diff options
Diffstat (limited to 'servers/rendering/rendering_server_scene.cpp')
-rw-r--r-- | servers/rendering/rendering_server_scene.cpp | 2839 |
1 files changed, 2839 insertions, 0 deletions
diff --git a/servers/rendering/rendering_server_scene.cpp b/servers/rendering/rendering_server_scene.cpp new file mode 100644 index 0000000000..0530846e95 --- /dev/null +++ b/servers/rendering/rendering_server_scene.cpp @@ -0,0 +1,2839 @@ +/*************************************************************************/ +/* rendering_server_scene.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "rendering_server_scene.h" + +#include "core/os/os.h" +#include "rendering_server_globals.h" +#include "rendering_server_raster.h" + +#include <new> + +/* CAMERA API */ + +RID RenderingServerScene::camera_create() { + + Camera *camera = memnew(Camera); + return camera_owner.make_rid(camera); +} + +void RenderingServerScene::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) { + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->type = Camera::PERSPECTIVE; + camera->fov = p_fovy_degrees; + camera->znear = p_z_near; + camera->zfar = p_z_far; +} + +void RenderingServerScene::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) { + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->type = Camera::ORTHOGONAL; + camera->size = p_size; + camera->znear = p_z_near; + camera->zfar = p_z_far; +} + +void RenderingServerScene::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->type = Camera::FRUSTUM; + camera->size = p_size; + camera->offset = p_offset; + camera->znear = p_z_near; + camera->zfar = p_z_far; +} + +void RenderingServerScene::camera_set_transform(RID p_camera, const Transform &p_transform) { + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->transform = p_transform.orthonormalized(); +} + +void RenderingServerScene::camera_set_cull_mask(RID p_camera, uint32_t p_layers) { + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + + camera->visible_layers = p_layers; +} + +void RenderingServerScene::camera_set_environment(RID p_camera, RID p_env) { + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->env = p_env; +} + +void RenderingServerScene::camera_set_camera_effects(RID p_camera, RID p_fx) { + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->effects = p_fx; +} + +void RenderingServerScene::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) { + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->vaspect = p_enable; +} + +/* SCENARIO API */ + +void *RenderingServerScene::_instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) { + + //RenderingServerScene *self = (RenderingServerScene*)p_self; + Instance *A = p_A; + Instance *B = p_B; + + //instance indices are designed so greater always contains lesser + if (A->base_type > B->base_type) { + SWAP(A, B); //lesser always first + } + + if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceLightData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->lighting.push_back(B); + + List<InstanceLightData::PairInfo>::Element *E = light->geometries.push_back(pinfo); + + if (geom->can_cast_shadows) { + + light->shadow_dirty = true; + } + geom->lighting_dirty = true; + + return E; //this element should make freeing faster + } else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceReflectionProbeData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->reflection_probes.push_back(B); + + List<InstanceReflectionProbeData::PairInfo>::Element *E = reflection_probe->geometries.push_back(pinfo); + + geom->reflection_dirty = true; + + return E; //this element should make freeing faster + } else if (B->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceLightmapCaptureData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->lightmap_captures.push_back(B); + + List<InstanceLightmapCaptureData::PairInfo>::Element *E = lightmap_capture->geometries.push_back(pinfo); + ((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture + + return E; //this element should make freeing faster + } else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceGIProbeData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->gi_probes.push_back(B); + + List<InstanceGIProbeData::PairInfo>::Element *E; + if (A->dynamic_gi) { + E = gi_probe->dynamic_geometries.push_back(pinfo); + } else { + E = gi_probe->geometries.push_back(pinfo); + } + + geom->gi_probes_dirty = true; + + return E; //this element should make freeing faster + + } else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + return gi_probe->lights.insert(A); + } + + return NULL; +} +void RenderingServerScene::_instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *udata) { + + //RenderingServerScene *self = (RenderingServerScene*)p_self; + Instance *A = p_A; + Instance *B = p_B; + + //instance indices are designed so greater always contains lesser + if (A->base_type > B->base_type) { + SWAP(A, B); //lesser always first + } + + if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceLightData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightData::PairInfo>::Element *>(udata); + + geom->lighting.erase(E->get().L); + light->geometries.erase(E); + + if (geom->can_cast_shadows) { + light->shadow_dirty = true; + } + geom->lighting_dirty = true; + + } else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceReflectionProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceReflectionProbeData::PairInfo>::Element *>(udata); + + geom->reflection_probes.erase(E->get().L); + reflection_probe->geometries.erase(E); + + geom->reflection_dirty = true; + } else if (B->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceLightmapCaptureData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightmapCaptureData::PairInfo>::Element *>(udata); + + geom->lightmap_captures.erase(E->get().L); + lightmap_capture->geometries.erase(E); + ((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture + + } else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceGIProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceGIProbeData::PairInfo>::Element *>(udata); + + geom->gi_probes.erase(E->get().L); + if (A->dynamic_gi) { + gi_probe->dynamic_geometries.erase(E); + } else { + gi_probe->geometries.erase(E); + } + + geom->gi_probes_dirty = true; + + } else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + Set<Instance *>::Element *E = reinterpret_cast<Set<Instance *>::Element *>(udata); + + gi_probe->lights.erase(E); + } +} + +RID RenderingServerScene::scenario_create() { + + Scenario *scenario = memnew(Scenario); + ERR_FAIL_COND_V(!scenario, RID()); + RID scenario_rid = scenario_owner.make_rid(scenario); + scenario->self = scenario_rid; + + scenario->octree.set_pair_callback(_instance_pair, this); + scenario->octree.set_unpair_callback(_instance_unpair, this); + scenario->reflection_probe_shadow_atlas = RSG::scene_render->shadow_atlas_create(); + RSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest + RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4); + RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4); + RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4); + RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8); + scenario->reflection_atlas = RSG::scene_render->reflection_atlas_create(); + return scenario_rid; +} + +void RenderingServerScene::scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode) { + + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->debug = p_debug_mode; +} + +void RenderingServerScene::scenario_set_environment(RID p_scenario, RID p_environment) { + + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->environment = p_environment; +} + +void RenderingServerScene::scenario_set_camera_effects(RID p_scenario, RID p_camera_effects) { + + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->camera_effects = p_camera_effects; +} + +void RenderingServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) { + + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->fallback_environment = p_environment; +} + +void RenderingServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) { + + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + RSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count); +} + +/* INSTANCING API */ + +void RenderingServerScene::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) { + + if (p_update_aabb) + p_instance->update_aabb = true; + if (p_update_dependencies) + p_instance->update_dependencies = true; + + if (p_instance->update_item.in_list()) + return; + + _instance_update_list.add(&p_instance->update_item); +} + +RID RenderingServerScene::instance_create() { + + Instance *instance = memnew(Instance); + ERR_FAIL_COND_V(!instance, RID()); + + RID instance_rid = instance_owner.make_rid(instance); + instance->self = instance_rid; + + return instance_rid; +} + +void RenderingServerScene::instance_set_base(RID p_instance, RID p_base) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + Scenario *scenario = instance->scenario; + + if (instance->base_type != RS::INSTANCE_NONE) { + //free anything related to that base + + if (scenario && instance->octree_id) { + scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away + instance->octree_id = 0; + } + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + + InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data); +#ifdef DEBUG_ENABLED + if (light->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from light."); + } +#endif + if (instance->scenario && light->D) { + instance->scenario->directional_lights.erase(light->D); + light->D = NULL; + } + RSG::scene_render->free(light->instance); + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data); + RSG::scene_render->free(reflection_probe->instance); + if (reflection_probe->update_list.in_list()) { + reflection_probe_render_list.remove(&reflection_probe->update_list); + } + } break; + case RS::INSTANCE_LIGHTMAP_CAPTURE: { + + InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(instance->base_data); + //erase dependencies, since no longer a lightmap + while (lightmap_capture->users.front()) { + instance_set_use_lightmap(lightmap_capture->users.front()->get()->self, RID(), RID()); + } + } break; + case RS::INSTANCE_GI_PROBE: { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data); +#ifdef DEBUG_ENABLED + if (gi_probe->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe."); + } +#endif +#ifdef DEBUG_ENABLED + if (gi_probe->lights.size()) { + ERR_PRINT("BUG, indexing did not unpair lights from GIProbe."); + } +#endif + if (gi_probe->update_element.in_list()) { + gi_probe_update_list.remove(&gi_probe->update_element); + } + + if (instance->lightmap_capture) { + Instance *capture = (Instance *)instance->lightmap_capture; + InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(capture->base_data); + lightmap_capture->users.erase(instance); + instance->lightmap_capture = NULL; + instance->lightmap = RID(); + } + + RSG::scene_render->free(gi_probe->probe_instance); + + } break; + default: { + } + } + + if (instance->base_data) { + memdelete(instance->base_data); + instance->base_data = NULL; + } + + instance->blend_values.clear(); + instance->materials.clear(); + } + + instance->base_type = RS::INSTANCE_NONE; + instance->base = RID(); + + if (p_base.is_valid()) { + + instance->base_type = RSG::storage->get_base_type(p_base); + ERR_FAIL_COND(instance->base_type == RS::INSTANCE_NONE); + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + + InstanceLightData *light = memnew(InstanceLightData); + + if (scenario && RSG::storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) { + light->D = scenario->directional_lights.push_back(instance); + } + + light->instance = RSG::scene_render->light_instance_create(p_base); + + instance->base_data = light; + } break; + case RS::INSTANCE_MESH: + case RS::INSTANCE_MULTIMESH: + case RS::INSTANCE_IMMEDIATE: + case RS::INSTANCE_PARTICLES: { + + InstanceGeometryData *geom = memnew(InstanceGeometryData); + instance->base_data = geom; + if (instance->base_type == RS::INSTANCE_MESH) { + instance->blend_values.resize(RSG::storage->mesh_get_blend_shape_count(p_base)); + } + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + + InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData); + reflection_probe->owner = instance; + instance->base_data = reflection_probe; + + reflection_probe->instance = RSG::scene_render->reflection_probe_instance_create(p_base); + } break; + case RS::INSTANCE_LIGHTMAP_CAPTURE: { + + InstanceLightmapCaptureData *lightmap_capture = memnew(InstanceLightmapCaptureData); + instance->base_data = lightmap_capture; + //lightmap_capture->instance = RSG::scene_render->lightmap_capture_instance_create(p_base); + } break; + case RS::INSTANCE_GI_PROBE: { + + InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData); + instance->base_data = gi_probe; + gi_probe->owner = instance; + + if (scenario && !gi_probe->update_element.in_list()) { + gi_probe_update_list.add(&gi_probe->update_element); + } + + gi_probe->probe_instance = RSG::scene_render->gi_probe_instance_create(p_base); + + } break; + default: { + } + } + + instance->base = p_base; + + //forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it + RSG::storage->base_update_dependency(p_base, instance); + } + + _instance_queue_update(instance, true, true); +} +void RenderingServerScene::instance_set_scenario(RID p_instance, RID p_scenario) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->scenario) { + + instance->scenario->instances.remove(&instance->scenario_item); + + if (instance->octree_id) { + instance->scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away + instance->octree_id = 0; + } + + switch (instance->base_type) { + + case RS::INSTANCE_LIGHT: { + + InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data); +#ifdef DEBUG_ENABLED + if (light->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from light."); + } +#endif + if (light->D) { + instance->scenario->directional_lights.erase(light->D); + light->D = NULL; + } + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data); + RSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance); + + } break; + case RS::INSTANCE_GI_PROBE: { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data); + +#ifdef DEBUG_ENABLED + if (gi_probe->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe."); + } +#endif +#ifdef DEBUG_ENABLED + if (gi_probe->lights.size()) { + ERR_PRINT("BUG, indexing did not unpair lights from GIProbe."); + } +#endif + + if (gi_probe->update_element.in_list()) { + gi_probe_update_list.remove(&gi_probe->update_element); + } + } break; + default: { + } + } + + instance->scenario = NULL; + } + + if (p_scenario.is_valid()) { + + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + + instance->scenario = scenario; + + scenario->instances.add(&instance->scenario_item); + + switch (instance->base_type) { + + case RS::INSTANCE_LIGHT: { + + InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data); + + if (RSG::storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) { + light->D = scenario->directional_lights.push_back(instance); + } + } break; + case RS::INSTANCE_GI_PROBE: { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data); + if (!gi_probe->update_element.in_list()) { + gi_probe_update_list.add(&gi_probe->update_element); + } + } break; + default: { + } + } + + _instance_queue_update(instance, true, true); + } +} +void RenderingServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->layer_mask = p_mask; +} +void RenderingServerScene::instance_set_transform(RID p_instance, const Transform &p_transform) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->transform == p_transform) + return; //must be checked to avoid worst evil + +#ifdef DEBUG_ENABLED + + for (int i = 0; i < 4; i++) { + const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin; + ERR_FAIL_COND(Math::is_inf(v.x)); + ERR_FAIL_COND(Math::is_nan(v.x)); + ERR_FAIL_COND(Math::is_inf(v.y)); + ERR_FAIL_COND(Math::is_nan(v.y)); + ERR_FAIL_COND(Math::is_inf(v.z)); + ERR_FAIL_COND(Math::is_nan(v.z)); + } + +#endif + instance->transform = p_transform; + _instance_queue_update(instance, true); +} +void RenderingServerScene::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->object_id = p_id; +} +void RenderingServerScene::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->update_item.in_list()) { + _update_dirty_instance(instance); + } + + ERR_FAIL_INDEX(p_shape, instance->blend_values.size()); + instance->blend_values.write[p_shape] = p_weight; +} + +void RenderingServerScene::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->base_type == RS::INSTANCE_MESH) { + //may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case + instance->materials.resize(MAX(p_surface + 1, RSG::storage->mesh_get_surface_count(instance->base))); + } + + ERR_FAIL_INDEX(p_surface, instance->materials.size()); + + instance->materials.write[p_surface] = p_material; + + _instance_queue_update(instance, false, true); +} + +void RenderingServerScene::instance_set_visible(RID p_instance, bool p_visible) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->visible == p_visible) + return; + + instance->visible = p_visible; + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + if (RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHT, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); + } + + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_REFLECTION_PROBE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); + } + + } break; + case RS::INSTANCE_LIGHTMAP_CAPTURE: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHTMAP_CAPTURE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); + } + + } break; + case RS::INSTANCE_GI_PROBE: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_GI_PROBE, p_visible ? (RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT)) : 0); + } + + } break; + default: { + } + } +} +inline bool is_geometry_instance(RenderingServer::InstanceType p_type) { + return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES || p_type == RS::INSTANCE_IMMEDIATE; +} + +void RenderingServerScene::instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->lightmap_capture) { + InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data); + lightmap_capture->users.erase(instance); + instance->lightmap = RID(); + instance->lightmap_capture = NULL; + } + + if (p_lightmap_instance.is_valid()) { + Instance *lightmap_instance = instance_owner.getornull(p_lightmap_instance); + ERR_FAIL_COND(!lightmap_instance); + ERR_FAIL_COND(lightmap_instance->base_type != RS::INSTANCE_LIGHTMAP_CAPTURE); + instance->lightmap_capture = lightmap_instance; + + InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data); + lightmap_capture->users.insert(instance); + instance->lightmap = p_lightmap; + } +} + +void RenderingServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + ERR_FAIL_COND(!is_geometry_instance(instance->base_type)); + + if (p_aabb != AABB()) { + + // Set custom AABB + if (instance->custom_aabb == NULL) + instance->custom_aabb = memnew(AABB); + *instance->custom_aabb = p_aabb; + + } else { + + // Clear custom AABB + if (instance->custom_aabb != NULL) { + memdelete(instance->custom_aabb); + instance->custom_aabb = NULL; + } + } + + if (instance->scenario) + _instance_queue_update(instance, true, false); +} + +void RenderingServerScene::instance_attach_skeleton(RID p_instance, RID p_skeleton) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->skeleton == p_skeleton) + return; + + instance->skeleton = p_skeleton; + + if (p_skeleton.is_valid()) { + //update the dependency now, so if cleared, we remove it + RSG::storage->skeleton_update_dependency(p_skeleton, instance); + } + _instance_queue_update(instance, true, true); +} + +void RenderingServerScene::instance_set_exterior(RID p_instance, bool p_enabled) { +} + +void RenderingServerScene::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->extra_margin = p_margin; + _instance_queue_update(instance, true, false); +} + +Vector<ObjectID> RenderingServerScene::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const { + + Vector<ObjectID> instances; + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND_V(!scenario, instances); + + const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling + + int culled = 0; + Instance *cull[1024]; + culled = scenario->octree.cull_aabb(p_aabb, cull, 1024); + + for (int i = 0; i < culled; i++) { + + Instance *instance = cull[i]; + ERR_CONTINUE(!instance); + if (instance->object_id.is_null()) + continue; + + instances.push_back(instance->object_id); + } + + return instances; +} +Vector<ObjectID> RenderingServerScene::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const { + + Vector<ObjectID> instances; + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND_V(!scenario, instances); + const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling + + int culled = 0; + Instance *cull[1024]; + culled = scenario->octree.cull_segment(p_from, p_from + p_to * 10000, cull, 1024); + + for (int i = 0; i < culled; i++) { + Instance *instance = cull[i]; + ERR_CONTINUE(!instance); + if (instance->object_id.is_null()) + continue; + + instances.push_back(instance->object_id); + } + + return instances; +} +Vector<ObjectID> RenderingServerScene::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const { + + Vector<ObjectID> instances; + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND_V(!scenario, instances); + const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling + + int culled = 0; + Instance *cull[1024]; + + culled = scenario->octree.cull_convex(p_convex, cull, 1024); + + for (int i = 0; i < culled; i++) { + + Instance *instance = cull[i]; + ERR_CONTINUE(!instance); + if (instance->object_id.is_null()) + continue; + + instances.push_back(instance->object_id); + } + + return instances; +} + +void RenderingServerScene::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + //ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK)); + + switch (p_flags) { + + case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: { + + instance->baked_light = p_enabled; + + } break; + case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: { + + if (p_enabled == instance->dynamic_gi) { + //bye, redundant + return; + } + + if (instance->octree_id != 0) { + //remove from octree, it needs to be re-paired + instance->scenario->octree.erase(instance->octree_id); + instance->octree_id = 0; + _instance_queue_update(instance, true, true); + } + + //once out of octree, can be changed + instance->dynamic_gi = p_enabled; + + } break; + case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: { + + instance->redraw_if_visible = p_enabled; + + } break; + default: { + } + } +} +void RenderingServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->cast_shadows = p_shadow_casting_setting; + _instance_queue_update(instance, false, true); +} +void RenderingServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material) { + + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->material_override = p_material; + _instance_queue_update(instance, false, true); +} + +void RenderingServerScene::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) { +} +void RenderingServerScene::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) { +} + +void RenderingServerScene::_update_instance(Instance *p_instance) { + + p_instance->version++; + + if (p_instance->base_type == RS::INSTANCE_LIGHT) { + + InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data); + + RSG::scene_render->light_instance_set_transform(light->instance, p_instance->transform); + light->shadow_dirty = true; + } + + if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) { + + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data); + + RSG::scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform); + reflection_probe->reflection_dirty = true; + } + + if (p_instance->base_type == RS::INSTANCE_GI_PROBE) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(p_instance->base_data); + + RSG::scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform); + } + + if (p_instance->base_type == RS::INSTANCE_PARTICLES) { + + RSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform); + } + + if (p_instance->aabb.has_no_surface()) { + return; + } + + if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) { + + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data); + //make sure lights are updated if it casts shadow + + if (geom->can_cast_shadows) { + for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) { + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + light->shadow_dirty = true; + } + } + + if (!p_instance->lightmap_capture && geom->lightmap_captures.size()) { + //affected by lightmap captures, must update capture info! + _update_instance_lightmap_captures(p_instance); + } else { + if (!p_instance->lightmap_capture_data.empty()) { + p_instance->lightmap_capture_data.resize(0); //not in use, clear capture data + } + } + } + + p_instance->mirror = p_instance->transform.basis.determinant() < 0.0; + + AABB new_aabb; + + new_aabb = p_instance->transform.xform(p_instance->aabb); + + p_instance->transformed_aabb = new_aabb; + + if (!p_instance->scenario) { + + return; + } + + if (p_instance->octree_id == 0) { + + uint32_t base_type = 1 << p_instance->base_type; + uint32_t pairable_mask = 0; + bool pairable = false; + + if (p_instance->base_type == RS::INSTANCE_LIGHT || p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == RS::INSTANCE_LIGHTMAP_CAPTURE) { + + pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK : 0; + pairable = true; + } + + if (p_instance->base_type == RS::INSTANCE_GI_PROBE) { + //lights and geometries + pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT) : 0; + pairable = true; + } + + // not inside octree + p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask); + + } else { + + /* + if (new_aabb==p_instance->data.transformed_aabb) + return; + */ + + p_instance->scenario->octree.move(p_instance->octree_id, new_aabb); + } +} + +void RenderingServerScene::_update_instance_aabb(Instance *p_instance) { + + AABB new_aabb; + + ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid()); + + switch (p_instance->base_type) { + case RenderingServer::INSTANCE_NONE: { + + // do nothing + } break; + case RenderingServer::INSTANCE_MESH: { + + if (p_instance->custom_aabb) + new_aabb = *p_instance->custom_aabb; + else + new_aabb = RSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton); + + } break; + + case RenderingServer::INSTANCE_MULTIMESH: { + + if (p_instance->custom_aabb) + new_aabb = *p_instance->custom_aabb; + else + new_aabb = RSG::storage->multimesh_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_IMMEDIATE: { + + if (p_instance->custom_aabb) + new_aabb = *p_instance->custom_aabb; + else + new_aabb = RSG::storage->immediate_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_PARTICLES: { + + if (p_instance->custom_aabb) + new_aabb = *p_instance->custom_aabb; + else + new_aabb = RSG::storage->particles_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_LIGHT: { + + new_aabb = RSG::storage->light_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_REFLECTION_PROBE: { + + new_aabb = RSG::storage->reflection_probe_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_GI_PROBE: { + + new_aabb = RSG::storage->gi_probe_get_bounds(p_instance->base); + + } break; + case RenderingServer::INSTANCE_LIGHTMAP_CAPTURE: { + + new_aabb = RSG::storage->lightmap_capture_get_bounds(p_instance->base); + + } break; + default: { + } + } + + // <Zylann> This is why I didn't re-use Instance::aabb to implement custom AABBs + if (p_instance->extra_margin) + new_aabb.grow_by(p_instance->extra_margin); + + p_instance->aabb = new_aabb; +} + +_FORCE_INLINE_ static void _light_capture_sample_octree(const RasterizerStorage::LightmapCaptureOctree *p_octree, int p_cell_subdiv, const Vector3 &p_pos, const Vector3 &p_dir, float p_level, Vector3 &r_color, float &r_alpha) { + + static const Vector3 aniso_normal[6] = { + Vector3(-1, 0, 0), + Vector3(1, 0, 0), + Vector3(0, -1, 0), + Vector3(0, 1, 0), + Vector3(0, 0, -1), + Vector3(0, 0, 1) + }; + + int size = 1 << (p_cell_subdiv - 1); + + int clamp_v = size - 1; + //first of all, clamp + Vector3 pos; + pos.x = CLAMP(p_pos.x, 0, clamp_v); + pos.y = CLAMP(p_pos.y, 0, clamp_v); + pos.z = CLAMP(p_pos.z, 0, clamp_v); + + float level = (p_cell_subdiv - 1) - p_level; + + int target_level; + float level_filter; + if (level <= 0.0) { + level_filter = 0; + target_level = 0; + } else { + target_level = Math::ceil(level); + level_filter = target_level - level; + } + + Vector3 color[2][8]; + float alpha[2][8]; + zeromem(alpha, sizeof(float) * 2 * 8); + + //find cell at given level first + + for (int c = 0; c < 2; c++) { + + int current_level = MAX(0, target_level - c); + int level_cell_size = (1 << (p_cell_subdiv - 1)) >> current_level; + + for (int n = 0; n < 8; n++) { + + int x = int(pos.x); + int y = int(pos.y); + int z = int(pos.z); + + if (n & 1) + x += level_cell_size; + if (n & 2) + y += level_cell_size; + if (n & 4) + z += level_cell_size; + + int ofs_x = 0; + int ofs_y = 0; + int ofs_z = 0; + + x = CLAMP(x, 0, clamp_v); + y = CLAMP(y, 0, clamp_v); + z = CLAMP(z, 0, clamp_v); + + int half = size / 2; + uint32_t cell = 0; + for (int i = 0; i < current_level; i++) { + + const RasterizerStorage::LightmapCaptureOctree *bc = &p_octree[cell]; + + int child = 0; + if (x >= ofs_x + half) { + child |= 1; + ofs_x += half; + } + if (y >= ofs_y + half) { + child |= 2; + ofs_y += half; + } + if (z >= ofs_z + half) { + child |= 4; + ofs_z += half; + } + + cell = bc->children[child]; + if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) + break; + + half >>= 1; + } + + if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) { + alpha[c][n] = 0; + } else { + alpha[c][n] = p_octree[cell].alpha; + + for (int i = 0; i < 6; i++) { + //anisotropic read light + float amount = p_dir.dot(aniso_normal[i]); + if (amount < 0) + amount = 0; + color[c][n].x += p_octree[cell].light[i][0] / 1024.0 * amount; + color[c][n].y += p_octree[cell].light[i][1] / 1024.0 * amount; + color[c][n].z += p_octree[cell].light[i][2] / 1024.0 * amount; + } + } + + //print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]); + } + } + + float target_level_size = size >> target_level; + Vector3 pos_fract[2]; + + pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size; + pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size; + pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size; + + target_level_size = size >> MAX(0, target_level - 1); + + pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size; + pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size; + pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size; + + float alpha_interp[2]; + Vector3 color_interp[2]; + + for (int i = 0; i < 2; i++) { + + Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x); + Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x); + Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y); + + Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x); + Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x); + Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y); + + color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z); + + float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x); + float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x); + float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y); + + float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x); + float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x); + float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y); + + alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z); + } + + r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter); + r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter); + + //print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha)); +} + +_FORCE_INLINE_ static Color _light_capture_voxel_cone_trace(const RasterizerStorage::LightmapCaptureOctree *p_octree, const Vector3 &p_pos, const Vector3 &p_dir, float p_aperture, int p_cell_subdiv) { + + float bias = 0.0; //no need for bias here + float max_distance = (Vector3(1, 1, 1) * (1 << (p_cell_subdiv - 1))).length(); + + float dist = bias; + float alpha = 0.0; + Vector3 color; + + Vector3 scolor; + float salpha; + + while (dist < max_distance && alpha < 0.95) { + float diameter = MAX(1.0, 2.0 * p_aperture * dist); + _light_capture_sample_octree(p_octree, p_cell_subdiv, p_pos + dist * p_dir, p_dir, log2(diameter), scolor, salpha); + float a = (1.0 - alpha); + color += scolor * a; + alpha += a * salpha; + dist += diameter * 0.5; + } + + return Color(color.x, color.y, color.z, alpha); +} + +void RenderingServerScene::_update_instance_lightmap_captures(Instance *p_instance) { + + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data); + + static const Vector3 cone_traces[12] = { + Vector3(0, 0, 1), + Vector3(0.866025, 0, 0.5), + Vector3(0.267617, 0.823639, 0.5), + Vector3(-0.700629, 0.509037, 0.5), + Vector3(-0.700629, -0.509037, 0.5), + Vector3(0.267617, -0.823639, 0.5), + Vector3(0, 0, -1), + Vector3(0.866025, 0, -0.5), + Vector3(0.267617, 0.823639, -0.5), + Vector3(-0.700629, 0.509037, -0.5), + Vector3(-0.700629, -0.509037, -0.5), + Vector3(0.267617, -0.823639, -0.5) + }; + + float cone_aperture = 0.577; // tan(angle) 60 degrees + + if (p_instance->lightmap_capture_data.empty()) { + p_instance->lightmap_capture_data.resize(12); + } + + //print_line("update captures for pos: " + p_instance->transform.origin); + + for (int i = 0; i < 12; i++) + new (&p_instance->lightmap_capture_data.ptrw()[i]) Color; + + //this could use some sort of blending.. + for (List<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) { + const Vector<RasterizerStorage::LightmapCaptureOctree> *octree = RSG::storage->lightmap_capture_get_octree_ptr(E->get()->base); + //print_line("octree size: " + itos(octree->size())); + if (octree->size() == 0) + continue; + Transform to_cell_xform = RSG::storage->lightmap_capture_get_octree_cell_transform(E->get()->base); + int cell_subdiv = RSG::storage->lightmap_capture_get_octree_cell_subdiv(E->get()->base); + to_cell_xform = to_cell_xform * E->get()->transform.affine_inverse(); + + const RasterizerStorage::LightmapCaptureOctree *octree_r = octree->ptr(); + + Vector3 pos = to_cell_xform.xform(p_instance->transform.origin); + + for (int i = 0; i < 12; i++) { + + Vector3 dir = to_cell_xform.basis.xform(cone_traces[i]).normalized(); + Color capture = _light_capture_voxel_cone_trace(octree_r, pos, dir, cone_aperture, cell_subdiv); + p_instance->lightmap_capture_data.write[i] += capture; + } + } +} + +bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario) { + + InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data); + + Transform light_transform = p_instance->transform; + light_transform.orthonormalize(); //scale does not count on lights + + bool animated_material_found = false; + + switch (RSG::storage->light_get_type(p_instance->base)) { + + case RS::LIGHT_DIRECTIONAL: { + + float max_distance = p_cam_projection.get_z_far(); + float shadow_max = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE); + if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera + max_distance = MIN(shadow_max, max_distance); + } + max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001); + float min_distance = MIN(p_cam_projection.get_z_near(), max_distance); + + RS::LightDirectionalShadowDepthRangeMode depth_range_mode = RSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base); + + if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) { + //optimize min/max + Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform); + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2)); + //check distance max and min + + bool found_items = false; + float z_max = -1e20; + float z_min = 1e20; + + for (int i = 0; i < cull_count; i++) { + + Instance *instance = instance_shadow_cull_result[i]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + continue; + } + + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + + float max, min; + instance->transformed_aabb.project_range_in_plane(base, min, max); + + if (max > z_max) { + z_max = max; + } + + if (min < z_min) { + z_min = min; + } + + found_items = true; + } + + if (found_items) { + min_distance = MAX(min_distance, z_min); + max_distance = MIN(max_distance, z_max); + } + } + + float range = max_distance - min_distance; + + int splits = 0; + switch (RSG::storage->light_directional_get_shadow_mode(p_instance->base)) { + case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: splits = 1; break; + case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: splits = 2; break; + case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: splits = 4; break; + } + + float distances[5]; + + distances[0] = min_distance; + for (int i = 0; i < splits; i++) { + distances[i + 1] = min_distance + RSG::storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range; + }; + + distances[splits] = max_distance; + + float texture_size = RSG::scene_render->get_directional_light_shadow_size(light->instance); + + bool overlap = RSG::storage->light_directional_get_blend_splits(p_instance->base); + + float first_radius = 0.0; + + for (int i = 0; i < splits; i++) { + + RENDER_TIMESTAMP("Culling Directional Light split" + itos(i)); + + // setup a camera matrix for that range! + CameraMatrix camera_matrix; + + float aspect = p_cam_projection.get_aspect(); + + if (p_cam_orthogonal) { + + Vector2 vp_he = p_cam_projection.get_viewport_half_extents(); + + camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); + } else { + + float fov = p_cam_projection.get_fov(); + camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); + } + + //obtain the frustum endpoints + + Vector3 endpoints[8]; // frustum plane endpoints + bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints); + ERR_CONTINUE(!res); + + // obtain the light frustm ranges (given endpoints) + + Transform transform = light_transform; //discard scale and stabilize light + + Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized(); + Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized(); + Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized(); + //z_vec points agsint the camera, like in default opengl + + float x_min = 0.f, x_max = 0.f; + float y_min = 0.f, y_max = 0.f; + float z_min = 0.f, z_max = 0.f; + + // FIXME: z_max_cam is defined, computed, but not used below when setting up + // ortho_camera. Commented out for now to fix warnings but should be investigated. + float x_min_cam = 0.f, x_max_cam = 0.f; + float y_min_cam = 0.f, y_max_cam = 0.f; + float z_min_cam = 0.f; + //float z_max_cam = 0.f; + + float bias_scale = 1.0; + + //used for culling + + for (int j = 0; j < 8; j++) { + + float d_x = x_vec.dot(endpoints[j]); + float d_y = y_vec.dot(endpoints[j]); + float d_z = z_vec.dot(endpoints[j]); + + if (j == 0 || d_x < x_min) + x_min = d_x; + if (j == 0 || d_x > x_max) + x_max = d_x; + + if (j == 0 || d_y < y_min) + y_min = d_y; + if (j == 0 || d_y > y_max) + y_max = d_y; + + if (j == 0 || d_z < z_min) + z_min = d_z; + if (j == 0 || d_z > z_max) + z_max = d_z; + } + + { + //camera viewport stuff + + Vector3 center; + + for (int j = 0; j < 8; j++) { + + center += endpoints[j]; + } + center /= 8.0; + + //center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5; + + float radius = 0; + + for (int j = 0; j < 8; j++) { + + float d = center.distance_to(endpoints[j]); + if (d > radius) + radius = d; + } + + radius *= texture_size / (texture_size - 2.0); //add a texel by each side + + if (i == 0) { + first_radius = radius; + } else { + bias_scale = radius / first_radius; + } + + x_max_cam = x_vec.dot(center) + radius; + x_min_cam = x_vec.dot(center) - radius; + y_max_cam = y_vec.dot(center) + radius; + y_min_cam = y_vec.dot(center) - radius; + //z_max_cam = z_vec.dot(center) + radius; + z_min_cam = z_vec.dot(center) - radius; + + if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) { + //this trick here is what stabilizes the shadow (make potential jaggies to not move) + //at the cost of some wasted resolution. Still the quality increase is very well worth it + + float unit = radius * 2.0 / texture_size; + + x_max_cam = Math::stepify(x_max_cam, unit); + x_min_cam = Math::stepify(x_min_cam, unit); + y_max_cam = Math::stepify(y_max_cam, unit); + y_min_cam = Math::stepify(y_min_cam, unit); + } + } + + //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree + + Vector<Plane> light_frustum_planes; + light_frustum_planes.resize(6); + + //right/left + light_frustum_planes.write[0] = Plane(x_vec, x_max); + light_frustum_planes.write[1] = Plane(-x_vec, -x_min); + //top/bottom + light_frustum_planes.write[2] = Plane(y_vec, y_max); + light_frustum_planes.write[3] = Plane(-y_vec, -y_min); + //near/far + light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6); + light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed + + int cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + + // a pre pass will need to be needed to determine the actual z-near to be used + + Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); + + for (int j = 0; j < cull_count; j++) { + + float min, max; + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + continue; + } + + instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max); + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + if (max > z_max) + z_max = max; + } + + { + + CameraMatrix ortho_camera; + real_t half_x = (x_max_cam - x_min_cam) * 0.5; + real_t half_y = (y_max_cam - y_min_cam) * 0.5; + + ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam)); + + Transform ortho_transform; + ortho_transform.basis = transform.basis; + ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max; + + RSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, 0, distances[i + 1], i, bias_scale); + } + + RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); + } + + } break; + case RS::LIGHT_OMNI: { + + RS::LightOmniShadowMode shadow_mode = RSG::storage->light_omni_get_shadow_mode(p_instance->base); + + if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !RSG::scene_render->light_instances_can_render_shadow_cube()) { + + for (int i = 0; i < 2; i++) { + + //using this one ensures that raster deferred will have it + RENDER_TIMESTAMP("Culling Shadow Paraboloid" + itos(i)); + + float radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); + + float z = i == 0 ? -1 : 1; + Vector<Plane> planes; + planes.resize(5); + planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius)); + planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius)); + planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius)); + planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius)); + planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius)); + + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z); + + for (int j = 0; j < cull_count; j++) { + + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + } else { + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + } + } + + RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i); + RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); + } + } else { //shadow cube + + float radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); + CameraMatrix cm; + cm.set_perspective(90, 1, 0.01, radius); + + for (int i = 0; i < 6; i++) { + + RENDER_TIMESTAMP("Culling Shadow Cube side" + itos(i)); + //using this one ensures that raster deferred will have it + + static const Vector3 view_normals[6] = { + Vector3(+1, 0, 0), + Vector3(-1, 0, 0), + Vector3(0, -1, 0), + Vector3(0, +1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1) + }; + static const Vector3 view_up[6] = { + Vector3(0, -1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, -1), + Vector3(0, 0, +1), + Vector3(0, -1, 0), + Vector3(0, -1, 0) + }; + + Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]); + + Vector<Plane> planes = cm.get_projection_planes(xform); + + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + + Plane near_plane(xform.origin, -xform.basis.get_axis(2)); + for (int j = 0; j < cull_count; j++) { + + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + } else { + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + } + } + + RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i); + RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); + } + + //restore the regular DP matrix + RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0); + } + + } break; + case RS::LIGHT_SPOT: { + + RENDER_TIMESTAMP("Culling Spot Light"); + + float radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); + float angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); + + CameraMatrix cm; + cm.set_perspective(angle * 2.0, 1.0, 0.01, radius); + + Vector<Plane> planes = cm.get_projection_planes(light_transform); + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + + Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); + for (int j = 0; j < cull_count; j++) { + + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + } else { + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + } + } + + RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0); + RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count); + + } break; + } + + return animated_material_found; +} + +void RenderingServerScene::render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { +// render to mono camera +#ifndef _3D_DISABLED + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + + /* STEP 1 - SETUP CAMERA */ + CameraMatrix camera_matrix; + bool ortho = false; + + switch (camera->type) { + case Camera::ORTHOGONAL: { + + camera_matrix.set_orthogonal( + camera->size, + p_viewport_size.width / (float)p_viewport_size.height, + camera->znear, + camera->zfar, + camera->vaspect); + ortho = true; + } break; + case Camera::PERSPECTIVE: { + + camera_matrix.set_perspective( + camera->fov, + p_viewport_size.width / (float)p_viewport_size.height, + camera->znear, + camera->zfar, + camera->vaspect); + ortho = false; + + } break; + case Camera::FRUSTUM: { + + camera_matrix.set_frustum( + camera->size, + p_viewport_size.width / (float)p_viewport_size.height, + camera->offset, + camera->znear, + camera->zfar, + camera->vaspect); + ortho = false; + } break; + } + + _prepare_scene(camera->transform, camera_matrix, ortho, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); + _render_scene(p_render_buffers, camera->transform, camera_matrix, ortho, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1); +#endif +} + +void RenderingServerScene::render_camera(RID p_render_buffers, Ref<ARVRInterface> &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { + // render for AR/VR interface + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + + /* SETUP CAMERA, we are ignoring type and FOV here */ + float aspect = p_viewport_size.width / (float)p_viewport_size.height; + CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar); + + // We also ignore our camera position, it will have been positioned with a slightly old tracking position. + // Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo! + Transform world_origin = ARVRServer::get_singleton()->get_world_origin(); + Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin); + + // For stereo render we only prepare for our left eye and then reuse the outcome for our right eye + if (p_eye == ARVRInterface::EYE_LEFT) { + ///@TODO possibly move responsibility for this into our ARVRServer or ARVRInterface? + + // Center our transform, we assume basis is equal. + Transform mono_transform = cam_transform; + Transform right_transform = p_interface->get_transform_for_eye(ARVRInterface::EYE_RIGHT, world_origin); + mono_transform.origin += right_transform.origin; + mono_transform.origin *= 0.5; + + // We need to combine our projection frustums for culling. + // Ideally we should use our clipping planes for this and combine them, + // however our shadow map logic uses our projection matrix. + // Note: as our left and right frustums should be mirrored, we don't need our right projection matrix. + + // - get some base values we need + float eye_dist = (mono_transform.origin - cam_transform.origin).length(); + float z_near = camera_matrix.get_z_near(); // get our near plane + float z_far = camera_matrix.get_z_far(); // get our far plane + float width = (2.0 * z_near) / camera_matrix.matrix[0][0]; + float x_shift = width * camera_matrix.matrix[2][0]; + float height = (2.0 * z_near) / camera_matrix.matrix[1][1]; + float y_shift = height * camera_matrix.matrix[2][1]; + + // printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift); + + // - calculate our near plane size (horizontal only, right_near is mirrored) + float left_near = -eye_dist - ((width - x_shift) * 0.5); + + // - calculate our far plane size (horizontal only, right_far is mirrored) + float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near); + float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near); + if (left_far > left_far_right_eye) { + // on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes. + left_far = left_far_right_eye; + } + + // - figure out required z-shift + float slope = (left_far - left_near) / (z_far - z_near); + float z_shift = (left_near / slope) - z_near; + + // - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift) + float top_near = (height - y_shift) * 0.5; + top_near += (top_near / z_near) * z_shift; + float bottom_near = -(height + y_shift) * 0.5; + bottom_near += (bottom_near / z_near) * z_shift; + + // printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift); + + // - generate our frustum + CameraMatrix combined_matrix; + combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift); + + // and finally move our camera back + Transform apply_z_shift; + apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards + mono_transform *= apply_z_shift; + + // now prepare our scene with our adjusted transform projection matrix + _prepare_scene(mono_transform, combined_matrix, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); + } else if (p_eye == ARVRInterface::EYE_MONO) { + // For mono render, prepare as per usual + _prepare_scene(cam_transform, camera_matrix, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); + } + + // And render our scene... + _render_scene(p_render_buffers, cam_transform, camera_matrix, false, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1); +}; + +void RenderingServerScene::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_force_camera_effects, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, bool p_using_shadows) { + // Note, in stereo rendering: + // - p_cam_transform will be a transform in the middle of our two eyes + // - p_cam_projection is a wider frustrum that encompasses both eyes + + Scenario *scenario = scenario_owner.getornull(p_scenario); + + render_pass++; + uint32_t camera_layer_mask = p_visible_layers; + + RSG::scene_render->set_scene_pass(render_pass); + + RENDER_TIMESTAMP("Frustum Culling"); + + //rasterizer->set_camera(camera->transform, camera_matrix,ortho); + + Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform); + + Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized()); + float z_far = p_cam_projection.get_z_far(); + + /* STEP 2 - CULL */ + instance_cull_count = scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL); + light_cull_count = 0; + + reflection_probe_cull_count = 0; + gi_probe_cull_count = 0; + + //light_samplers_culled=0; + + /* + print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0)); + print_line("OTO: "+itos(p_scenario->octree.get_octant_count())); + print_line("OTE: "+itos(p_scenario->octree.get_elem_count())); + print_line("OTP: "+itos(p_scenario->octree.get_pair_count())); + */ + + /* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */ + //removed, will replace with culling + + /* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */ + + for (int i = 0; i < instance_cull_count; i++) { + + Instance *ins = instance_cull_result[i]; + + bool keep = false; + + if ((camera_layer_mask & ins->layer_mask) == 0) { + //failure + } else if (ins->base_type == RS::INSTANCE_LIGHT && ins->visible) { + + if (light_cull_count < MAX_LIGHTS_CULLED) { + + InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data); + + if (!light->geometries.empty()) { + //do not add this light if no geometry is affected by it.. + light_cull_result[light_cull_count] = ins; + light_instance_cull_result[light_cull_count] = light->instance; + if (p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(ins->base)) { + RSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later + } + + light_cull_count++; + } + } + } else if (ins->base_type == RS::INSTANCE_REFLECTION_PROBE && ins->visible) { + + if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) { + + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(ins->base_data); + + if (p_reflection_probe != reflection_probe->instance) { + //avoid entering The Matrix + + if (!reflection_probe->geometries.empty()) { + //do not add this light if no geometry is affected by it.. + + if (reflection_probe->reflection_dirty || RSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) { + if (!reflection_probe->update_list.in_list()) { + reflection_probe->render_step = 0; + reflection_probe_render_list.add_last(&reflection_probe->update_list); + } + + reflection_probe->reflection_dirty = false; + } + + if (RSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) { + reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance; + reflection_probe_cull_count++; + } + } + } + } + + } else if (ins->base_type == RS::INSTANCE_GI_PROBE && ins->visible) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(ins->base_data); + if (!gi_probe->update_element.in_list()) { + gi_probe_update_list.add(&gi_probe->update_element); + } + + if (gi_probe_cull_count < MAX_GI_PROBES_CULLED) { + gi_probe_instance_cull_result[gi_probe_cull_count] = gi_probe->probe_instance; + gi_probe_cull_count++; + } + + } else if (((1 << ins->base_type) & RS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) { + + keep = true; + + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(ins->base_data); + + if (ins->redraw_if_visible) { + RenderingServerRaster::redraw_request(); + } + + if (ins->base_type == RS::INSTANCE_PARTICLES) { + //particles visible? process them + if (RSG::storage->particles_is_inactive(ins->base)) { + //but if nothing is going on, don't do it. + keep = false; + } else { + RSG::storage->particles_request_process(ins->base); + //particles visible? request redraw + RenderingServerRaster::redraw_request(); + } + } + + if (geom->lighting_dirty) { + int l = 0; + //only called when lights AABB enter/exit this geometry + ins->light_instances.resize(geom->lighting.size()); + + for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) { + + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + + ins->light_instances.write[l++] = light->instance; + } + + geom->lighting_dirty = false; + } + + if (geom->reflection_dirty) { + int l = 0; + //only called when reflection probe AABB enter/exit this geometry + ins->reflection_probe_instances.resize(geom->reflection_probes.size()); + + for (List<Instance *>::Element *E = geom->reflection_probes.front(); E; E = E->next()) { + + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data); + + ins->reflection_probe_instances.write[l++] = reflection_probe->instance; + } + + geom->reflection_dirty = false; + } + + if (geom->gi_probes_dirty) { + int l = 0; + //only called when reflection probe AABB enter/exit this geometry + ins->gi_probe_instances.resize(geom->gi_probes.size()); + + for (List<Instance *>::Element *E = geom->gi_probes.front(); E; E = E->next()) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(E->get()->base_data); + + ins->gi_probe_instances.write[l++] = gi_probe->probe_instance; + } + + geom->gi_probes_dirty = false; + } + + ins->depth = near_plane.distance_to(ins->transform.origin); + ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15); + } + + if (!keep) { + // remove, no reason to keep + instance_cull_count--; + SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]); + i--; + ins->last_render_pass = 0; // make invalid + } else { + + ins->last_render_pass = render_pass; + } + } + + /* STEP 5 - PROCESS LIGHTS */ + + RID *directional_light_ptr = &light_instance_cull_result[light_cull_count]; + directional_light_count = 0; + + // directional lights + { + + Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size()); + int directional_shadow_count = 0; + + for (List<Instance *>::Element *E = scenario->directional_lights.front(); E; E = E->next()) { + + if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) { + break; + } + + if (!E->get()->visible) + continue; + + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + + //check shadow.. + + if (light) { + if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(E->get()->base)) { + lights_with_shadow[directional_shadow_count++] = E->get(); + } + //add to list + directional_light_ptr[directional_light_count++] = light->instance; + } + } + + RSG::scene_render->set_directional_shadow_count(directional_shadow_count); + + for (int i = 0; i < directional_shadow_count; i++) { + + RENDER_TIMESTAMP(">Rendering Directional Light " + itos(i)); + + _light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_shadow_atlas, scenario); + + RENDER_TIMESTAMP("<Rendering Directional Light " + itos(i)); + } + } + + if (p_using_shadows) { //setup shadow maps + + //SortArray<Instance*,_InstanceLightsort> sorter; + //sorter.sort(light_cull_result,light_cull_count); + for (int i = 0; i < light_cull_count; i++) { + + Instance *ins = light_cull_result[i]; + + if (!p_shadow_atlas.is_valid() || !RSG::storage->light_has_shadow(ins->base)) + continue; + + InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data); + + float coverage = 0.f; + + { //compute coverage + + Transform cam_xf = p_cam_transform; + float zn = p_cam_projection.get_z_near(); + Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane + + // near plane half width and height + Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents(); + + switch (RSG::storage->light_get_type(ins->base)) { + + case RS::LIGHT_OMNI: { + + float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE); + + //get two points parallel to near plane + Vector3 points[2] = { + ins->transform.origin, + ins->transform.origin + cam_xf.basis.get_axis(0) * radius + }; + + if (!p_cam_orthogonal) { + //if using perspetive, map them to near plane + for (int j = 0; j < 2; j++) { + if (p.distance_to(points[j]) < 0) { + points[j].z = -zn; //small hack to keep size constant when hitting the screen + } + + p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane + } + } + + float screen_diameter = points[0].distance_to(points[1]) * 2; + coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); + } break; + case RS::LIGHT_SPOT: { + + float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE); + float angle = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE); + + float w = radius * Math::sin(Math::deg2rad(angle)); + float d = radius * Math::cos(Math::deg2rad(angle)); + + Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d; + + Vector3 points[2] = { + base, + base + cam_xf.basis.get_axis(0) * w + }; + + if (!p_cam_orthogonal) { + //if using perspetive, map them to near plane + for (int j = 0; j < 2; j++) { + if (p.distance_to(points[j]) < 0) { + points[j].z = -zn; //small hack to keep size constant when hitting the screen + } + + p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane + } + } + + float screen_diameter = points[0].distance_to(points[1]) * 2; + coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); + + } break; + default: { + ERR_PRINT("Invalid Light Type"); + } + } + } + + if (light->shadow_dirty) { + light->last_version++; + light->shadow_dirty = false; + } + + bool redraw = RSG::scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version); + + if (redraw) { + //must redraw! + RENDER_TIMESTAMP(">Rendering Light " + itos(i)); + light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_shadow_atlas, scenario); + RENDER_TIMESTAMP("<Rendering Light " + itos(i)); + } + } + } +} + +void RenderingServerScene::_render_scene(RID p_render_buffers, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_force_camera_effects, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { + + Scenario *scenario = scenario_owner.getornull(p_scenario); + + /* ENVIRONMENT */ + + RID environment; + if (p_force_environment.is_valid()) //camera has more environment priority + environment = p_force_environment; + else if (scenario->environment.is_valid()) + environment = scenario->environment; + else + environment = scenario->fallback_environment; + + RID camera_effects; + if (p_force_camera_effects.is_valid()) { + camera_effects = p_force_camera_effects; + } else { + camera_effects = scenario->camera_effects; + } + /* PROCESS GEOMETRY AND DRAW SCENE */ + + RENDER_TIMESTAMP("Render Scene "); + RSG::scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, gi_probe_instance_cull_result, gi_probe_cull_count, environment, camera_effects, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass); +} + +void RenderingServerScene::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) { + +#ifndef _3D_DISABLED + + Scenario *scenario = scenario_owner.getornull(p_scenario); + + RID environment; + if (scenario->environment.is_valid()) + environment = scenario->environment; + else + environment = scenario->fallback_environment; + RENDER_TIMESTAMP("Render Empty Scene "); + RSG::scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, NULL, 0, NULL, 0, NULL, 0, NULL, 0, environment, RID(), p_shadow_atlas, scenario->reflection_atlas, RID(), 0); +#endif +} + +bool RenderingServerScene::_render_reflection_probe_step(Instance *p_instance, int p_step) { + + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data); + Scenario *scenario = p_instance->scenario; + ERR_FAIL_COND_V(!scenario, true); + + RenderingServerRaster::redraw_request(); //update, so it updates in editor + + if (p_step == 0) { + + if (!RSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) { + return true; //all full + } + } + + if (p_step >= 0 && p_step < 6) { + + static const Vector3 view_normals[6] = { + Vector3(+1, 0, 0), + Vector3(-1, 0, 0), + Vector3(0, +1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1) + }; + static const Vector3 view_up[6] = { + Vector3(0, -1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1), + Vector3(0, -1, 0), + Vector3(0, -1, 0) + }; + + Vector3 extents = RSG::storage->reflection_probe_get_extents(p_instance->base); + Vector3 origin_offset = RSG::storage->reflection_probe_get_origin_offset(p_instance->base); + float max_distance = RSG::storage->reflection_probe_get_origin_max_distance(p_instance->base); + + Vector3 edge = view_normals[p_step] * extents; + float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit + + max_distance = MAX(max_distance, distance); + + //render cubemap side + CameraMatrix cm; + cm.set_perspective(90, 1, 0.01, max_distance); + + Transform local_view; + local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]); + + Transform xform = p_instance->transform * local_view; + + RID shadow_atlas; + + bool use_shadows = RSG::storage->reflection_probe_renders_shadows(p_instance->base); + if (use_shadows) { + + shadow_atlas = scenario->reflection_probe_shadow_atlas; + } + + RENDER_TIMESTAMP("Render Reflection Probe, Step " + itos(p_step)); + _prepare_scene(xform, cm, false, RID(), RID(), RSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, use_shadows); + _render_scene(RID(), xform, cm, false, RID(), RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step); + + } else { + //do roughness postprocess step until it believes it's done + RENDER_TIMESTAMP("Post-Process Reflection Probe, Step " + itos(p_step)); + return RSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance); + } + + return false; +} + +void RenderingServerScene::render_probes() { + + /* REFLECTION PROBES */ + + SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first(); + + bool busy = false; + + while (ref_probe) { + + SelfList<InstanceReflectionProbeData> *next = ref_probe->next(); + RID base = ref_probe->self()->owner->base; + + switch (RSG::storage->reflection_probe_get_update_mode(base)) { + + case RS::REFLECTION_PROBE_UPDATE_ONCE: { + if (busy) //already rendering something + break; + + bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step); + if (done) { + reflection_probe_render_list.remove(ref_probe); + } else { + ref_probe->self()->render_step++; + } + + busy = true; //do not render another one of this kind + } break; + case RS::REFLECTION_PROBE_UPDATE_ALWAYS: { + + int step = 0; + bool done = false; + while (!done) { + done = _render_reflection_probe_step(ref_probe->self()->owner, step); + step++; + } + + reflection_probe_render_list.remove(ref_probe); + } break; + } + + ref_probe = next; + } + + /* GI PROBES */ + + SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first(); + + if (gi_probe) { + RENDER_TIMESTAMP("Render GI Probes"); + } + + while (gi_probe) { + + SelfList<InstanceGIProbeData> *next = gi_probe->next(); + + InstanceGIProbeData *probe = gi_probe->self(); + //Instance *instance_probe = probe->owner; + + //check if probe must be setup, but don't do if on the lighting thread + + bool cache_dirty = false; + int cache_count = 0; + { + + int light_cache_size = probe->light_cache.size(); + const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr(); + const RID *instance_caches = probe->light_instances.ptr(); + + int idx = 0; //must count visible lights + for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + if (cache_dirty) { + //do nothing, since idx must count all visible lights anyway + } else if (idx >= light_cache_size) { + cache_dirty = true; + } else { + + const InstanceGIProbeData::LightCache *cache = &caches[idx]; + + if ( + instance_caches[idx] != instance_light->instance || + cache->has_shadow != RSG::storage->light_has_shadow(instance->base) || + cache->type != RSG::storage->light_get_type(instance->base) || + cache->transform != instance->transform || + cache->color != RSG::storage->light_get_color(instance->base) || + cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) || + cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) || + cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) || + cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) || + cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) || + cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) { + cache_dirty = true; + } + } + + idx++; + } + + for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { + + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + if (cache_dirty) { + //do nothing, since idx must count all visible lights anyway + } else if (idx >= light_cache_size) { + cache_dirty = true; + } else { + + const InstanceGIProbeData::LightCache *cache = &caches[idx]; + + if ( + instance_caches[idx] != instance_light->instance || + cache->has_shadow != RSG::storage->light_has_shadow(instance->base) || + cache->type != RSG::storage->light_get_type(instance->base) || + cache->transform != instance->transform || + cache->color != RSG::storage->light_get_color(instance->base) || + cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) || + cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) || + cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) || + cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) || + cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) || + cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) { + cache_dirty = true; + } + } + + idx++; + } + + if (idx != light_cache_size) { + cache_dirty = true; + } + + cache_count = idx; + } + + bool update_lights = RSG::scene_render->gi_probe_needs_update(probe->probe_instance); + + if (cache_dirty) { + probe->light_cache.resize(cache_count); + probe->light_instances.resize(cache_count); + + if (cache_count) { + InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw(); + RID *instance_caches = probe->light_instances.ptrw(); + + int idx = 0; //must count visible lights + for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + + InstanceGIProbeData::LightCache *cache = &caches[idx]; + + instance_caches[idx] = instance_light->instance; + cache->has_shadow = RSG::storage->light_has_shadow(instance->base); + cache->type = RSG::storage->light_get_type(instance->base); + cache->transform = instance->transform; + cache->color = RSG::storage->light_get_color(instance->base); + cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY); + cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY); + cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE); + cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION); + cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); + cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION); + + idx++; + } + for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + + InstanceGIProbeData::LightCache *cache = &caches[idx]; + + instance_caches[idx] = instance_light->instance; + cache->has_shadow = RSG::storage->light_has_shadow(instance->base); + cache->type = RSG::storage->light_get_type(instance->base); + cache->transform = instance->transform; + cache->color = RSG::storage->light_get_color(instance->base); + cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY); + cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY); + cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE); + cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION); + cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); + cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION); + + idx++; + } + } + + update_lights = true; + } + + instance_cull_count = 0; + for (List<InstanceGIProbeData::PairInfo>::Element *E = probe->dynamic_geometries.front(); E; E = E->next()) { + if (instance_cull_count < MAX_INSTANCE_CULL) { + Instance *ins = E->get().geometry; + if (!ins->visible) { + continue; + } + InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data; + + if (geom->gi_probes_dirty) { + //giprobes may be dirty, so update + int l = 0; + //only called when reflection probe AABB enter/exit this geometry + ins->gi_probe_instances.resize(geom->gi_probes.size()); + + for (List<Instance *>::Element *F = geom->gi_probes.front(); F; F = F->next()) { + + InstanceGIProbeData *gi_probe2 = static_cast<InstanceGIProbeData *>(F->get()->base_data); + + ins->gi_probe_instances.write[l++] = gi_probe2->probe_instance; + } + + geom->gi_probes_dirty = false; + } + + instance_cull_result[instance_cull_count++] = E->get().geometry; + } + } + + RSG::scene_render->gi_probe_update(probe->probe_instance, update_lights, probe->light_instances, instance_cull_count, (RasterizerScene::InstanceBase **)instance_cull_result); + + gi_probe_update_list.remove(gi_probe); + + gi_probe = next; + } +} + +void RenderingServerScene::_update_dirty_instance(Instance *p_instance) { + + if (p_instance->update_aabb) { + _update_instance_aabb(p_instance); + } + + if (p_instance->update_dependencies) { + + p_instance->instance_increase_version(); + + if (p_instance->base.is_valid()) { + RSG::storage->base_update_dependency(p_instance->base, p_instance); + } + + if (p_instance->material_override.is_valid()) { + RSG::storage->material_update_dependency(p_instance->material_override, p_instance); + } + + if (p_instance->base_type == RS::INSTANCE_MESH) { + //remove materials no longer used and un-own them + + int new_mat_count = RSG::storage->mesh_get_surface_count(p_instance->base); + p_instance->materials.resize(new_mat_count); + + int new_blend_shape_count = RSG::storage->mesh_get_blend_shape_count(p_instance->base); + if (new_blend_shape_count != p_instance->blend_values.size()) { + p_instance->blend_values.resize(new_blend_shape_count); + for (int i = 0; i < new_blend_shape_count; i++) { + p_instance->blend_values.write[i] = 0; + } + } + } + + if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) { + + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data); + + bool can_cast_shadows = true; + bool is_animated = false; + + if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) { + can_cast_shadows = false; + } else if (p_instance->material_override.is_valid()) { + can_cast_shadows = RSG::storage->material_casts_shadows(p_instance->material_override); + is_animated = RSG::storage->material_is_animated(p_instance->material_override); + } else { + + if (p_instance->base_type == RS::INSTANCE_MESH) { + RID mesh = p_instance->base; + + if (mesh.is_valid()) { + bool cast_shadows = false; + + for (int i = 0; i < p_instance->materials.size(); i++) { + + RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::storage->mesh_surface_get_material(mesh, i); + + if (!mat.is_valid()) { + cast_shadows = true; + } else { + + if (RSG::storage->material_casts_shadows(mat)) { + cast_shadows = true; + } + + if (RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + RSG::storage->material_update_dependency(mat, p_instance); + } + } + + if (!cast_shadows) { + can_cast_shadows = false; + } + } + + } else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) { + RID mesh = RSG::storage->multimesh_get_mesh(p_instance->base); + if (mesh.is_valid()) { + + bool cast_shadows = false; + + int sc = RSG::storage->mesh_get_surface_count(mesh); + for (int i = 0; i < sc; i++) { + + RID mat = RSG::storage->mesh_surface_get_material(mesh, i); + + if (!mat.is_valid()) { + cast_shadows = true; + + } else { + + if (RSG::storage->material_casts_shadows(mat)) { + cast_shadows = true; + } + if (RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + RSG::storage->material_update_dependency(mat, p_instance); + } + } + + if (!cast_shadows) { + can_cast_shadows = false; + } + + RSG::storage->base_update_dependency(mesh, p_instance); + } + } else if (p_instance->base_type == RS::INSTANCE_IMMEDIATE) { + + RID mat = RSG::storage->immediate_get_material(p_instance->base); + + can_cast_shadows = !mat.is_valid() || RSG::storage->material_casts_shadows(mat); + + if (mat.is_valid() && RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + if (mat.is_valid()) { + RSG::storage->material_update_dependency(mat, p_instance); + } + + } else if (p_instance->base_type == RS::INSTANCE_PARTICLES) { + + bool cast_shadows = false; + + int dp = RSG::storage->particles_get_draw_passes(p_instance->base); + + for (int i = 0; i < dp; i++) { + + RID mesh = RSG::storage->particles_get_draw_pass_mesh(p_instance->base, i); + if (!mesh.is_valid()) + continue; + + int sc = RSG::storage->mesh_get_surface_count(mesh); + for (int j = 0; j < sc; j++) { + + RID mat = RSG::storage->mesh_surface_get_material(mesh, j); + + if (!mat.is_valid()) { + cast_shadows = true; + } else { + + if (RSG::storage->material_casts_shadows(mat)) { + cast_shadows = true; + } + + if (RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + RSG::storage->material_update_dependency(mat, p_instance); + } + } + } + + if (!cast_shadows) { + can_cast_shadows = false; + } + } + } + + if (can_cast_shadows != geom->can_cast_shadows) { + //ability to cast shadows change, let lights now + for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) { + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + light->shadow_dirty = true; + } + + geom->can_cast_shadows = can_cast_shadows; + } + + geom->material_is_animated = is_animated; + } + + if (p_instance->skeleton.is_valid()) { + RSG::storage->skeleton_update_dependency(p_instance->skeleton, p_instance); + } + + p_instance->clean_up_dependencies(); + } + + _instance_update_list.remove(&p_instance->update_item); + + _update_instance(p_instance); + + p_instance->update_aabb = false; + p_instance->update_dependencies = false; +} + +void RenderingServerScene::update_dirty_instances() { + + RSG::storage->update_dirty_resources(); + + while (_instance_update_list.first()) { + + _update_dirty_instance(_instance_update_list.first()->self()); + } +} + +bool RenderingServerScene::free(RID p_rid) { + + if (camera_owner.owns(p_rid)) { + + Camera *camera = camera_owner.getornull(p_rid); + + camera_owner.free(p_rid); + memdelete(camera); + + } else if (scenario_owner.owns(p_rid)) { + + Scenario *scenario = scenario_owner.getornull(p_rid); + + while (scenario->instances.first()) { + instance_set_scenario(scenario->instances.first()->self()->self, RID()); + } + RSG::scene_render->free(scenario->reflection_probe_shadow_atlas); + RSG::scene_render->free(scenario->reflection_atlas); + scenario_owner.free(p_rid); + memdelete(scenario); + + } else if (instance_owner.owns(p_rid)) { + // delete the instance + + update_dirty_instances(); + + Instance *instance = instance_owner.getornull(p_rid); + + instance_set_use_lightmap(p_rid, RID(), RID()); + instance_set_scenario(p_rid, RID()); + instance_set_base(p_rid, RID()); + instance_geometry_set_material_override(p_rid, RID()); + instance_attach_skeleton(p_rid, RID()); + + update_dirty_instances(); //in case something changed this + + instance_owner.free(p_rid); + memdelete(instance); + } else { + return false; + } + + return true; +} + +RenderingServerScene *RenderingServerScene::singleton = NULL; + +RenderingServerScene::RenderingServerScene() { + + render_pass = 1; + singleton = this; +} + +RenderingServerScene::~RenderingServerScene() { +} |