diff options
Diffstat (limited to 'servers/rendering/renderer_scene_cull.cpp')
-rw-r--r-- | servers/rendering/renderer_scene_cull.cpp | 3125 |
1 files changed, 3125 insertions, 0 deletions
diff --git a/servers/rendering/renderer_scene_cull.cpp b/servers/rendering/renderer_scene_cull.cpp new file mode 100644 index 0000000000..c63152c11e --- /dev/null +++ b/servers/rendering/renderer_scene_cull.cpp @@ -0,0 +1,3125 @@ +/*************************************************************************/ +/* renderer_scene_cull.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "renderer_scene_cull.h" + +#include "core/os/os.h" +#include "rendering_server_default.h" +#include "rendering_server_globals.h" + +#include <new> + +/* CAMERA API */ + +RID RendererSceneCull::camera_create() { + Camera *camera = memnew(Camera); + return camera_owner.make_rid(camera); +} + +void RendererSceneCull::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->type = Camera::PERSPECTIVE; + camera->fov = p_fovy_degrees; + camera->znear = p_z_near; + camera->zfar = p_z_far; +} + +void RendererSceneCull::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->type = Camera::ORTHOGONAL; + camera->size = p_size; + camera->znear = p_z_near; + camera->zfar = p_z_far; +} + +void RendererSceneCull::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->type = Camera::FRUSTUM; + camera->size = p_size; + camera->offset = p_offset; + camera->znear = p_z_near; + camera->zfar = p_z_far; +} + +void RendererSceneCull::camera_set_transform(RID p_camera, const Transform &p_transform) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->transform = p_transform.orthonormalized(); +} + +void RendererSceneCull::camera_set_cull_mask(RID p_camera, uint32_t p_layers) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + + camera->visible_layers = p_layers; +} + +void RendererSceneCull::camera_set_environment(RID p_camera, RID p_env) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->env = p_env; +} + +void RendererSceneCull::camera_set_camera_effects(RID p_camera, RID p_fx) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->effects = p_fx; +} + +void RendererSceneCull::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) { + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + camera->vaspect = p_enable; +} + +bool RendererSceneCull::is_camera(RID p_camera) const { + return camera_owner.owns(p_camera); +} + +/* SCENARIO API */ + +void *RendererSceneCull::_instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) { + //RendererSceneCull *self = (RendererSceneCull*)p_self; + Instance *A = p_A; + Instance *B = p_B; + + //instance indices are designed so greater always contains lesser + if (A->base_type > B->base_type) { + SWAP(A, B); //lesser always first + } + + if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceLightData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->lighting.push_back(B); + + List<InstanceLightData::PairInfo>::Element *E = light->geometries.push_back(pinfo); + + if (geom->can_cast_shadows) { + light->shadow_dirty = true; + } + geom->lighting_dirty = true; + + return E; //this element should make freeing faster + } else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceReflectionProbeData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->reflection_probes.push_back(B); + + List<InstanceReflectionProbeData::PairInfo>::Element *E = reflection_probe->geometries.push_back(pinfo); + + geom->reflection_dirty = true; + + return E; //this element should make freeing faster + } else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceDecalData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->decals.push_back(B); + + List<InstanceDecalData::PairInfo>::Element *E = decal->geometries.push_back(pinfo); + + geom->decal_dirty = true; + + return E; //this element should make freeing faster + } else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + if (A->dynamic_gi) { + InstanceLightmapData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->lightmap_captures.push_back(B); + List<InstanceLightmapData::PairInfo>::Element *E = lightmap_data->geometries.push_back(pinfo); + ((RendererSceneCull *)p_self)->_instance_queue_update(A, false, false); //need to update capture + return E; //this element should make freeing faster + } else { + return nullptr; + } + + } else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + InstanceGIProbeData::PairInfo pinfo; + pinfo.geometry = A; + pinfo.L = geom->gi_probes.push_back(B); + + List<InstanceGIProbeData::PairInfo>::Element *E; + if (A->dynamic_gi) { + E = gi_probe->dynamic_geometries.push_back(pinfo); + } else { + E = gi_probe->geometries.push_back(pinfo); + } + + geom->gi_probes_dirty = true; + + return E; //this element should make freeing faster + + } else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + return gi_probe->lights.insert(A); + } else if (B->base_type == RS::INSTANCE_PARTICLES_COLLISION && A->base_type == RS::INSTANCE_PARTICLES) { + RSG::storage->particles_add_collision(A->base, B); + } + + return nullptr; +} + +void RendererSceneCull::_instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *udata) { + //RendererSceneCull *self = (RendererSceneCull*)p_self; + Instance *A = p_A; + Instance *B = p_B; + + //instance indices are designed so greater always contains lesser + if (A->base_type > B->base_type) { + SWAP(A, B); //lesser always first + } + + if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceLightData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightData::PairInfo>::Element *>(udata); + + geom->lighting.erase(E->get().L); + light->geometries.erase(E); + + if (geom->can_cast_shadows) { + light->shadow_dirty = true; + } + geom->lighting_dirty = true; + + } else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceReflectionProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceReflectionProbeData::PairInfo>::Element *>(udata); + + geom->reflection_probes.erase(E->get().L); + reflection_probe->geometries.erase(E); + + geom->reflection_dirty = true; + } else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceDecalData::PairInfo>::Element *E = reinterpret_cast<List<InstanceDecalData::PairInfo>::Element *>(udata); + + geom->decals.erase(E->get().L); + decal->geometries.erase(E); + + geom->decal_dirty = true; + } else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + if (udata) { //only for dynamic geometries + InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceLightmapData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightmapData::PairInfo>::Element *>(udata); + + geom->lightmap_captures.erase(E->get().L); + lightmap_data->geometries.erase(E); + ((RendererSceneCull *)p_self)->_instance_queue_update(A, false, false); //need to update capture + } + + } else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data); + + List<InstanceGIProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceGIProbeData::PairInfo>::Element *>(udata); + + geom->gi_probes.erase(E->get().L); + if (A->dynamic_gi) { + gi_probe->dynamic_geometries.erase(E); + } else { + gi_probe->geometries.erase(E); + } + + geom->gi_probes_dirty = true; + + } else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data); + Set<Instance *>::Element *E = reinterpret_cast<Set<Instance *>::Element *>(udata); + + gi_probe->lights.erase(E); + } else if (B->base_type == RS::INSTANCE_PARTICLES_COLLISION && A->base_type == RS::INSTANCE_PARTICLES) { + RSG::storage->particles_remove_collision(A->base, B); + } +} + +RID RendererSceneCull::scenario_create() { + Scenario *scenario = memnew(Scenario); + ERR_FAIL_COND_V(!scenario, RID()); + RID scenario_rid = scenario_owner.make_rid(scenario); + scenario->self = scenario_rid; + + scenario->octree.set_pair_callback(_instance_pair, this); + scenario->octree.set_unpair_callback(_instance_unpair, this); + scenario->reflection_probe_shadow_atlas = scene_render->shadow_atlas_create(); + scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest + scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4); + scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4); + scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4); + scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8); + scenario->reflection_atlas = scene_render->reflection_atlas_create(); + return scenario_rid; +} + +void RendererSceneCull::scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->debug = p_debug_mode; +} + +void RendererSceneCull::scenario_set_environment(RID p_scenario, RID p_environment) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->environment = p_environment; +} + +void RendererSceneCull::scenario_set_camera_effects(RID p_scenario, RID p_camera_effects) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->camera_effects = p_camera_effects; +} + +void RendererSceneCull::scenario_set_fallback_environment(RID p_scenario, RID p_environment) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scenario->fallback_environment = p_environment; +} + +void RendererSceneCull::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count); +} + +bool RendererSceneCull::is_scenario(RID p_scenario) const { + return scenario_owner.owns(p_scenario); +} + +RID RendererSceneCull::scenario_get_environment(RID p_scenario) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND_V(!scenario, RID()); + return scenario->environment; +} + +/* INSTANCING API */ + +void RendererSceneCull::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) { + if (p_update_aabb) { + p_instance->update_aabb = true; + } + if (p_update_dependencies) { + p_instance->update_dependencies = true; + } + + if (p_instance->update_item.in_list()) { + return; + } + + _instance_update_list.add(&p_instance->update_item); +} + +RID RendererSceneCull::instance_create() { + Instance *instance = memnew(Instance); + ERR_FAIL_COND_V(!instance, RID()); + + RID instance_rid = instance_owner.make_rid(instance); + instance->self = instance_rid; + + return instance_rid; +} + +void RendererSceneCull::_instance_update_mesh_instance(Instance *p_instance) { + bool needs_instance = RSG::storage->mesh_needs_instance(p_instance->base, p_instance->skeleton.is_valid()); + if (needs_instance != p_instance->mesh_instance.is_valid()) { + if (needs_instance) { + p_instance->mesh_instance = RSG::storage->mesh_instance_create(p_instance->base); + } else { + RSG::storage->free(p_instance->mesh_instance); + p_instance->mesh_instance = RID(); + } + } + + if (p_instance->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_set_skeleton(p_instance->mesh_instance, p_instance->skeleton); + } +} + +void RendererSceneCull::instance_set_base(RID p_instance, RID p_base) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + Scenario *scenario = instance->scenario; + + if (instance->base_type != RS::INSTANCE_NONE) { + //free anything related to that base + + if (scenario && instance->octree_id) { + scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away + instance->octree_id = 0; + } + + if (instance->mesh_instance.is_valid()) { + RSG::storage->free(instance->mesh_instance); + instance->mesh_instance = RID(); + } + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data); + + if (scenario && RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) { + scenario->dynamic_lights.erase(light->instance); + } + +#ifdef DEBUG_ENABLED + if (light->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from light."); + } +#endif + if (scenario && light->D) { + scenario->directional_lights.erase(light->D); + light->D = nullptr; + } + scene_render->free(light->instance); + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data); + scene_render->free(reflection_probe->instance); + if (reflection_probe->update_list.in_list()) { + reflection_probe_render_list.remove(&reflection_probe->update_list); + } + } break; + case RS::INSTANCE_DECAL: { + InstanceDecalData *decal = static_cast<InstanceDecalData *>(instance->base_data); + scene_render->free(decal->instance); + + } break; + case RS::INSTANCE_LIGHTMAP: { + InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(instance->base_data); + //erase dependencies, since no longer a lightmap + while (lightmap_data->users.front()) { + instance_geometry_set_lightmap(lightmap_data->users.front()->get()->self, RID(), Rect2(), 0); + } + } break; + case RS::INSTANCE_GI_PROBE: { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data); +#ifdef DEBUG_ENABLED + if (gi_probe->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe."); + } +#endif +#ifdef DEBUG_ENABLED + if (gi_probe->lights.size()) { + ERR_PRINT("BUG, indexing did not unpair lights from GIProbe."); + } +#endif + if (gi_probe->update_element.in_list()) { + gi_probe_update_list.remove(&gi_probe->update_element); + } + + scene_render->free(gi_probe->probe_instance); + + } break; + default: { + } + } + + if (instance->base_data) { + memdelete(instance->base_data); + instance->base_data = nullptr; + } + + instance->materials.clear(); + } + + instance->base_type = RS::INSTANCE_NONE; + instance->base = RID(); + + if (p_base.is_valid()) { + instance->base_type = RSG::storage->get_base_type(p_base); + ERR_FAIL_COND(instance->base_type == RS::INSTANCE_NONE); + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + InstanceLightData *light = memnew(InstanceLightData); + + if (scenario && RSG::storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) { + light->D = scenario->directional_lights.push_back(instance); + } + + light->instance = scene_render->light_instance_create(p_base); + + instance->base_data = light; + } break; + case RS::INSTANCE_MESH: + case RS::INSTANCE_MULTIMESH: + case RS::INSTANCE_IMMEDIATE: + case RS::INSTANCE_PARTICLES: { + InstanceGeometryData *geom = memnew(InstanceGeometryData); + instance->base_data = geom; + + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData); + reflection_probe->owner = instance; + instance->base_data = reflection_probe; + + reflection_probe->instance = scene_render->reflection_probe_instance_create(p_base); + } break; + case RS::INSTANCE_DECAL: { + InstanceDecalData *decal = memnew(InstanceDecalData); + decal->owner = instance; + instance->base_data = decal; + + decal->instance = scene_render->decal_instance_create(p_base); + } break; + case RS::INSTANCE_LIGHTMAP: { + InstanceLightmapData *lightmap_data = memnew(InstanceLightmapData); + instance->base_data = lightmap_data; + //lightmap_data->instance = scene_render->lightmap_data_instance_create(p_base); + } break; + case RS::INSTANCE_GI_PROBE: { + InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData); + instance->base_data = gi_probe; + gi_probe->owner = instance; + + if (scenario && !gi_probe->update_element.in_list()) { + gi_probe_update_list.add(&gi_probe->update_element); + } + + gi_probe->probe_instance = scene_render->gi_probe_instance_create(p_base); + + } break; + default: { + } + } + + instance->base = p_base; + + if (instance->base_type == RS::INSTANCE_MESH) { + _instance_update_mesh_instance(instance); + } + + //forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it + RSG::storage->base_update_dependency(p_base, instance); + } + + _instance_queue_update(instance, true, true); +} + +void RendererSceneCull::instance_set_scenario(RID p_instance, RID p_scenario) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->scenario) { + instance->scenario->instances.remove(&instance->scenario_item); + + if (instance->octree_id) { + instance->scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away + instance->octree_id = 0; + } + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data); +#ifdef DEBUG_ENABLED + if (light->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from light."); + } +#endif + if (light->D) { + instance->scenario->directional_lights.erase(light->D); + light->D = nullptr; + } + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data); + scene_render->reflection_probe_release_atlas_index(reflection_probe->instance); + + } break; + case RS::INSTANCE_PARTICLES_COLLISION: { + heightfield_particle_colliders_update_list.erase(instance); + } break; + case RS::INSTANCE_GI_PROBE: { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data); + +#ifdef DEBUG_ENABLED + if (gi_probe->geometries.size()) { + ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe."); + } +#endif +#ifdef DEBUG_ENABLED + if (gi_probe->lights.size()) { + ERR_PRINT("BUG, indexing did not unpair lights from GIProbe."); + } +#endif + + if (gi_probe->update_element.in_list()) { + gi_probe_update_list.remove(&gi_probe->update_element); + } + } break; + default: { + } + } + + instance->scenario = nullptr; + } + + if (p_scenario.is_valid()) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND(!scenario); + + instance->scenario = scenario; + + scenario->instances.add(&instance->scenario_item); + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data); + + if (RSG::storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) { + light->D = scenario->directional_lights.push_back(instance); + } + } break; + case RS::INSTANCE_GI_PROBE: { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data); + if (!gi_probe->update_element.in_list()) { + gi_probe_update_list.add(&gi_probe->update_element); + } + } break; + default: { + } + } + + _instance_queue_update(instance, true, true); + } +} + +void RendererSceneCull::instance_set_layer_mask(RID p_instance, uint32_t p_mask) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->layer_mask = p_mask; +} + +void RendererSceneCull::instance_set_transform(RID p_instance, const Transform &p_transform) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->transform == p_transform) { + return; //must be checked to avoid worst evil + } + +#ifdef DEBUG_ENABLED + + for (int i = 0; i < 4; i++) { + const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin; + ERR_FAIL_COND(Math::is_inf(v.x)); + ERR_FAIL_COND(Math::is_nan(v.x)); + ERR_FAIL_COND(Math::is_inf(v.y)); + ERR_FAIL_COND(Math::is_nan(v.y)); + ERR_FAIL_COND(Math::is_inf(v.z)); + ERR_FAIL_COND(Math::is_nan(v.z)); + } + +#endif + instance->transform = p_transform; + _instance_queue_update(instance, true); +} + +void RendererSceneCull::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->object_id = p_id; +} + +void RendererSceneCull::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->update_item.in_list()) { + _update_dirty_instance(instance); + } + + if (instance->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_set_blend_shape_weight(instance->mesh_instance, p_shape, p_weight); + } +} + +void RendererSceneCull::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->base_type == RS::INSTANCE_MESH) { + //may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case + instance->materials.resize(MAX(p_surface + 1, RSG::storage->mesh_get_surface_count(instance->base))); + } + + ERR_FAIL_INDEX(p_surface, instance->materials.size()); + + instance->materials.write[p_surface] = p_material; + + _instance_queue_update(instance, false, true); +} + +void RendererSceneCull::instance_set_visible(RID p_instance, bool p_visible) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->visible == p_visible) { + return; + } + + instance->visible = p_visible; + + switch (instance->base_type) { + case RS::INSTANCE_LIGHT: { + if (RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHT, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); + } + + } break; + case RS::INSTANCE_REFLECTION_PROBE: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_REFLECTION_PROBE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); + } + + } break; + case RS::INSTANCE_DECAL: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_DECAL, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); + } + + } break; + case RS::INSTANCE_LIGHTMAP: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHTMAP, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0); + } + + } break; + case RS::INSTANCE_GI_PROBE: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_GI_PROBE, p_visible ? (RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT)) : 0); + } + + } break; + case RS::INSTANCE_PARTICLES_COLLISION: { + if (instance->octree_id && instance->scenario) { + instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_PARTICLES_COLLISION, p_visible ? (1 << RS::INSTANCE_PARTICLES) : 0); + } + + } break; + default: { + } + } +} + +inline bool is_geometry_instance(RenderingServer::InstanceType p_type) { + return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES || p_type == RS::INSTANCE_IMMEDIATE; +} + +void RendererSceneCull::instance_set_custom_aabb(RID p_instance, AABB p_aabb) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + ERR_FAIL_COND(!is_geometry_instance(instance->base_type)); + + if (p_aabb != AABB()) { + // Set custom AABB + if (instance->custom_aabb == nullptr) { + instance->custom_aabb = memnew(AABB); + } + *instance->custom_aabb = p_aabb; + + } else { + // Clear custom AABB + if (instance->custom_aabb != nullptr) { + memdelete(instance->custom_aabb); + instance->custom_aabb = nullptr; + } + } + + if (instance->scenario) { + _instance_queue_update(instance, true, false); + } +} + +void RendererSceneCull::instance_attach_skeleton(RID p_instance, RID p_skeleton) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->skeleton == p_skeleton) { + return; + } + + instance->skeleton = p_skeleton; + + if (p_skeleton.is_valid()) { + //update the dependency now, so if cleared, we remove it + RSG::storage->skeleton_update_dependency(p_skeleton, instance); + } + + _instance_update_mesh_instance(instance); + + _instance_queue_update(instance, true, true); +} + +void RendererSceneCull::instance_set_exterior(RID p_instance, bool p_enabled) { +} + +void RendererSceneCull::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->extra_margin = p_margin; + _instance_queue_update(instance, true, false); +} + +Vector<ObjectID> RendererSceneCull::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const { + Vector<ObjectID> instances; + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND_V(!scenario, instances); + + const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling + + int culled = 0; + Instance *cull[1024]; + culled = scenario->octree.cull_aabb(p_aabb, cull, 1024); + + for (int i = 0; i < culled; i++) { + Instance *instance = cull[i]; + ERR_CONTINUE(!instance); + if (instance->object_id.is_null()) { + continue; + } + + instances.push_back(instance->object_id); + } + + return instances; +} + +Vector<ObjectID> RendererSceneCull::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const { + Vector<ObjectID> instances; + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND_V(!scenario, instances); + const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling + + int culled = 0; + Instance *cull[1024]; + culled = scenario->octree.cull_segment(p_from, p_from + p_to * 10000, cull, 1024); + + for (int i = 0; i < culled; i++) { + Instance *instance = cull[i]; + ERR_CONTINUE(!instance); + if (instance->object_id.is_null()) { + continue; + } + + instances.push_back(instance->object_id); + } + + return instances; +} + +Vector<ObjectID> RendererSceneCull::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const { + Vector<ObjectID> instances; + Scenario *scenario = scenario_owner.getornull(p_scenario); + ERR_FAIL_COND_V(!scenario, instances); + const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling + + int culled = 0; + Instance *cull[1024]; + + culled = scenario->octree.cull_convex(p_convex, cull, 1024); + + for (int i = 0; i < culled; i++) { + Instance *instance = cull[i]; + ERR_CONTINUE(!instance); + if (instance->object_id.is_null()) { + continue; + } + + instances.push_back(instance->object_id); + } + + return instances; +} + +void RendererSceneCull::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + //ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK)); + + switch (p_flags) { + case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: { + instance->baked_light = p_enabled; + + } break; + case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: { + if (p_enabled == instance->dynamic_gi) { + //bye, redundant + return; + } + + if (instance->octree_id != 0) { + //remove from octree, it needs to be re-paired + instance->scenario->octree.erase(instance->octree_id); + instance->octree_id = 0; + _instance_queue_update(instance, true, true); + } + + //once out of octree, can be changed + instance->dynamic_gi = p_enabled; + + } break; + case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: { + instance->redraw_if_visible = p_enabled; + + } break; + default: { + } + } +} + +void RendererSceneCull::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->cast_shadows = p_shadow_casting_setting; + _instance_queue_update(instance, false, true); +} + +void RendererSceneCull::instance_geometry_set_material_override(RID p_instance, RID p_material) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + instance->material_override = p_material; + _instance_queue_update(instance, false, true); +} + +void RendererSceneCull::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) { +} + +void RendererSceneCull::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) { +} + +void RendererSceneCull::instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + if (instance->lightmap) { + InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(((Instance *)instance->lightmap)->base_data); + lightmap_data->users.erase(instance); + instance->lightmap = nullptr; + } + + Instance *lightmap_instance = instance_owner.getornull(p_lightmap); + + instance->lightmap = lightmap_instance; + instance->lightmap_uv_scale = p_lightmap_uv_scale; + instance->lightmap_slice_index = p_slice_index; + + if (lightmap_instance) { + InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(lightmap_instance->base_data); + lightmap_data->users.insert(instance); + } +} + +void RendererSceneCull::instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value) { + Instance *instance = instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + Map<StringName, RendererSceneRender::InstanceBase::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.find(p_parameter); + + if (!E) { + RendererSceneRender::InstanceBase::InstanceShaderParameter isp; + isp.index = -1; + isp.info = PropertyInfo(); + isp.value = p_value; + instance->instance_shader_parameters[p_parameter] = isp; + } else { + E->get().value = p_value; + if (E->get().index >= 0 && instance->instance_allocated_shader_parameters) { + //update directly + RSG::storage->global_variables_instance_update(p_instance, E->get().index, p_value); + } + } +} + +Variant RendererSceneCull::instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const { + const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!instance, Variant()); + + if (instance->instance_shader_parameters.has(p_parameter)) { + return instance->instance_shader_parameters[p_parameter].value; + } + return Variant(); +} + +Variant RendererSceneCull::instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const { + const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!instance, Variant()); + + if (instance->instance_shader_parameters.has(p_parameter)) { + return instance->instance_shader_parameters[p_parameter].default_value; + } + return Variant(); +} + +void RendererSceneCull::instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const { + const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.getornull(p_instance); + ERR_FAIL_COND(!instance); + + const_cast<RendererSceneCull *>(this)->update_dirty_instances(); + + Vector<StringName> names; + for (Map<StringName, RendererSceneRender::InstanceBase::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.front(); E; E = E->next()) { + names.push_back(E->key()); + } + names.sort_custom<StringName::AlphCompare>(); + for (int i = 0; i < names.size(); i++) { + PropertyInfo pinfo = instance->instance_shader_parameters[names[i]].info; + p_parameters->push_back(pinfo); + } +} + +void RendererSceneCull::_update_instance(Instance *p_instance) { + p_instance->version++; + + if (p_instance->base_type == RS::INSTANCE_LIGHT) { + InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data); + + scene_render->light_instance_set_transform(light->instance, p_instance->transform); + scene_render->light_instance_set_aabb(light->instance, p_instance->transform.xform(p_instance->aabb)); + light->shadow_dirty = true; + + RS::LightBakeMode bake_mode = RSG::storage->light_get_bake_mode(p_instance->base); + if (RSG::storage->light_get_type(p_instance->base) != RS::LIGHT_DIRECTIONAL && bake_mode != light->bake_mode) { + if (p_instance->scenario && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) { + p_instance->scenario->dynamic_lights.erase(light->instance); + } + + light->bake_mode = bake_mode; + + if (p_instance->scenario && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) { + p_instance->scenario->dynamic_lights.push_back(light->instance); + } + } + + uint32_t max_sdfgi_cascade = RSG::storage->light_get_max_sdfgi_cascade(p_instance->base); + if (light->max_sdfgi_cascade != max_sdfgi_cascade) { + light->max_sdfgi_cascade = max_sdfgi_cascade; //should most likely make sdfgi dirty in scenario + } + } + + if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data); + + scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform); + reflection_probe->reflection_dirty = true; + } + + if (p_instance->base_type == RS::INSTANCE_DECAL) { + InstanceDecalData *decal = static_cast<InstanceDecalData *>(p_instance->base_data); + + scene_render->decal_instance_set_transform(decal->instance, p_instance->transform); + } + + if (p_instance->base_type == RS::INSTANCE_GI_PROBE) { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(p_instance->base_data); + + scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform); + } + + if (p_instance->base_type == RS::INSTANCE_PARTICLES) { + RSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform); + } + + if (p_instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) { + //remove materials no longer used and un-own them + if (RSG::storage->particles_collision_is_heightfield(p_instance->base)) { + heightfield_particle_colliders_update_list.insert(p_instance); + } + } + + if (p_instance->aabb.has_no_surface()) { + return; + } + + if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) { + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data); + //make sure lights are updated if it casts shadow + + if (geom->can_cast_shadows) { + for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) { + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + light->shadow_dirty = true; + } + } + + if (!p_instance->lightmap && geom->lightmap_captures.size()) { + //affected by lightmap captures, must update capture info! + _update_instance_lightmap_captures(p_instance); + } else { + if (!p_instance->lightmap_sh.empty()) { + p_instance->lightmap_sh.clear(); //don't need SH + p_instance->lightmap_target_sh.clear(); //don't need SH + } + } + } + + if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) { + //if this moved, update the captured objects + InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(p_instance->base_data); + //erase dependencies, since no longer a lightmap + + for (List<InstanceLightmapData::PairInfo>::Element *E = lightmap_data->geometries.front(); E; E = E->next()) { + Instance *geom = E->get().geometry; + _instance_queue_update(geom, true, false); + } + } + + p_instance->mirror = p_instance->transform.basis.determinant() < 0.0; + + AABB new_aabb; + + new_aabb = p_instance->transform.xform(p_instance->aabb); + + p_instance->transformed_aabb = new_aabb; + + if (!p_instance->scenario) { + return; + } + + if (p_instance->octree_id == 0) { + uint32_t base_type = 1 << p_instance->base_type; + uint32_t pairable_mask = 0; + bool pairable = false; + + if (p_instance->base_type == RS::INSTANCE_LIGHT || p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == RS::INSTANCE_DECAL || p_instance->base_type == RS::INSTANCE_LIGHTMAP) { + pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK : 0; + pairable = true; + } + + if (p_instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) { + pairable_mask = p_instance->visible ? (1 << RS::INSTANCE_PARTICLES) : 0; + pairable = true; + } + + if (p_instance->base_type == RS::INSTANCE_GI_PROBE) { + //lights and geometries + pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT) : 0; + pairable = true; + } + + // not inside octree + p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask); + + } else { + /* + if (new_aabb==p_instance->data.transformed_aabb) + return; + */ + + p_instance->scenario->octree.move(p_instance->octree_id, new_aabb); + } +} + +void RendererSceneCull::_update_instance_aabb(Instance *p_instance) { + AABB new_aabb; + + ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid()); + + switch (p_instance->base_type) { + case RenderingServer::INSTANCE_NONE: { + // do nothing + } break; + case RenderingServer::INSTANCE_MESH: { + if (p_instance->custom_aabb) { + new_aabb = *p_instance->custom_aabb; + } else { + new_aabb = RSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton); + } + + } break; + + case RenderingServer::INSTANCE_MULTIMESH: { + if (p_instance->custom_aabb) { + new_aabb = *p_instance->custom_aabb; + } else { + new_aabb = RSG::storage->multimesh_get_aabb(p_instance->base); + } + + } break; + case RenderingServer::INSTANCE_IMMEDIATE: { + if (p_instance->custom_aabb) { + new_aabb = *p_instance->custom_aabb; + } else { + new_aabb = RSG::storage->immediate_get_aabb(p_instance->base); + } + + } break; + case RenderingServer::INSTANCE_PARTICLES: { + if (p_instance->custom_aabb) { + new_aabb = *p_instance->custom_aabb; + } else { + new_aabb = RSG::storage->particles_get_aabb(p_instance->base); + } + + } break; + case RenderingServer::INSTANCE_PARTICLES_COLLISION: { + new_aabb = RSG::storage->particles_collision_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_LIGHT: { + new_aabb = RSG::storage->light_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_REFLECTION_PROBE: { + new_aabb = RSG::storage->reflection_probe_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_DECAL: { + new_aabb = RSG::storage->decal_get_aabb(p_instance->base); + + } break; + case RenderingServer::INSTANCE_GI_PROBE: { + new_aabb = RSG::storage->gi_probe_get_bounds(p_instance->base); + + } break; + case RenderingServer::INSTANCE_LIGHTMAP: { + new_aabb = RSG::storage->lightmap_get_aabb(p_instance->base); + + } break; + default: { + } + } + + // <Zylann> This is why I didn't re-use Instance::aabb to implement custom AABBs + if (p_instance->extra_margin) { + new_aabb.grow_by(p_instance->extra_margin); + } + + p_instance->aabb = new_aabb; +} + +void RendererSceneCull::_update_instance_lightmap_captures(Instance *p_instance) { + bool first_set = p_instance->lightmap_sh.size() == 0; + p_instance->lightmap_sh.resize(9); //using SH + p_instance->lightmap_target_sh.resize(9); //using SH + Color *instance_sh = p_instance->lightmap_target_sh.ptrw(); + bool inside = false; + Color accum_sh[9]; + float accum_blend = 0.0; + + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data); + for (List<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) { + Instance *lightmap = E->get(); + + bool interior = RSG::storage->lightmap_is_interior(lightmap->base); + + if (inside && !interior) { + continue; //we are inside, ignore exteriors + } + + Transform to_bounds = lightmap->transform.affine_inverse(); + Vector3 center = p_instance->transform.xform(p_instance->aabb.position + p_instance->aabb.size * 0.5); //use aabb center + + Vector3 lm_pos = to_bounds.xform(center); + + AABB bounds = RSG::storage->lightmap_get_aabb(lightmap->base); + if (!bounds.has_point(lm_pos)) { + continue; //not in this lightmap + } + + Color sh[9]; + RSG::storage->lightmap_tap_sh_light(lightmap->base, lm_pos, sh); + + //rotate it + Basis rot = lightmap->transform.basis.orthonormalized(); + for (int i = 0; i < 3; i++) { + float csh[9]; + for (int j = 0; j < 9; j++) { + csh[j] = sh[j][i]; + } + rot.rotate_sh(csh); + for (int j = 0; j < 9; j++) { + sh[j][i] = csh[j]; + } + } + + Vector3 inner_pos = ((lm_pos - bounds.position) / bounds.size) * 2.0 - Vector3(1.0, 1.0, 1.0); + + float blend = MAX(inner_pos.x, MAX(inner_pos.y, inner_pos.z)); + //make blend more rounded + blend = Math::lerp(inner_pos.length(), blend, blend); + blend *= blend; + blend = MAX(0.0, 1.0 - blend); + + if (interior && !inside) { + //do not blend, just replace + for (int j = 0; j < 9; j++) { + accum_sh[j] = sh[j] * blend; + } + accum_blend = blend; + inside = true; + } else { + for (int j = 0; j < 9; j++) { + accum_sh[j] += sh[j] * blend; + } + accum_blend += blend; + } + } + + if (accum_blend > 0.0) { + for (int j = 0; j < 9; j++) { + instance_sh[j] = accum_sh[j] / accum_blend; + if (first_set) { + p_instance->lightmap_sh.write[j] = instance_sh[j]; + } + } + } +} + +bool RendererSceneCull::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario) { + InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data); + + Transform light_transform = p_instance->transform; + light_transform.orthonormalize(); //scale does not count on lights + + bool animated_material_found = false; + + switch (RSG::storage->light_get_type(p_instance->base)) { + case RS::LIGHT_DIRECTIONAL: { + real_t max_distance = p_cam_projection.get_z_far(); + real_t shadow_max = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE); + if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera + max_distance = MIN(shadow_max, max_distance); + } + max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001); + real_t min_distance = MIN(p_cam_projection.get_z_near(), max_distance); + + RS::LightDirectionalShadowDepthRangeMode depth_range_mode = RSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base); + + real_t pancake_size = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE); + + if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) { + //optimize min/max + Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform); + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2)); + //check distance max and min + + bool found_items = false; + real_t z_max = -1e20; + real_t z_min = 1e20; + + for (int i = 0; i < cull_count; i++) { + Instance *instance = instance_shadow_cull_result[i]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + continue; + } + + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + + real_t max, min; + instance->transformed_aabb.project_range_in_plane(base, min, max); + + if (max > z_max) { + z_max = max; + } + + if (min < z_min) { + z_min = min; + } + + found_items = true; + } + + if (found_items) { + min_distance = MAX(min_distance, z_min); + max_distance = MIN(max_distance, z_max); + } + } + + real_t range = max_distance - min_distance; + + int splits = 0; + switch (RSG::storage->light_directional_get_shadow_mode(p_instance->base)) { + case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: + splits = 1; + break; + case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: + splits = 2; + break; + case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: + splits = 4; + break; + } + + real_t distances[5]; + + distances[0] = min_distance; + for (int i = 0; i < splits; i++) { + distances[i + 1] = min_distance + RSG::storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range; + }; + + distances[splits] = max_distance; + + real_t texture_size = scene_render->get_directional_light_shadow_size(light->instance); + + bool overlap = RSG::storage->light_directional_get_blend_splits(p_instance->base); + + real_t first_radius = 0.0; + + real_t min_distance_bias_scale = pancake_size > 0 ? distances[1] / 10.0 : 0; + + for (int i = 0; i < splits; i++) { + RENDER_TIMESTAMP("Culling Directional Light split" + itos(i)); + + // setup a camera matrix for that range! + CameraMatrix camera_matrix; + + real_t aspect = p_cam_projection.get_aspect(); + + if (p_cam_orthogonal) { + Vector2 vp_he = p_cam_projection.get_viewport_half_extents(); + + camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); + } else { + real_t fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it + camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true); + } + + //obtain the frustum endpoints + + Vector3 endpoints[8]; // frustum plane endpoints + bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints); + ERR_CONTINUE(!res); + + // obtain the light frustm ranges (given endpoints) + + Transform transform = light_transform; //discard scale and stabilize light + + Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized(); + Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized(); + Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized(); + //z_vec points agsint the camera, like in default opengl + + real_t x_min = 0.f, x_max = 0.f; + real_t y_min = 0.f, y_max = 0.f; + real_t z_min = 0.f, z_max = 0.f; + + // FIXME: z_max_cam is defined, computed, but not used below when setting up + // ortho_camera. Commented out for now to fix warnings but should be investigated. + real_t x_min_cam = 0.f, x_max_cam = 0.f; + real_t y_min_cam = 0.f, y_max_cam = 0.f; + real_t z_min_cam = 0.f; + //real_t z_max_cam = 0.f; + + real_t bias_scale = 1.0; + real_t aspect_bias_scale = 1.0; + + //used for culling + + for (int j = 0; j < 8; j++) { + real_t d_x = x_vec.dot(endpoints[j]); + real_t d_y = y_vec.dot(endpoints[j]); + real_t d_z = z_vec.dot(endpoints[j]); + + if (j == 0 || d_x < x_min) { + x_min = d_x; + } + if (j == 0 || d_x > x_max) { + x_max = d_x; + } + + if (j == 0 || d_y < y_min) { + y_min = d_y; + } + if (j == 0 || d_y > y_max) { + y_max = d_y; + } + + if (j == 0 || d_z < z_min) { + z_min = d_z; + } + if (j == 0 || d_z > z_max) { + z_max = d_z; + } + } + + real_t radius = 0; + real_t soft_shadow_expand = 0; + Vector3 center; + + { + //camera viewport stuff + + for (int j = 0; j < 8; j++) { + center += endpoints[j]; + } + center /= 8.0; + + //center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5; + + for (int j = 0; j < 8; j++) { + real_t d = center.distance_to(endpoints[j]); + if (d > radius) { + radius = d; + } + } + + radius *= texture_size / (texture_size - 2.0); //add a texel by each side + + if (i == 0) { + first_radius = radius; + } else { + bias_scale = radius / first_radius; + } + + z_min_cam = z_vec.dot(center) - radius; + + { + float soft_shadow_angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE); + + if (soft_shadow_angle > 0.0 && pancake_size > 0.0) { + float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam; + soft_shadow_expand = Math::tan(Math::deg2rad(soft_shadow_angle)) * z_range; + + x_max += soft_shadow_expand; + y_max += soft_shadow_expand; + + x_min -= soft_shadow_expand; + y_min -= soft_shadow_expand; + } + } + + x_max_cam = x_vec.dot(center) + radius + soft_shadow_expand; + x_min_cam = x_vec.dot(center) - radius - soft_shadow_expand; + y_max_cam = y_vec.dot(center) + radius + soft_shadow_expand; + y_min_cam = y_vec.dot(center) - radius - soft_shadow_expand; + + if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) { + //this trick here is what stabilizes the shadow (make potential jaggies to not move) + //at the cost of some wasted resolution. Still the quality increase is very well worth it + + real_t unit = radius * 2.0 / texture_size; + + x_max_cam = Math::stepify(x_max_cam, unit); + x_min_cam = Math::stepify(x_min_cam, unit); + y_max_cam = Math::stepify(y_max_cam, unit); + y_min_cam = Math::stepify(y_min_cam, unit); + } + } + + //now that we now all ranges, we can proceed to make the light frustum planes, for culling octree + + Vector<Plane> light_frustum_planes; + light_frustum_planes.resize(6); + + //right/left + light_frustum_planes.write[0] = Plane(x_vec, x_max); + light_frustum_planes.write[1] = Plane(-x_vec, -x_min); + //top/bottom + light_frustum_planes.write[2] = Plane(y_vec, y_max); + light_frustum_planes.write[3] = Plane(-y_vec, -y_min); + //near/far + light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6); + light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed + + int cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + + // a pre pass will need to be needed to determine the actual z-near to be used + + Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); + + real_t cull_max = 0; + for (int j = 0; j < cull_count; j++) { + real_t min, max; + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + continue; + } + + instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max); + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + if (j == 0 || max > cull_max) { + cull_max = max; + } + + if (instance->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_check_for_update(instance->mesh_instance); + } + } + + if (cull_max > z_max) { + z_max = cull_max; + } + + if (pancake_size > 0) { + z_max = z_vec.dot(center) + radius + pancake_size; + } + + if (aspect != 1.0) { + // if the aspect is different, then the radius will become larger. + // if this happens, then bias needs to be adjusted too, as depth will increase + // to do this, compare the depth of one that would have resulted from a square frustum + + CameraMatrix camera_matrix_square; + if (p_cam_orthogonal) { + Vector2 vp_he = camera_matrix.get_viewport_half_extents(); + if (p_cam_vaspect) { + camera_matrix_square.set_orthogonal(vp_he.x * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true); + } else { + camera_matrix_square.set_orthogonal(vp_he.y * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); + } + } else { + Vector2 vp_he = camera_matrix.get_viewport_half_extents(); + if (p_cam_vaspect) { + camera_matrix_square.set_frustum(vp_he.x * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true); + } else { + camera_matrix_square.set_frustum(vp_he.y * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false); + } + } + + Vector3 endpoints_square[8]; // frustum plane endpoints + res = camera_matrix_square.get_endpoints(p_cam_transform, endpoints_square); + ERR_CONTINUE(!res); + Vector3 center_square; + real_t z_max_square = 0; + + for (int j = 0; j < 8; j++) { + center_square += endpoints_square[j]; + + real_t d_z = z_vec.dot(endpoints_square[j]); + + if (j == 0 || d_z > z_max_square) { + z_max_square = d_z; + } + } + + if (cull_max > z_max_square) { + z_max_square = cull_max; + } + + center_square /= 8.0; + + real_t radius_square = 0; + + for (int j = 0; j < 8; j++) { + real_t d = center_square.distance_to(endpoints_square[j]); + if (d > radius_square) { + radius_square = d; + } + } + + radius_square *= texture_size / (texture_size - 2.0); //add a texel by each side + + if (pancake_size > 0) { + z_max_square = z_vec.dot(center_square) + radius_square + pancake_size; + } + + real_t z_min_cam_square = z_vec.dot(center_square) - radius_square; + + aspect_bias_scale = (z_max - z_min_cam) / (z_max_square - z_min_cam_square); + + // this is not entirely perfect, because the cull-adjusted z-max may be different + // but at least it's warranted that it results in a greater bias, so no acne should be present either way. + // pancaking also helps with this. + } + + { + CameraMatrix ortho_camera; + real_t half_x = (x_max_cam - x_min_cam) * 0.5; + real_t half_y = (y_max_cam - y_min_cam) * 0.5; + + ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam)); + + Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam)); + + Transform ortho_transform; + ortho_transform.basis = transform.basis; + ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max; + + { + Vector3 max_in_view = p_cam_transform.affine_inverse().xform(z_vec * cull_max); + Vector3 dir_in_view = p_cam_transform.xform_inv(z_vec).normalized(); + cull_max = dir_in_view.dot(max_in_view); + } + + scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, z_max - z_min_cam, distances[i + 1], i, radius * 2.0 / texture_size, bias_scale * aspect_bias_scale * min_distance_bias_scale, z_max, uv_scale); + } + + RSG::storage->update_mesh_instances(); + + scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RendererSceneRender::InstanceBase **)instance_shadow_cull_result, cull_count); + } + + } break; + case RS::LIGHT_OMNI: { + RS::LightOmniShadowMode shadow_mode = RSG::storage->light_omni_get_shadow_mode(p_instance->base); + + if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !scene_render->light_instances_can_render_shadow_cube()) { + for (int i = 0; i < 2; i++) { + //using this one ensures that raster deferred will have it + RENDER_TIMESTAMP("Culling Shadow Paraboloid" + itos(i)); + + real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); + + real_t z = i == 0 ? -1 : 1; + Vector<Plane> planes; + planes.resize(6); + planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius)); + planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius)); + planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius)); + planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius)); + planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius)); + planes.write[5] = light_transform.xform(Plane(Vector3(0, 0, -z), 0)); + + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z); + + for (int j = 0; j < cull_count; j++) { + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + } else { + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + + if (instance->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_check_for_update(instance->mesh_instance); + } + } + } + + RSG::storage->update_mesh_instances(); + + scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i, 0); + scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RendererSceneRender::InstanceBase **)instance_shadow_cull_result, cull_count); + } + } else { //shadow cube + + real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); + CameraMatrix cm; + cm.set_perspective(90, 1, 0.01, radius); + + for (int i = 0; i < 6; i++) { + RENDER_TIMESTAMP("Culling Shadow Cube side" + itos(i)); + //using this one ensures that raster deferred will have it + + static const Vector3 view_normals[6] = { + Vector3(+1, 0, 0), + Vector3(-1, 0, 0), + Vector3(0, -1, 0), + Vector3(0, +1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1) + }; + static const Vector3 view_up[6] = { + Vector3(0, -1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, -1), + Vector3(0, 0, +1), + Vector3(0, -1, 0), + Vector3(0, -1, 0) + }; + + Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]); + + Vector<Plane> planes = cm.get_projection_planes(xform); + + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + + Plane near_plane(xform.origin, -xform.basis.get_axis(2)); + for (int j = 0; j < cull_count; j++) { + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + } else { + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + if (instance->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_check_for_update(instance->mesh_instance); + } + } + } + + RSG::storage->update_mesh_instances(); + scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i, 0); + scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RendererSceneRender::InstanceBase **)instance_shadow_cull_result, cull_count); + } + + //restore the regular DP matrix + scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0, 0); + } + + } break; + case RS::LIGHT_SPOT: { + RENDER_TIMESTAMP("Culling Spot Light"); + + real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE); + real_t angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); + + CameraMatrix cm; + cm.set_perspective(angle * 2.0, 1.0, 0.01, radius); + + Vector<Plane> planes = cm.get_projection_planes(light_transform); + int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK); + + Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2)); + for (int j = 0; j < cull_count; j++) { + Instance *instance = instance_shadow_cull_result[j]; + if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) { + cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]); + j--; + } else { + if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) { + animated_material_found = true; + } + instance->depth = near_plane.distance_to(instance->transform.origin); + instance->depth_layer = 0; + + if (instance->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_check_for_update(instance->mesh_instance); + } + } + } + + RSG::storage->update_mesh_instances(); + + scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0, 0); + scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RendererSceneRender::InstanceBase **)instance_shadow_cull_result, cull_count); + + } break; + } + + return animated_material_found; +} + +void RendererSceneCull::render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { +// render to mono camera +#ifndef _3D_DISABLED + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + + /* STEP 1 - SETUP CAMERA */ + CameraMatrix camera_matrix; + bool ortho = false; + + switch (camera->type) { + case Camera::ORTHOGONAL: { + camera_matrix.set_orthogonal( + camera->size, + p_viewport_size.width / (float)p_viewport_size.height, + camera->znear, + camera->zfar, + camera->vaspect); + ortho = true; + } break; + case Camera::PERSPECTIVE: { + camera_matrix.set_perspective( + camera->fov, + p_viewport_size.width / (float)p_viewport_size.height, + camera->znear, + camera->zfar, + camera->vaspect); + ortho = false; + + } break; + case Camera::FRUSTUM: { + camera_matrix.set_frustum( + camera->size, + p_viewport_size.width / (float)p_viewport_size.height, + camera->offset, + camera->znear, + camera->zfar, + camera->vaspect); + ortho = false; + } break; + } + + RID environment = _render_get_environment(p_camera, p_scenario); + + _prepare_scene(camera->transform, camera_matrix, ortho, camera->vaspect, p_render_buffers, environment, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); + _render_scene(p_render_buffers, camera->transform, camera_matrix, ortho, environment, camera->effects, p_scenario, p_shadow_atlas, RID(), -1); +#endif +} + +void RendererSceneCull::render_camera(RID p_render_buffers, Ref<XRInterface> &p_interface, XRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) { + // render for AR/VR interface + + Camera *camera = camera_owner.getornull(p_camera); + ERR_FAIL_COND(!camera); + + /* SETUP CAMERA, we are ignoring type and FOV here */ + float aspect = p_viewport_size.width / (float)p_viewport_size.height; + CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar); + + // We also ignore our camera position, it will have been positioned with a slightly old tracking position. + // Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo! + Transform world_origin = XRServer::get_singleton()->get_world_origin(); + Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin); + + RID environment = _render_get_environment(p_camera, p_scenario); + + // For stereo render we only prepare for our left eye and then reuse the outcome for our right eye + if (p_eye == XRInterface::EYE_LEFT) { + // Center our transform, we assume basis is equal. + Transform mono_transform = cam_transform; + Transform right_transform = p_interface->get_transform_for_eye(XRInterface::EYE_RIGHT, world_origin); + mono_transform.origin += right_transform.origin; + mono_transform.origin *= 0.5; + + // We need to combine our projection frustums for culling. + // Ideally we should use our clipping planes for this and combine them, + // however our shadow map logic uses our projection matrix. + // Note: as our left and right frustums should be mirrored, we don't need our right projection matrix. + + // - get some base values we need + float eye_dist = (mono_transform.origin - cam_transform.origin).length(); + float z_near = camera_matrix.get_z_near(); // get our near plane + float z_far = camera_matrix.get_z_far(); // get our far plane + float width = (2.0 * z_near) / camera_matrix.matrix[0][0]; + float x_shift = width * camera_matrix.matrix[2][0]; + float height = (2.0 * z_near) / camera_matrix.matrix[1][1]; + float y_shift = height * camera_matrix.matrix[2][1]; + + // printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift); + + // - calculate our near plane size (horizontal only, right_near is mirrored) + float left_near = -eye_dist - ((width - x_shift) * 0.5); + + // - calculate our far plane size (horizontal only, right_far is mirrored) + float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near); + float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near); + if (left_far > left_far_right_eye) { + // on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes. + left_far = left_far_right_eye; + } + + // - figure out required z-shift + float slope = (left_far - left_near) / (z_far - z_near); + float z_shift = (left_near / slope) - z_near; + + // - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift) + float top_near = (height - y_shift) * 0.5; + top_near += (top_near / z_near) * z_shift; + float bottom_near = -(height + y_shift) * 0.5; + bottom_near += (bottom_near / z_near) * z_shift; + + // printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift); + + // - generate our frustum + CameraMatrix combined_matrix; + combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift); + + // and finally move our camera back + Transform apply_z_shift; + apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards + mono_transform *= apply_z_shift; + + // now prepare our scene with our adjusted transform projection matrix + _prepare_scene(mono_transform, combined_matrix, false, false, p_render_buffers, environment, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); + } else if (p_eye == XRInterface::EYE_MONO) { + // For mono render, prepare as per usual + _prepare_scene(cam_transform, camera_matrix, false, false, p_render_buffers, environment, camera->visible_layers, p_scenario, p_shadow_atlas, RID()); + } + + // And render our scene... + _render_scene(p_render_buffers, cam_transform, camera_matrix, false, environment, camera->effects, p_scenario, p_shadow_atlas, RID(), -1); +}; + +void RendererSceneCull::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_render_buffers, RID p_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, bool p_using_shadows) { + // Note, in stereo rendering: + // - p_cam_transform will be a transform in the middle of our two eyes + // - p_cam_projection is a wider frustrum that encompasses both eyes + + Scenario *scenario = scenario_owner.getornull(p_scenario); + + render_pass++; + uint32_t camera_layer_mask = p_visible_layers; + + scene_render->set_scene_pass(render_pass); + + if (p_render_buffers.is_valid()) { + scene_render->sdfgi_update(p_render_buffers, p_environment, p_cam_transform.origin); //update conditions for SDFGI (whether its used or not) + } + + RENDER_TIMESTAMP("Frustum Culling"); + + //rasterizer->set_camera(camera->transform, camera_matrix,ortho); + + Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform); + + Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized()); + float z_far = p_cam_projection.get_z_far(); + + /* STEP 2 - CULL */ + instance_cull_count = scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL); + light_cull_count = 0; + + reflection_probe_cull_count = 0; + decal_cull_count = 0; + gi_probe_cull_count = 0; + lightmap_cull_count = 0; + + //light_samplers_culled=0; + + /* + print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0)); + print_line("OTO: "+itos(p_scenario->octree.get_octant_count())); + print_line("OTE: "+itos(p_scenario->octree.get_elem_count())); + print_line("OTP: "+itos(p_scenario->octree.get_pair_count())); + */ + + /* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */ + //removed, will replace with culling + + /* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */ + uint64_t frame_number = RSG::rasterizer->get_frame_number(); + float lightmap_probe_update_speed = RSG::storage->lightmap_get_probe_capture_update_speed() * RSG::rasterizer->get_frame_delta_time(); + + for (int i = 0; i < instance_cull_count; i++) { + Instance *ins = instance_cull_result[i]; + + bool keep = false; + + if ((camera_layer_mask & ins->layer_mask) == 0) { + //failure + } else if (ins->base_type == RS::INSTANCE_LIGHT && ins->visible) { + if (light_cull_count < MAX_LIGHTS_CULLED) { + InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data); + + if (!light->geometries.empty()) { + //do not add this light if no geometry is affected by it.. + light_cull_result[light_cull_count] = ins; + light_instance_cull_result[light_cull_count] = light->instance; + if (p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(ins->base)) { + scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later + } + + light_cull_count++; + } + } + } else if (ins->base_type == RS::INSTANCE_REFLECTION_PROBE && ins->visible) { + if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(ins->base_data); + + if (p_reflection_probe != reflection_probe->instance) { + //avoid entering The Matrix + + if (!reflection_probe->geometries.empty()) { + //do not add this light if no geometry is affected by it.. + + if (reflection_probe->reflection_dirty || scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) { + if (!reflection_probe->update_list.in_list()) { + reflection_probe->render_step = 0; + reflection_probe_render_list.add_last(&reflection_probe->update_list); + } + + reflection_probe->reflection_dirty = false; + } + + if (scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) { + reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance; + reflection_probe_cull_count++; + } + } + } + } + } else if (ins->base_type == RS::INSTANCE_DECAL && ins->visible) { + if (decal_cull_count < MAX_DECALS_CULLED) { + InstanceDecalData *decal = static_cast<InstanceDecalData *>(ins->base_data); + + if (!decal->geometries.empty()) { + //do not add this decal if no geometry is affected by it.. + decal_instance_cull_result[decal_cull_count] = decal->instance; + decal_cull_count++; + } + } + + } else if (ins->base_type == RS::INSTANCE_GI_PROBE && ins->visible) { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(ins->base_data); + if (!gi_probe->update_element.in_list()) { + gi_probe_update_list.add(&gi_probe->update_element); + } + + if (gi_probe_cull_count < MAX_GI_PROBES_CULLED) { + gi_probe_instance_cull_result[gi_probe_cull_count] = gi_probe->probe_instance; + gi_probe_cull_count++; + } + } else if (ins->base_type == RS::INSTANCE_LIGHTMAP && ins->visible) { + if (lightmap_cull_count < MAX_LIGHTMAPS_CULLED) { + lightmap_cull_result[lightmap_cull_count] = ins; + lightmap_cull_count++; + } + + } else if (((1 << ins->base_type) & RS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) { + keep = true; + + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(ins->base_data); + + if (ins->redraw_if_visible) { + RenderingServerDefault::redraw_request(); + } + + if (ins->base_type == RS::INSTANCE_PARTICLES) { + //particles visible? process them + if (RSG::storage->particles_is_inactive(ins->base)) { + //but if nothing is going on, don't do it. + keep = false; + } else { + RSG::storage->particles_request_process(ins->base); + RSG::storage->particles_set_view_axis(ins->base, -p_cam_transform.basis.get_axis(2).normalized()); + //particles visible? request redraw + RenderingServerDefault::redraw_request(); + } + } + + if (geom->lighting_dirty) { + int l = 0; + //only called when lights AABB enter/exit this geometry + ins->light_instances.resize(geom->lighting.size()); + + for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) { + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + + ins->light_instances.write[l++] = light->instance; + } + + geom->lighting_dirty = false; + } + + if (geom->reflection_dirty) { + int l = 0; + //only called when reflection probe AABB enter/exit this geometry + ins->reflection_probe_instances.resize(geom->reflection_probes.size()); + + for (List<Instance *>::Element *E = geom->reflection_probes.front(); E; E = E->next()) { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data); + + ins->reflection_probe_instances.write[l++] = reflection_probe->instance; + } + + geom->reflection_dirty = false; + } + + if (geom->gi_probes_dirty) { + int l = 0; + //only called when reflection probe AABB enter/exit this geometry + ins->gi_probe_instances.resize(geom->gi_probes.size()); + + for (List<Instance *>::Element *E = geom->gi_probes.front(); E; E = E->next()) { + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(E->get()->base_data); + + ins->gi_probe_instances.write[l++] = gi_probe->probe_instance; + } + + geom->gi_probes_dirty = false; + } + + if (ins->last_frame_pass != frame_number && !ins->lightmap_target_sh.empty() && !ins->lightmap_sh.empty()) { + Color *sh = ins->lightmap_sh.ptrw(); + const Color *target_sh = ins->lightmap_target_sh.ptr(); + for (uint32_t j = 0; j < 9; j++) { + sh[j] = sh[j].lerp(target_sh[j], MIN(1.0, lightmap_probe_update_speed)); + } + } + + if (ins->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_check_for_update(ins->mesh_instance); + } + + ins->depth = near_plane.distance_to(ins->transform.origin); + ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15); + } + + if (!keep) { + // remove, no reason to keep + instance_cull_count--; + SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]); + i--; + ins->last_render_pass = 0; // make invalid + } else { + ins->last_render_pass = render_pass; + } + ins->last_frame_pass = frame_number; + } + + RSG::storage->update_mesh_instances(); + + /* STEP 5 - PROCESS LIGHTS */ + + RID *directional_light_ptr = &light_instance_cull_result[light_cull_count]; + directional_light_count = 0; + + // directional lights + { + Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size()); + int directional_shadow_count = 0; + + for (List<Instance *>::Element *E = scenario->directional_lights.front(); E; E = E->next()) { + if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) { + break; + } + + if (!E->get()->visible) { + continue; + } + + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + + //check shadow.. + + if (light) { + if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(E->get()->base) && !(RSG::storage->light_get_type(E->get()->base) == RS::LIGHT_DIRECTIONAL && RSG::storage->light_directional_is_sky_only(E->get()->base))) { + lights_with_shadow[directional_shadow_count++] = E->get(); + } + //add to list + directional_light_ptr[directional_light_count++] = light->instance; + } + } + + scene_render->set_directional_shadow_count(directional_shadow_count); + + for (int i = 0; i < directional_shadow_count; i++) { + RENDER_TIMESTAMP(">Rendering Directional Light " + itos(i)); + + _light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario); + + RENDER_TIMESTAMP("<Rendering Directional Light " + itos(i)); + } + } + + if (p_using_shadows) { //setup shadow maps + + //SortArray<Instance*,_InstanceLightsort> sorter; + //sorter.sort(light_cull_result,light_cull_count); + for (int i = 0; i < light_cull_count; i++) { + Instance *ins = light_cull_result[i]; + + if (!p_shadow_atlas.is_valid() || !RSG::storage->light_has_shadow(ins->base)) { + continue; + } + + InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data); + + float coverage = 0.f; + + { //compute coverage + + Transform cam_xf = p_cam_transform; + float zn = p_cam_projection.get_z_near(); + Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane + + // near plane half width and height + Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents(); + + switch (RSG::storage->light_get_type(ins->base)) { + case RS::LIGHT_OMNI: { + float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE); + + //get two points parallel to near plane + Vector3 points[2] = { + ins->transform.origin, + ins->transform.origin + cam_xf.basis.get_axis(0) * radius + }; + + if (!p_cam_orthogonal) { + //if using perspetive, map them to near plane + for (int j = 0; j < 2; j++) { + if (p.distance_to(points[j]) < 0) { + points[j].z = -zn; //small hack to keep size constant when hitting the screen + } + + p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane + } + } + + float screen_diameter = points[0].distance_to(points[1]) * 2; + coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); + } break; + case RS::LIGHT_SPOT: { + float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE); + float angle = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE); + + float w = radius * Math::sin(Math::deg2rad(angle)); + float d = radius * Math::cos(Math::deg2rad(angle)); + + Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d; + + Vector3 points[2] = { + base, + base + cam_xf.basis.get_axis(0) * w + }; + + if (!p_cam_orthogonal) { + //if using perspetive, map them to near plane + for (int j = 0; j < 2; j++) { + if (p.distance_to(points[j]) < 0) { + points[j].z = -zn; //small hack to keep size constant when hitting the screen + } + + p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane + } + } + + float screen_diameter = points[0].distance_to(points[1]) * 2; + coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y); + + } break; + default: { + ERR_PRINT("Invalid Light Type"); + } + } + } + + if (light->shadow_dirty) { + light->last_version++; + light->shadow_dirty = false; + } + + bool redraw = scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version); + + if (redraw) { + //must redraw! + RENDER_TIMESTAMP(">Rendering Light " + itos(i)); + light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario); + RENDER_TIMESTAMP("<Rendering Light " + itos(i)); + } + } + } + + /* UPDATE SDFGI */ + + if (p_render_buffers.is_valid()) { + uint32_t cascade_index[8]; + uint32_t cascade_sizes[8]; + const RID *cascade_ptrs[8]; + uint32_t cascade_count = 0; + uint32_t sdfgi_light_cull_count = 0; + + uint32_t prev_cascade = 0xFFFFFFFF; + for (int i = 0; i < scene_render->sdfgi_get_pending_region_count(p_render_buffers); i++) { + AABB region = scene_render->sdfgi_get_pending_region_bounds(p_render_buffers, i); + uint32_t region_cascade = scene_render->sdfgi_get_pending_region_cascade(p_render_buffers, i); + + if (region_cascade != prev_cascade) { + cascade_sizes[cascade_count] = 0; + cascade_index[cascade_count] = region_cascade; + cascade_ptrs[cascade_count] = &sdfgi_light_cull_result[sdfgi_light_cull_count]; + cascade_count++; + sdfgi_light_cull_pass++; + prev_cascade = region_cascade; + } + uint32_t sdfgi_cull_count = scenario->octree.cull_aabb(region, instance_shadow_cull_result, MAX_INSTANCE_CULL); + + for (uint32_t j = 0; j < sdfgi_cull_count; j++) { + Instance *ins = instance_shadow_cull_result[j]; + + bool keep = false; + + if (ins->base_type == RS::INSTANCE_LIGHT && ins->visible) { + InstanceLightData *instance_light = (InstanceLightData *)ins->base_data; + if (instance_light->bake_mode != RS::LIGHT_BAKE_STATIC || region_cascade > instance_light->max_sdfgi_cascade) { + continue; + } + + if (sdfgi_light_cull_pass != instance_light->sdfgi_cascade_light_pass && sdfgi_light_cull_count < MAX_LIGHTS_CULLED) { + instance_light->sdfgi_cascade_light_pass = sdfgi_light_cull_pass; + sdfgi_light_cull_result[sdfgi_light_cull_count++] = instance_light->instance; + cascade_sizes[cascade_count - 1]++; + } + } else if ((1 << ins->base_type) & RS::INSTANCE_GEOMETRY_MASK) { + if (ins->baked_light) { + keep = true; + if (ins->mesh_instance.is_valid()) { + RSG::storage->mesh_instance_check_for_update(ins->mesh_instance); + } + } + } + + if (!keep) { + // remove, no reason to keep + sdfgi_cull_count--; + SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[sdfgi_cull_count]); + j--; + } + } + + RSG::storage->update_mesh_instances(); + + scene_render->render_sdfgi(p_render_buffers, i, (RendererSceneRender::InstanceBase **)instance_shadow_cull_result, sdfgi_cull_count); + //have to save updated cascades, then update static lights. + } + + if (sdfgi_light_cull_count) { + scene_render->render_sdfgi_static_lights(p_render_buffers, cascade_count, cascade_index, cascade_ptrs, cascade_sizes); + } + + scene_render->sdfgi_update_probes(p_render_buffers, p_environment, directional_light_ptr, directional_light_count, scenario->dynamic_lights.ptr(), scenario->dynamic_lights.size()); + } +} + +RID RendererSceneCull::_render_get_environment(RID p_camera, RID p_scenario) { + Camera *camera = camera_owner.getornull(p_camera); + if (camera && scene_render->is_environment(camera->env)) { + return camera->env; + } + + Scenario *scenario = scenario_owner.getornull(p_scenario); + if (!scenario) { + return RID(); + } + if (scene_render->is_environment(scenario->environment)) { + return scenario->environment; + } + + if (scene_render->is_environment(scenario->fallback_environment)) { + return scenario->fallback_environment; + } + + return RID(); +} + +void RendererSceneCull::_render_scene(RID p_render_buffers, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_environment, RID p_force_camera_effects, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { + Scenario *scenario = scenario_owner.getornull(p_scenario); + + RID camera_effects; + if (p_force_camera_effects.is_valid()) { + camera_effects = p_force_camera_effects; + } else { + camera_effects = scenario->camera_effects; + } + /* PROCESS GEOMETRY AND DRAW SCENE */ + + RENDER_TIMESTAMP("Render Scene "); + scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RendererSceneRender::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, gi_probe_instance_cull_result, gi_probe_cull_count, decal_instance_cull_result, decal_cull_count, (RendererSceneRender::InstanceBase **)lightmap_cull_result, lightmap_cull_count, p_environment, camera_effects, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass); +} + +void RendererSceneCull::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) { +#ifndef _3D_DISABLED + + Scenario *scenario = scenario_owner.getornull(p_scenario); + + RID environment; + if (scenario->environment.is_valid()) { + environment = scenario->environment; + } else { + environment = scenario->fallback_environment; + } + RENDER_TIMESTAMP("Render Empty Scene "); + scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, environment, RID(), p_shadow_atlas, scenario->reflection_atlas, RID(), 0); +#endif +} + +bool RendererSceneCull::_render_reflection_probe_step(Instance *p_instance, int p_step) { + InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data); + Scenario *scenario = p_instance->scenario; + ERR_FAIL_COND_V(!scenario, true); + + RenderingServerDefault::redraw_request(); //update, so it updates in editor + + if (p_step == 0) { + if (!scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) { + return true; //all full + } + } + + if (p_step >= 0 && p_step < 6) { + static const Vector3 view_normals[6] = { + Vector3(+1, 0, 0), + Vector3(-1, 0, 0), + Vector3(0, +1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1) + }; + static const Vector3 view_up[6] = { + Vector3(0, -1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1), + Vector3(0, -1, 0), + Vector3(0, -1, 0) + }; + + Vector3 extents = RSG::storage->reflection_probe_get_extents(p_instance->base); + Vector3 origin_offset = RSG::storage->reflection_probe_get_origin_offset(p_instance->base); + float max_distance = RSG::storage->reflection_probe_get_origin_max_distance(p_instance->base); + + Vector3 edge = view_normals[p_step] * extents; + float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit + + max_distance = MAX(max_distance, distance); + + //render cubemap side + CameraMatrix cm; + cm.set_perspective(90, 1, 0.01, max_distance); + + Transform local_view; + local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]); + + Transform xform = p_instance->transform * local_view; + + RID shadow_atlas; + + bool use_shadows = RSG::storage->reflection_probe_renders_shadows(p_instance->base); + if (use_shadows) { + shadow_atlas = scenario->reflection_probe_shadow_atlas; + } + + RENDER_TIMESTAMP("Render Reflection Probe, Step " + itos(p_step)); + _prepare_scene(xform, cm, false, false, RID(), RID(), RSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, use_shadows); + _render_scene(RID(), xform, cm, false, RID(), RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step); + + } else { + //do roughness postprocess step until it believes it's done + RENDER_TIMESTAMP("Post-Process Reflection Probe, Step " + itos(p_step)); + return scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance); + } + + return false; +} + +void RendererSceneCull::render_probes() { + /* REFLECTION PROBES */ + + SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first(); + + bool busy = false; + + while (ref_probe) { + SelfList<InstanceReflectionProbeData> *next = ref_probe->next(); + RID base = ref_probe->self()->owner->base; + + switch (RSG::storage->reflection_probe_get_update_mode(base)) { + case RS::REFLECTION_PROBE_UPDATE_ONCE: { + if (busy) { //already rendering something + break; + } + + bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step); + if (done) { + reflection_probe_render_list.remove(ref_probe); + } else { + ref_probe->self()->render_step++; + } + + busy = true; //do not render another one of this kind + } break; + case RS::REFLECTION_PROBE_UPDATE_ALWAYS: { + int step = 0; + bool done = false; + while (!done) { + done = _render_reflection_probe_step(ref_probe->self()->owner, step); + step++; + } + + reflection_probe_render_list.remove(ref_probe); + } break; + } + + ref_probe = next; + } + + /* GI PROBES */ + + SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first(); + + if (gi_probe) { + RENDER_TIMESTAMP("Render GI Probes"); + } + + while (gi_probe) { + SelfList<InstanceGIProbeData> *next = gi_probe->next(); + + InstanceGIProbeData *probe = gi_probe->self(); + //Instance *instance_probe = probe->owner; + + //check if probe must be setup, but don't do if on the lighting thread + + bool cache_dirty = false; + int cache_count = 0; + { + int light_cache_size = probe->light_cache.size(); + const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr(); + const RID *instance_caches = probe->light_instances.ptr(); + + int idx = 0; //must count visible lights + for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + if (cache_dirty) { + //do nothing, since idx must count all visible lights anyway + } else if (idx >= light_cache_size) { + cache_dirty = true; + } else { + const InstanceGIProbeData::LightCache *cache = &caches[idx]; + + if ( + instance_caches[idx] != instance_light->instance || + cache->has_shadow != RSG::storage->light_has_shadow(instance->base) || + cache->type != RSG::storage->light_get_type(instance->base) || + cache->transform != instance->transform || + cache->color != RSG::storage->light_get_color(instance->base) || + cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) || + cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) || + cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) || + cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) || + cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) || + cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) { + cache_dirty = true; + } + } + + idx++; + } + + for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + if (cache_dirty) { + //do nothing, since idx must count all visible lights anyway + } else if (idx >= light_cache_size) { + cache_dirty = true; + } else { + const InstanceGIProbeData::LightCache *cache = &caches[idx]; + + if ( + instance_caches[idx] != instance_light->instance || + cache->has_shadow != RSG::storage->light_has_shadow(instance->base) || + cache->type != RSG::storage->light_get_type(instance->base) || + cache->transform != instance->transform || + cache->color != RSG::storage->light_get_color(instance->base) || + cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) || + cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) || + cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) || + cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) || + cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) || + cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION) || + cache->sky_only != RSG::storage->light_directional_is_sky_only(instance->base)) { + cache_dirty = true; + } + } + + idx++; + } + + if (idx != light_cache_size) { + cache_dirty = true; + } + + cache_count = idx; + } + + bool update_lights = scene_render->gi_probe_needs_update(probe->probe_instance); + + if (cache_dirty) { + probe->light_cache.resize(cache_count); + probe->light_instances.resize(cache_count); + + if (cache_count) { + InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw(); + RID *instance_caches = probe->light_instances.ptrw(); + + int idx = 0; //must count visible lights + for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + + InstanceGIProbeData::LightCache *cache = &caches[idx]; + + instance_caches[idx] = instance_light->instance; + cache->has_shadow = RSG::storage->light_has_shadow(instance->base); + cache->type = RSG::storage->light_get_type(instance->base); + cache->transform = instance->transform; + cache->color = RSG::storage->light_get_color(instance->base); + cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY); + cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY); + cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE); + cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION); + cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); + cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION); + + idx++; + } + for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + + InstanceGIProbeData::LightCache *cache = &caches[idx]; + + instance_caches[idx] = instance_light->instance; + cache->has_shadow = RSG::storage->light_has_shadow(instance->base); + cache->type = RSG::storage->light_get_type(instance->base); + cache->transform = instance->transform; + cache->color = RSG::storage->light_get_color(instance->base); + cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY); + cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY); + cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE); + cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION); + cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE); + cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION); + cache->sky_only = RSG::storage->light_directional_is_sky_only(instance->base); + + idx++; + } + } + + update_lights = true; + } + + instance_cull_count = 0; + for (List<InstanceGIProbeData::PairInfo>::Element *E = probe->dynamic_geometries.front(); E; E = E->next()) { + if (instance_cull_count < MAX_INSTANCE_CULL) { + Instance *ins = E->get().geometry; + if (!ins->visible) { + continue; + } + InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data; + + if (geom->gi_probes_dirty) { + //giprobes may be dirty, so update + int l = 0; + //only called when reflection probe AABB enter/exit this geometry + ins->gi_probe_instances.resize(geom->gi_probes.size()); + + for (List<Instance *>::Element *F = geom->gi_probes.front(); F; F = F->next()) { + InstanceGIProbeData *gi_probe2 = static_cast<InstanceGIProbeData *>(F->get()->base_data); + + ins->gi_probe_instances.write[l++] = gi_probe2->probe_instance; + } + + geom->gi_probes_dirty = false; + } + + instance_cull_result[instance_cull_count++] = E->get().geometry; + } + } + + scene_render->gi_probe_update(probe->probe_instance, update_lights, probe->light_instances, instance_cull_count, (RendererSceneRender::InstanceBase **)instance_cull_result); + + gi_probe_update_list.remove(gi_probe); + + gi_probe = next; + } +} + +void RendererSceneCull::render_particle_colliders() { + while (heightfield_particle_colliders_update_list.front()) { + Instance *hfpc = heightfield_particle_colliders_update_list.front()->get(); + + if (hfpc->scenario && hfpc->base_type == RS::INSTANCE_PARTICLES_COLLISION && RSG::storage->particles_collision_is_heightfield(hfpc->base)) { + //update heightfield + int cull_count = hfpc->scenario->octree.cull_aabb(hfpc->transformed_aabb, instance_cull_result, MAX_INSTANCE_CULL); //@TODO: cull mask missing + for (int i = 0; i < cull_count; i++) { + Instance *instance = instance_cull_result[i]; + if (!instance->visible || !((1 << instance->base_type) & (RS::INSTANCE_GEOMETRY_MASK & (~(1 << RS::INSTANCE_PARTICLES))))) { //all but particles to avoid self collision + cull_count--; + SWAP(instance_cull_result[i], instance_cull_result[cull_count]); + } + } + + scene_render->render_particle_collider_heightfield(hfpc->base, hfpc->transform, (RendererSceneRender::InstanceBase **)instance_cull_result, cull_count); + } + heightfield_particle_colliders_update_list.erase(heightfield_particle_colliders_update_list.front()); + } +} + +void RendererSceneCull::_update_instance_shader_parameters_from_material(Map<StringName, RendererSceneRender::InstanceBase::InstanceShaderParameter> &isparams, const Map<StringName, RendererSceneRender::InstanceBase::InstanceShaderParameter> &existing_isparams, RID p_material) { + List<RendererStorage::InstanceShaderParam> plist; + RSG::storage->material_get_instance_shader_parameters(p_material, &plist); + for (List<RendererStorage::InstanceShaderParam>::Element *E = plist.front(); E; E = E->next()) { + StringName name = E->get().info.name; + if (isparams.has(name)) { + if (isparams[name].info.type != E->get().info.type) { + WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different data types. Only the first one (in order) will display correctly."); + } + if (isparams[name].index != E->get().index) { + WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different indices. Only the first one (in order) will display correctly."); + } + continue; //first one found always has priority + } + + RendererSceneRender::InstanceBase::InstanceShaderParameter isp; + isp.index = E->get().index; + isp.info = E->get().info; + isp.default_value = E->get().default_value; + if (existing_isparams.has(name)) { + isp.value = existing_isparams[name].value; + } else { + isp.value = E->get().default_value; + } + isparams[name] = isp; + } +} + +void RendererSceneCull::_update_dirty_instance(Instance *p_instance) { + if (p_instance->update_aabb) { + _update_instance_aabb(p_instance); + } + + if (p_instance->update_dependencies) { + p_instance->instance_increase_version(); + + if (p_instance->base.is_valid()) { + RSG::storage->base_update_dependency(p_instance->base, p_instance); + } + + if (p_instance->material_override.is_valid()) { + RSG::storage->material_update_dependency(p_instance->material_override, p_instance); + } + + if (p_instance->base_type == RS::INSTANCE_MESH) { + //remove materials no longer used and un-own them + + int new_mat_count = RSG::storage->mesh_get_surface_count(p_instance->base); + p_instance->materials.resize(new_mat_count); + + _instance_update_mesh_instance(p_instance); + } + + if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) { + InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data); + + bool can_cast_shadows = true; + bool is_animated = false; + Map<StringName, RendererSceneRender::InstanceBase::InstanceShaderParameter> isparams; + + if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) { + can_cast_shadows = false; + } + + if (p_instance->material_override.is_valid()) { + if (!RSG::storage->material_casts_shadows(p_instance->material_override)) { + can_cast_shadows = false; + } + is_animated = RSG::storage->material_is_animated(p_instance->material_override); + _update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, p_instance->material_override); + } else { + if (p_instance->base_type == RS::INSTANCE_MESH) { + RID mesh = p_instance->base; + + if (mesh.is_valid()) { + bool cast_shadows = false; + + for (int i = 0; i < p_instance->materials.size(); i++) { + RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::storage->mesh_surface_get_material(mesh, i); + + if (!mat.is_valid()) { + cast_shadows = true; + } else { + if (RSG::storage->material_casts_shadows(mat)) { + cast_shadows = true; + } + + if (RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + _update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat); + + RSG::storage->material_update_dependency(mat, p_instance); + } + } + + if (!cast_shadows) { + can_cast_shadows = false; + } + } + + } else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) { + RID mesh = RSG::storage->multimesh_get_mesh(p_instance->base); + if (mesh.is_valid()) { + bool cast_shadows = false; + + int sc = RSG::storage->mesh_get_surface_count(mesh); + for (int i = 0; i < sc; i++) { + RID mat = RSG::storage->mesh_surface_get_material(mesh, i); + + if (!mat.is_valid()) { + cast_shadows = true; + + } else { + if (RSG::storage->material_casts_shadows(mat)) { + cast_shadows = true; + } + if (RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + _update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat); + + RSG::storage->material_update_dependency(mat, p_instance); + } + } + + if (!cast_shadows) { + can_cast_shadows = false; + } + + RSG::storage->base_update_dependency(mesh, p_instance); + } + } else if (p_instance->base_type == RS::INSTANCE_IMMEDIATE) { + RID mat = RSG::storage->immediate_get_material(p_instance->base); + + if (!(!mat.is_valid() || RSG::storage->material_casts_shadows(mat))) { + can_cast_shadows = false; + } + + if (mat.is_valid() && RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + if (mat.is_valid()) { + _update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat); + } + + if (mat.is_valid()) { + RSG::storage->material_update_dependency(mat, p_instance); + } + + } else if (p_instance->base_type == RS::INSTANCE_PARTICLES) { + bool cast_shadows = false; + + int dp = RSG::storage->particles_get_draw_passes(p_instance->base); + + for (int i = 0; i < dp; i++) { + RID mesh = RSG::storage->particles_get_draw_pass_mesh(p_instance->base, i); + if (!mesh.is_valid()) { + continue; + } + + int sc = RSG::storage->mesh_get_surface_count(mesh); + for (int j = 0; j < sc; j++) { + RID mat = RSG::storage->mesh_surface_get_material(mesh, j); + + if (!mat.is_valid()) { + cast_shadows = true; + } else { + if (RSG::storage->material_casts_shadows(mat)) { + cast_shadows = true; + } + + if (RSG::storage->material_is_animated(mat)) { + is_animated = true; + } + + _update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat); + + RSG::storage->material_update_dependency(mat, p_instance); + } + } + } + + if (!cast_shadows) { + can_cast_shadows = false; + } + } + } + + if (can_cast_shadows != geom->can_cast_shadows) { + //ability to cast shadows change, let lights now + for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) { + InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data); + light->shadow_dirty = true; + } + + geom->can_cast_shadows = can_cast_shadows; + } + + geom->material_is_animated = is_animated; + p_instance->instance_shader_parameters = isparams; + + if (p_instance->instance_allocated_shader_parameters != (p_instance->instance_shader_parameters.size() > 0)) { + p_instance->instance_allocated_shader_parameters = (p_instance->instance_shader_parameters.size() > 0); + if (p_instance->instance_allocated_shader_parameters) { + p_instance->instance_allocated_shader_parameters_offset = RSG::storage->global_variables_instance_allocate(p_instance->self); + for (Map<StringName, RendererSceneRender::InstanceBase::InstanceShaderParameter>::Element *E = p_instance->instance_shader_parameters.front(); E; E = E->next()) { + if (E->get().value.get_type() != Variant::NIL) { + RSG::storage->global_variables_instance_update(p_instance->self, E->get().index, E->get().value); + } + } + } else { + RSG::storage->global_variables_instance_free(p_instance->self); + p_instance->instance_allocated_shader_parameters_offset = -1; + } + } + } + + if (p_instance->skeleton.is_valid()) { + RSG::storage->skeleton_update_dependency(p_instance->skeleton, p_instance); + } + + p_instance->clean_up_dependencies(); + } + + _instance_update_list.remove(&p_instance->update_item); + + _update_instance(p_instance); + + p_instance->update_aabb = false; + p_instance->update_dependencies = false; +} + +void RendererSceneCull::update_dirty_instances() { + RSG::storage->update_dirty_resources(); + + while (_instance_update_list.first()) { + _update_dirty_instance(_instance_update_list.first()->self()); + } +} + +void RendererSceneCull::update() { + scene_render->update(); + update_dirty_instances(); + render_particle_colliders(); +} + +bool RendererSceneCull::free(RID p_rid) { + if (scene_render->free(p_rid)) { + return true; + } + + if (camera_owner.owns(p_rid)) { + Camera *camera = camera_owner.getornull(p_rid); + + camera_owner.free(p_rid); + memdelete(camera); + + } else if (scenario_owner.owns(p_rid)) { + Scenario *scenario = scenario_owner.getornull(p_rid); + + while (scenario->instances.first()) { + instance_set_scenario(scenario->instances.first()->self()->self, RID()); + } + scene_render->free(scenario->reflection_probe_shadow_atlas); + scene_render->free(scenario->reflection_atlas); + scenario_owner.free(p_rid); + memdelete(scenario); + + } else if (instance_owner.owns(p_rid)) { + // delete the instance + + update_dirty_instances(); + + Instance *instance = instance_owner.getornull(p_rid); + + instance_geometry_set_lightmap(p_rid, RID(), Rect2(), 0); + instance_set_scenario(p_rid, RID()); + instance_set_base(p_rid, RID()); + instance_geometry_set_material_override(p_rid, RID()); + instance_attach_skeleton(p_rid, RID()); + + if (instance->instance_allocated_shader_parameters) { + //free the used shader parameters + RSG::storage->global_variables_instance_free(instance->self); + } + update_dirty_instances(); //in case something changed this + + instance_owner.free(p_rid); + memdelete(instance); + } else { + return false; + } + + return true; +} + +TypedArray<Image> RendererSceneCull::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) { + return scene_render->bake_render_uv2(p_base, p_material_overrides, p_image_size); +} + +/*******************************/ +/* Passthrough to Scene Render */ +/*******************************/ + +/* ENVIRONMENT API */ + +RendererSceneCull *RendererSceneCull::singleton = nullptr; + +RendererSceneCull::RendererSceneCull() { + render_pass = 1; + singleton = this; +} + +RendererSceneCull::~RendererSceneCull() { +} |