2].rgb;
- accum_total += outputs.data[cell_index * 6 + 3].rgb;
- accum_total += outputs.data[cell_index * 6 + 4].rgb;
- accum_total += outputs.data[cell_index * 6 + 5].rgb;
-
- float accum_total_energy = max(dot(accum_total, GREY_VEC), 0.00001);
- vec3 iso_positive = vec3(dot(outputs.data[cell_index * 6 + 0].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 2].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 4].rgb, GREY_VEC)) / vec3(accum_total_energy);
- vec3 iso_negative = vec3(dot(outputs.data[cell_index * 6 + 1].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 3].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 5].rgb, GREY_VEC)) / vec3(accum_total_energy);
-
- {
- uint aniso_pos = uint(clamp(iso_positive.b * 31.0, 0.0, 31.0));
- aniso_pos |= uint(clamp(iso_positive.g * 63.0, 0.0, 63.0)) << 5;
- aniso_pos |= uint(clamp(iso_positive.r * 31.0, 0.0, 31.0)) << 11;
- imageStore(aniso_pos_tex, ivec3(posu), uvec4(aniso_pos));
- }
-
- {
- uint aniso_neg = uint(clamp(iso_negative.b * 31.0, 0.0, 31.0));
- aniso_neg |= uint(clamp(iso_negative.g * 63.0, 0.0, 63.0)) << 5;
- aniso_neg |= uint(clamp(iso_negative.r * 31.0, 0.0, 31.0)) << 11;
- imageStore(aniso_neg_tex, ivec3(posu), uvec4(aniso_neg));
- }
-
- imageStore(color_tex, ivec3(posu), vec4(accum_total / params.dynamic_range, albedo.a));
-
-#else
-
- imageStore(color_tex, ivec3(posu), vec4(outputs.data[cell_index].rgb / params.dynamic_range, albedo.a));
-
-#endif
- }
-#endif
-
- ///////////////////DYNAMIC LIGHTING/////////////////////////////
-
-#ifdef MODE_DYNAMIC
-
- ivec2 pos_xy = ivec2(gl_GlobalInvocationID.xy);
- if (any(greaterThanEqual(pos_xy, params.rect_size))) {
- return; //out of bounds
- }
-
- ivec2 uv_xy = pos_xy;
- if (params.flip_x) {
- uv_xy.x = params.rect_size.x - pos_xy.x - 1;
- }
- if (params.flip_y) {
- uv_xy.y = params.rect_size.y - pos_xy.y - 1;
- }
-
-#ifdef MODE_DYNAMIC_LIGHTING
-
- {
- float z = params.z_base + imageLoad(depth, uv_xy).x * params.z_sign;
-
- ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z);
-
- vec3 normal = imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0;
- normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z;
-
- vec4 albedo = imageLoad(source_albedo, uv_xy);
-
- //determine the position in space
-
- vec3 accum = vec3(0.0);
- for (uint i = 0; i < params.light_count; i++) {
-
- vec3 light;
- vec3 light_dir;
- if (!compute_light_at_pos(i, vec3(pos) * params.pos_multiplier, normal, light, light_dir)) {
- continue;
- }
-
- light *= albedo.rgb;
-
- accum += max(0.0, dot(normal, -light_dir)) * light;
- }
-
- accum += imageLoad(emission, uv_xy).xyz;
-
- imageStore(emission, uv_xy, vec4(accum, albedo.a));
- imageStore(depth, uv_xy, vec4(z));
- }
-
-#endif // MODE DYNAMIC LIGHTING
-
-#ifdef MODE_DYNAMIC_SHRINK
-
- {
- vec4 accum = vec4(0.0);
- float accum_z = 0.0;
- float count = 0.0;
-
- for (int i = 0; i < 4; i++) {
- ivec2 ofs = pos_xy * 2 + ivec2(i & 1, i >> 1) - params.prev_rect_ofs;
- if (any(lessThan(ofs, ivec2(0))) || any(greaterThanEqual(ofs, params.prev_rect_size))) {
- continue;
- }
- if (params.flip_x) {
- ofs.x = params.prev_rect_size.x - ofs.x - 1;
- }
- if (params.flip_y) {
- ofs.y = params.prev_rect_size.y - ofs.y - 1;
- }
-
- vec4 light = imageLoad(source_light, ofs);
- if (light.a == 0.0) { //ignore empty
- continue;
- }
- accum += light;
- float z = imageLoad(source_depth, ofs).x;
- accum_z += z * 0.5; //shrink half too
- count += 1.0;
- }
-
- if (params.on_mipmap) {
- accum.rgb /= mix(8.0, count, params.propagation);
- accum.a /= 8.0;
- } else {
- accum /= 4.0;
- }
-
- if (count == 0.0) {
- accum_z = 0.0; //avoid nan
- } else {
- accum_z /= count;
- }
-
-#ifdef MODE_DYNAMIC_SHRINK_WRITE
-
- imageStore(light, uv_xy, accum);
- imageStore(depth, uv_xy, vec4(accum_z));
-#endif
-
-#ifdef MODE_DYNAMIC_SHRINK_PLOT
-
- if (accum.a < 0.001) {
- return; //do not blit if alpha is too low
- }
-
- ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(accum_z);
-
- float z_frac = fract(accum_z);
-
- for (int i = 0; i < 2; i++) {
- ivec3 pos3d = pos + abs(params.z_dir) * i;
- if (any(lessThan(pos3d, ivec3(0))) || any(greaterThanEqual(pos3d, params.limits))) {
- //skip if offlimits
- continue;
- }
- vec4 color_blit = accum * (i == 0 ? 1.0 - z_frac : z_frac);
- vec4 color = imageLoad(color_texture, pos3d);
- color.rgb *= params.dynamic_range;
-
-#if 0
- color.rgb = mix(color.rgb,color_blit.rgb,color_blit.a);
- color.a+=color_blit.a;
-#else
-
- float sa = 1.0 - color_blit.a;
- vec4 result;
- result.a = color.a * sa + color_blit.a;
- if (result.a == 0.0) {
- result = vec4(0.0);
- } else {
- result.rgb = (color.rgb * color.a * sa + color_blit.rgb * color_blit.a) / result.a;
- color = result;
- }
-
-#endif
- color.rgb /= params.dynamic_range;
- imageStore(color_texture, pos3d, color);
- //imageStore(color_texture,pos3d,vec4(1,1,1,1));
-
-#ifdef MODE_ANISOTROPIC
- //do not care about anisotropy for dynamic objects, just store full lit in all directions
- imageStore(aniso_pos_texture, pos3d, uvec4(0xFFFF));
- imageStore(aniso_neg_texture, pos3d, uvec4(0xFFFF));
-
-#endif // ANISOTROPIC
- }
-#endif // MODE_DYNAMIC_SHRINK_PLOT
- }
-#endif
-
-#endif // MODE DYNAMIC
-}