diff options
Diffstat (limited to 'servers/rendering/renderer_rd/shaders')
13 files changed, 3381 insertions, 1490 deletions
diff --git a/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl b/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl index 3a4bf4da07..8e616ebe1f 100644 --- a/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl +++ b/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl @@ -1,105 +1,3 @@ - #define CLUSTER_COUNTER_SHIFT 20 #define CLUSTER_POINTER_MASK ((1 << CLUSTER_COUNTER_SHIFT) - 1) #define CLUSTER_COUNTER_MASK 0xfff - -struct LightData { //this structure needs to be as packed as possible - vec3 position; - float inv_radius; - - vec3 direction; - float size; - - vec3 color; - float attenuation; - - float cone_attenuation; - float cone_angle; - float specular_amount; - bool shadow_enabled; - - vec4 atlas_rect; // rect in the shadow atlas - mat4 shadow_matrix; - float shadow_bias; - float shadow_normal_bias; - float transmittance_bias; - float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle - float soft_shadow_scale; // scales the shadow kernel for blurrier shadows - uint mask; - float shadow_volumetric_fog_fade; - uint pad; - vec4 projector_rect; //projector rect in srgb decal atlas -}; - -#define REFLECTION_AMBIENT_DISABLED 0 -#define REFLECTION_AMBIENT_ENVIRONMENT 1 -#define REFLECTION_AMBIENT_COLOR 2 - -struct ReflectionData { - vec3 box_extents; - float index; - vec3 box_offset; - uint mask; - vec3 ambient; // ambient color - float intensity; - bool exterior; - bool box_project; - uint ambient_mode; - uint pad; - //0-8 is intensity,8-9 is ambient, mode - mat4 local_matrix; // up to here for spot and omni, rest is for directional - // notes: for ambientblend, use distance to edge to blend between already existing global environment -}; - -struct DirectionalLightData { - vec3 direction; - float energy; - vec3 color; - float size; - float specular; - uint mask; - float softshadow_angle; - float soft_shadow_scale; - bool blend_splits; - bool shadow_enabled; - float fade_from; - float fade_to; - uvec3 pad; - float shadow_volumetric_fog_fade; - vec4 shadow_bias; - vec4 shadow_normal_bias; - vec4 shadow_transmittance_bias; - vec4 shadow_z_range; - vec4 shadow_range_begin; - vec4 shadow_split_offsets; - mat4 shadow_matrix1; - mat4 shadow_matrix2; - mat4 shadow_matrix3; - mat4 shadow_matrix4; - vec4 shadow_color1; - vec4 shadow_color2; - vec4 shadow_color3; - vec4 shadow_color4; - vec2 uv_scale1; - vec2 uv_scale2; - vec2 uv_scale3; - vec2 uv_scale4; -}; - -struct DecalData { - mat4 xform; //to decal transform - vec3 inv_extents; - float albedo_mix; - vec4 albedo_rect; - vec4 normal_rect; - vec4 orm_rect; - vec4 emission_rect; - vec4 modulate; - float emission_energy; - uint mask; - float upper_fade; - float lower_fade; - mat3x4 normal_xform; - vec3 normal; - float normal_fade; -}; diff --git a/servers/rendering/renderer_rd/shaders/decal_data_inc.glsl b/servers/rendering/renderer_rd/shaders/decal_data_inc.glsl new file mode 100644 index 0000000000..ccaad13311 --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/decal_data_inc.glsl @@ -0,0 +1,18 @@ + +struct DecalData { + mat4 xform; //to decal transform + vec3 inv_extents; + float albedo_mix; + vec4 albedo_rect; + vec4 normal_rect; + vec4 orm_rect; + vec4 emission_rect; + vec4 modulate; + float emission_energy; + uint mask; + float upper_fade; + float lower_fade; + mat3x4 normal_xform; + vec3 normal; + float normal_fade; +}; diff --git a/servers/rendering/renderer_rd/shaders/light_data_inc.glsl b/servers/rendering/renderer_rd/shaders/light_data_inc.glsl new file mode 100644 index 0000000000..2fce258cff --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/light_data_inc.glsl @@ -0,0 +1,87 @@ +#define LIGHT_BAKE_DISABLED 0 +#define LIGHT_BAKE_DYNAMIC 1 +#define LIGHT_BAKE_STATIC 2 + +struct LightData { //this structure needs to be as packed as possible + vec3 position; + float inv_radius; + + vec3 direction; + float size; + + vec3 color; + float attenuation; + + float cone_attenuation; + float cone_angle; + float specular_amount; + bool shadow_enabled; + + vec4 atlas_rect; // rect in the shadow atlas + mat4 shadow_matrix; + float shadow_bias; + float shadow_normal_bias; + float transmittance_bias; + float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle + float soft_shadow_scale; // scales the shadow kernel for blurrier shadows + uint mask; + float shadow_volumetric_fog_fade; + uint bake_mode; + vec4 projector_rect; //projector rect in srgb decal atlas +}; + +#define REFLECTION_AMBIENT_DISABLED 0 +#define REFLECTION_AMBIENT_ENVIRONMENT 1 +#define REFLECTION_AMBIENT_COLOR 2 + +struct ReflectionData { + vec3 box_extents; + float index; + vec3 box_offset; + uint mask; + vec3 ambient; // ambient color + float intensity; + bool exterior; + bool box_project; + uint ambient_mode; + uint pad; + //0-8 is intensity,8-9 is ambient, mode + mat4 local_matrix; // up to here for spot and omni, rest is for directional + // notes: for ambientblend, use distance to edge to blend between already existing global environment +}; + +struct DirectionalLightData { + vec3 direction; + float energy; + vec3 color; + float size; + float specular; + uint mask; + float softshadow_angle; + float soft_shadow_scale; + bool blend_splits; + bool shadow_enabled; + float fade_from; + float fade_to; + uvec2 pad; + uint bake_mode; + float shadow_volumetric_fog_fade; + vec4 shadow_bias; + vec4 shadow_normal_bias; + vec4 shadow_transmittance_bias; + vec4 shadow_z_range; + vec4 shadow_range_begin; + vec4 shadow_split_offsets; + mat4 shadow_matrix1; + mat4 shadow_matrix2; + mat4 shadow_matrix3; + mat4 shadow_matrix4; + vec4 shadow_color1; + vec4 shadow_color2; + vec4 shadow_color3; + vec4 shadow_color4; + vec2 uv_scale1; + vec2 uv_scale2; + vec2 uv_scale3; + vec2 uv_scale4; +}; diff --git a/servers/rendering/renderer_rd/shaders/particles.glsl b/servers/rendering/renderer_rd/shaders/particles.glsl index 3712220dc4..beaff10793 100644 --- a/servers/rendering/renderer_rd/shaders/particles.glsl +++ b/servers/rendering/renderer_rd/shaders/particles.glsl @@ -76,6 +76,11 @@ struct FrameParams { float time; float delta; + uint frame; + uint pad0; + uint pad1; + uint pad2; + uint random_seed; uint attractor_count; uint collider_count; @@ -92,10 +97,16 @@ layout(set = 1, binding = 0, std430) restrict buffer FrameHistory { } frame_history; +#define PARTICLE_FLAG_ACTIVE uint(1) +#define PARTICLE_FLAG_STARTED uint(2) +#define PARTICLE_FLAG_TRAILED uint(4) +#define PARTICLE_FRAME_MASK uint(0xFFFF) +#define PARTICLE_FRAME_SHIFT uint(16) + struct ParticleData { mat4 xform; vec3 velocity; - bool is_active; + uint flags; vec4 color; vec4 custom; }; @@ -162,7 +173,7 @@ layout(push_constant, binding = 0, std430) uniform Params { bool use_fractional_delta; bool sub_emitter_mode; bool can_emit; - uint pad; + bool trail_pass; } params; @@ -201,6 +212,14 @@ bool emit_subparticle(mat4 p_xform, vec3 p_velocity, vec4 p_color, vec4 p_custom void main() { uint particle = gl_GlobalInvocationID.x; + if (params.trail_size > 1) { + if (params.trail_pass) { + particle += (particle / (params.trail_size - 1)) + 1; + } else { + particle *= params.trail_size; + } + } + if (particle >= params.total_particles * params.trail_size) { return; //discard } @@ -229,7 +248,7 @@ void main() { PARTICLE.color = vec4(1.0); PARTICLE.custom = vec4(0.0); PARTICLE.velocity = vec3(0.0); - PARTICLE.is_active = false; + PARTICLE.flags = 0; PARTICLE.xform = mat4( vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), @@ -237,6 +256,29 @@ void main() { vec4(0.0, 0.0, 0.0, 1.0)); } + //clear started flag if set + + if (params.trail_pass) { + //trail started + uint src_idx = index * params.trail_size; + if (bool(particles.data[src_idx].flags & PARTICLE_FLAG_STARTED)) { + //save start conditions for trails + PARTICLE.color = particles.data[src_idx].color; + PARTICLE.custom = particles.data[src_idx].custom; + PARTICLE.velocity = particles.data[src_idx].velocity; + PARTICLE.flags = PARTICLE_FLAG_TRAILED | ((frame_history.data[0].frame & PARTICLE_FRAME_MASK) << PARTICLE_FRAME_SHIFT); //mark it as trailed, save in which frame it will start + PARTICLE.xform = particles.data[src_idx].xform; + } + + if (bool(PARTICLE.flags & PARTICLE_FLAG_TRAILED) && ((PARTICLE.flags >> PARTICLE_FRAME_SHIFT) == (FRAME.frame & PARTICLE_FRAME_MASK))) { //check this is trailed and see if it should start now + // we just assume that this is the first frame of the particle, the rest is deterministic + PARTICLE.flags = PARTICLE_FLAG_ACTIVE | (particles.data[src_idx].flags & (PARTICLE_FRAME_MASK << PARTICLE_FRAME_SHIFT)); + return; //- this appears like it should be correct, but it seems not to be.. wonder why. + } + } else { + PARTICLE.flags &= ~PARTICLE_FLAG_STARTED; + } + bool collided = false; vec3 collision_normal = vec3(0.0); float collision_depth = 0.0; @@ -245,19 +287,17 @@ void main() { #if !defined(DISABLE_VELOCITY) - if (PARTICLE.is_active) { + if (bool(PARTICLE.flags & PARTICLE_FLAG_ACTIVE)) { PARTICLE.xform[3].xyz += PARTICLE.velocity * local_delta; } #endif - /* Process physics if active */ - - if (params.sub_emitter_mode) { - if (!PARTICLE.is_active) { + if (!params.trail_pass && params.sub_emitter_mode) { + if (!bool(PARTICLE.flags & PARTICLE_FLAG_ACTIVE)) { int src_index = atomicAdd(src_particles.particle_count, -1) - 1; if (src_index >= 0) { - PARTICLE.is_active = true; + PARTICLE.flags = (PARTICLE_FLAG_ACTIVE | PARTICLE_FLAG_STARTED | (FRAME.cycle << PARTICLE_FRAME_SHIFT)); restart = true; if (bool(src_particles.data[src_index].flags & EMISSION_FLAG_HAS_POSITION)) { @@ -339,16 +379,12 @@ void main() { } } - uint current_cycle = FRAME.cycle; - - if (FRAME.system_phase < restart_phase) { - current_cycle -= uint(1); + if (params.trail_pass) { + restart = false; } - uint particle_number = current_cycle * uint(params.total_particles) + particle; - if (restart) { - PARTICLE.is_active = FRAME.emitting; + PARTICLE.flags = FRAME.emitting ? (PARTICLE_FLAG_ACTIVE | PARTICLE_FLAG_STARTED | (FRAME.cycle << PARTICLE_FRAME_SHIFT)) : 0; restart_position = true; restart_rotation_scale = true; restart_velocity = true; @@ -357,11 +393,15 @@ void main() { } } - if (restart && PARTICLE.is_active) { + bool particle_active = bool(PARTICLE.flags & PARTICLE_FLAG_ACTIVE); + + uint particle_number = (PARTICLE.flags >> PARTICLE_FRAME_SHIFT) * uint(params.total_particles) + index; + + if (restart && particle_active) { #CODE : START } - if (PARTICLE.is_active) { + if (particle_active) { for (uint i = 0; i < FRAME.attractor_count; i++) { vec3 dir; float amount; @@ -539,7 +579,12 @@ void main() { } } - if (PARTICLE.is_active) { + if (particle_active) { #CODE : PROCESS } + + PARTICLE.flags &= ~PARTICLE_FLAG_ACTIVE; + if (particle_active) { + PARTICLE.flags |= PARTICLE_FLAG_ACTIVE; + } } diff --git a/servers/rendering/renderer_rd/shaders/particles_copy.glsl b/servers/rendering/renderer_rd/shaders/particles_copy.glsl index 80adb49619..7804d66d1c 100644 --- a/servers/rendering/renderer_rd/shaders/particles_copy.glsl +++ b/servers/rendering/renderer_rd/shaders/particles_copy.glsl @@ -6,10 +6,14 @@ layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; +#define PARTICLE_FLAG_ACTIVE uint(1) +#define PARTICLE_FLAG_STARTED uint(2) +#define PARTICLE_FLAG_TRAILED uint(4) + struct ParticleData { mat4 xform; vec3 velocity; - bool is_active; + uint flags; vec4 color; vec4 custom; }; @@ -33,12 +37,30 @@ sort_buffer; #endif // USE_SORT_BUFFER +layout(set = 2, binding = 0, std430) restrict readonly buffer TrailBindPoses { + mat4 data[]; +} +trail_bind_poses; + layout(push_constant, binding = 0, std430) uniform Params { vec3 sort_direction; uint total_particles; + + uint trail_size; + uint trail_total; + float frame_delta; + float frame_remainder; + + vec3 align_up; + uint align_mode; } params; +#define TRANSFORM_ALIGN_DISABLED 0 +#define TRANSFORM_ALIGN_Z_BILLBOARD 1 +#define TRANSFORM_ALIGN_Y_TO_VELOCITY 2 +#define TRANSFORM_ALIGN_Z_BILLBOARD_Y_TO_VELOCITY 3 + void main() { #ifdef MODE_FILL_SORT_BUFFER @@ -47,7 +69,11 @@ void main() { return; //discard } - sort_buffer.data[particle].x = dot(params.sort_direction, particles.data[particle].xform[3].xyz); + uint src_particle = particle; + if (params.trail_size > 1) { + src_particle = src_particle * params.trail_size + params.trail_size / 2; //use trail center for sorting + } + sort_buffer.data[particle].x = dot(params.sort_direction, particles.data[src_particle].xform[3].xyz); sort_buffer.data[particle].y = float(particle); #endif @@ -61,13 +87,78 @@ void main() { } #ifdef USE_SORT_BUFFER - particle = uint(sort_buffer.data[particle].y); //use index from sort buffer + + if (params.trail_size > 1) { + particle = uint(sort_buffer.data[particle / params.trail_size].y) + (particle % params.trail_size); + } else { + particle = uint(sort_buffer.data[particle].y); //use index from sort buffer + } #endif mat4 txform; - if (particles.data[particle].is_active) { - txform = transpose(particles.data[particle].xform); + if (bool(particles.data[particle].flags & PARTICLE_FLAG_ACTIVE) || bool(particles.data[particle].flags & PARTICLE_FLAG_TRAILED)) { + txform = particles.data[particle].xform; + if (params.trail_size > 1) { + // since the steps dont fit precisely in the history frames, must do a tiny bit of + // interpolation to get them close to their intended location. + uint part_ofs = particle % params.trail_size; + float natural_ofs = fract((float(part_ofs) / float(params.trail_size)) * float(params.trail_total)) * params.frame_delta; + + txform[3].xyz -= particles.data[particle].velocity * natural_ofs; + } + + switch (params.align_mode) { + case TRANSFORM_ALIGN_DISABLED: { + } break; //nothing + case TRANSFORM_ALIGN_Z_BILLBOARD: { + mat3 local = mat3(normalize(cross(params.align_up, params.sort_direction)), params.align_up, params.sort_direction); + local = local * mat3(txform); + txform[0].xyz = local[0]; + txform[1].xyz = local[1]; + txform[2].xyz = local[2]; + + } break; + case TRANSFORM_ALIGN_Y_TO_VELOCITY: { + vec3 v = particles.data[particle].velocity; + float s = (length(txform[0]) + length(txform[1]) + length(txform[2])) / 3.0; + if (length(v) > 0.0) { + txform[1].xyz = normalize(v); + } else { + txform[1].xyz = normalize(txform[1].xyz); + } + + txform[0].xyz = normalize(cross(txform[1].xyz, txform[2].xyz)); + txform[2].xyz = vec3(0.0, 0.0, 1.0) * s; + txform[0].xyz *= s; + txform[1].xyz *= s; + } break; + case TRANSFORM_ALIGN_Z_BILLBOARD_Y_TO_VELOCITY: { + vec3 v = particles.data[particle].velocity; + vec3 sv = v - params.sort_direction * dot(params.sort_direction, v); //screen velocity + float s = (length(txform[0]) + length(txform[1]) + length(txform[2])) / 3.0; + + if (length(sv) == 0) { + sv = params.align_up; + } + + sv = normalize(sv); + + txform[0].xyz = normalize(cross(sv, params.sort_direction)) * s; + txform[1].xyz = sv * s; + txform[2].xyz = params.sort_direction * s; + + } break; + } + + txform[3].xyz += particles.data[particle].velocity * params.frame_remainder; + + if (params.trail_size > 1) { + uint part_ofs = particle % params.trail_size; + txform = txform * trail_bind_poses.data[part_ofs]; + } + + txform = transpose(txform); } else { txform = mat4(vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0)); //zero scale, becomes invisible } diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_aa_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_aa_inc.glsl new file mode 100644 index 0000000000..99714b4504 --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/scene_forward_aa_inc.glsl @@ -0,0 +1,58 @@ +#ifdef ALPHA_HASH_USED + +float hash_2d(vec2 p) { + return fract(1.0e4 * sin(17.0 * p.x + 0.1 * p.y) * + (0.1 + abs(sin(13.0 * p.y + p.x)))); +} + +float hash_3d(vec3 p) { + return hash_2d(vec2(hash_2d(p.xy), p.z)); +} + +float compute_alpha_hash_threshold(vec3 pos, float hash_scale) { + vec3 dx = dFdx(pos); + vec3 dy = dFdx(pos); + float delta_max_sqr = max(length(dx), length(dy)); + float pix_scale = 1.0 / (hash_scale * delta_max_sqr); + + vec2 pix_scales = + vec2(exp2(floor(log2(pix_scale))), exp2(ceil(log2(pix_scale)))); + + vec2 a_thresh = vec2(hash_3d(floor(pix_scales.x * pos.xyz)), + hash_3d(floor(pix_scales.y * pos.xyz))); + + float lerp_factor = fract(log2(pix_scale)); + + float a_interp = (1.0 - lerp_factor) * a_thresh.x + lerp_factor * a_thresh.y; + + float min_lerp = min(lerp_factor, 1.0 - lerp_factor); + + vec3 cases = vec3(a_interp * a_interp / (2.0 * min_lerp * (1.0 - min_lerp)), + (a_interp - 0.5 * min_lerp) / (1.0 - min_lerp), + 1.0 - ((1.0 - a_interp) * (1.0 - a_interp) / + (2.0 * min_lerp * (1.0 - min_lerp)))); + + float alpha_hash_threshold = + (lerp_factor < (1.0 - min_lerp)) ? ((lerp_factor < min_lerp) ? cases.x : cases.y) : cases.z; + + return clamp(alpha_hash_threshold, 0.0, 1.0); +} + +#endif // ALPHA_HASH_USED + +#ifdef ALPHA_ANTIALIASING_EDGE_USED + +float calc_mip_level(vec2 texture_coord) { + vec2 dx = dFdx(texture_coord); + vec2 dy = dFdy(texture_coord); + float delta_max_sqr = max(dot(dx, dx), dot(dy, dy)); + return max(0.0, 0.5 * log2(delta_max_sqr)); +} + +float compute_alpha_antialiasing_edge(float input_alpha, vec2 texture_coord, float alpha_edge) { + input_alpha *= 1.0 + max(0, calc_mip_level(texture_coord)) * 0.25; // 0.25 mip scale, magic number + input_alpha = (input_alpha - alpha_edge) / max(fwidth(input_alpha), 0.0001) + 0.5; + return clamp(input_alpha, 0.0, 1.0); +} + +#endif // ALPHA_ANTIALIASING_USED diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl index fce17c47e8..1d67a3f1df 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl @@ -48,11 +48,11 @@ layout(location = 8) in vec4 custom2_attrib; layout(location = 9) in vec4 custom3_attrib; #endif -#if defined(BONES_USED) +#if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS) layout(location = 10) in uvec4 bone_attrib; #endif -#if defined(WEIGHTS_USED) +#if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS) layout(location = 11) in vec4 weight_attrib; #endif @@ -89,8 +89,6 @@ layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms } material; #endif -invariant gl_Position; - #ifdef MODE_DUAL_PARABOLOID layout(location = 8) out float dp_clip; @@ -99,6 +97,8 @@ layout(location = 8) out float dp_clip; layout(location = 9) out flat uint instance_index; +invariant gl_Position; + #GLOBALS void main() { @@ -125,10 +125,72 @@ void main() { if (is_multimesh) { //multimesh, instances are for it - uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK; - offset *= gl_InstanceIndex; mat4 matrix; + +#ifdef USE_PARTICLE_TRAILS + uint trail_size = (instances.data[instance_index].flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK; + uint stride = 3 + 1 + 1; //particles always uses this format + + uint offset = trail_size * stride * gl_InstanceIndex; + +#ifdef COLOR_USED + vec4 pcolor; +#endif + { + uint boffset = offset + bone_attrib.x * stride; + matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x; +#ifdef COLOR_USED + pcolor = transforms.data[boffset + 3] * weight_attrib.x; +#endif + } + if (weight_attrib.y > 0.001) { + uint boffset = offset + bone_attrib.y * stride; + matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y; +#ifdef COLOR_USED + pcolor += transforms.data[boffset + 3] * weight_attrib.y; +#endif + } + if (weight_attrib.z > 0.001) { + uint boffset = offset + bone_attrib.z * stride; + matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z; +#ifdef COLOR_USED + pcolor += transforms.data[boffset + 3] * weight_attrib.z; +#endif + } + if (weight_attrib.w > 0.001) { + uint boffset = offset + bone_attrib.w * stride; + matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w; +#ifdef COLOR_USED + pcolor += transforms.data[boffset + 3] * weight_attrib.w; +#endif + } + + instance_custom = transforms.data[offset + 4]; + +#ifdef COLOR_USED + color_interp *= pcolor; +#endif + +#else + uint stride = 0; + { + //TODO implement a small lookup table for the stride + if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { + stride += 2; + } else { + stride += 3; + } + if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { + stride += 1; + } + if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { + stride += 1; + } + } + + uint offset = stride * gl_InstanceIndex; + if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); offset += 2; @@ -148,6 +210,7 @@ void main() { instance_custom = transforms.data[offset]; } +#endif //transpose matrix = transpose(matrix); world_matrix = world_matrix * matrix; @@ -165,32 +228,6 @@ void main() { vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif -#if 0 - if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) { - //multimesh, instances are for it - - uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3; - uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3; - vec2 weights_01 = unpackUnorm2x16(bone_attrib.z); - vec2 weights_23 = unpackUnorm2x16(bone_attrib.w); - - mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x; - m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y; - m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x; - m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y; - - //reverse order because its transposed - vertex = (vec4(vertex, 1.0) * m).xyz; - normal = (vec4(normal, 0.0) * m).xyz; - -#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) - - tangent = (vec4(tangent, 0.0) * m).xyz; - binormal = (vec4(binormal, 0.0) * m).xyz; -#endif - } -#endif - #ifdef UV_USED uv_interp = uv_attrib; #endif @@ -384,7 +421,7 @@ layout(location = 2) out vec4 orm_output_buffer; layout(location = 3) out vec4 emission_output_buffer; layout(location = 4) out float depth_output_buffer; -#endif +#endif // MODE_RENDER_MATERIAL #ifdef MODE_RENDER_NORMAL_ROUGHNESS layout(location = 0) out vec4 normal_roughness_output_buffer; @@ -403,1315 +440,19 @@ layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface sc #else layout(location = 0) out vec4 frag_color; -#endif +#endif // MODE_MULTIPLE_RENDER_TARGETS #endif // RENDER DEPTH -#ifdef ALPHA_HASH_USED - -float hash_2d(vec2 p) { - return fract(1.0e4 * sin(17.0 * p.x + 0.1 * p.y) * - (0.1 + abs(sin(13.0 * p.y + p.x)))); -} - -float hash_3d(vec3 p) { - return hash_2d(vec2(hash_2d(p.xy), p.z)); -} - -float compute_alpha_hash_threshold(vec3 pos, float hash_scale) { - vec3 dx = dFdx(pos); - vec3 dy = dFdx(pos); - float delta_max_sqr = max(length(dx), length(dy)); - float pix_scale = 1.0 / (hash_scale * delta_max_sqr); - - vec2 pix_scales = - vec2(exp2(floor(log2(pix_scale))), exp2(ceil(log2(pix_scale)))); - - vec2 a_thresh = vec2(hash_3d(floor(pix_scales.x * pos.xyz)), - hash_3d(floor(pix_scales.y * pos.xyz))); - - float lerp_factor = fract(log2(pix_scale)); - - float a_interp = (1.0 - lerp_factor) * a_thresh.x + lerp_factor * a_thresh.y; - - float min_lerp = min(lerp_factor, 1.0 - lerp_factor); - - vec3 cases = vec3(a_interp * a_interp / (2.0 * min_lerp * (1.0 - min_lerp)), - (a_interp - 0.5 * min_lerp) / (1.0 - min_lerp), - 1.0 - ((1.0 - a_interp) * (1.0 - a_interp) / - (2.0 * min_lerp * (1.0 - min_lerp)))); - - float alpha_hash_threshold = - (lerp_factor < (1.0 - min_lerp)) ? ((lerp_factor < min_lerp) ? cases.x : cases.y) : cases.z; - - return clamp(alpha_hash_threshold, 0.0, 1.0); -} - -#endif // ALPHA_HASH_USED - -#ifdef ALPHA_ANTIALIASING_EDGE_USED - -float calc_mip_level(vec2 texture_coord) { - vec2 dx = dFdx(texture_coord); - vec2 dy = dFdy(texture_coord); - float delta_max_sqr = max(dot(dx, dx), dot(dy, dy)); - return max(0.0, 0.5 * log2(delta_max_sqr)); -} - -float compute_alpha_antialiasing_edge(float input_alpha, vec2 texture_coord, float alpha_edge) { - input_alpha *= 1.0 + max(0, calc_mip_level(texture_coord)) * 0.25; // 0.25 mip scale, magic number - input_alpha = (input_alpha - alpha_edge) / max(fwidth(input_alpha), 0.0001) + 0.5; - return clamp(input_alpha, 0.0, 1.0); -} - -#endif // ALPHA_ANTIALIASING_USED - -// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. -// We're dividing this factor off because the overall term we'll end up looks like -// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): -// -// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) -// -// We're basically regouping this as -// -// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] -// -// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. -// -// The contents of the D and G (G1) functions (GGX) are taken from -// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). -// Eqns 71-72 and 85-86 (see also Eqns 43 and 80). +#include "scene_forward_aa_inc.glsl" #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) -float G_GGX_2cos(float cos_theta_m, float alpha) { - // Schlick's approximation - // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) - // Eq. (19), although see Heitz (2014) the about the problems with his derivation. - // It nevertheless approximates GGX well with k = alpha/2. - float k = 0.5 * alpha; - return 0.5 / (cos_theta_m * (1.0 - k) + k); - - // float cos2 = cos_theta_m * cos_theta_m; - // float sin2 = (1.0 - cos2); - // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); -} - -float D_GGX(float cos_theta_m, float alpha) { - float alpha2 = alpha * alpha; - float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; - return alpha2 / (M_PI * d * d); -} - -float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { - float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0 - cos2); - float s_x = alpha_x * cos_phi; - float s_y = alpha_y * sin_phi; - return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); -} - -float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { - float cos2 = cos_theta_m * cos_theta_m; - float sin2 = (1.0 - cos2); - float r_x = cos_phi / alpha_x; - float r_y = sin_phi / alpha_y; - float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); - return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); -} - -float SchlickFresnel(float u) { - float m = 1.0 - u; - float m2 = m * m; - return m2 * m2 * m; // pow(m,5) -} - -float GTR1(float NdotH, float a) { - if (a >= 1.0) - return 1.0 / M_PI; - float a2 = a * a; - float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; - return (a2 - 1.0) / (M_PI * log(a2) * t); -} - -vec3 F0(float metallic, float specular, vec3 albedo) { - float dielectric = 0.16 * specular * specular; - // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; - // see https://google.github.io/filament/Filament.md.html - return mix(vec3(dielectric), albedo, vec3(metallic)); -} - -void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, -#ifdef LIGHT_BACKLIGHT_USED - vec3 backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - vec4 transmittance_color, - float transmittance_depth, - float transmittance_curve, - float transmittance_boost, - float transmittance_z, -#endif -#ifdef LIGHT_RIM_USED - float rim, float rim_tint, vec3 rim_color, -#endif -#ifdef LIGHT_CLEARCOAT_USED - float clearcoat, float clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - vec3 B, vec3 T, float anisotropy, -#endif -#ifdef USE_SOFT_SHADOWS - float A, -#endif -#ifdef USE_SHADOW_TO_OPACITY - inout float alpha, -#endif - inout vec3 diffuse_light, inout vec3 specular_light) { - -#if defined(LIGHT_CODE_USED) - // light is written by the light shader - - vec3 normal = N; - vec3 light = L; - vec3 view = V; - -#CODE : LIGHT - -#else - -#ifdef USE_SOFT_SHADOWS - float NdotL = min(A + dot(N, L), 1.0); -#else - float NdotL = dot(N, L); -#endif - float cNdotL = max(NdotL, 0.0); // clamped NdotL - float NdotV = dot(N, V); - float cNdotV = max(NdotV, 0.0); - -#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) - vec3 H = normalize(V + L); -#endif - -#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) -#ifdef USE_SOFT_SHADOWS - float cNdotH = clamp(A + dot(N, H), 0.0, 1.0); -#else - float cNdotH = clamp(dot(N, H), 0.0, 1.0); -#endif -#endif - -#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) -#ifdef USE_SOFT_SHADOWS - float cLdotH = clamp(A + dot(L, H), 0.0, 1.0); -#else - float cLdotH = clamp(dot(L, H), 0.0, 1.0); -#endif -#endif - - float metallic = unpackUnorm4x8(orms).z; - if (metallic < 1.0) { - float roughness = unpackUnorm4x8(orms).y; - -#if defined(DIFFUSE_OREN_NAYAR) - vec3 diffuse_brdf_NL; -#else - float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance -#endif - -#if defined(DIFFUSE_LAMBERT_WRAP) - // energy conserving lambert wrap shader - diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); -#elif defined(DIFFUSE_TOON) - - diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); - -#elif defined(DIFFUSE_BURLEY) - - { - float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; - float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); - float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); - diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; - /* - float energyBias = mix(roughness, 0.0, 0.5); - float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); - float fd90 = energyBias + 2.0 * VoH * VoH * roughness; - float f0 = 1.0; - float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); - float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); - - diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; - */ - } -#else - // lambert - diffuse_brdf_NL = cNdotL * (1.0 / M_PI); -#endif - - diffuse_light += light_color * diffuse_brdf_NL * attenuation; - -#if defined(LIGHT_BACKLIGHT_USED) - diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; -#endif - -#if defined(LIGHT_RIM_USED) - float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); - diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color; -#endif - -#ifdef LIGHT_TRANSMITTANCE_USED - -#ifdef SSS_MODE_SKIN - - { - float scale = 8.25 / transmittance_depth; - float d = scale * abs(transmittance_z); - float dd = -d * d; - vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + - vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + - vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + - vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + - vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + - vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); - - diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI); - } -#else - - if (transmittance_depth > 0.0) { - float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0); - - fade = pow(max(0.0, 1.0 - fade), transmittance_curve); - fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0); - - diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade; - } - -#endif //SSS_MODE_SKIN - -#endif //LIGHT_TRANSMITTANCE_USED - } - - float roughness = unpackUnorm4x8(orms).y; - if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely - - // D - -#if defined(SPECULAR_BLINN) - - //normalized blinn - float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; - float blinn = pow(cNdotH, shininess) * cNdotL; - blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); - float intensity = blinn; - - specular_light += light_color * intensity * attenuation * specular_amount; - -#elif defined(SPECULAR_PHONG) - - vec3 R = normalize(-reflect(L, N)); - float cRdotV = clamp(A + dot(R, V), 0.0, 1.0); - float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; - float phong = pow(cRdotV, shininess); - phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); - float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); - - specular_light += light_color * intensity * attenuation * specular_amount; - -#elif defined(SPECULAR_TOON) - - vec3 R = normalize(-reflect(L, N)); - float RdotV = dot(R, V); - float mid = 1.0 - roughness; - mid *= mid; - float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; - diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection - -#elif defined(SPECULAR_DISABLED) - // none.. - -#elif defined(SPECULAR_SCHLICK_GGX) - // shlick+ggx as default - -#if defined(LIGHT_ANISOTROPY_USED) - - float alpha_ggx = roughness * roughness; - float aspect = sqrt(1.0 - anisotropy * 0.9); - float ax = alpha_ggx / aspect; - float ay = alpha_ggx * aspect; - float XdotH = dot(T, H); - float YdotH = dot(B, H); - float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); - float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); - -#else - float alpha_ggx = roughness * roughness; - float D = D_GGX(cNdotH, alpha_ggx); - float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); -#endif - // F - float cLdotH5 = SchlickFresnel(cLdotH); - vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); - - vec3 specular_brdf_NL = cNdotL * D * F * G; - - specular_light += specular_brdf_NL * light_color * attenuation * specular_amount; -#endif - -#if defined(LIGHT_CLEARCOAT_USED) - -#if !defined(SPECULAR_SCHLICK_GGX) - float cLdotH5 = SchlickFresnel(cLdotH); -#endif - float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); - float Fr = mix(.04, 1.0, cLdotH5); - float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); - - float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; - - specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount; -#endif - } - -#ifdef USE_SHADOW_TO_OPACITY - alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0)); -#endif - -#endif //defined(LIGHT_CODE_USED) -} - -#ifndef USE_NO_SHADOWS - -// Interleaved Gradient Noise -// http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare -float quick_hash(vec2 pos) { - const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f); - return fract(magic.z * fract(dot(pos, magic.xy))); -} - -float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { - vec2 pos = coord.xy; - float depth = coord.z; - - //if only one sample is taken, take it from the center - if (scene_data.directional_soft_shadow_samples == 1) { - return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); - } - - mat2 disk_rotation; - { - float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; - float sr = sin(r); - float cr = cos(r); - disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); - } - - float avg = 0.0; - - for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) { - avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0)); - } - - return avg * (1.0 / float(scene_data.directional_soft_shadow_samples)); -} - -float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { - vec2 pos = coord.xy; - float depth = coord.z; - - //if only one sample is taken, take it from the center - if (scene_data.soft_shadow_samples == 1) { - return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); - } - - mat2 disk_rotation; - { - float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; - float sr = sin(r); - float cr = cos(r); - disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); - } - - float avg = 0.0; - - for (uint i = 0; i < scene_data.soft_shadow_samples; i++) { - avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0)); - } - - return avg * (1.0 / float(scene_data.soft_shadow_samples)); -} - -float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) { - //find blocker - float blocker_count = 0.0; - float blocker_average = 0.0; - - mat2 disk_rotation; - { - float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; - float sr = sin(r); - float cr = cos(r); - disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); - } - - for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) { - vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; - float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; - if (d < pssm_coord.z) { - blocker_average += d; - blocker_count += 1.0; - } - } - - if (blocker_count > 0.0) { - //blockers found, do soft shadow - blocker_average /= blocker_count; - float penumbra = (pssm_coord.z - blocker_average) / blocker_average; - tex_scale *= penumbra; - - float s = 0.0; - for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) { - vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; - s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0)); - } - - return s / float(scene_data.directional_penumbra_shadow_samples); - - } else { - //no blockers found, so no shadow - return 1.0; - } -} - -#endif //USE_NO_SHADOWS - -float get_omni_attenuation(float distance, float inv_range, float decay) { - float nd = distance * inv_range; - nd *= nd; - nd *= nd; // nd^4 - nd = max(1.0 - nd, 0.0); - nd *= nd; // nd^2 - return nd * pow(max(distance, 0.0001), -decay); -} - -float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { -#ifndef USE_NO_SHADOWS - if (omni_lights.data[idx].shadow_enabled) { - // there is a shadowmap - - vec3 light_rel_vec = omni_lights.data[idx].position - vertex; - float light_length = length(light_rel_vec); - - vec4 v = vec4(vertex, 1.0); - - vec4 splane = (omni_lights.data[idx].shadow_matrix * v); - float shadow_len = length(splane.xyz); //need to remember shadow len from here - - { - vec3 nofs = normal_interp * omni_lights.data[idx].shadow_normal_bias / omni_lights.data[idx].inv_radius; - nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp)))); - v.xyz += nofs; - splane = (omni_lights.data[idx].shadow_matrix * v); - } - - float shadow; - -#ifdef USE_SOFT_SHADOWS - if (omni_lights.data[idx].soft_shadow_size > 0.0) { - //soft shadow - - //find blocker - - float blocker_count = 0.0; - float blocker_average = 0.0; - - mat2 disk_rotation; - { - float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; - float sr = sin(r); - float cr = cos(r); - disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); - } - - vec3 normal = normalize(splane.xyz); - vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); - vec3 tangent = normalize(cross(v0, normal)); - vec3 bitangent = normalize(cross(tangent, normal)); - float z_norm = shadow_len * omni_lights.data[idx].inv_radius; - - tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; - bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; - - for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { - vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; - - vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y; - - pos = normalize(pos); - vec4 uv_rect = omni_lights.data[idx].atlas_rect; - - if (pos.z >= 0.0) { - pos.z += 1.0; - uv_rect.y += uv_rect.w; - } else { - pos.z = 1.0 - pos.z; - } - - pos.xy /= pos.z; - - pos.xy = pos.xy * 0.5 + 0.5; - pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; - - float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r; - if (d < z_norm) { - blocker_average += d; - blocker_count += 1.0; - } - } - - if (blocker_count > 0.0) { - //blockers found, do soft shadow - blocker_average /= blocker_count; - float penumbra = (z_norm - blocker_average) / blocker_average; - tangent *= penumbra; - bitangent *= penumbra; - - z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias; - - shadow = 0.0; - for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { - vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; - vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y; - - pos = normalize(pos); - vec4 uv_rect = omni_lights.data[idx].atlas_rect; - - if (pos.z >= 0.0) { - pos.z += 1.0; - uv_rect.y += uv_rect.w; - } else { - pos.z = 1.0 - pos.z; - } - - pos.xy /= pos.z; - - pos.xy = pos.xy * 0.5 + 0.5; - pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; - shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0)); - } - - shadow /= float(scene_data.penumbra_shadow_samples); - - } else { - //no blockers found, so no shadow - shadow = 1.0; - } - } else { -#endif - splane.xyz = normalize(splane.xyz); - vec4 clamp_rect = omni_lights.data[idx].atlas_rect; - - if (splane.z >= 0.0) { - splane.z += 1.0; - - clamp_rect.y += clamp_rect.w; - - } else { - splane.z = 1.0 - splane.z; - } - - splane.xy /= splane.z; - - splane.xy = splane.xy * 0.5 + 0.5; - splane.z = (shadow_len - omni_lights.data[idx].shadow_bias) * omni_lights.data[idx].inv_radius; - splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; - splane.w = 1.0; //needed? i think it should be 1 already - shadow = sample_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane); -#ifdef USE_SOFT_SHADOWS - } -#endif - - return shadow; - } -#endif - - return 1.0; -} - -void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, -#ifdef LIGHT_BACKLIGHT_USED - vec3 backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - vec4 transmittance_color, - float transmittance_depth, - float transmittance_curve, - float transmittance_boost, -#endif -#ifdef LIGHT_RIM_USED - float rim, float rim_tint, vec3 rim_color, -#endif -#ifdef LIGHT_CLEARCOAT_USED - float clearcoat, float clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - vec3 binormal, vec3 tangent, float anisotropy, -#endif -#ifdef USE_SHADOW_TO_OPACITY - inout float alpha, -#endif - inout vec3 diffuse_light, inout vec3 specular_light) { - vec3 light_rel_vec = omni_lights.data[idx].position - vertex; - float light_length = length(light_rel_vec); - float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation); - float light_attenuation = omni_attenuation; - vec3 color = omni_lights.data[idx].color; - -#ifdef USE_SOFT_SHADOWS - float size_A = 0.0; - - if (omni_lights.data[idx].size > 0.0) { - float t = omni_lights.data[idx].size / max(0.001, light_length); - size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); - } -#endif - -#ifdef LIGHT_TRANSMITTANCE_USED - float transmittance_z = transmittance_depth; //no transmittance by default - transmittance_color.a *= light_attenuation; - { - vec4 clamp_rect = omni_lights.data[idx].atlas_rect; - - //redo shadowmapping, but shrink the model a bit to avoid arctifacts - vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0)); - - shadow_len = length(splane.xyz); - splane = normalize(splane.xyz); - - if (splane.z >= 0.0) { - splane.z += 1.0; - - } else { - splane.z = 1.0 - splane.z; - } - - splane.xy /= splane.z; - splane.xy = splane.xy * 0.5 + 0.5; - splane.z = shadow_len * omni_lights.data[idx].inv_radius; - splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; - splane.w = 1.0; //needed? i think it should be 1 already - - float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; - transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius; - } -#endif - -#if 0 - - if (omni_lights.data[idx].projector_rect != vec4(0.0)) { - vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; - local_v = normalize(local_v); - - vec4 atlas_rect = omni_lights.data[idx].projector_rect; - - if (local_v.z >= 0.0) { - local_v.z += 1.0; - atlas_rect.y += atlas_rect.w; - - } else { - local_v.z = 1.0 - local_v.z; - } - - local_v.xy /= local_v.z; - local_v.xy = local_v.xy * 0.5 + 0.5; - vec2 proj_uv = local_v.xy * atlas_rect.zw; - - vec2 proj_uv_ddx; - vec2 proj_uv_ddy; - { - vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz; - local_v_ddx = normalize(local_v_ddx); - - if (local_v_ddx.z >= 0.0) { - local_v_ddx.z += 1.0; - } else { - local_v_ddx.z = 1.0 - local_v_ddx.z; - } - - local_v_ddx.xy /= local_v_ddx.z; - local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5; - - proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv; - - vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz; - local_v_ddy = normalize(local_v_ddy); - - if (local_v_ddy.z >= 0.0) { - local_v_ddy.z += 1.0; - } else { - local_v_ddy.z = 1.0 - local_v_ddy.z; - } - - local_v_ddy.xy /= local_v_ddy.z; - local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5; - - proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv; - } - - vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy); - no_shadow = mix(no_shadow, proj.rgb, proj.a); - } -#endif - - light_attenuation *= shadow; - - light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount, -#ifdef LIGHT_BACKLIGHT_USED - backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - transmittance_color, - transmittance_depth, - transmittance_curve, - transmittance_boost, - transmittance_z, -#endif -#ifdef LIGHT_RIM_USED - rim * omni_attenuation, rim_tint, rim_color, -#endif -#ifdef LIGHT_CLEARCOAT_USED - clearcoat, clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - binormal, tangent, anisotropy, -#endif -#ifdef USE_SOFT_SHADOWS - size_A, -#endif -#ifdef USE_SHADOW_TO_OPACITY - alpha, -#endif - diffuse_light, - specular_light); -} - -float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { -#ifndef USE_NO_SHADOWS - if (spot_lights.data[idx].shadow_enabled) { - vec3 light_rel_vec = spot_lights.data[idx].position - vertex; - float light_length = length(light_rel_vec); - vec3 spot_dir = spot_lights.data[idx].direction; - //there is a shadowmap - vec4 v = vec4(vertex, 1.0); - - v.xyz -= spot_dir * spot_lights.data[idx].shadow_bias; - - float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius; - - float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map - vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * spot_lights.data[idx].shadow_normal_bias * depth_bias_scale; - normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z - v.xyz += normal_bias; - - //adjust with bias - z_norm = dot(spot_dir, v.xyz - spot_lights.data[idx].position) * spot_lights.data[idx].inv_radius; - - float shadow; - - vec4 splane = (spot_lights.data[idx].shadow_matrix * v); - splane /= splane.w; - -#ifdef USE_SOFT_SHADOWS - if (spot_lights.data[idx].soft_shadow_size > 0.0) { - //soft shadow - - //find blocker - - vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; - - float blocker_count = 0.0; - float blocker_average = 0.0; - - mat2 disk_rotation; - { - float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; - float sr = sin(r); - float cr = cos(r); - disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); - } - - float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale; - vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw; - for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { - vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; - suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); - float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; - if (d < z_norm) { - blocker_average += d; - blocker_count += 1.0; - } - } - - if (blocker_count > 0.0) { - //blockers found, do soft shadow - blocker_average /= blocker_count; - float penumbra = (z_norm - blocker_average) / blocker_average; - uv_size *= penumbra; - - shadow = 0.0; - for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { - vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; - suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); - shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0)); - } - - shadow /= float(scene_data.penumbra_shadow_samples); - - } else { - //no blockers found, so no shadow - shadow = 1.0; - } - - } else { -#endif - //hard shadow - vec4 shadow_uv = vec4(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z, 1.0); - - shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv); -#ifdef USE_SOFT_SHADOWS - } -#endif - - return shadow; - } - -#endif //USE_NO_SHADOWS - - return 1.0; -} - -void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, -#ifdef LIGHT_BACKLIGHT_USED - vec3 backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - vec4 transmittance_color, - float transmittance_depth, - float transmittance_curve, - float transmittance_boost, -#endif -#ifdef LIGHT_RIM_USED - float rim, float rim_tint, vec3 rim_color, -#endif -#ifdef LIGHT_CLEARCOAT_USED - float clearcoat, float clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - vec3 binormal, vec3 tangent, float anisotropy, -#endif -#ifdef USE_SHADOW_TO_OPACITY - inout float alpha, -#endif - inout vec3 diffuse_light, - inout vec3 specular_light) { - vec3 light_rel_vec = spot_lights.data[idx].position - vertex; - float light_length = length(light_rel_vec); - float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation); - vec3 spot_dir = spot_lights.data[idx].direction; - float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle); - float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle)); - spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation); - float light_attenuation = spot_attenuation; - vec3 color = spot_lights.data[idx].color; - float specular_amount = spot_lights.data[idx].specular_amount; - -#ifdef USE_SOFT_SHADOWS - float size_A = 0.0; - - if (spot_lights.data[idx].size > 0.0) { - float t = spot_lights.data[idx].size / max(0.001, light_length); - size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); - } -#endif - - /* - if (spot_lights.data[idx].atlas_rect!=vec4(0.0)) { - //use projector texture - } - */ - -#ifdef LIGHT_TRANSMITTANCE_USED - float transmittance_z = transmittance_depth; - transmittance_color.a *= light_attenuation; - { - splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0)); - splane /= splane.w; - splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; - - float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; - //reconstruct depth - shadow_z /= spot_lights.data[idx].inv_radius; - //distance to light plane - float z = dot(spot_dir, -light_rel_vec); - transmittance_z = z - shadow_z; - } -#endif //LIGHT_TRANSMITTANCE_USED - - light_attenuation *= shadow; - - light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount, -#ifdef LIGHT_BACKLIGHT_USED - backlight, -#endif -#ifdef LIGHT_TRANSMITTANCE_USED - transmittance_color, - transmittance_depth, - transmittance_curve, - transmittance_boost, - transmittance_z, -#endif -#ifdef LIGHT_RIM_USED - rim * spot_attenuation, rim_tint, rim_color, -#endif -#ifdef LIGHT_CLEARCOAT_USED - clearcoat, clearcoat_gloss, -#endif -#ifdef LIGHT_ANISOTROPY_USED - binormal, tangent, anisotropy, -#endif -#ifdef USE_SOFT_SHADOW - size_A, -#endif -#ifdef USE_SHADOW_TO_OPACITY - alpha, -#endif - diffuse_light, specular_light); -} - -void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) { - vec3 box_extents = reflections.data[ref_index].box_extents; - vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz; - - if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box - return; - } - - vec3 ref_vec = normalize(reflect(vertex, normal)); - - vec3 inner_pos = abs(local_pos / box_extents); - float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); - //make blend more rounded - blend = mix(length(inner_pos), blend, blend); - blend *= blend; - blend = max(0.0, 1.0 - blend); - - if (reflections.data[ref_index].intensity > 0.0) { // compute reflection - - vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz; - - if (reflections.data[ref_index].box_project) { //box project - - vec3 nrdir = normalize(local_ref_vec); - vec3 rbmax = (box_extents - local_pos) / nrdir; - vec3 rbmin = (-box_extents - local_pos) / nrdir; - - vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); - - float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); - vec3 posonbox = local_pos + nrdir * fa; - local_ref_vec = posonbox - reflections.data[ref_index].box_offset; - } - - vec4 reflection; - - reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb; - - if (reflections.data[ref_index].exterior) { - reflection.rgb = mix(specular_light, reflection.rgb, blend); - } - - reflection.rgb *= reflections.data[ref_index].intensity; //intensity - reflection.a = blend; - reflection.rgb *= reflection.a; - - reflection_accum += reflection; - } - - switch (reflections.data[ref_index].ambient_mode) { - case REFLECTION_AMBIENT_DISABLED: { - //do nothing - } break; - case REFLECTION_AMBIENT_ENVIRONMENT: { - //do nothing - vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz; - - vec4 ambient_out; - - ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb; - ambient_out.a = blend; - if (reflections.data[ref_index].exterior) { - ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); - } - - ambient_out.rgb *= ambient_out.a; - ambient_accum += ambient_out; - } break; - case REFLECTION_AMBIENT_COLOR: { - vec4 ambient_out; - ambient_out.a = blend; - ambient_out.rgb = reflections.data[ref_index].ambient; - if (reflections.data[ref_index].exterior) { - ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); - } - ambient_out.rgb *= ambient_out.a; - ambient_accum += ambient_out; - } break; - } -} +#include "scene_forward_lights_inc.glsl" #ifdef USE_FORWARD_GI -//standard voxel cone trace -vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { - float dist = p_bias; - vec4 color = vec4(0.0); - - while (dist < max_distance && color.a < 0.95) { - float diameter = max(1.0, 2.0 * tan_half_angle * dist); - vec3 uvw_pos = (pos + dist * direction) * cell_size; - float half_diameter = diameter * 0.5; - //check if outside, then break - if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) { - break; - } - vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter)); - float a = (1.0 - color.a); - color += a * scolor; - dist += half_diameter; - } - - return color; -} - -vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { - float dist = p_bias; - vec4 color = vec4(0.0); - float radius = max(0.5, tan_half_angle * dist); - float lod_level = log2(radius * 2.0); - - while (dist < max_distance && color.a < 0.95) { - vec3 uvw_pos = (pos + dist * direction) * cell_size; - - //check if outside, then break - if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) { - break; - } - vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level); - lod_level += 1.0; - - float a = (1.0 - color.a); - scolor *= a; - color += scolor; - dist += radius; - radius = max(0.5, tan_half_angle * dist); - } - - return color; -} - -void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) { - position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz; - ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz); - normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz); - - position += normal * gi_probes.data[index].normal_bias; - - //this causes corrupted pixels, i have no idea why.. - if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) { - return; - } - - vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0); - float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); - //float blend=1.0; - - float max_distance = length(gi_probes.data[index].bounds); - vec3 cell_size = 1.0 / gi_probes.data[index].bounds; - - //radiance - -#define MAX_CONE_DIRS 4 - - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( - vec3(0.707107, 0.0, 0.707107), - vec3(0.0, 0.707107, 0.707107), - vec3(-0.707107, 0.0, 0.707107), - vec3(0.0, -0.707107, 0.707107)); - - float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); - float cone_angle_tan = 0.98269; - - vec3 light = vec3(0.0); - - for (int i = 0; i < MAX_CONE_DIRS; i++) { - vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz); - - vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); - - if (gi_probes.data[index].blend_ambient) { - cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95)); - } - - light += cone_weights[i] * cone_light.rgb; - } - - light *= gi_probes.data[index].dynamic_range; - out_diff += vec4(light * blend, blend); - - //irradiance - vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias); - if (gi_probes.data[index].blend_ambient) { - irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95)); - } - irr_light.rgb *= gi_probes.data[index].dynamic_range; - //irr_light=vec3(0.0); - - out_spec += vec4(irr_light.rgb * blend, blend); -} - -vec2 octahedron_wrap(vec2 v) { - vec2 signVal; - signVal.x = v.x >= 0.0 ? 1.0 : -1.0; - signVal.y = v.y >= 0.0 ? 1.0 : -1.0; - return (1.0 - abs(v.yx)) * signVal; -} - -vec2 octahedron_encode(vec3 n) { - // https://twitter.com/Stubbesaurus/status/937994790553227264 - n /= (abs(n.x) + abs(n.y) + abs(n.z)); - n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy); - n.xy = n.xy * 0.5 + 0.5; - return n.xy; -} - -void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) { - cascade_pos += cam_normal * sdfgi.normal_bias; - - vec3 base_pos = floor(cascade_pos); - //cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal; - ivec3 probe_base_pos = ivec3(base_pos); - - vec4 diffuse_accum = vec4(0.0); - vec3 specular_accum; - - ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade)); - tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size; - tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1); - - vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; - - vec3 specular_posf; - - if (use_specular) { - specular_accum = vec3(0.0); - specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; - } - - vec4 light_accum = vec4(0.0); - float weight_accum = 0.0; - - for (uint j = 0; j < 8; j++) { - ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1); - ivec3 probe_posi = probe_base_pos; - probe_posi += offset; - - // Compute weight - - vec3 probe_pos = vec3(probe_posi); - vec3 probe_to_pos = cascade_pos - probe_pos; - vec3 probe_dir = normalize(-probe_to_pos); - - vec3 trilinear = vec3(1.0) - abs(probe_to_pos); - float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir)); - - // Compute lightprobe occlusion - - if (sdfgi.use_occlusion) { - ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4); - vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3))); - - vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw; - occ_pos.z += float(cascade); - if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures - occ_pos.x += 1.0; - } - - occ_pos *= sdfgi.occlusion_renormalize; - float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask); - - weight *= max(occlusion, 0.01); - } - - // Compute lightprobe texture position - - vec3 diffuse; - vec3 pos_uvw = diffuse_posf; - pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; - pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; - diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb; - - diffuse_accum += vec4(diffuse * weight, weight); - - if (use_specular) { - vec3 specular = vec3(0.0); - vec3 pos_uvw = specular_posf; - pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; - pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; - if (roughness < 0.99) { - specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb; - } - if (roughness > 0.5) { - specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0); - } - - specular_accum += specular * weight; - } - } - - if (diffuse_accum.a > 0.0) { - diffuse_accum.rgb /= diffuse_accum.a; - } - - diffuse_light = diffuse_accum.rgb; - - if (use_specular) { - if (diffuse_accum.a > 0.0) { - specular_accum /= diffuse_accum.a; - } - - specular_light = specular_accum; - } - - { - //process blend - float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5; - float blend_to = blend_from + 2.0; - - vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe; - - float len = length(inner_pos); - - inner_pos = abs(normalize(inner_pos)); - len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z)); - - if (len >= blend_from) { - blend = smoothstep(blend_from, blend_to, len); - } else { - blend = 0.0; - } - } -} +#include "scene_forward_gi_inc.glsl" #endif //USE_FORWARD_GI @@ -1792,26 +533,6 @@ uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) { return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width); } -float blur_shadow(float shadow) { - return shadow; -#if 0 - //disabling for now, will investigate later - float interp_shadow = shadow; - if (gl_HelperInvocation) { - interp_shadow = -4.0; // technically anything below -4 will do but just to make sure - } - - uvec2 fc2 = uvec2(gl_FragCoord.xy); - interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5); - interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5); - - if (interp_shadow >= 0.0) { - shadow = interp_shadow; - } - return shadow; -#endif -} - #endif //!MODE_RENDER DEPTH void main() { @@ -2506,6 +1227,10 @@ void main() { continue; //not masked } + if (directional_lights.data[i].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { + continue; // Statically baked light and object uses lightmap, skip + } + float shadow = 1.0; #ifdef USE_SOFT_SHADOWS @@ -2955,6 +1680,10 @@ void main() { continue; //not masked } + if (omni_lights.data[light_index].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { + continue; // Statically baked light and object uses lightmap, skip + } + float shadow = light_process_omni_shadow(light_index, vertex, view); shadow = blur_shadow(shadow); @@ -3028,6 +1757,10 @@ void main() { continue; //not masked } + if (spot_lights.data[light_index].bake_mode == LIGHT_BAKE_STATIC && bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { + continue; // Statically baked light and object uses lightmap, skip + } + float shadow = light_process_spot_shadow(light_index, vertex, view); shadow = blur_shadow(shadow); diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl index 48e331714d..ca75d6300e 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl @@ -13,6 +13,7 @@ #endif #include "cluster_data_inc.glsl" +#include "decal_data_inc.glsl" #if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(MODE_RENDER_SDF) || defined(MODE_RENDER_NORMAL_ROUGHNESS) || defined(MODE_RENDER_GIPROBE) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) #ifndef NORMAL_USED @@ -28,7 +29,11 @@ layout(push_constant, binding = 0, std430) uniform DrawCall { } draw_call; -/* Set 0 Scene data that never changes, ever */ +#define SDFGI_MAX_CASCADES 8 + +/* Set 0: Base Pass (never changes) */ + +#include "light_data_inc.glsl" #define SAMPLER_NEAREST_CLAMP 0 #define SAMPLER_LINEAR_CLAMP 1 @@ -43,10 +48,6 @@ draw_call; #define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT 10 #define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11 -#define SDFGI_MAX_CASCADES 8 - -/* Set 1: Base Pass (never changes) */ - layout(set = 0, binding = 1) uniform sampler material_samplers[12]; layout(set = 0, binding = 2) uniform sampler shadow_sampler; @@ -61,12 +62,11 @@ layout(set = 0, binding = 2) uniform sampler shadow_sampler; #define INSTANCE_FLAGS_MULTIMESH_FORMAT_2D (1 << 13) #define INSTANCE_FLAGS_MULTIMESH_HAS_COLOR (1 << 14) #define INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA (1 << 15) -#define INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT 16 +#define INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT 16 //3 bits of stride -#define INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK 0x7 +#define INSTANCE_FLAGS_PARTICLE_TRAIL_MASK 0xFF -#define INSTANCE_FLAGS_SKELETON (1 << 19) -#define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 20) +#define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 24) layout(set = 0, binding = 3, std430) restrict readonly buffer OmniLights { LightData data[]; @@ -157,7 +157,7 @@ layout(set = 0, binding = 13, std140) uniform SDFGI { } sdfgi; -/* Set 2: Render Pass (changes per render pass) */ +/* Set 1: Render Pass (changes per render pass) */ layout(set = 1, binding = 0, std140) uniform SceneData { mat4 projection_matrix; @@ -241,7 +241,6 @@ layout(set = 1, binding = 0, std140) uniform SceneData { bool pancake_shadows; } - scene_data; struct InstanceData { diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_gi_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_gi_inc.glsl new file mode 100644 index 0000000000..b41f16cbe7 --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/scene_forward_gi_inc.glsl @@ -0,0 +1,242 @@ +// Functions related to gi/sdfgi for our forward renderer + +//standard voxel cone trace +vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + float dist = p_bias; + vec4 color = vec4(0.0); + + while (dist < max_distance && color.a < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec3 uvw_pos = (pos + dist * direction) * cell_size; + float half_diameter = diameter * 0.5; + //check if outside, then break + if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) { + break; + } + vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter)); + float a = (1.0 - color.a); + color += a * scolor; + dist += half_diameter; + } + + return color; +} + +vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + float dist = p_bias; + vec4 color = vec4(0.0); + float radius = max(0.5, tan_half_angle * dist); + float lod_level = log2(radius * 2.0); + + while (dist < max_distance && color.a < 0.95) { + vec3 uvw_pos = (pos + dist * direction) * cell_size; + + //check if outside, then break + if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) { + break; + } + vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level); + lod_level += 1.0; + + float a = (1.0 - color.a); + scolor *= a; + color += scolor; + dist += radius; + radius = max(0.5, tan_half_angle * dist); + } + + return color; +} + +void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) { + position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz; + ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz); + normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz); + + position += normal * gi_probes.data[index].normal_bias; + + //this causes corrupted pixels, i have no idea why.. + if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) { + return; + } + + vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0); + float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); + //float blend=1.0; + + float max_distance = length(gi_probes.data[index].bounds); + vec3 cell_size = 1.0 / gi_probes.data[index].bounds; + + //radiance + +#define MAX_CONE_DIRS 4 + + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0.707107, 0.0, 0.707107), + vec3(0.0, 0.707107, 0.707107), + vec3(-0.707107, 0.0, 0.707107), + vec3(0.0, -0.707107, 0.707107)); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); + float cone_angle_tan = 0.98269; + + vec3 light = vec3(0.0); + + for (int i = 0; i < MAX_CONE_DIRS; i++) { + vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz); + + vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); + + if (gi_probes.data[index].blend_ambient) { + cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95)); + } + + light += cone_weights[i] * cone_light.rgb; + } + + light *= gi_probes.data[index].dynamic_range; + out_diff += vec4(light * blend, blend); + + //irradiance + vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias); + if (gi_probes.data[index].blend_ambient) { + irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95)); + } + irr_light.rgb *= gi_probes.data[index].dynamic_range; + //irr_light=vec3(0.0); + + out_spec += vec4(irr_light.rgb * blend, blend); +} + +vec2 octahedron_wrap(vec2 v) { + vec2 signVal; + signVal.x = v.x >= 0.0 ? 1.0 : -1.0; + signVal.y = v.y >= 0.0 ? 1.0 : -1.0; + return (1.0 - abs(v.yx)) * signVal; +} + +vec2 octahedron_encode(vec3 n) { + // https://twitter.com/Stubbesaurus/status/937994790553227264 + n /= (abs(n.x) + abs(n.y) + abs(n.z)); + n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy); + n.xy = n.xy * 0.5 + 0.5; + return n.xy; +} + +void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) { + cascade_pos += cam_normal * sdfgi.normal_bias; + + vec3 base_pos = floor(cascade_pos); + //cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal; + ivec3 probe_base_pos = ivec3(base_pos); + + vec4 diffuse_accum = vec4(0.0); + vec3 specular_accum; + + ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade)); + tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size; + tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1); + + vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; + + vec3 specular_posf; + + if (use_specular) { + specular_accum = vec3(0.0); + specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; + } + + vec4 light_accum = vec4(0.0); + float weight_accum = 0.0; + + for (uint j = 0; j < 8; j++) { + ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1); + ivec3 probe_posi = probe_base_pos; + probe_posi += offset; + + // Compute weight + + vec3 probe_pos = vec3(probe_posi); + vec3 probe_to_pos = cascade_pos - probe_pos; + vec3 probe_dir = normalize(-probe_to_pos); + + vec3 trilinear = vec3(1.0) - abs(probe_to_pos); + float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir)); + + // Compute lightprobe occlusion + + if (sdfgi.use_occlusion) { + ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4); + vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3))); + + vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw; + occ_pos.z += float(cascade); + if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures + occ_pos.x += 1.0; + } + + occ_pos *= sdfgi.occlusion_renormalize; + float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask); + + weight *= max(occlusion, 0.01); + } + + // Compute lightprobe texture position + + vec3 diffuse; + vec3 pos_uvw = diffuse_posf; + pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; + pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; + diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb; + + diffuse_accum += vec4(diffuse * weight, weight); + + if (use_specular) { + vec3 specular = vec3(0.0); + vec3 pos_uvw = specular_posf; + pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; + pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; + if (roughness < 0.99) { + specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb; + } + if (roughness > 0.5) { + specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0); + } + + specular_accum += specular * weight; + } + } + + if (diffuse_accum.a > 0.0) { + diffuse_accum.rgb /= diffuse_accum.a; + } + + diffuse_light = diffuse_accum.rgb; + + if (use_specular) { + if (diffuse_accum.a > 0.0) { + specular_accum /= diffuse_accum.a; + } + + specular_light = specular_accum; + } + + { + //process blend + float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5; + float blend_to = blend_from + 2.0; + + vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe; + + float len = length(inner_pos); + + inner_pos = abs(normalize(inner_pos)); + len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + + if (len >= blend_from) { + blend = smoothstep(blend_from, blend_to, len); + } else { + blend = 0.0; + } + } +} diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl new file mode 100644 index 0000000000..32a86cb166 --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl @@ -0,0 +1,1023 @@ +// Functions related to lighting + +// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. +// We're dividing this factor off because the overall term we'll end up looks like +// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): +// +// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) +// +// We're basically regouping this as +// +// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] +// +// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. +// +// The contents of the D and G (G1) functions (GGX) are taken from +// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). +// Eqns 71-72 and 85-86 (see also Eqns 43 and 80). + +float G_GGX_2cos(float cos_theta_m, float alpha) { + // Schlick's approximation + // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) + // Eq. (19), although see Heitz (2014) the about the problems with his derivation. + // It nevertheless approximates GGX well with k = alpha/2. + float k = 0.5 * alpha; + return 0.5 / (cos_theta_m * (1.0 - k) + k); + + // float cos2 = cos_theta_m * cos_theta_m; + // float sin2 = (1.0 - cos2); + // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); +} + +float D_GGX(float cos_theta_m, float alpha) { + float alpha2 = alpha * alpha; + float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; + return alpha2 / (M_PI * d * d); +} + +float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { + float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float s_x = alpha_x * cos_phi; + float s_y = alpha_y * sin_phi; + return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); +} + +float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { + float cos2 = cos_theta_m * cos_theta_m; + float sin2 = (1.0 - cos2); + float r_x = cos_phi / alpha_x; + float r_y = sin_phi / alpha_y; + float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); + return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); +} + +float SchlickFresnel(float u) { + float m = 1.0 - u; + float m2 = m * m; + return m2 * m2 * m; // pow(m,5) +} + +float GTR1(float NdotH, float a) { + if (a >= 1.0) + return 1.0 / M_PI; + float a2 = a * a; + float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; + return (a2 - 1.0) / (M_PI * log(a2) * t); +} + +vec3 F0(float metallic, float specular, vec3 albedo) { + float dielectric = 0.16 * specular * specular; + // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; + // see https://google.github.io/filament/Filament.md.html + return mix(vec3(dielectric), albedo, vec3(metallic)); +} + +void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, +#ifdef LIGHT_BACKLIGHT_USED + vec3 backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + vec4 transmittance_color, + float transmittance_depth, + float transmittance_curve, + float transmittance_boost, + float transmittance_z, +#endif +#ifdef LIGHT_RIM_USED + float rim, float rim_tint, vec3 rim_color, +#endif +#ifdef LIGHT_CLEARCOAT_USED + float clearcoat, float clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + vec3 B, vec3 T, float anisotropy, +#endif +#ifdef USE_SOFT_SHADOWS + float A, +#endif +#ifdef USE_SHADOW_TO_OPACITY + inout float alpha, +#endif + inout vec3 diffuse_light, inout vec3 specular_light) { + +#if defined(LIGHT_CODE_USED) + // light is written by the light shader + + vec3 normal = N; + vec3 light = L; + vec3 view = V; + +#CODE : LIGHT + +#else + +#ifdef USE_SOFT_SHADOWS + float NdotL = min(A + dot(N, L), 1.0); +#else + float NdotL = dot(N, L); +#endif + float cNdotL = max(NdotL, 0.0); // clamped NdotL + float NdotV = dot(N, V); + float cNdotV = max(NdotV, 0.0); + +#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) + vec3 H = normalize(V + L); +#endif + +#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) +#ifdef USE_SOFT_SHADOWS + float cNdotH = clamp(A + dot(N, H), 0.0, 1.0); +#else + float cNdotH = clamp(dot(N, H), 0.0, 1.0); +#endif +#endif + +#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) +#ifdef USE_SOFT_SHADOWS + float cLdotH = clamp(A + dot(L, H), 0.0, 1.0); +#else + float cLdotH = clamp(dot(L, H), 0.0, 1.0); +#endif +#endif + + float metallic = unpackUnorm4x8(orms).z; + if (metallic < 1.0) { + float roughness = unpackUnorm4x8(orms).y; + +#if defined(DIFFUSE_OREN_NAYAR) + vec3 diffuse_brdf_NL; +#else + float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance +#endif + +#if defined(DIFFUSE_LAMBERT_WRAP) + // energy conserving lambert wrap shader + diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); +#elif defined(DIFFUSE_TOON) + + diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); + +#elif defined(DIFFUSE_BURLEY) + + { + float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; + float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); + float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); + diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; + /* + float energyBias = mix(roughness, 0.0, 0.5); + float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); + float fd90 = energyBias + 2.0 * VoH * VoH * roughness; + float f0 = 1.0; + float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); + float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); + + diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; + */ + } +#else + // lambert + diffuse_brdf_NL = cNdotL * (1.0 / M_PI); +#endif + + diffuse_light += light_color * diffuse_brdf_NL * attenuation; + +#if defined(LIGHT_BACKLIGHT_USED) + diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; +#endif + +#if defined(LIGHT_RIM_USED) + float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); + diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color; +#endif + +#ifdef LIGHT_TRANSMITTANCE_USED + +#ifdef SSS_MODE_SKIN + + { + float scale = 8.25 / transmittance_depth; + float d = scale * abs(transmittance_z); + float dd = -d * d; + vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + + vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + + vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + + vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + + vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); + + diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI); + } +#else + + if (transmittance_depth > 0.0) { + float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0); + + fade = pow(max(0.0, 1.0 - fade), transmittance_curve); + fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0); + + diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade; + } + +#endif //SSS_MODE_SKIN + +#endif //LIGHT_TRANSMITTANCE_USED + } + + float roughness = unpackUnorm4x8(orms).y; + if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely + + // D + +#if defined(SPECULAR_BLINN) + + //normalized blinn + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float blinn = pow(cNdotH, shininess) * cNdotL; + blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); + float intensity = blinn; + + specular_light += light_color * intensity * attenuation * specular_amount; + +#elif defined(SPECULAR_PHONG) + + vec3 R = normalize(-reflect(L, N)); + float cRdotV = clamp(A + dot(R, V), 0.0, 1.0); + float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; + float phong = pow(cRdotV, shininess); + phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); + float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); + + specular_light += light_color * intensity * attenuation * specular_amount; + +#elif defined(SPECULAR_TOON) + + vec3 R = normalize(-reflect(L, N)); + float RdotV = dot(R, V); + float mid = 1.0 - roughness; + mid *= mid; + float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; + diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection + +#elif defined(SPECULAR_DISABLED) + // none.. + +#elif defined(SPECULAR_SCHLICK_GGX) + // shlick+ggx as default + +#if defined(LIGHT_ANISOTROPY_USED) + + float alpha_ggx = roughness * roughness; + float aspect = sqrt(1.0 - anisotropy * 0.9); + float ax = alpha_ggx / aspect; + float ay = alpha_ggx * aspect; + float XdotH = dot(T, H); + float YdotH = dot(B, H); + float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); + float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); + +#else + float alpha_ggx = roughness * roughness; + float D = D_GGX(cNdotH, alpha_ggx); + float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); +#endif + // F + float cLdotH5 = SchlickFresnel(cLdotH); + vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); + + vec3 specular_brdf_NL = cNdotL * D * F * G; + + specular_light += specular_brdf_NL * light_color * attenuation * specular_amount; +#endif + +#if defined(LIGHT_CLEARCOAT_USED) + +#if !defined(SPECULAR_SCHLICK_GGX) + float cLdotH5 = SchlickFresnel(cLdotH); +#endif + float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); + float Fr = mix(.04, 1.0, cLdotH5); + float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); + + float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; + + specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount; +#endif + } + +#ifdef USE_SHADOW_TO_OPACITY + alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0)); +#endif + +#endif //defined(LIGHT_CODE_USED) +} + +#ifndef USE_NO_SHADOWS + +// Interleaved Gradient Noise +// http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare +float quick_hash(vec2 pos) { + const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f); + return fract(magic.z * fract(dot(pos, magic.xy))); +} + +float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { + vec2 pos = coord.xy; + float depth = coord.z; + + //if only one sample is taken, take it from the center + if (scene_data.directional_soft_shadow_samples == 1) { + return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); + } + + mat2 disk_rotation; + { + float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; + float sr = sin(r); + float cr = cos(r); + disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); + } + + float avg = 0.0; + + for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) { + avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0)); + } + + return avg * (1.0 / float(scene_data.directional_soft_shadow_samples)); +} + +float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { + vec2 pos = coord.xy; + float depth = coord.z; + + //if only one sample is taken, take it from the center + if (scene_data.soft_shadow_samples == 1) { + return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); + } + + mat2 disk_rotation; + { + float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; + float sr = sin(r); + float cr = cos(r); + disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); + } + + float avg = 0.0; + + for (uint i = 0; i < scene_data.soft_shadow_samples; i++) { + avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0)); + } + + return avg * (1.0 / float(scene_data.soft_shadow_samples)); +} + +float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) { + //find blocker + float blocker_count = 0.0; + float blocker_average = 0.0; + + mat2 disk_rotation; + { + float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; + float sr = sin(r); + float cr = cos(r); + disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); + } + + for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) { + vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; + float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; + if (d < pssm_coord.z) { + blocker_average += d; + blocker_count += 1.0; + } + } + + if (blocker_count > 0.0) { + //blockers found, do soft shadow + blocker_average /= blocker_count; + float penumbra = (pssm_coord.z - blocker_average) / blocker_average; + tex_scale *= penumbra; + + float s = 0.0; + for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) { + vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; + s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0)); + } + + return s / float(scene_data.directional_penumbra_shadow_samples); + + } else { + //no blockers found, so no shadow + return 1.0; + } +} + +#endif //USE_NO_SHADOWS + +float get_omni_attenuation(float distance, float inv_range, float decay) { + float nd = distance * inv_range; + nd *= nd; + nd *= nd; // nd^4 + nd = max(1.0 - nd, 0.0); + nd *= nd; // nd^2 + return nd * pow(max(distance, 0.0001), -decay); +} + +float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { +#ifndef USE_NO_SHADOWS + if (omni_lights.data[idx].shadow_enabled) { + // there is a shadowmap + + vec3 light_rel_vec = omni_lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + + vec4 v = vec4(vertex, 1.0); + + vec4 splane = (omni_lights.data[idx].shadow_matrix * v); + float shadow_len = length(splane.xyz); //need to remember shadow len from here + + { + vec3 nofs = normal_interp * omni_lights.data[idx].shadow_normal_bias / omni_lights.data[idx].inv_radius; + nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp)))); + v.xyz += nofs; + splane = (omni_lights.data[idx].shadow_matrix * v); + } + + float shadow; + +#ifdef USE_SOFT_SHADOWS + if (omni_lights.data[idx].soft_shadow_size > 0.0) { + //soft shadow + + //find blocker + + float blocker_count = 0.0; + float blocker_average = 0.0; + + mat2 disk_rotation; + { + float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; + float sr = sin(r); + float cr = cos(r); + disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); + } + + vec3 normal = normalize(splane.xyz); + vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); + vec3 tangent = normalize(cross(v0, normal)); + vec3 bitangent = normalize(cross(tangent, normal)); + float z_norm = shadow_len * omni_lights.data[idx].inv_radius; + + tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; + bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; + + for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { + vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; + + vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y; + + pos = normalize(pos); + vec4 uv_rect = omni_lights.data[idx].atlas_rect; + + if (pos.z >= 0.0) { + pos.z += 1.0; + uv_rect.y += uv_rect.w; + } else { + pos.z = 1.0 - pos.z; + } + + pos.xy /= pos.z; + + pos.xy = pos.xy * 0.5 + 0.5; + pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; + + float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r; + if (d < z_norm) { + blocker_average += d; + blocker_count += 1.0; + } + } + + if (blocker_count > 0.0) { + //blockers found, do soft shadow + blocker_average /= blocker_count; + float penumbra = (z_norm - blocker_average) / blocker_average; + tangent *= penumbra; + bitangent *= penumbra; + + z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias; + + shadow = 0.0; + for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { + vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; + vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y; + + pos = normalize(pos); + vec4 uv_rect = omni_lights.data[idx].atlas_rect; + + if (pos.z >= 0.0) { + pos.z += 1.0; + uv_rect.y += uv_rect.w; + } else { + pos.z = 1.0 - pos.z; + } + + pos.xy /= pos.z; + + pos.xy = pos.xy * 0.5 + 0.5; + pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; + shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0)); + } + + shadow /= float(scene_data.penumbra_shadow_samples); + + } else { + //no blockers found, so no shadow + shadow = 1.0; + } + } else { +#endif + splane.xyz = normalize(splane.xyz); + vec4 clamp_rect = omni_lights.data[idx].atlas_rect; + + if (splane.z >= 0.0) { + splane.z += 1.0; + + clamp_rect.y += clamp_rect.w; + + } else { + splane.z = 1.0 - splane.z; + } + + splane.xy /= splane.z; + + splane.xy = splane.xy * 0.5 + 0.5; + splane.z = (shadow_len - omni_lights.data[idx].shadow_bias) * omni_lights.data[idx].inv_radius; + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + splane.w = 1.0; //needed? i think it should be 1 already + shadow = sample_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane); +#ifdef USE_SOFT_SHADOWS + } +#endif + + return shadow; + } +#endif + + return 1.0; +} + +void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, +#ifdef LIGHT_BACKLIGHT_USED + vec3 backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + vec4 transmittance_color, + float transmittance_depth, + float transmittance_curve, + float transmittance_boost, +#endif +#ifdef LIGHT_RIM_USED + float rim, float rim_tint, vec3 rim_color, +#endif +#ifdef LIGHT_CLEARCOAT_USED + float clearcoat, float clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + vec3 binormal, vec3 tangent, float anisotropy, +#endif +#ifdef USE_SHADOW_TO_OPACITY + inout float alpha, +#endif + inout vec3 diffuse_light, inout vec3 specular_light) { + vec3 light_rel_vec = omni_lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation); + float light_attenuation = omni_attenuation; + vec3 color = omni_lights.data[idx].color; + +#ifdef USE_SOFT_SHADOWS + float size_A = 0.0; + + if (omni_lights.data[idx].size > 0.0) { + float t = omni_lights.data[idx].size / max(0.001, light_length); + size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); + } +#endif + +#ifdef LIGHT_TRANSMITTANCE_USED + float transmittance_z = transmittance_depth; //no transmittance by default + transmittance_color.a *= light_attenuation; + { + vec4 clamp_rect = omni_lights.data[idx].atlas_rect; + + //redo shadowmapping, but shrink the model a bit to avoid arctifacts + vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0)); + + shadow_len = length(splane.xyz); + splane = normalize(splane.xyz); + + if (splane.z >= 0.0) { + splane.z += 1.0; + + } else { + splane.z = 1.0 - splane.z; + } + + splane.xy /= splane.z; + splane.xy = splane.xy * 0.5 + 0.5; + splane.z = shadow_len * omni_lights.data[idx].inv_radius; + splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; + splane.w = 1.0; //needed? i think it should be 1 already + + float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; + transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius; + } +#endif + +#if 0 + + if (omni_lights.data[idx].projector_rect != vec4(0.0)) { + vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; + local_v = normalize(local_v); + + vec4 atlas_rect = omni_lights.data[idx].projector_rect; + + if (local_v.z >= 0.0) { + local_v.z += 1.0; + atlas_rect.y += atlas_rect.w; + + } else { + local_v.z = 1.0 - local_v.z; + } + + local_v.xy /= local_v.z; + local_v.xy = local_v.xy * 0.5 + 0.5; + vec2 proj_uv = local_v.xy * atlas_rect.zw; + + vec2 proj_uv_ddx; + vec2 proj_uv_ddy; + { + vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz; + local_v_ddx = normalize(local_v_ddx); + + if (local_v_ddx.z >= 0.0) { + local_v_ddx.z += 1.0; + } else { + local_v_ddx.z = 1.0 - local_v_ddx.z; + } + + local_v_ddx.xy /= local_v_ddx.z; + local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5; + + proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv; + + vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz; + local_v_ddy = normalize(local_v_ddy); + + if (local_v_ddy.z >= 0.0) { + local_v_ddy.z += 1.0; + } else { + local_v_ddy.z = 1.0 - local_v_ddy.z; + } + + local_v_ddy.xy /= local_v_ddy.z; + local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5; + + proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv; + } + + vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy); + no_shadow = mix(no_shadow, proj.rgb, proj.a); + } +#endif + + light_attenuation *= shadow; + + light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount, +#ifdef LIGHT_BACKLIGHT_USED + backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, + transmittance_z, +#endif +#ifdef LIGHT_RIM_USED + rim * omni_attenuation, rim_tint, rim_color, +#endif +#ifdef LIGHT_CLEARCOAT_USED + clearcoat, clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + binormal, tangent, anisotropy, +#endif +#ifdef USE_SOFT_SHADOWS + size_A, +#endif +#ifdef USE_SHADOW_TO_OPACITY + alpha, +#endif + diffuse_light, + specular_light); +} + +float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { +#ifndef USE_NO_SHADOWS + if (spot_lights.data[idx].shadow_enabled) { + vec3 light_rel_vec = spot_lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + vec3 spot_dir = spot_lights.data[idx].direction; + //there is a shadowmap + vec4 v = vec4(vertex, 1.0); + + v.xyz -= spot_dir * spot_lights.data[idx].shadow_bias; + + float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius; + + float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map + vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * spot_lights.data[idx].shadow_normal_bias * depth_bias_scale; + normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z + v.xyz += normal_bias; + + //adjust with bias + z_norm = dot(spot_dir, v.xyz - spot_lights.data[idx].position) * spot_lights.data[idx].inv_radius; + + float shadow; + + vec4 splane = (spot_lights.data[idx].shadow_matrix * v); + splane /= splane.w; + +#ifdef USE_SOFT_SHADOWS + if (spot_lights.data[idx].soft_shadow_size > 0.0) { + //soft shadow + + //find blocker + + vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; + + float blocker_count = 0.0; + float blocker_average = 0.0; + + mat2 disk_rotation; + { + float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; + float sr = sin(r); + float cr = cos(r); + disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); + } + + float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale; + vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw; + for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { + vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; + suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); + float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; + if (d < z_norm) { + blocker_average += d; + blocker_count += 1.0; + } + } + + if (blocker_count > 0.0) { + //blockers found, do soft shadow + blocker_average /= blocker_count; + float penumbra = (z_norm - blocker_average) / blocker_average; + uv_size *= penumbra; + + shadow = 0.0; + for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { + vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; + suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); + shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0)); + } + + shadow /= float(scene_data.penumbra_shadow_samples); + + } else { + //no blockers found, so no shadow + shadow = 1.0; + } + + } else { +#endif + //hard shadow + vec4 shadow_uv = vec4(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z, 1.0); + + shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv); +#ifdef USE_SOFT_SHADOWS + } +#endif + + return shadow; + } + +#endif //USE_NO_SHADOWS + + return 1.0; +} + +void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, +#ifdef LIGHT_BACKLIGHT_USED + vec3 backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + vec4 transmittance_color, + float transmittance_depth, + float transmittance_curve, + float transmittance_boost, +#endif +#ifdef LIGHT_RIM_USED + float rim, float rim_tint, vec3 rim_color, +#endif +#ifdef LIGHT_CLEARCOAT_USED + float clearcoat, float clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + vec3 binormal, vec3 tangent, float anisotropy, +#endif +#ifdef USE_SHADOW_TO_OPACITY + inout float alpha, +#endif + inout vec3 diffuse_light, + inout vec3 specular_light) { + vec3 light_rel_vec = spot_lights.data[idx].position - vertex; + float light_length = length(light_rel_vec); + float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation); + vec3 spot_dir = spot_lights.data[idx].direction; + float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle); + float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle)); + spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation); + float light_attenuation = spot_attenuation; + vec3 color = spot_lights.data[idx].color; + float specular_amount = spot_lights.data[idx].specular_amount; + +#ifdef USE_SOFT_SHADOWS + float size_A = 0.0; + + if (spot_lights.data[idx].size > 0.0) { + float t = spot_lights.data[idx].size / max(0.001, light_length); + size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); + } +#endif + + /* + if (spot_lights.data[idx].atlas_rect!=vec4(0.0)) { + //use projector texture + } + */ + +#ifdef LIGHT_TRANSMITTANCE_USED + float transmittance_z = transmittance_depth; + transmittance_color.a *= light_attenuation; + { + splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0)); + splane /= splane.w; + splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; + + float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; + //reconstruct depth + shadow_z /= spot_lights.data[idx].inv_radius; + //distance to light plane + float z = dot(spot_dir, -light_rel_vec); + transmittance_z = z - shadow_z; + } +#endif //LIGHT_TRANSMITTANCE_USED + + light_attenuation *= shadow; + + light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount, +#ifdef LIGHT_BACKLIGHT_USED + backlight, +#endif +#ifdef LIGHT_TRANSMITTANCE_USED + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, + transmittance_z, +#endif +#ifdef LIGHT_RIM_USED + rim * spot_attenuation, rim_tint, rim_color, +#endif +#ifdef LIGHT_CLEARCOAT_USED + clearcoat, clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + binormal, tangent, anisotropy, +#endif +#ifdef USE_SOFT_SHADOW + size_A, +#endif +#ifdef USE_SHADOW_TO_OPACITY + alpha, +#endif + diffuse_light, specular_light); +} + +void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) { + vec3 box_extents = reflections.data[ref_index].box_extents; + vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz; + + if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box + return; + } + + vec3 ref_vec = normalize(reflect(vertex, normal)); + + vec3 inner_pos = abs(local_pos / box_extents); + float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); + //make blend more rounded + blend = mix(length(inner_pos), blend, blend); + blend *= blend; + blend = max(0.0, 1.0 - blend); + + if (reflections.data[ref_index].intensity > 0.0) { // compute reflection + + vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz; + + if (reflections.data[ref_index].box_project) { //box project + + vec3 nrdir = normalize(local_ref_vec); + vec3 rbmax = (box_extents - local_pos) / nrdir; + vec3 rbmin = (-box_extents - local_pos) / nrdir; + + vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); + + float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); + vec3 posonbox = local_pos + nrdir * fa; + local_ref_vec = posonbox - reflections.data[ref_index].box_offset; + } + + vec4 reflection; + + reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb; + + if (reflections.data[ref_index].exterior) { + reflection.rgb = mix(specular_light, reflection.rgb, blend); + } + + reflection.rgb *= reflections.data[ref_index].intensity; //intensity + reflection.a = blend; + reflection.rgb *= reflection.a; + + reflection_accum += reflection; + } + + switch (reflections.data[ref_index].ambient_mode) { + case REFLECTION_AMBIENT_DISABLED: { + //do nothing + } break; + case REFLECTION_AMBIENT_ENVIRONMENT: { + //do nothing + vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz; + + vec4 ambient_out; + + ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb; + ambient_out.a = blend; + if (reflections.data[ref_index].exterior) { + ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); + } + + ambient_out.rgb *= ambient_out.a; + ambient_accum += ambient_out; + } break; + case REFLECTION_AMBIENT_COLOR: { + vec4 ambient_out; + ambient_out.a = blend; + ambient_out.rgb = reflections.data[ref_index].ambient; + if (reflections.data[ref_index].exterior) { + ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); + } + ambient_out.rgb *= ambient_out.a; + ambient_accum += ambient_out; + } break; + } +} + +float blur_shadow(float shadow) { + return shadow; +#if 0 + //disabling for now, will investigate later + float interp_shadow = shadow; + if (gl_HelperInvocation) { + interp_shadow = -4.0; // technically anything below -4 will do but just to make sure + } + + uvec2 fc2 = uvec2(gl_FragCoord.xy); + interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5); + interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5); + + if (interp_shadow >= 0.0) { + shadow = interp_shadow; + } + return shadow; +#endif +} diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl new file mode 100644 index 0000000000..b38b8d803d --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl @@ -0,0 +1,1476 @@ +#[vertex] + +#version 450 + +#VERSION_DEFINES + +/* Include our forward mobile UBOs definitions etc. */ +#include "scene_forward_mobile_inc.glsl" + +/* INPUT ATTRIBS */ + +layout(location = 0) in vec3 vertex_attrib; + +//only for pure render depth when normal is not used + +#ifdef NORMAL_USED +layout(location = 1) in vec3 normal_attrib; +#endif + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) +layout(location = 2) in vec4 tangent_attrib; +#endif + +#if defined(COLOR_USED) +layout(location = 3) in vec4 color_attrib; +#endif + +#ifdef UV_USED +layout(location = 4) in vec2 uv_attrib; +#endif + +#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL) +layout(location = 5) in vec2 uv2_attrib; +#endif // MODE_RENDER_MATERIAL + +#if defined(CUSTOM0_USED) +layout(location = 6) in vec4 custom0_attrib; +#endif + +#if defined(CUSTOM1_USED) +layout(location = 7) in vec4 custom1_attrib; +#endif + +#if defined(CUSTOM2_USED) +layout(location = 8) in vec4 custom2_attrib; +#endif + +#if defined(CUSTOM3_USED) +layout(location = 9) in vec4 custom3_attrib; +#endif + +#if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS) +layout(location = 10) in uvec4 bone_attrib; +#endif + +#if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS) +layout(location = 11) in vec4 weight_attrib; +#endif + +/* Varyings */ + +layout(location = 0) out vec3 vertex_interp; + +#ifdef NORMAL_USED +layout(location = 1) out vec3 normal_interp; +#endif + +#if defined(COLOR_USED) +layout(location = 2) out vec4 color_interp; +#endif + +#ifdef UV_USED +layout(location = 3) out vec2 uv_interp; +#endif + +#if defined(UV2_USED) || defined(USE_LIGHTMAP) +layout(location = 4) out vec2 uv2_interp; +#endif + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) +layout(location = 5) out vec3 tangent_interp; +layout(location = 6) out vec3 binormal_interp; +#endif + +#ifdef MATERIAL_UNIFORMS_USED +layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ + +#MATERIAL_UNIFORMS + +} material; +#endif + +#ifdef MODE_DUAL_PARABOLOID + +layout(location = 8) out float dp_clip; + +#endif + +invariant gl_Position; + +#GLOBALS + +void main() { + vec4 instance_custom = vec4(0.0); +#if defined(COLOR_USED) + color_interp = color_attrib; +#endif + + bool is_multimesh = bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH); + + mat4 world_matrix = draw_call.transform; + + mat3 world_normal_matrix; + if (bool(draw_call.flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) { + world_normal_matrix = inverse(mat3(world_matrix)); + } else { + world_normal_matrix = mat3(world_matrix); + } + + if (is_multimesh) { + //multimesh, instances are for it + + mat4 matrix; + +#ifdef USE_PARTICLE_TRAILS + uint trail_size = (draw_call.flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK; + uint stride = 3 + 1 + 1; //particles always uses this format + + uint offset = trail_size * stride * gl_InstanceIndex; + +#ifdef COLOR_USED + vec4 pcolor; +#endif + { + uint boffset = offset + bone_attrib.x * stride; + matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x; +#ifdef COLOR_USED + pcolor = transforms.data[boffset + 3] * weight_attrib.x; +#endif + } + if (weight_attrib.y > 0.001) { + uint boffset = offset + bone_attrib.y * stride; + matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y; +#ifdef COLOR_USED + pcolor += transforms.data[boffset + 3] * weight_attrib.y; +#endif + } + if (weight_attrib.z > 0.001) { + uint boffset = offset + bone_attrib.z * stride; + matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z; +#ifdef COLOR_USED + pcolor += transforms.data[boffset + 3] * weight_attrib.z; +#endif + } + if (weight_attrib.w > 0.001) { + uint boffset = offset + bone_attrib.w * stride; + matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w; +#ifdef COLOR_USED + pcolor += transforms.data[boffset + 3] * weight_attrib.w; +#endif + } + + instance_custom = transforms.data[offset + 4]; + +#ifdef COLOR_USED + color_interp *= pcolor; +#endif + +#else + uint stride = 0; + { + //TODO implement a small lookup table for the stride + if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { + stride += 2; + } else { + stride += 3; + } + if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { + stride += 1; + } + if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { + stride += 1; + } + } + + uint offset = stride * gl_InstanceIndex; + + if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { + matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); + offset += 2; + } else { + matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0)); + offset += 3; + } + + if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { +#ifdef COLOR_USED + color_interp *= transforms.data[offset]; +#endif + offset += 1; + } + + if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { + instance_custom = transforms.data[offset]; + } + +#endif + //transpose + matrix = transpose(matrix); + world_matrix = world_matrix * matrix; + world_normal_matrix = world_normal_matrix * mat3(matrix); + } + + vec3 vertex = vertex_attrib; +#ifdef NORMAL_USED + vec3 normal = normal_attrib * 2.0 - 1.0; +#endif + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) + vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0; + float binormalf = tangent_attrib.a * 2.0 - 1.0; + vec3 binormal = normalize(cross(normal, tangent) * binormalf); +#endif + +#ifdef UV_USED + uv_interp = uv_attrib; +#endif + +#if defined(UV2_USED) || defined(USE_LIGHTMAP) + uv2_interp = uv2_attrib; +#endif + +#ifdef OVERRIDE_POSITION + vec4 position; +#endif + + mat4 projection_matrix = scene_data.projection_matrix; + +//using world coordinates +#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) + + vertex = (world_matrix * vec4(vertex, 1.0)).xyz; + + normal = world_normal_matrix * normal; + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) + + tangent = world_normal_matrix * tangent; + binormal = world_normal_matrix * binormal; + +#endif +#endif + + float roughness = 1.0; + + mat4 modelview = scene_data.inv_camera_matrix * world_matrix; + mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix; + + { +#CODE : VERTEX + } + + /* output */ + +// using local coordinates (default) +#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) + + vertex = (modelview * vec4(vertex, 1.0)).xyz; +#ifdef NORMAL_USED + normal = modelview_normal * normal; +#endif + +#endif + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) + + binormal = modelview_normal * binormal; + tangent = modelview_normal * tangent; +#endif + +//using world coordinates +#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) + + vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz; + normal = mat3(scene_data.inverse_normal_matrix) * normal; + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) + + binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal; + tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent; +#endif +#endif + + vertex_interp = vertex; +#ifdef NORMAL_USED + normal_interp = normal; +#endif + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) + tangent_interp = tangent; + binormal_interp = binormal; +#endif + +#ifdef MODE_RENDER_DEPTH + +#ifdef MODE_DUAL_PARABOLOID + + vertex_interp.z *= scene_data.dual_paraboloid_side; + + dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias + + //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges + + vec3 vtx = vertex_interp; + float distance = length(vtx); + vtx = normalize(vtx); + vtx.xy /= 1.0 - vtx.z; + vtx.z = (distance / scene_data.z_far); + vtx.z = vtx.z * 2.0 - 1.0; + vertex_interp = vtx; + +#endif + +#endif //MODE_RENDER_DEPTH + +#ifdef OVERRIDE_POSITION + gl_Position = position; +#else + gl_Position = projection_matrix * vec4(vertex_interp, 1.0); +#endif // OVERRIDE_POSITION + +#ifdef MODE_RENDER_DEPTH + if (scene_data.pancake_shadows) { + if (gl_Position.z <= 0.00001) { + gl_Position.z = 0.00001; + } + } +#endif // MODE_RENDER_DEPTH +#ifdef MODE_RENDER_MATERIAL + if (scene_data.material_uv2_mode) { + vec2 uv_offset = draw_call.lightmap_uv_scale.xy; // we are abusing lightmap_uv_scale here, we shouldn't have a lightmap during a depth pass... + gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0; + gl_Position.z = 0.00001; + gl_Position.w = 1.0; + } +#endif // MODE_RENDER_MATERIAL +} + +#[fragment] + +#version 450 + +#VERSION_DEFINES + +/* Include our forward mobile UBOs definitions etc. */ +#include "scene_forward_mobile_inc.glsl" + +/* Varyings */ + +layout(location = 0) in vec3 vertex_interp; + +#ifdef NORMAL_USED +layout(location = 1) in vec3 normal_interp; +#endif + +#if defined(COLOR_USED) +layout(location = 2) in vec4 color_interp; +#endif + +#ifdef UV_USED +layout(location = 3) in vec2 uv_interp; +#endif + +#if defined(UV2_USED) || defined(USE_LIGHTMAP) +layout(location = 4) in vec2 uv2_interp; +#endif + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) +layout(location = 5) in vec3 tangent_interp; +layout(location = 6) in vec3 binormal_interp; +#endif + +#ifdef MODE_DUAL_PARABOLOID + +layout(location = 8) in float dp_clip; + +#endif + +//defines to keep compatibility with vertex + +#define world_matrix draw_call.transform +#define projection_matrix scene_data.projection_matrix + +#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE) +//both required for transmittance to be enabled +#define LIGHT_TRANSMITTANCE_USED +#endif + +#ifdef MATERIAL_UNIFORMS_USED +layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ + +#MATERIAL_UNIFORMS + +} material; +#endif + +#GLOBALS + +/* clang-format on */ + +#ifdef MODE_RENDER_DEPTH + +#ifdef MODE_RENDER_MATERIAL + +layout(location = 0) out vec4 albedo_output_buffer; +layout(location = 1) out vec4 normal_output_buffer; +layout(location = 2) out vec4 orm_output_buffer; +layout(location = 3) out vec4 emission_output_buffer; +layout(location = 4) out float depth_output_buffer; + +#endif // MODE_RENDER_MATERIAL + +#else // RENDER DEPTH + +#ifdef MODE_MULTIPLE_RENDER_TARGETS + +layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness +layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter) +#else + +layout(location = 0) out vec4 frag_color; +#endif // MODE_MULTIPLE_RENDER_TARGETS + +#endif // RENDER DEPTH + +#include "scene_forward_aa_inc.glsl" + +#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + +#include "scene_forward_lights_inc.glsl" + +#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + +#ifndef MODE_RENDER_DEPTH + +/* + Only supporting normal fog here. +*/ + +vec4 fog_process(vec3 vertex) { + vec3 fog_color = scene_data.fog_light_color; + + if (scene_data.fog_aerial_perspective > 0.0) { + vec3 sky_fog_color = vec3(0.0); + vec3 cube_view = scene_data.radiance_inverse_xform * vertex; + // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred + float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)); +#ifdef USE_RADIANCE_CUBEMAP_ARRAY + float lod, blend; + blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod); + sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb; + sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend); +#else + sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb; +#endif //USE_RADIANCE_CUBEMAP_ARRAY + fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective); + } + + if (scene_data.fog_sun_scatter > 0.001) { + vec4 sun_scatter = vec4(0.0); + float sun_total = 0.0; + vec3 view = normalize(vertex); + + for (uint i = 0; i < scene_data.directional_light_count; i++) { + vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy; + float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0); + fog_color += light_color * light_amount * scene_data.fog_sun_scatter; + } + } + + float fog_amount = 1.0 - exp(min(0.0, vertex.z * scene_data.fog_density)); + + if (abs(scene_data.fog_height_density) > 0.001) { + float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y; + + float y_dist = scene_data.fog_height - y; + + float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0); + + fog_amount = max(vfog_amount, fog_amount); + } + + return vec4(fog_color, fog_amount); +} + +#endif //!MODE_RENDER DEPTH + +void main() { +#ifdef MODE_DUAL_PARABOLOID + + if (dp_clip > 0.0) + discard; +#endif + + //lay out everything, whathever is unused is optimized away anyway + vec3 vertex = vertex_interp; + vec3 view = -normalize(vertex_interp); + vec3 albedo = vec3(1.0); + vec3 backlight = vec3(0.0); + vec4 transmittance_color = vec4(0.0); + float transmittance_depth = 0.0; + float transmittance_curve = 1.0; + float transmittance_boost = 0.0; + float metallic = 0.0; + float specular = 0.5; + vec3 emission = vec3(0.0); + float roughness = 1.0; + float rim = 0.0; + float rim_tint = 0.0; + float clearcoat = 0.0; + float clearcoat_gloss = 0.0; + float anisotropy = 0.0; + vec2 anisotropy_flow = vec2(1.0, 0.0); + vec4 fog = vec4(0.0); +#if defined(CUSTOM_RADIANCE_USED) + vec4 custom_radiance = vec4(0.0); +#endif +#if defined(CUSTOM_IRRADIANCE_USED) + vec4 custom_irradiance = vec4(0.0); +#endif + + float ao = 1.0; + float ao_light_affect = 0.0; + + float alpha = 1.0; + +#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) + vec3 binormal = normalize(binormal_interp); + vec3 tangent = normalize(tangent_interp); +#else + vec3 binormal = vec3(0.0); + vec3 tangent = vec3(0.0); +#endif + +#ifdef NORMAL_USED + vec3 normal = normalize(normal_interp); + +#if defined(DO_SIDE_CHECK) + if (!gl_FrontFacing) { + normal = -normal; + } +#endif + +#endif //NORMAL_USED + +#ifdef UV_USED + vec2 uv = uv_interp; +#endif + +#if defined(UV2_USED) || defined(USE_LIGHTMAP) + vec2 uv2 = uv2_interp; +#endif + +#if defined(COLOR_USED) + vec4 color = color_interp; +#endif + +#if defined(NORMAL_MAP_USED) + + vec3 normal_map = vec3(0.5); +#endif + + float normal_map_depth = 1.0; + + vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center + + float sss_strength = 0.0; + +#ifdef ALPHA_SCISSOR_USED + float alpha_scissor_threshold = 1.0; +#endif // ALPHA_SCISSOR_USED + +#ifdef ALPHA_HASH_USED + float alpha_hash_scale = 1.0; +#endif // ALPHA_HASH_USED + +#ifdef ALPHA_ANTIALIASING_EDGE_USED + float alpha_antialiasing_edge = 0.0; + vec2 alpha_texture_coordinate = vec2(0.0, 0.0); +#endif // ALPHA_ANTIALIASING_EDGE_USED + + { +#CODE : FRAGMENT + } + +#ifdef LIGHT_TRANSMITTANCE_USED +#ifdef SSS_MODE_SKIN + transmittance_color.a = sss_strength; +#else + transmittance_color.a *= sss_strength; +#endif +#endif + +#ifndef USE_SHADOW_TO_OPACITY + +#ifdef ALPHA_SCISSOR_USED + if (alpha < alpha_scissor_threshold) { + discard; + } +#endif // ALPHA_SCISSOR_USED + +// alpha hash can be used in unison with alpha antialiasing +#ifdef ALPHA_HASH_USED + if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) { + discard; + } +#endif // ALPHA_HASH_USED + +// If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash +#if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED) + alpha = 1.0; +#endif + +#ifdef ALPHA_ANTIALIASING_EDGE_USED +// If alpha scissor is used, we must further the edge threshold, otherwise we wont get any edge feather +#ifdef ALPHA_SCISSOR_USED + alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0); +#endif + alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge); +#endif // ALPHA_ANTIALIASING_EDGE_USED + +#ifdef USE_OPAQUE_PREPASS + if (alpha < opaque_prepass_threshold) { + discard; + } +#endif // USE_OPAQUE_PREPASS + +#endif // !USE_SHADOW_TO_OPACITY + +#ifdef NORMAL_MAP_USED + + normal_map.xy = normal_map.xy * 2.0 - 1.0; + normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. + + normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth)); + +#endif + +#ifdef LIGHT_ANISOTROPY_USED + + if (anisotropy > 0.01) { + //rotation matrix + mat3 rot = mat3(tangent, binormal, normal); + //make local to space + tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); + binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); + } + +#endif + +#ifdef ENABLE_CLIP_ALPHA + if (albedo.a < 0.99) { + //used for doublepass and shadowmapping + discard; + } +#endif + + /////////////////////// FOG ////////////////////// +#ifndef MODE_RENDER_DEPTH + +#ifndef CUSTOM_FOG_USED + // fog must be processed as early as possible and then packed. + // to maximize VGPR usage + // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. + + if (scene_data.fog_enabled) { + fog = fog_process(vertex); + } + +#endif //!CUSTOM_FOG_USED + + uint fog_rg = packHalf2x16(fog.rg); + uint fog_ba = packHalf2x16(fog.ba); + +#endif //!MODE_RENDER_DEPTH + + /////////////////////// DECALS //////////////////////////////// + +#ifndef MODE_RENDER_DEPTH + + vec3 vertex_ddx = dFdx(vertex); + vec3 vertex_ddy = dFdy(vertex); + + { //Decals + // must implement + + uint decal_indices = draw_call.decals.x; + for (uint i = 0; i < 8; i++) { + uint decal_index = decal_indices & 0xFF; + if (i == 4) { + decal_indices = draw_call.decals.y; + } else { + decal_indices = decal_indices >> 8; + } + + if (decal_index == 0xFF) { + break; + } + + vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz; + if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) { + continue; //out of decal + } + + //we need ddx/ddy for mipmaps, so simulate them + vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz; + vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz; + + float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade); + + if (decals.data[decal_index].normal_fade > 0.0) { + fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5); + } + + if (decals.data[decal_index].albedo_rect != vec4(0.0)) { + //has albedo + vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw); + decal_albedo *= decals.data[decal_index].modulate; + decal_albedo.a *= fade; + albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix); + + if (decals.data[decal_index].normal_rect != vec4(0.0)) { + vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz; + decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software + decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy))); + //convert to view space, use xzy because y is up + decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz; + + normal = normalize(mix(normal, decal_normal, decal_albedo.a)); + } + + if (decals.data[decal_index].orm_rect != vec4(0.0)) { + vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz; + ao = mix(ao, decal_orm.r, decal_albedo.a); + roughness = mix(roughness, decal_orm.g, decal_albedo.a); + metallic = mix(metallic, decal_orm.b, decal_albedo.a); + } + } + + if (decals.data[decal_index].emission_rect != vec4(0.0)) { + //emission is additive, so its independent from albedo + emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade; + } + } + } //Decals +#endif //!MODE_RENDER_DEPTH + + /////////////////////// LIGHTING ////////////////////////////// + +#ifdef NORMAL_USED + if (scene_data.roughness_limiter_enabled) { + //http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf + float roughness2 = roughness * roughness; + vec3 dndu = dFdx(normal), dndv = dFdx(normal); + float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv)); + float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect + float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2); + roughness = sqrt(filteredRoughness2); + } +#endif // NORMAL_USED + //apply energy conservation + + vec3 specular_light = vec3(0.0, 0.0, 0.0); + vec3 diffuse_light = vec3(0.0, 0.0, 0.0); + vec3 ambient_light = vec3(0.0, 0.0, 0.0); + +#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + + if (scene_data.use_reflection_cubemap) { + vec3 ref_vec = reflect(-view, normal); + ref_vec = scene_data.radiance_inverse_xform * ref_vec; +#ifdef USE_RADIANCE_CUBEMAP_ARRAY + + float lod, blend; + blend = modf(roughness * MAX_ROUGHNESS_LOD, lod); + specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb; + specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend); + +#else // USE_RADIANCE_CUBEMAP_ARRAY + specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb; + +#endif //USE_RADIANCE_CUBEMAP_ARRAY + specular_light *= scene_data.ambient_light_color_energy.a; + } + +#if defined(CUSTOM_RADIANCE_USED) + specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a); +#endif // CUSTOM_RADIANCE_USED + +#ifndef USE_LIGHTMAP + //lightmap overrides everything + if (scene_data.use_ambient_light) { + ambient_light = scene_data.ambient_light_color_energy.rgb; + + if (scene_data.use_ambient_cubemap) { + vec3 ambient_dir = scene_data.radiance_inverse_xform * normal; +#ifdef USE_RADIANCE_CUBEMAP_ARRAY + vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb; +#else + vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb; +#endif //USE_RADIANCE_CUBEMAP_ARRAY + + ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix); + } + } +#endif // !USE_LIGHTMAP + +#if defined(CUSTOM_IRRADIANCE_USED) + ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a); +#endif // CUSTOM_IRRADIANCE_USED + +#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + + //radiance + +#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + +#ifdef USE_LIGHTMAP + + //lightmap + if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture + uint index = draw_call.gi_offset; + + vec3 wnormal = mat3(scene_data.camera_matrix) * normal; + const float c1 = 0.429043; + const float c2 = 0.511664; + const float c3 = 0.743125; + const float c4 = 0.886227; + const float c5 = 0.247708; + ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) + + c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z + + c4 * lightmap_captures.data[index].sh[0].rgb - + c5 * lightmap_captures.data[index].sh[6].rgb + + 2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y + + 2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z + + 2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z + + 2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x + + 2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y + + 2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z); + + } else if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap + bool uses_sh = bool(draw_call.flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP); + uint ofs = draw_call.gi_offset & 0xFFFF; + vec3 uvw; + uvw.xy = uv2 * draw_call.lightmap_uv_scale.zw + draw_call.lightmap_uv_scale.xy; + uvw.z = float((draw_call.gi_offset >> 16) & 0xFFFF); + + if (uses_sh) { + uvw.z *= 4.0; //SH textures use 4 times more data + vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb; + vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb; + vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb; + vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb; + + uint idx = draw_call.gi_offset >> 20; + vec3 n = normalize(lightmaps.data[idx].normal_xform * normal); + + ambient_light += lm_light_l0 * 0.282095f; + ambient_light += lm_light_l1n1 * 0.32573 * n.y; + ambient_light += lm_light_l1_0 * 0.32573 * n.z; + ambient_light += lm_light_l1p1 * 0.32573 * n.x; + if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick + vec3 r = reflect(normalize(-vertex), normal); + specular_light += lm_light_l1n1 * 0.32573 * r.y; + specular_light += lm_light_l1_0 * 0.32573 * r.z; + specular_light += lm_light_l1p1 * 0.32573 * r.x; + } + + } else { + ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb; + } + } + + // No GI nor non low end mode... + +#endif // USE_LIGHTMAP + + // skipping ssao, do we remove ssao totally? + + { //Reflection probes + vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); + vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); + + uint reflection_indices = draw_call.reflection_probes.x; + for (uint i = 0; i < 8; i++) { + uint reflection_index = reflection_indices & 0xFF; + if (i == 4) { + reflection_indices = draw_call.reflection_probes.y; + } else { + reflection_indices = reflection_indices >> 8; + } + + if (reflection_index == 0xFF) { + break; + } + + reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum); + } + + if (reflection_accum.a > 0.0) { + specular_light = reflection_accum.rgb / reflection_accum.a; + } + } //Reflection probes + + // finalize ambient light here + ambient_light *= albedo.rgb; + ambient_light *= ao; + + // convert ao to direct light ao + ao = mix(1.0, ao, ao_light_affect); + + //this saves some VGPRs + vec3 f0 = F0(metallic, specular, albedo); + + { +#if defined(DIFFUSE_TOON) + //simplify for toon, as + specular_light *= specular * metallic * albedo * 2.0; +#else + + // scales the specular reflections, needs to be be computed before lighting happens, + // but after environment, GI, and reflection probes are added + // Environment brdf approximation (Lazarov 2013) + // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile + const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); + const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); + vec4 r = roughness * c0 + c1; + float ndotv = clamp(dot(normal, view), 0.0, 1.0); + float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; + vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; + + specular_light *= env.x * f0 + env.y; +#endif + } + +#endif // !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + +#if !defined(MODE_RENDER_DEPTH) + //this saves some VGPRs + uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular)); +#endif + +// LIGHTING +#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + + { //directional light + + // Do shadow and lighting in two passes to reduce register pressure + uint shadow0 = 0; + uint shadow1 = 0; + + for (uint i = 0; i < 8; i++) { + if (i >= scene_data.directional_light_count) { + break; + } + + if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) { + continue; //not masked + } + + float shadow = 1.0; + + // Directional light shadow code is basically the same as forward clustered at this point in time minus `LIGHT_TRANSMITTANCE_USED` support. + // Not sure if there is a reason to change this seeing directional lights are part of our global data + // Should think about whether we may want to move this code into an include file or function?? + +#ifdef USE_SOFT_SHADOWS + //version with soft shadows, more expensive + if (directional_lights.data[i].shadow_enabled) { + float depth_z = -vertex.z; + + vec4 pssm_coord; + vec3 shadow_color = vec3(0.0); + vec3 light_dir = directional_lights.data[i].direction; + +#define BIAS_FUNC(m_var, m_idx) \ + m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ + vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \ + normal_bias -= light_dir * dot(light_dir, normal_bias); \ + m_var.xyz += normal_bias; + + if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 0) + + pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); + pssm_coord /= pssm_coord.w; + + if (directional_lights.data[i].softshadow_angle > 0) { + float range_pos = dot(directional_lights.data[i].direction, v.xyz); + float range_begin = directional_lights.data[i].shadow_range_begin.x; + float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; + vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius; + shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); + } else { + shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + } + + shadow_color = directional_lights.data[i].shadow_color1.rgb; + + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 1) + + pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); + pssm_coord /= pssm_coord.w; + + if (directional_lights.data[i].softshadow_angle > 0) { + float range_pos = dot(directional_lights.data[i].direction, v.xyz); + float range_begin = directional_lights.data[i].shadow_range_begin.y; + float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; + vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius; + shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); + } else { + shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + } + + shadow_color = directional_lights.data[i].shadow_color2.rgb; + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 2) + + pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); + pssm_coord /= pssm_coord.w; + + if (directional_lights.data[i].softshadow_angle > 0) { + float range_pos = dot(directional_lights.data[i].direction, v.xyz); + float range_begin = directional_lights.data[i].shadow_range_begin.z; + float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; + vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius; + shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); + } else { + shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + } + + shadow_color = directional_lights.data[i].shadow_color3.rgb; + + } else { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 3) + + pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); + pssm_coord /= pssm_coord.w; + + if (directional_lights.data[i].softshadow_angle > 0) { + float range_pos = dot(directional_lights.data[i].direction, v.xyz); + float range_begin = directional_lights.data[i].shadow_range_begin.w; + float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; + vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius; + shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); + } else { + shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + } + + shadow_color = directional_lights.data[i].shadow_color4.rgb; + } + + if (directional_lights.data[i].blend_splits) { + vec3 shadow_color_blend = vec3(0.0); + float pssm_blend; + float shadow2; + + if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 1) + pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); + pssm_coord /= pssm_coord.w; + + if (directional_lights.data[i].softshadow_angle > 0) { + float range_pos = dot(directional_lights.data[i].direction, v.xyz); + float range_begin = directional_lights.data[i].shadow_range_begin.y; + float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; + vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius; + shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); + } else { + shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + } + + pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); + shadow_color_blend = directional_lights.data[i].shadow_color2.rgb; + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 2) + pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); + pssm_coord /= pssm_coord.w; + + if (directional_lights.data[i].softshadow_angle > 0) { + float range_pos = dot(directional_lights.data[i].direction, v.xyz); + float range_begin = directional_lights.data[i].shadow_range_begin.z; + float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; + vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius; + shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); + } else { + shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + } + + pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); + + shadow_color_blend = directional_lights.data[i].shadow_color3.rgb; + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 3) + pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); + pssm_coord /= pssm_coord.w; + if (directional_lights.data[i].softshadow_angle > 0) { + float range_pos = dot(directional_lights.data[i].direction, v.xyz); + float range_begin = directional_lights.data[i].shadow_range_begin.w; + float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; + vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius; + shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); + } else { + shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + } + + pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); + shadow_color_blend = directional_lights.data[i].shadow_color4.rgb; + } else { + pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) + } + + pssm_blend = sqrt(pssm_blend); + + shadow = mix(shadow, shadow2, pssm_blend); + shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend); + } + + shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance + +#undef BIAS_FUNC + } +#else + // Soft shadow disabled version + + if (directional_lights.data[i].shadow_enabled) { + float depth_z = -vertex.z; + + vec4 pssm_coord; + vec3 light_dir = directional_lights.data[i].direction; + vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))); + +#define BIAS_FUNC(m_var, m_idx) \ + m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ + vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \ + normal_bias -= light_dir * dot(light_dir, normal_bias); \ + m_var.xyz += normal_bias; + + if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 0) + + pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 1) + + pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 2) + + pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); + + } else { + vec4 v = vec4(vertex, 1.0); + + BIAS_FUNC(v, 3) + + pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); + } + + pssm_coord /= pssm_coord.w; + + shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + + if (directional_lights.data[i].blend_splits) { + float pssm_blend; + + if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 1) + pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); + pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 2) + pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); + pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); + } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { + vec4 v = vec4(vertex, 1.0); + BIAS_FUNC(v, 3) + pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); + pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); + } else { + pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) + } + + pssm_coord /= pssm_coord.w; + + float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); + shadow = mix(shadow, shadow2, pssm_blend); + } + + shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance + +#undef BIAS_FUNC + } +#endif + + if (i < 4) { + shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8); + } else { + shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8); + } + } + + for (uint i = 0; i < 8; i++) { + if (i >= scene_data.directional_light_count) { + break; + } + + if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) { + continue; //not masked + } + + // We're not doing light transmittence + + float shadow = 1.0; + + if (i < 4) { + shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0; + } else { + shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0; + } + + blur_shadow(shadow); + + light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0, +#ifdef LIGHT_BACKLIGHT_USED + backlight, +#endif +/* not supported here +#ifdef LIGHT_TRANSMITTANCE_USED + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, + transmittance_z, +#endif +*/ +#ifdef LIGHT_RIM_USED + rim, rim_tint, albedo, +#endif +#ifdef LIGHT_CLEARCOAT_USED + clearcoat, clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + binormal, tangent, anisotropy, +#endif +#ifdef USE_SOFT_SHADOW + directional_lights.data[i].size, +#endif +#ifdef USE_SHADOW_TO_OPACITY + alpha, +#endif + diffuse_light, + specular_light); + } + } //directional light + + { //omni lights + uint light_indices = draw_call.omni_lights.x; + for (uint i = 0; i < 8; i++) { + uint light_index = light_indices & 0xFF; + if (i == 4) { + light_indices = draw_call.omni_lights.y; + } else { + light_indices = light_indices >> 8; + } + + if (light_index == 0xFF) { + break; + } + + float shadow = light_process_omni_shadow(light_index, vertex, view); + + shadow = blur_shadow(shadow); + + light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, +#ifdef LIGHT_BACKLIGHT_USED + backlight, +#endif +/* +#ifdef LIGHT_TRANSMITTANCE_USED + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, +#endif +*/ +#ifdef LIGHT_RIM_USED + rim, + rim_tint, + albedo, +#endif +#ifdef LIGHT_CLEARCOAT_USED + clearcoat, clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + tangent, binormal, anisotropy, +#endif +#ifdef USE_SHADOW_TO_OPACITY + alpha, +#endif + diffuse_light, specular_light); + } + } //omni lights + + { //spot lights + + uint light_indices = draw_call.spot_lights.x; + for (uint i = 0; i < 8; i++) { + uint light_index = light_indices & 0xFF; + if (i == 4) { + light_indices = draw_call.spot_lights.y; + } else { + light_indices = light_indices >> 8; + } + + if (light_index == 0xFF) { + break; + } + + float shadow = light_process_spot_shadow(light_index, vertex, view); + + shadow = blur_shadow(shadow); + + light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, +#ifdef LIGHT_BACKLIGHT_USED + backlight, +#endif +/* +#ifdef LIGHT_TRANSMITTANCE_USED + transmittance_color, + transmittance_depth, + transmittance_curve, + transmittance_boost, +#endif +*/ +#ifdef LIGHT_RIM_USED + rim, + rim_tint, + albedo, +#endif +#ifdef LIGHT_CLEARCOAT_USED + clearcoat, clearcoat_gloss, +#endif +#ifdef LIGHT_ANISOTROPY_USED + tangent, binormal, anisotropy, +#endif +#ifdef USE_SHADOW_TO_OPACITY + alpha, +#endif + diffuse_light, specular_light); + } + } //spot lights + +#ifdef USE_SHADOW_TO_OPACITY + alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); + +#if defined(ALPHA_SCISSOR_USED) + if (alpha < alpha_scissor) { + discard; + } +#endif // ALPHA_SCISSOR_USED + +#ifdef USE_OPAQUE_PREPASS + + if (alpha < opaque_prepass_threshold) { + discard; + } + +#endif // USE_OPAQUE_PREPASS + +#endif // USE_SHADOW_TO_OPACITY + +#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) + +#ifdef MODE_RENDER_DEPTH + +#ifdef MODE_RENDER_MATERIAL + + albedo_output_buffer.rgb = albedo; + albedo_output_buffer.a = alpha; + + normal_output_buffer.rgb = normal * 0.5 + 0.5; + normal_output_buffer.a = 0.0; + depth_output_buffer.r = -vertex.z; + + orm_output_buffer.r = ao; + orm_output_buffer.g = roughness; + orm_output_buffer.b = metallic; + orm_output_buffer.a = sss_strength; + + emission_output_buffer.rgb = emission; + emission_output_buffer.a = 0.0; +#endif // MODE_RENDER_MATERIAL + +#else // MODE_RENDER_DEPTH + + // multiply by albedo + diffuse_light *= albedo; // ambient must be multiplied by albedo at the end + + // apply direct light AO + ao = unpackUnorm4x8(orms).x; + specular_light *= ao; + diffuse_light *= ao; + + // apply metallic + metallic = unpackUnorm4x8(orms).z; + diffuse_light *= 1.0 - metallic; + ambient_light *= 1.0 - metallic; + + //restore fog + fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba)); + +#ifdef MODE_MULTIPLE_RENDER_TARGETS + +#ifdef MODE_UNSHADED + diffuse_buffer = vec4(albedo.rgb, 0.0); + specular_buffer = vec4(0.0); + +#else // MODE_UNSHADED + +#ifdef SSS_MODE_SKIN + sss_strength = -sss_strength; +#endif // SSS_MODE_SKIN + diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength); + specular_buffer = vec4(specular_light, metallic); +#endif // MODE_UNSHADED + + diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a); + specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a); + +#else //MODE_MULTIPLE_RENDER_TARGETS + +#ifdef MODE_UNSHADED + frag_color = vec4(albedo, alpha); +#else // MODE_UNSHADED + frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); + //frag_color = vec4(1.0); +#endif // MODE_UNSHADED + + // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. + frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); + +#endif //MODE_MULTIPLE_RENDER_TARGETS + +#endif //MODE_RENDER_DEPTH +} diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl new file mode 100644 index 0000000000..0156b58574 --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl @@ -0,0 +1,220 @@ +#define M_PI 3.14159265359 + +#include "decal_data_inc.glsl" + +#if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) +#ifndef NORMAL_USED +#define NORMAL_USED +#endif +#endif + +/* don't exceed 128 bytes!! */ +/* put instance data into our push content, not a array */ +layout(push_constant, binding = 0, std430) uniform DrawCall { + mat4 transform; // 64 - 64 + uint flags; // 04 - 68 + uint instance_uniforms_ofs; //base offset in global buffer for instance variables // 04 - 72 + uint gi_offset; //GI information when using lightmapping (VCT or lightmap index) // 04 - 76 + uint layer_mask; // 04 - 80 + vec4 lightmap_uv_scale; // 16 - 96 doubles as uv_offset when needed + + uvec2 reflection_probes; // 08 - 104 + uvec2 omni_lights; // 08 - 112 + uvec2 spot_lights; // 08 - 120 + uvec2 decals; // 08 - 128 +} +draw_call; + +/* Set 0: Base Pass (never changes) */ + +#include "light_data_inc.glsl" + +#define SAMPLER_NEAREST_CLAMP 0 +#define SAMPLER_LINEAR_CLAMP 1 +#define SAMPLER_NEAREST_WITH_MIPMAPS_CLAMP 2 +#define SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP 3 +#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_CLAMP 4 +#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_CLAMP 5 +#define SAMPLER_NEAREST_REPEAT 6 +#define SAMPLER_LINEAR_REPEAT 7 +#define SAMPLER_NEAREST_WITH_MIPMAPS_REPEAT 8 +#define SAMPLER_LINEAR_WITH_MIPMAPS_REPEAT 9 +#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT 10 +#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11 + +layout(set = 0, binding = 1) uniform sampler material_samplers[12]; + +layout(set = 0, binding = 2) uniform sampler shadow_sampler; + +#define INSTANCE_FLAGS_USE_GI_BUFFERS (1 << 6) +#define INSTANCE_FLAGS_USE_SDFGI (1 << 7) +#define INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE (1 << 8) +#define INSTANCE_FLAGS_USE_LIGHTMAP (1 << 9) +#define INSTANCE_FLAGS_USE_SH_LIGHTMAP (1 << 10) +#define INSTANCE_FLAGS_USE_GIPROBE (1 << 11) +#define INSTANCE_FLAGS_MULTIMESH (1 << 12) +#define INSTANCE_FLAGS_MULTIMESH_FORMAT_2D (1 << 13) +#define INSTANCE_FLAGS_MULTIMESH_HAS_COLOR (1 << 14) +#define INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA (1 << 15) +#define INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT 16 +//3 bits of stride +#define INSTANCE_FLAGS_PARTICLE_TRAIL_MASK 0xFF + +#define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 24) + +layout(set = 0, binding = 3, std430) restrict readonly buffer OmniLights { + LightData data[]; +} +omni_lights; + +layout(set = 0, binding = 4, std430) restrict readonly buffer SpotLights { + LightData data[]; +} +spot_lights; + +layout(set = 0, binding = 5, std430) restrict readonly buffer ReflectionProbeData { + ReflectionData data[]; +} +reflections; + +layout(set = 0, binding = 6, std140) uniform DirectionalLights { + DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; +} +directional_lights; + +#define LIGHTMAP_FLAG_USE_DIRECTION 1 +#define LIGHTMAP_FLAG_USE_SPECULAR_DIRECTION 2 + +struct Lightmap { + mat3 normal_xform; +}; + +layout(set = 0, binding = 7, std140) restrict readonly buffer Lightmaps { + Lightmap data[]; +} +lightmaps; + +struct LightmapCapture { + vec4 sh[9]; +}; + +layout(set = 0, binding = 8, std140) restrict readonly buffer LightmapCaptures { + LightmapCapture data[]; +} +lightmap_captures; + +layout(set = 0, binding = 9) uniform texture2D decal_atlas; +layout(set = 0, binding = 10) uniform texture2D decal_atlas_srgb; + +layout(set = 0, binding = 11, std430) restrict readonly buffer Decals { + DecalData data[]; +} +decals; + +layout(set = 0, binding = 12, std430) restrict readonly buffer GlobalVariableData { + vec4 data[]; +} +global_variables; + +/* Set 1: Render Pass (changes per render pass) */ + +layout(set = 1, binding = 0, std140) uniform SceneData { + mat4 projection_matrix; + mat4 inv_projection_matrix; + + mat4 camera_matrix; + mat4 inv_camera_matrix; + + vec2 viewport_size; + vec2 screen_pixel_size; + + //use vec4s because std140 doesnt play nice with vec2s, z and w are wasted + vec4 directional_penumbra_shadow_kernel[32]; + vec4 directional_soft_shadow_kernel[32]; + vec4 penumbra_shadow_kernel[32]; + vec4 soft_shadow_kernel[32]; + + uint directional_penumbra_shadow_samples; + uint directional_soft_shadow_samples; + uint penumbra_shadow_samples; + uint soft_shadow_samples; + + vec4 ambient_light_color_energy; + + float ambient_color_sky_mix; + bool use_ambient_light; + bool use_ambient_cubemap; + bool use_reflection_cubemap; + + mat3 radiance_inverse_xform; + + vec2 shadow_atlas_pixel_size; + vec2 directional_shadow_pixel_size; + + uint directional_light_count; + float dual_paraboloid_side; + float z_far; + float z_near; + + bool ssao_enabled; + float ssao_light_affect; + float ssao_ao_affect; + bool roughness_limiter_enabled; + + float roughness_limiter_amount; + float roughness_limiter_limit; + uvec2 roughness_limiter_pad; + + vec4 ao_color; + + bool fog_enabled; + float fog_density; + float fog_height; + float fog_height_density; + + vec3 fog_light_color; + float fog_sun_scatter; + + float fog_aerial_perspective; + bool material_uv2_mode; + + float time; + float reflection_multiplier; // one normally, zero when rendering reflections + + bool pancake_shadows; + uint pad1; + uint pad2; + uint pad3; +} +scene_data; + +#ifdef USE_RADIANCE_CUBEMAP_ARRAY + +layout(set = 1, binding = 2) uniform textureCubeArray radiance_cubemap; + +#else + +layout(set = 1, binding = 2) uniform textureCube radiance_cubemap; + +#endif + +layout(set = 1, binding = 3) uniform textureCubeArray reflection_atlas; + +layout(set = 1, binding = 4) uniform texture2D shadow_atlas; + +layout(set = 1, binding = 5) uniform texture2D directional_shadow_atlas; + +// this needs to change to providing just the lightmap we're using.. +layout(set = 1, binding = 6) uniform texture2DArray lightmap_textures[MAX_LIGHTMAP_TEXTURES]; + +layout(set = 1, binding = 9) uniform texture2D depth_buffer; +layout(set = 1, binding = 10) uniform texture2D color_buffer; + +/* Set 2 Skeleton & Instancing (can change per item) */ + +layout(set = 2, binding = 0, std430) restrict readonly buffer Transforms { + vec4 data[]; +} +transforms; + +/* Set 3 User Material */ diff --git a/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl b/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl index cace607667..c793b6ebe1 100644 --- a/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl +++ b/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl @@ -26,6 +26,7 @@ layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in; #endif #include "cluster_data_inc.glsl" +#include "light_data_inc.glsl" #define M_PI 3.14159265359 |