summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders
diff options
context:
space:
mode:
Diffstat (limited to 'servers/rendering/renderer_rd/shaders')
-rw-r--r--servers/rendering/renderer_rd/shaders/SCsub3
-rw-r--r--servers/rendering/renderer_rd/shaders/canvas.glsl18
-rw-r--r--servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl20
-rw-r--r--servers/rendering/renderer_rd/shaders/cluster_debug.glsl115
-rw-r--r--servers/rendering/renderer_rd/shaders/cluster_render.glsl168
-rw-r--r--servers/rendering/renderer_rd/shaders/cluster_store.glsl119
-rw-r--r--servers/rendering/renderer_rd/shaders/gi.glsl17
-rw-r--r--servers/rendering/renderer_rd/shaders/giprobe.glsl11
-rw-r--r--servers/rendering/renderer_rd/shaders/particles.glsl2
-rw-r--r--servers/rendering/renderer_rd/shaders/scene_forward.glsl1656
-rw-r--r--servers/rendering/renderer_rd/shaders/scene_forward_inc.glsl110
-rw-r--r--servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl155
-rw-r--r--servers/rendering/renderer_rd/shaders/sdfgi_integrate.glsl125
-rw-r--r--servers/rendering/renderer_rd/shaders/ssao.glsl13
-rw-r--r--servers/rendering/renderer_rd/shaders/volumetric_fog.glsl260
15 files changed, 1824 insertions, 968 deletions
diff --git a/servers/rendering/renderer_rd/shaders/SCsub b/servers/rendering/renderer_rd/shaders/SCsub
index deaa9668df..1b0197c1c1 100644
--- a/servers/rendering/renderer_rd/shaders/SCsub
+++ b/servers/rendering/renderer_rd/shaders/SCsub
@@ -44,3 +44,6 @@ if "RD_GLSL" in env["BUILDERS"]:
env.RD_GLSL("particles_copy.glsl")
env.RD_GLSL("sort.glsl")
env.RD_GLSL("skeleton.glsl")
+ env.RD_GLSL("cluster_render.glsl")
+ env.RD_GLSL("cluster_store.glsl")
+ env.RD_GLSL("cluster_debug.glsl")
diff --git a/servers/rendering/renderer_rd/shaders/canvas.glsl b/servers/rendering/renderer_rd/shaders/canvas.glsl
index 7808e7ed52..3b39edc70e 100644
--- a/servers/rendering/renderer_rd/shaders/canvas.glsl
+++ b/servers/rendering/renderer_rd/shaders/canvas.glsl
@@ -396,7 +396,7 @@ vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv
vec4 shadow_color = unpackUnorm4x8(light_array.data[light_base].shadow_color);
#ifdef LIGHT_SHADER_CODE_USED
- shadow_color *= shadow_modulate;
+ shadow_color.rgb *= shadow_modulate;
#endif
shadow_color.a *= light_color.a; //respect light alpha
@@ -497,9 +497,9 @@ void main() {
vec2 shadow_vertex = vertex;
{
- float normal_depth = 1.0;
+ float normal_map_depth = 1.0;
-#if defined(NORMALMAP_USED)
+#if defined(NORMAL_MAP_USED)
vec3 normal_map = vec3(0.0, 0.0, 1.0);
normal_used = true;
#endif
@@ -510,8 +510,8 @@ FRAGMENT_SHADER_CODE
/* clang-format on */
-#if defined(NORMALMAP_USED)
- normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_depth);
+#if defined(NORMAL_MAP_USED)
+ normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth);
#endif
}
@@ -546,7 +546,7 @@ FRAGMENT_SHADER_CODE
#ifdef LIGHT_SHADER_CODE_USED
vec4 shadow_modulate = vec4(1.0);
- light_color = light_compute(light_vertex, direction, normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, color, uv, true);
+ light_color = light_compute(light_vertex, vec3(direction, light_array.data[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, color, true);
#else
if (normal_used) {
@@ -563,7 +563,7 @@ FRAGMENT_SHADER_CODE
light_color = light_shadow_compute(light_base, light_color, shadow_uv
#ifdef LIGHT_SHADER_CODE_USED
,
- shadow_modulate
+ shadow_modulate.rgb
#endif
);
}
@@ -605,7 +605,7 @@ FRAGMENT_SHADER_CODE
vec3 light_position = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
light_color.rgb *= light_base_color.rgb;
- light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, color, uv, false);
+ light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, color, false);
#else
light_color.rgb *= light_base_color.rgb * light_base_color.a;
@@ -659,7 +659,7 @@ FRAGMENT_SHADER_CODE
light_color = light_shadow_compute(light_base, light_color, shadow_uv
#ifdef LIGHT_SHADER_CODE_USED
,
- shadow_modulate
+ shadow_modulate.rgb
#endif
);
}
diff --git a/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl b/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl
index e723468dd8..3a4bf4da07 100644
--- a/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl
+++ b/servers/rendering/renderer_rd/shaders/cluster_data_inc.glsl
@@ -6,12 +6,18 @@
struct LightData { //this structure needs to be as packed as possible
vec3 position;
float inv_radius;
+
vec3 direction;
float size;
- uint attenuation_energy; //attenuation
- uint color_specular; //rgb color, a specular (8 bit unorm)
- uint cone_attenuation_angle; // attenuation and angle, (16bit float)
- uint shadow_color_enabled; //shadow rgb color, a>0.5 enabled (8bit unorm)
+
+ vec3 color;
+ float attenuation;
+
+ float cone_attenuation;
+ float cone_angle;
+ float specular_amount;
+ bool shadow_enabled;
+
vec4 atlas_rect; // rect in the shadow atlas
mat4 shadow_matrix;
float shadow_bias;
@@ -34,9 +40,13 @@ struct ReflectionData {
float index;
vec3 box_offset;
uint mask;
- vec4 params; // intensity, 0, interior , boxproject
vec3 ambient; // ambient color
+ float intensity;
+ bool exterior;
+ bool box_project;
uint ambient_mode;
+ uint pad;
+ //0-8 is intensity,8-9 is ambient, mode
mat4 local_matrix; // up to here for spot and omni, rest is for directional
// notes: for ambientblend, use distance to edge to blend between already existing global environment
};
diff --git a/servers/rendering/renderer_rd/shaders/cluster_debug.glsl b/servers/rendering/renderer_rd/shaders/cluster_debug.glsl
new file mode 100644
index 0000000000..70a875192c
--- /dev/null
+++ b/servers/rendering/renderer_rd/shaders/cluster_debug.glsl
@@ -0,0 +1,115 @@
+#[compute]
+
+#version 450
+
+VERSION_DEFINES
+
+layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
+
+const vec3 usage_gradient[33] = vec3[]( // 1 (none) + 32
+ vec3(0.14, 0.17, 0.23),
+ vec3(0.24, 0.44, 0.83),
+ vec3(0.23, 0.57, 0.84),
+ vec3(0.22, 0.71, 0.84),
+ vec3(0.22, 0.85, 0.83),
+ vec3(0.21, 0.85, 0.72),
+ vec3(0.21, 0.85, 0.57),
+ vec3(0.20, 0.85, 0.42),
+ vec3(0.20, 0.85, 0.27),
+ vec3(0.27, 0.86, 0.19),
+ vec3(0.51, 0.85, 0.19),
+ vec3(0.57, 0.86, 0.19),
+ vec3(0.62, 0.85, 0.19),
+ vec3(0.67, 0.86, 0.20),
+ vec3(0.73, 0.85, 0.20),
+ vec3(0.78, 0.85, 0.20),
+ vec3(0.83, 0.85, 0.20),
+ vec3(0.85, 0.82, 0.20),
+ vec3(0.85, 0.76, 0.20),
+ vec3(0.85, 0.81, 0.20),
+ vec3(0.85, 0.65, 0.20),
+ vec3(0.84, 0.60, 0.21),
+ vec3(0.84, 0.56, 0.21),
+ vec3(0.84, 0.51, 0.21),
+ vec3(0.84, 0.46, 0.21),
+ vec3(0.84, 0.41, 0.21),
+ vec3(0.84, 0.36, 0.21),
+ vec3(0.84, 0.31, 0.21),
+ vec3(0.84, 0.27, 0.21),
+ vec3(0.83, 0.22, 0.22),
+ vec3(0.83, 0.22, 0.27),
+ vec3(0.83, 0.22, 0.32),
+ vec3(1.00, 0.63, 0.70));
+layout(push_constant, binding = 0, std430) uniform Params {
+ uvec2 screen_size;
+ uvec2 cluster_screen_size;
+
+ uint cluster_shift;
+ uint cluster_type;
+ float z_near;
+ float z_far;
+
+ bool orthogonal;
+ uint max_cluster_element_count_div_32;
+ uint pad1;
+ uint pad2;
+}
+params;
+
+layout(set = 0, binding = 1, std430) buffer restrict readonly ClusterData {
+ uint data[];
+}
+cluster_data;
+
+layout(rgba16f, set = 0, binding = 2) uniform restrict writeonly image2D screen_buffer;
+layout(set = 0, binding = 3) uniform texture2D depth_buffer;
+layout(set = 0, binding = 4) uniform sampler depth_buffer_sampler;
+
+void main() {
+ uvec2 screen_pos = gl_GlobalInvocationID.xy;
+ if (any(greaterThanEqual(screen_pos, params.screen_size))) {
+ return;
+ }
+
+ uvec2 cluster_pos = screen_pos >> params.cluster_shift;
+
+ uint offset = cluster_pos.y * params.cluster_screen_size.x + cluster_pos.x;
+ offset += params.cluster_screen_size.x * params.cluster_screen_size.y * params.cluster_type;
+ offset *= (params.max_cluster_element_count_div_32 + 32);
+
+ //depth buffers generally can't be accessed via image API
+ float depth = texelFetch(sampler2D(depth_buffer, depth_buffer_sampler), ivec2(screen_pos), 0).r * 2.0 - 1.0;
+
+ if (params.orthogonal) {
+ depth = ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0;
+ } else {
+ depth = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - depth * (params.z_far - params.z_near));
+ }
+ depth /= params.z_far;
+
+ uint slice = uint(clamp(floor(depth * 32.0), 0.0, 31.0));
+ uint slice_minmax = cluster_data.data[offset + params.max_cluster_element_count_div_32 + slice];
+ uint item_min = slice_minmax & 0xFFFF;
+ uint item_max = slice_minmax >> 16;
+
+ uint item_count = 0;
+ for (uint i = 0; i < params.max_cluster_element_count_div_32; i++) {
+ uint slice_bits = cluster_data.data[offset + i];
+ while (slice_bits != 0) {
+ uint bit = findLSB(slice_bits);
+ uint item = i * 32 + bit;
+ if ((item >= item_min && item < item_max)) {
+ item_count++;
+ }
+ slice_bits &= ~(1 << bit);
+ }
+ }
+
+ item_count = min(item_count, 32);
+
+ vec3 color = usage_gradient[item_count];
+
+ color = mix(color * 1.2, color * 0.3, float(slice) / 31.0);
+
+ imageStore(screen_buffer, ivec2(screen_pos), vec4(color, 1.0));
+}
diff --git a/servers/rendering/renderer_rd/shaders/cluster_render.glsl b/servers/rendering/renderer_rd/shaders/cluster_render.glsl
new file mode 100644
index 0000000000..8723ea78e4
--- /dev/null
+++ b/servers/rendering/renderer_rd/shaders/cluster_render.glsl
@@ -0,0 +1,168 @@
+#[vertex]
+
+#version 450
+
+VERSION_DEFINES
+
+layout(location = 0) in vec3 vertex_attrib;
+
+layout(location = 0) out float depth_interp;
+layout(location = 1) out flat uint element_index;
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ uint base_index;
+ uint pad0;
+ uint pad1;
+ uint pad2;
+}
+params;
+
+layout(set = 0, binding = 1, std140) uniform State {
+ mat4 projection;
+
+ float inv_z_far;
+ uint screen_to_clusters_shift; // shift to obtain coordinates in block indices
+ uint cluster_screen_width; //
+ uint cluster_data_size; // how much data for a single cluster takes
+
+ uint cluster_depth_offset;
+ uint pad0;
+ uint pad1;
+ uint pad2;
+}
+state;
+
+struct RenderElement {
+ uint type; //0-4
+ bool touches_near;
+ bool touches_far;
+ uint original_index;
+ mat3x4 transform_inv;
+ vec3 scale;
+ uint pad;
+};
+
+layout(set = 0, binding = 2, std430) buffer restrict readonly RenderElements {
+ RenderElement data[];
+}
+render_elements;
+
+void main() {
+ element_index = params.base_index + gl_InstanceIndex;
+
+ vec3 vertex = vertex_attrib;
+ vertex *= render_elements.data[element_index].scale;
+
+ vertex = vec4(vertex, 1.0) * render_elements.data[element_index].transform_inv;
+ depth_interp = -vertex.z;
+
+ gl_Position = state.projection * vec4(vertex, 1.0);
+}
+
+#[fragment]
+
+#version 450
+
+VERSION_DEFINES
+
+#if defined(GL_KHR_shader_subgroup_ballot) && defined(GL_KHR_shader_subgroup_arithmetic) && defined(GL_KHR_shader_subgroup_vote)
+
+#extension GL_KHR_shader_subgroup_ballot : enable
+#extension GL_KHR_shader_subgroup_arithmetic : enable
+#extension GL_KHR_shader_subgroup_vote : enable
+
+#define USE_SUBGROUPS
+#endif
+
+layout(location = 0) in float depth_interp;
+layout(location = 1) in flat uint element_index;
+
+layout(set = 0, binding = 1, std140) uniform State {
+ mat4 projection;
+ float inv_z_far;
+ uint screen_to_clusters_shift; // shift to obtain coordinates in block indices
+ uint cluster_screen_width; //
+ uint cluster_data_size; // how much data for a single cluster takes
+ uint cluster_depth_offset;
+ uint pad0;
+ uint pad1;
+ uint pad2;
+}
+state;
+
+//cluster data is layout linearly, each cell contains the follow information:
+// - list of bits for every element to mark as used, so (max_elem_count/32)*4 uints
+// - a uint for each element to mark the depth bits used when rendering (0-31)
+
+layout(set = 0, binding = 3, std430) buffer restrict ClusterRender {
+ uint data[];
+}
+cluster_render;
+
+void main() {
+ //convert from screen to cluster
+ uvec2 cluster = uvec2(gl_FragCoord.xy) >> state.screen_to_clusters_shift;
+
+ //get linear cluster offset from screen poss
+ uint cluster_offset = cluster.x + state.cluster_screen_width * cluster.y;
+ //multiply by data size to position at the beginning of the element list for this cluster
+ cluster_offset *= state.cluster_data_size;
+
+ //find the current element in the list and plot the bit to mark it as used
+ uint usage_write_offset = cluster_offset + (element_index >> 5);
+ uint usage_write_bit = 1 << (element_index & 0x1F);
+
+#ifdef USE_SUBGROUPS
+
+ uint cluster_thread_group_index;
+
+ if (!gl_HelperInvocation) {
+ //http://advances.realtimerendering.com/s2017/2017_Sig_Improved_Culling_final.pdf
+
+ uvec4 mask;
+
+ while (true) {
+ // find the cluster offset of the first active thread
+ // threads that did break; go inactive and no longer count
+ uint first = subgroupBroadcastFirst(cluster_offset);
+ // update the mask for thread that match this cluster
+ mask = subgroupBallot(first == cluster_offset);
+ if (first == cluster_offset) {
+ // This thread belongs to the group of threads that match this offset,
+ // so exit the loop.
+ break;
+ }
+ }
+
+ cluster_thread_group_index = subgroupBallotExclusiveBitCount(mask);
+
+ if (cluster_thread_group_index == 0) {
+ atomicOr(cluster_render.data[usage_write_offset], usage_write_bit);
+ }
+ }
+#else
+ if (!gl_HelperInvocation) {
+ atomicOr(cluster_render.data[usage_write_offset], usage_write_bit);
+ }
+#endif
+ //find the current element in the depth usage list and mark the current depth as used
+ float unit_depth = depth_interp * state.inv_z_far;
+
+ uint z_bit = clamp(uint(floor(unit_depth * 32.0)), 0, 31);
+
+ uint z_write_offset = cluster_offset + state.cluster_depth_offset + element_index;
+ uint z_write_bit = 1 << z_bit;
+
+#ifdef USE_SUBGROUPS
+ if (!gl_HelperInvocation) {
+ z_write_bit = subgroupOr(z_write_bit); //merge all Zs
+ if (cluster_thread_group_index == 0) {
+ atomicOr(cluster_render.data[z_write_offset], z_write_bit);
+ }
+ }
+#else
+ if (!gl_HelperInvocation) {
+ atomicOr(cluster_render.data[z_write_offset], z_write_bit);
+ }
+#endif
+}
diff --git a/servers/rendering/renderer_rd/shaders/cluster_store.glsl b/servers/rendering/renderer_rd/shaders/cluster_store.glsl
new file mode 100644
index 0000000000..5be0893c4f
--- /dev/null
+++ b/servers/rendering/renderer_rd/shaders/cluster_store.glsl
@@ -0,0 +1,119 @@
+#[compute]
+
+#version 450
+
+VERSION_DEFINES
+
+layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
+
+layout(push_constant, binding = 0, std430) uniform Params {
+ uint cluster_render_data_size; // how much data for a single cluster takes
+ uint max_render_element_count_div_32; //divided by 32
+ uvec2 cluster_screen_size;
+ uint render_element_count_div_32; //divided by 32
+
+ uint max_cluster_element_count_div_32; //divided by 32
+ uint pad1;
+ uint pad2;
+}
+params;
+
+layout(set = 0, binding = 1, std430) buffer restrict readonly ClusterRender {
+ uint data[];
+}
+cluster_render;
+
+layout(set = 0, binding = 2, std430) buffer restrict ClusterStore {
+ uint data[];
+}
+cluster_store;
+
+struct RenderElement {
+ uint type; //0-4
+ bool touches_near;
+ bool touches_far;
+ uint original_index;
+ mat3x4 transform_inv;
+ vec3 scale;
+ uint pad;
+};
+
+layout(set = 0, binding = 3, std430) buffer restrict readonly RenderElements {
+ RenderElement data[];
+}
+render_elements;
+
+void main() {
+ uvec2 pos = gl_GlobalInvocationID.xy;
+ if (any(greaterThanEqual(pos, params.cluster_screen_size))) {
+ return;
+ }
+
+ //counter for each type of render_element
+
+ //base offset for this cluster
+ uint base_offset = (pos.x + params.cluster_screen_size.x * pos.y);
+ uint src_offset = base_offset * params.cluster_render_data_size;
+
+ uint render_element_offset = 0;
+
+ //check all render_elements and see which one was written to
+ while (render_element_offset < params.render_element_count_div_32) {
+ uint bits = cluster_render.data[src_offset + render_element_offset];
+ while (bits != 0) {
+ //if bits exist, check the render_element
+ uint index_bit = findLSB(bits);
+ uint index = render_element_offset * 32 + index_bit;
+ uint type = render_elements.data[index].type;
+
+ uint z_range_offset = src_offset + params.max_render_element_count_div_32 + index;
+ uint z_range = cluster_render.data[z_range_offset];
+
+ //if object was written, z was written, but check just in case
+ if (z_range != 0) { //should always be > 0
+
+ uint from_z = findLSB(z_range);
+ uint to_z = findMSB(z_range) + 1;
+
+ if (render_elements.data[index].touches_near) {
+ from_z = 0;
+ }
+
+ if (render_elements.data[index].touches_far) {
+ to_z = 32;
+ }
+
+ // find cluster offset in the buffer used for indexing in the renderer
+ uint dst_offset = (base_offset + type * (params.cluster_screen_size.x * params.cluster_screen_size.y)) * (params.max_cluster_element_count_div_32 + 32);
+
+ uint orig_index = render_elements.data[index].original_index;
+ //store this index in the Z slices by setting the relevant bit
+ for (uint i = from_z; i < to_z; i++) {
+ uint slice_ofs = dst_offset + params.max_cluster_element_count_div_32 + i;
+
+ uint minmax = cluster_store.data[slice_ofs];
+
+ if (minmax == 0) {
+ minmax = 0xFFFF; //min 0, max 0xFFFF
+ }
+
+ uint elem_min = min(orig_index, minmax & 0xFFFF);
+ uint elem_max = max(orig_index + 1, minmax >> 16); //always store plus one, so zero means range is empty when not written to
+
+ minmax = elem_min | (elem_max << 16);
+ cluster_store.data[slice_ofs] = minmax;
+ }
+
+ uint store_word = orig_index >> 5;
+ uint store_bit = orig_index & 0x1F;
+
+ //store the actual render_element index at the end, so the rendering code can reference it
+ cluster_store.data[dst_offset + store_word] |= 1 << store_bit;
+ }
+
+ bits &= ~(1 << index_bit); //clear the bit to continue iterating
+ }
+
+ render_element_offset++;
+ }
+}
diff --git a/servers/rendering/renderer_rd/shaders/gi.glsl b/servers/rendering/renderer_rd/shaders/gi.glsl
index 8011dadc72..c2965f9874 100644
--- a/servers/rendering/renderer_rd/shaders/gi.glsl
+++ b/servers/rendering/renderer_rd/shaders/gi.glsl
@@ -99,7 +99,7 @@ layout(push_constant, binding = 0, std430) uniform Params {
uint max_giprobes;
bool high_quality_vct;
- bool use_sdfgi;
+ uint pad2;
bool orthogonal;
vec3 ao_color;
@@ -331,7 +331,7 @@ void sdfgi_process(vec3 vertex, vec3 normal, vec3 reflection, float roughness, o
}
ambient_light.rgb = diffuse;
-#if 1
+
if (roughness < 0.2) {
vec3 pos_to_uvw = 1.0 / sdfgi.grid_size;
vec4 light_accum = vec4(0.0);
@@ -363,7 +363,6 @@ void sdfgi_process(vec3 vertex, vec3 normal, vec3 reflection, float roughness, o
//ray_pos += ray_dir * (bias / sdfgi.cascades[cascade].to_cell); //bias to avoid self occlusion
ray_pos += (ray_dir * 1.0 / max(abs_ray_dir.x, max(abs_ray_dir.y, abs_ray_dir.z)) + cam_normal * 1.4) * bias / sdfgi.cascades[cascade].to_cell;
}
-
float softness = 0.2 + min(1.0, roughness * 5.0) * 4.0; //approximation to roughness so it does not seem like a hard fade
while (length(ray_pos) < max_distance) {
for (uint i = 0; i < sdfgi.max_cascades; i++) {
@@ -434,8 +433,6 @@ void sdfgi_process(vec3 vertex, vec3 normal, vec3 reflection, float roughness, o
}
}
-#endif
-
reflection_light.rgb = specular;
ambient_light.rgb *= sdfgi.energy;
@@ -621,11 +618,12 @@ void main() {
vec3 reflection = normalize(reflect(normalize(vertex), normal));
- if (params.use_sdfgi) {
- sdfgi_process(vertex, normal, reflection, roughness, ambient_light, reflection_light);
- }
+#ifdef USE_SDFGI
+ sdfgi_process(vertex, normal, reflection, roughness, ambient_light, reflection_light);
+#endif
- if (params.max_giprobes > 0) {
+#ifdef USE_GIPROBES
+ {
uvec2 giprobe_tex = texelFetch(usampler2D(giprobe_buffer, linear_sampler), pos, 0).rg;
roughness *= roughness;
//find arbitrary tangent and bitangent, then build a matrix
@@ -656,6 +654,7 @@ void main() {
ambient_light = amb_accum;
}
}
+#endif
}
imageStore(ambient_buffer, pos, ambient_light);
diff --git a/servers/rendering/renderer_rd/shaders/giprobe.glsl b/servers/rendering/renderer_rd/shaders/giprobe.glsl
index ea4237a45e..4f4753d147 100644
--- a/servers/rendering/renderer_rd/shaders/giprobe.glsl
+++ b/servers/rendering/renderer_rd/shaders/giprobe.glsl
@@ -208,6 +208,15 @@ float raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
return occlusion; //max(0.0,distance);
}
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+
bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3 light_pos) {
if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
@@ -220,7 +229,7 @@ bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3
return false;
}
- attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation);
+ attenuation = get_omni_attenuation(distance, 1.0 / lights.data[light].radius, lights.data[light].attenuation);
if (lights.data[light].type == LIGHT_TYPE_SPOT) {
vec3 rel = normalize(pos - light_pos);
diff --git a/servers/rendering/renderer_rd/shaders/particles.glsl b/servers/rendering/renderer_rd/shaders/particles.glsl
index 926c7ef9fc..cb6d8dc7f6 100644
--- a/servers/rendering/renderer_rd/shaders/particles.glsl
+++ b/servers/rendering/renderer_rd/shaders/particles.glsl
@@ -173,7 +173,7 @@ uint hash(uint x) {
return x;
}
-bool emit_particle(mat4 p_xform, vec3 p_velocity, vec4 p_color, vec4 p_custom, uint p_flags) {
+bool emit_subparticle(mat4 p_xform, vec3 p_velocity, vec4 p_color, vec4 p_custom, uint p_flags) {
if (!params.can_emit) {
return false;
}
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward.glsl b/servers/rendering/renderer_rd/shaders/scene_forward.glsl
index a7fe86b029..c3e7e2acbf 100644
--- a/servers/rendering/renderer_rd/shaders/scene_forward.glsl
+++ b/servers/rendering/renderer_rd/shaders/scene_forward.glsl
@@ -16,7 +16,7 @@ layout(location = 0) in vec3 vertex_attrib;
layout(location = 1) in vec3 normal_attrib;
#endif
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec4 tangent_attrib;
#endif
@@ -76,7 +76,7 @@ layout(location = 3) out vec2 uv_interp;
layout(location = 4) out vec2 uv2_interp;
#endif
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) out vec3 tangent_interp;
layout(location = 6) out vec3 binormal_interp;
#endif
@@ -97,8 +97,6 @@ VERTEX_SHADER_GLOBALS
invariant gl_Position;
-layout(location = 7) flat out uint instance_index;
-
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) out float dp_clip;
@@ -106,22 +104,27 @@ layout(location = 8) out float dp_clip;
#endif
void main() {
- instance_index = draw_call.instance_index;
vec4 instance_custom = vec4(0.0);
#if defined(COLOR_USED)
color_interp = color_attrib;
#endif
- mat4 world_matrix = instances.data[instance_index].transform;
- mat3 world_normal_matrix = mat3(instances.data[instance_index].normal_transform);
+ mat4 world_matrix = draw_call.transform;
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH)) {
+ mat3 world_normal_matrix;
+ if (bool(draw_call.flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) {
+ world_normal_matrix = inverse(mat3(world_matrix));
+ } else {
+ world_normal_matrix = mat3(world_matrix);
+ }
+
+ if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH)) {
//multimesh, instances are for it
- uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
+ uint offset = (draw_call.flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
offset *= gl_InstanceIndex;
mat4 matrix;
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
+ if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
offset += 2;
} else {
@@ -129,14 +132,14 @@ void main() {
offset += 3;
}
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
+ if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
#ifdef COLOR_USED
color_interp *= transforms.data[offset];
#endif
offset += 1;
}
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
+ if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
instance_custom = transforms.data[offset];
}
@@ -144,10 +147,6 @@ void main() {
matrix = transpose(matrix);
world_matrix = world_matrix * matrix;
world_normal_matrix = world_normal_matrix * mat3(matrix);
-
- } else {
- //not a multimesh, instances are for multiple draw calls
- instance_index += gl_InstanceIndex;
}
vec3 vertex = vertex_attrib;
@@ -155,14 +154,14 @@ void main() {
vec3 normal = normal_attrib * 2.0 - 1.0;
#endif
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
float binormalf = tangent_attrib.a * 2.0 - 1.0;
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if 0
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) {
+ if (bool(draw_call.flags & INSTANCE_FLAGS_SKELETON)) {
//multimesh, instances are for it
uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3;
@@ -179,7 +178,7 @@ void main() {
vertex = (vec4(vertex, 1.0) * m).xyz;
normal = (vec4(normal, 0.0) * m).xyz;
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = (vec4(tangent, 0.0) * m).xyz;
binormal = (vec4(binormal, 0.0) * m).xyz;
@@ -208,7 +207,7 @@ void main() {
normal = world_normal_matrix * normal;
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent = world_normal_matrix * tangent;
binormal = world_normal_matrix * binormal;
@@ -239,7 +238,7 @@ VERTEX_SHADER_CODE
#endif
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = modelview_normal * binormal;
tangent = modelview_normal * tangent;
@@ -251,7 +250,7 @@ VERTEX_SHADER_CODE
vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
normal = mat3(scene_data.inverse_normal_matrix) * normal;
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
@@ -263,7 +262,7 @@ VERTEX_SHADER_CODE
normal_interp = normal;
#endif
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
@@ -305,7 +304,7 @@ VERTEX_SHADER_CODE
#endif
#ifdef MODE_RENDER_MATERIAL
if (scene_data.material_uv2_mode) {
- gl_Position.xy = (uv2_attrib.xy + draw_call.bake_uv2_offset) * 2.0 - 1.0;
+ gl_Position.xy = (uv2_attrib.xy + draw_call.lightmap_uv_scale.xy) * 2.0 - 1.0;
gl_Position.z = 0.00001;
gl_Position.w = 1.0;
}
@@ -340,13 +339,11 @@ layout(location = 3) in vec2 uv_interp;
layout(location = 4) in vec2 uv2_interp;
#endif
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) in vec3 tangent_interp;
layout(location = 6) in vec3 binormal_interp;
#endif
-layout(location = 7) flat in uint instance_index;
-
#ifdef MODE_DUAL_PARABOLOID
layout(location = 8) in float dp_clip;
@@ -355,8 +352,7 @@ layout(location = 8) in float dp_clip;
//defines to keep compatibility with vertex
-#define world_matrix instances.data[instance_index].transform
-#define world_normal_matrix instances.data[instance_index].normal_transform
+#define world_matrix draw_call.transform
#define projection_matrix scene_data.projection_matrix
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
@@ -545,7 +541,7 @@ vec3 F0(float metallic, float specular, vec3 albedo) {
return mix(vec3(dielectric), albedo, vec3(metallic));
}
-void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 shadow_attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity,
+void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount,
#ifdef LIGHT_BACKLIGHT_USED
vec3 backlight,
#endif
@@ -557,7 +553,7 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
float transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
- float rim, float rim_tint,
+ float rim, float rim_tint, vec3 rim_color,
#endif
#ifdef LIGHT_CLEARCOAT_USED
float clearcoat, float clearcoat_gloss,
@@ -565,6 +561,9 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
#ifdef LIGHT_ANISOTROPY_USED
vec3 B, vec3 T, float anisotropy,
#endif
+#ifdef USE_SOFT_SHADOWS
+ float A,
+#endif
#ifdef USE_SHADOW_TO_OPACITY
inout float alpha,
#endif
@@ -574,7 +573,6 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
// light is written by the light shader
vec3 normal = N;
- vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
@@ -585,7 +583,12 @@ LIGHT_SHADER_CODE
/* clang-format on */
#else
+
+#ifdef USE_SOFT_SHADOWS
float NdotL = min(A + dot(N, L), 1.0);
+#else
+ float NdotL = dot(N, L);
+#endif
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
@@ -595,14 +598,25 @@ LIGHT_SHADER_CODE
#endif
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
+#ifdef USE_SOFT_SHADOWS
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
+#else
+ float cNdotH = clamp(dot(N, H), 0.0, 1.0);
+#endif
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
+#ifdef USE_SOFT_SHADOWS
float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
+#else
+ float cLdotH = clamp(dot(L, H), 0.0, 1.0);
+#endif
#endif
+ float metallic = unpackUnorm4x8(orms).z;
if (metallic < 1.0) {
+ float roughness = unpackUnorm4x8(orms).y;
+
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
@@ -612,23 +626,6 @@ LIGHT_SHADER_CODE
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
-
-#elif defined(DIFFUSE_OREN_NAYAR)
-
- {
- // see http://mimosa-pudica.net/improved-oren-nayar.html
- float LdotV = dot(L, V);
-
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
-
- float sigma2 = roughness * roughness; // TODO: this needs checking
- vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
-
- diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
- }
-
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
@@ -656,15 +653,15 @@ LIGHT_SHADER_CODE
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
- diffuse_light += light_color * diffuse_color * shadow_attenuation * diffuse_brdf_NL * attenuation;
+ diffuse_light += light_color * diffuse_brdf_NL * attenuation;
#if defined(LIGHT_BACKLIGHT_USED)
- diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
+ diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif
#if defined(LIGHT_RIM_USED)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
+ diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color;
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
@@ -682,7 +679,7 @@ LIGHT_SHADER_CODE
vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
- diffuse_light += profile * transmittance_color.a * diffuse_color * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI) * attenuation;
+ diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
}
#else
@@ -692,7 +689,7 @@ LIGHT_SHADER_CODE
fade = pow(max(0.0, 1.0 - fade), transmittance_curve);
fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0);
- diffuse_light += diffuse_color * transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade * attenuation;
+ diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade;
}
#endif //SSS_MODE_SKIN
@@ -700,6 +697,7 @@ LIGHT_SHADER_CODE
#endif //LIGHT_TRANSMITTANCE_USED
}
+ float roughness = unpackUnorm4x8(orms).y;
if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
// D
@@ -712,7 +710,7 @@ LIGHT_SHADER_CODE
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float intensity = blinn;
- specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;
+ specular_light += light_color * intensity * attenuation * specular_amount;
#elif defined(SPECULAR_PHONG)
@@ -723,7 +721,7 @@ LIGHT_SHADER_CODE
phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
- specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;
+ specular_light += light_color * intensity * attenuation * specular_amount;
#elif defined(SPECULAR_TOON)
@@ -732,7 +730,7 @@ LIGHT_SHADER_CODE
float mid = 1.0 - roughness;
mid *= mid;
float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
- diffuse_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
+ diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
// none..
@@ -757,13 +755,12 @@ LIGHT_SHADER_CODE
float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
#endif
// F
- vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
vec3 specular_brdf_NL = cNdotL * D * F * G;
- specular_light += specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
+ specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
#endif
#if defined(LIGHT_CLEARCOAT_USED)
@@ -777,12 +774,12 @@ LIGHT_SHADER_CODE
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
- specular_light += clearcoat_specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
+ specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
#endif
}
#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - length(shadow_attenuation * attenuation), 0.0, 1.0));
+ alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0));
#endif
#endif //defined(USE_LIGHT_SHADER_CODE)
@@ -895,69 +892,39 @@ float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex
#endif //USE_NO_SHADOWS
-void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
-#ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
-#endif
-#ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
-#endif
-#ifdef LIGHT_RIM_USED
- float rim, float rim_tint,
-#endif
-#ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
-#endif
-#ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
-#endif
-#ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
-#endif
- inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * lights.data[idx].inv_radius;
- vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
- float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), attenuation_energy.x);
- float light_attenuation = omni_attenuation;
- vec3 shadow_attenuation = vec3(1.0);
- vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
- color_specular.rgb *= attenuation_energy.y;
- float size_A = 0.0;
-
- if (lights.data[idx].size > 0.0) {
- float t = lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
-
-#ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth; //no transmittance by default
-#endif
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) {
#ifndef USE_NO_SHADOWS
- vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
- if (shadow_color_enabled.w > 0.5) {
+ if (omni_lights.data[idx].shadow_enabled) {
// there is a shadowmap
+ vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+
vec4 v = vec4(vertex, 1.0);
- vec4 splane = (lights.data[idx].shadow_matrix * v);
+ vec4 splane = (omni_lights.data[idx].shadow_matrix * v);
float shadow_len = length(splane.xyz); //need to remember shadow len from here
{
- vec3 nofs = normal_interp * lights.data[idx].shadow_normal_bias / lights.data[idx].inv_radius;
+ vec3 nofs = normal_interp * omni_lights.data[idx].shadow_normal_bias / omni_lights.data[idx].inv_radius;
nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp))));
v.xyz += nofs;
- splane = (lights.data[idx].shadow_matrix * v);
+ splane = (omni_lights.data[idx].shadow_matrix * v);
}
float shadow;
- if (lights.data[idx].soft_shadow_size > 0.0) {
+#ifdef USE_SOFT_SHADOWS
+ if (omni_lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
@@ -977,10 +944,10 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
vec3 tangent = normalize(cross(v0, normal));
vec3 bitangent = normalize(cross(tangent, normal));
- float z_norm = shadow_len * lights.data[idx].inv_radius;
+ float z_norm = shadow_len * omni_lights.data[idx].inv_radius;
- tangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;
- bitangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;
+ tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
+ bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
@@ -988,7 +955,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
pos = normalize(pos);
- vec4 uv_rect = lights.data[idx].atlas_rect;
+ vec4 uv_rect = omni_lights.data[idx].atlas_rect;
if (pos.z >= 0.0) {
pos.z += 1.0;
@@ -1016,7 +983,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
tangent *= penumbra;
bitangent *= penumbra;
- z_norm -= lights.data[idx].inv_radius * lights.data[idx].shadow_bias;
+ z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias;
shadow = 0.0;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
@@ -1024,7 +991,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;
pos = normalize(pos);
- vec4 uv_rect = lights.data[idx].atlas_rect;
+ vec4 uv_rect = omni_lights.data[idx].atlas_rect;
if (pos.z >= 0.0) {
pos.z += 1.0;
@@ -1047,8 +1014,9 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
shadow = 1.0;
}
} else {
+#endif
splane.xyz = normalize(splane.xyz);
- vec4 clamp_rect = lights.data[idx].atlas_rect;
+ vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
if (splane.z >= 0.0) {
splane.z += 1.0;
@@ -1062,101 +1030,149 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = (shadow_len - lights.data[idx].shadow_bias) * lights.data[idx].inv_radius;
+ splane.z = (shadow_len - omni_lights.data[idx].shadow_bias) * omni_lights.data[idx].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
- shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
+ shadow = sample_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
+#ifdef USE_SOFT_SHADOWS
}
+#endif
+
+ return shadow;
+ }
+#endif
+ return 1.0;
+}
+
+void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
+#endif
#ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 clamp_rect = lights.data[idx].atlas_rect;
+ vec4 transmittance_color,
+ float transmittance_depth,
+ float transmittance_curve,
+ float transmittance_boost,
+#endif
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint, vec3 rim_color,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_gloss,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
+#endif
+#ifdef USE_SHADOW_TO_OPACITY
+ inout float alpha,
+#endif
+ inout vec3 diffuse_light, inout vec3 specular_light) {
+ vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation);
+ float light_attenuation = omni_attenuation;
+ vec3 color = omni_lights.data[idx].color;
- //redo shadowmapping, but shrink the model a bit to avoid arctifacts
- splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
+#ifdef USE_SOFT_SHADOWS
+ float size_A = 0.0;
- shadow_len = length(splane.xyz);
- splane = normalize(splane.xyz);
+ if (omni_lights.data[idx].size > 0.0) {
+ float t = omni_lights.data[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
+ }
+#endif
- if (splane.z >= 0.0) {
- splane.z += 1.0;
+#ifdef LIGHT_TRANSMITTANCE_USED
+ float transmittance_z = transmittance_depth; //no transmittance by default
+ transmittance_color.a *= light_attenuation;
+ {
+ vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
- } else {
- splane.z = 1.0 - splane.z;
- }
+ //redo shadowmapping, but shrink the model a bit to avoid arctifacts
+ vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0));
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * lights.data[idx].inv_radius;
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0; //needed? i think it should be 1 already
+ shadow_len = length(splane.xyz);
+ splane = normalize(splane.xyz);
+
+ if (splane.z >= 0.0) {
+ splane.z += 1.0;
- float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
- transmittance_z = (splane.z - shadow_z) / lights.data[idx].inv_radius;
+ } else {
+ splane.z = 1.0 - splane.z;
}
-#endif
- vec3 no_shadow = vec3(1.0);
+ splane.xy /= splane.z;
+ splane.xy = splane.xy * 0.5 + 0.5;
+ splane.z = shadow_len * omni_lights.data[idx].inv_radius;
+ splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
+ splane.w = 1.0; //needed? i think it should be 1 already
- if (lights.data[idx].projector_rect != vec4(0.0)) {
- vec3 local_v = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
- local_v = normalize(local_v);
+ float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
+ transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius;
+ }
+#endif
- vec4 atlas_rect = lights.data[idx].projector_rect;
+#if 0
- if (local_v.z >= 0.0) {
- local_v.z += 1.0;
- atlas_rect.y += atlas_rect.w;
+ if (omni_lights.data[idx].projector_rect != vec4(0.0)) {
+ vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
+ local_v = normalize(local_v);
- } else {
- local_v.z = 1.0 - local_v.z;
- }
+ vec4 atlas_rect = omni_lights.data[idx].projector_rect;
- local_v.xy /= local_v.z;
- local_v.xy = local_v.xy * 0.5 + 0.5;
- vec2 proj_uv = local_v.xy * atlas_rect.zw;
+ if (local_v.z >= 0.0) {
+ local_v.z += 1.0;
+ atlas_rect.y += atlas_rect.w;
- vec2 proj_uv_ddx;
- vec2 proj_uv_ddy;
- {
- vec3 local_v_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
- local_v_ddx = normalize(local_v_ddx);
+ } else {
+ local_v.z = 1.0 - local_v.z;
+ }
- if (local_v_ddx.z >= 0.0) {
- local_v_ddx.z += 1.0;
- } else {
- local_v_ddx.z = 1.0 - local_v_ddx.z;
- }
+ local_v.xy /= local_v.z;
+ local_v.xy = local_v.xy * 0.5 + 0.5;
+ vec2 proj_uv = local_v.xy * atlas_rect.zw;
- local_v_ddx.xy /= local_v_ddx.z;
- local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
+ vec2 proj_uv_ddx;
+ vec2 proj_uv_ddy;
+ {
+ vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
+ local_v_ddx = normalize(local_v_ddx);
- proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
+ if (local_v_ddx.z >= 0.0) {
+ local_v_ddx.z += 1.0;
+ } else {
+ local_v_ddx.z = 1.0 - local_v_ddx.z;
+ }
- vec3 local_v_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
- local_v_ddy = normalize(local_v_ddy);
+ local_v_ddx.xy /= local_v_ddx.z;
+ local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
- if (local_v_ddy.z >= 0.0) {
- local_v_ddy.z += 1.0;
- } else {
- local_v_ddy.z = 1.0 - local_v_ddy.z;
- }
+ proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
- local_v_ddy.xy /= local_v_ddy.z;
- local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
+ vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
+ local_v_ddy = normalize(local_v_ddy);
- proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
+ if (local_v_ddy.z >= 0.0) {
+ local_v_ddy.z += 1.0;
+ } else {
+ local_v_ddy.z = 1.0 - local_v_ddy.z;
}
- vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
- no_shadow = mix(no_shadow, proj.rgb, proj.a);
+ local_v_ddy.xy /= local_v_ddy.z;
+ local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
+
+ proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
}
- shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);
+ vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
+ no_shadow = mix(no_shadow, proj.rgb, proj.a);
}
-#endif //USE_NO_SHADOWS
+#endif
+
+ light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
+ light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -1168,7 +1184,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
- rim * omni_attenuation, rim_tint,
+ rim * omni_attenuation, rim_tint, rim_color,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
@@ -1176,6 +1192,9 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
+#ifdef USE_SOFT_SHADOWS
+ size_A,
+#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
@@ -1183,89 +1202,39 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
specular_light);
}
-void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
-#ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
-#endif
-#ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_curve,
- float transmittance_boost,
-#endif
-#ifdef LIGHT_RIM_USED
- float rim, float rim_tint,
-#endif
-#ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
-#endif
-#ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
-#endif
-#ifdef USE_SHADOW_TO_OPACITY
- inout float alpha,
-#endif
- inout vec3 diffuse_light,
- inout vec3 specular_light) {
- vec3 light_rel_vec = lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float normalized_distance = light_length * lights.data[idx].inv_radius;
- vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
- float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), attenuation_energy.x);
- vec3 spot_dir = lights.data[idx].direction;
- vec2 spot_att_angle = unpackHalf2x16(lights.data[idx].cone_attenuation_angle);
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
- spot_attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
- float light_attenuation = spot_attenuation;
- vec3 shadow_attenuation = vec3(1.0);
- vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
- color_specular.rgb *= attenuation_energy.y;
-
- float size_A = 0.0;
-
- if (lights.data[idx].size > 0.0) {
- float t = lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
-/*
- if (lights.data[idx].atlas_rect!=vec4(0.0)) {
- //use projector texture
- }
- */
-#ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth;
-#endif
-
+float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) {
#ifndef USE_NO_SHADOWS
- vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
- if (shadow_color_enabled.w > 0.5) {
+ if (spot_lights.data[idx].shadow_enabled) {
+ vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ vec3 spot_dir = spot_lights.data[idx].direction;
//there is a shadowmap
vec4 v = vec4(vertex, 1.0);
- v.xyz -= spot_dir * lights.data[idx].shadow_bias;
+ v.xyz -= spot_dir * spot_lights.data[idx].shadow_bias;
- float z_norm = dot(spot_dir, -light_rel_vec) * lights.data[idx].inv_radius;
+ float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius;
float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
- vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * lights.data[idx].shadow_normal_bias * depth_bias_scale;
+ vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * spot_lights.data[idx].shadow_normal_bias * depth_bias_scale;
normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
v.xyz += normal_bias;
//adjust with bias
- z_norm = dot(spot_dir, v.xyz - lights.data[idx].position) * lights.data[idx].inv_radius;
+ z_norm = dot(spot_dir, v.xyz - spot_lights.data[idx].position) * spot_lights.data[idx].inv_radius;
float shadow;
- vec4 splane = (lights.data[idx].shadow_matrix * v);
+ vec4 splane = (spot_lights.data[idx].shadow_matrix * v);
splane /= splane.w;
- if (lights.data[idx].soft_shadow_size > 0.0) {
+#ifdef USE_SOFT_SHADOWS
+ if (spot_lights.data[idx].soft_shadow_size > 0.0) {
//soft shadow
//find blocker
- vec2 shadow_uv = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;
+ vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
float blocker_count = 0.0;
float blocker_average = 0.0;
@@ -1278,11 +1247,11 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
}
- float uv_size = lights.data[idx].soft_shadow_size * z_norm * lights.data[idx].soft_shadow_scale;
- vec2 clamp_max = lights.data[idx].atlas_rect.xy + lights.data[idx].atlas_rect.zw;
+ float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale;
+ vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
+ suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
if (d < z_norm) {
blocker_average += d;
@@ -1299,7 +1268,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
shadow = 0.0;
for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
+ suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
}
@@ -1311,54 +1280,93 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
}
} else {
+#endif
//hard shadow
- vec4 shadow_uv = vec4(splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy, z_norm, 1.0);
+ vec4 shadow_uv = vec4(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, z_norm, 1.0);
- shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
+ shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
+#ifdef USE_SOFT_SHADOWS
}
+#endif
- vec3 no_shadow = vec3(1.0);
+ return shadow;
+ }
- if (lights.data[idx].projector_rect != vec4(0.0)) {
- splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
- splane /= splane.w;
+#endif //USE_NO_SHADOWS
- vec2 proj_uv = splane.xy * lights.data[idx].projector_rect.zw;
+ return 1.0;
+}
- //ensure we have proper mipmaps
- vec4 splane_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0));
- splane_ddx /= splane_ddx.w;
- vec2 proj_uv_ddx = splane_ddx.xy * lights.data[idx].projector_rect.zw - proj_uv;
+void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow,
+#ifdef LIGHT_BACKLIGHT_USED
+ vec3 backlight,
+#endif
+#ifdef LIGHT_TRANSMITTANCE_USED
+ vec4 transmittance_color,
+ float transmittance_depth,
+ float transmittance_curve,
+ float transmittance_boost,
+#endif
+#ifdef LIGHT_RIM_USED
+ float rim, float rim_tint, vec3 rim_color,
+#endif
+#ifdef LIGHT_CLEARCOAT_USED
+ float clearcoat, float clearcoat_gloss,
+#endif
+#ifdef LIGHT_ANISOTROPY_USED
+ vec3 binormal, vec3 tangent, float anisotropy,
+#endif
+#ifdef USE_SHADOW_TO_OPACITY
+ inout float alpha,
+#endif
+ inout vec3 diffuse_light,
+ inout vec3 specular_light) {
+ vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
+ float light_length = length(light_rel_vec);
+ float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation);
+ vec3 spot_dir = spot_lights.data[idx].direction;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle));
+ spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation);
+ float light_attenuation = spot_attenuation;
+ vec3 color = spot_lights.data[idx].color;
+ float specular_amount = spot_lights.data[idx].specular_amount;
- vec4 splane_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0));
- splane_ddy /= splane_ddy.w;
- vec2 proj_uv_ddy = splane_ddy.xy * lights.data[idx].projector_rect.zw - proj_uv;
+#ifdef USE_SOFT_SHADOWS
+ float size_A = 0.0;
- vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy);
- no_shadow = mix(no_shadow, proj.rgb, proj.a);
- }
+ if (spot_lights.data[idx].size > 0.0) {
+ float t = spot_lights.data[idx].size / max(0.001, light_length);
+ size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
+ }
+#endif
- shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);
+ /*
+ if (spot_lights.data[idx].atlas_rect!=vec4(0.0)) {
+ //use projector texture
+ }
+ */
#ifdef LIGHT_TRANSMITTANCE_USED
- {
- splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
- splane /= splane.w;
- splane.xy = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;
-
- float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
- //reconstruct depth
- shadow_z /= lights.data[idx].inv_radius;
- //distance to light plane
- float z = dot(spot_dir, -light_rel_vec);
- transmittance_z = z - shadow_z;
- }
-#endif //LIGHT_TRANSMITTANCE_USED
+ float transmittance_z = transmittance_depth;
+ transmittance_color.a *= light_attenuation;
+ {
+ splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0));
+ splane /= splane.w;
+ splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
+
+ float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
+ //reconstruct depth
+ shadow_z /= spot_lights.data[idx].inv_radius;
+ //distance to light plane
+ float z = dot(spot_dir, -light_rel_vec);
+ transmittance_z = z - shadow_z;
}
+#endif //LIGHT_TRANSMITTANCE_USED
-#endif //USE_NO_SHADOWS
+ light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
+ light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount,
#ifdef LIGHT_BACKLIGHT_USED
backlight,
#endif
@@ -1370,7 +1378,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
- rim * spot_attenuation, rim_tint,
+ rim * spot_attenuation, rim_tint, rim_color,
#endif
#ifdef LIGHT_CLEARCOAT_USED
clearcoat, clearcoat_gloss,
@@ -1378,6 +1386,9 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
#endif
+#ifdef USE_SOFT_SHADOW
+ size_A,
+#endif
#ifdef USE_SHADOW_TO_OPACITY
alpha,
#endif
@@ -1401,11 +1412,11 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes
blend *= blend;
blend = max(0.0, 1.0 - blend);
- if (reflections.data[ref_index].params.x > 0.0) { // compute reflection
+ if (reflections.data[ref_index].intensity > 0.0) { // compute reflection
vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
- if (reflections.data[ref_index].params.w > 0.5) { //box project
+ if (reflections.data[ref_index].box_project) { //box project
vec3 nrdir = normalize(local_ref_vec);
vec3 rbmax = (box_extents - local_pos) / nrdir;
@@ -1422,11 +1433,11 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes
reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;
- if (reflections.data[ref_index].params.z < 0.5) {
+ if (reflections.data[ref_index].exterior) {
reflection.rgb = mix(specular_light, reflection.rgb, blend);
}
- reflection.rgb *= reflections.data[ref_index].params.x;
+ reflection.rgb *= reflections.data[ref_index].intensity; //intensity
reflection.a = blend;
reflection.rgb *= reflection.a;
@@ -1445,7 +1456,7 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes
ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
ambient_out.a = blend;
- if (reflections.data[ref_index].params.z < 0.5) { //interior
+ if (reflections.data[ref_index].exterior) {
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
@@ -1456,7 +1467,7 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughnes
vec4 ambient_out;
ambient_out.a = blend;
ambient_out.rgb = reflections.data[ref_index].ambient;
- if (reflections.data[ref_index].params.z < 0.5) {
+ if (reflections.data[ref_index].exterior) {
ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
}
ambient_out.rgb *= ambient_out.a;
@@ -1774,7 +1785,43 @@ vec4 fog_process(vec3 vertex) {
return vec4(fog_color, fog_amount);
}
+void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
+ uint item_min_max = cluster_buffer.data[p_offset];
+ item_min = item_min_max & 0xFFFF;
+ item_max = item_min_max >> 16;
+ ;
+
+ item_from = item_min >> 5;
+ item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
+}
+
+uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
+ int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
+ int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
+ return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
+}
+
+float blur_shadow(float shadow) {
+ return shadow;
+#if 0
+ //disabling for now, will investigate later
+ float interp_shadow = shadow;
+ if (gl_HelperInvocation) {
+ interp_shadow = -4.0; // technically anything below -4 will do but just to make sure
+ }
+
+ uvec2 fc2 = uvec2(gl_FragCoord.xy);
+ interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5);
+ interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5);
+
+ if (interp_shadow >= 0.0) {
+ shadow = interp_shadow;
+ }
+ return shadow;
#endif
+}
+
+#endif //!MODE_RENDER DEPTH
void main() {
#ifdef MODE_DUAL_PARABOLOID
@@ -1802,9 +1849,7 @@ void main() {
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
-#if defined(CUSTOM_FOG_USED)
- vec4 custom_fog = vec4(0.0);
-#endif
+ vec4 fog = vec4(0.0);
#if defined(CUSTOM_RADIANCE_USED)
vec4 custom_radiance = vec4(0.0);
#endif
@@ -1812,14 +1857,12 @@ void main() {
vec4 custom_irradiance = vec4(0.0);
#endif
-#if defined(AO_USED)
float ao = 1.0;
float ao_light_affect = 0.0;
-#endif
float alpha = 1.0;
-#if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED)
+#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
vec3 binormal = normalize(binormal_interp);
vec3 tangent = normalize(tangent_interp);
#else
@@ -1850,12 +1893,12 @@ void main() {
vec4 color = color_interp;
#endif
-#if defined(NORMALMAP_USED)
+#if defined(NORMAL_MAP_USED)
- vec3 normalmap = vec3(0.5);
+ vec3 normal_map = vec3(0.5);
#endif
- float normaldepth = 1.0;
+ float normal_map_depth = 1.0;
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center
@@ -1926,12 +1969,12 @@ FRAGMENT_SHADER_CODE
#endif // !USE_SHADOW_TO_OPACITY
-#ifdef NORMALMAP_USED
+#ifdef NORMAL_MAP_USED
- normalmap.xy = normalmap.xy * 2.0 - 1.0;
- normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
+ normal_map.xy = normal_map.xy * 2.0 - 1.0;
+ normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));
+ normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));
#endif
@@ -1953,77 +1996,147 @@ FRAGMENT_SHADER_CODE
discard;
}
#endif
+
+ /////////////////////// FOG //////////////////////
+#ifndef MODE_RENDER_DEPTH
+
+#ifndef CUSTOM_FOG_USED
+ // fog must be processed as early as possible and then packed.
+ // to maximize VGPR usage
+ // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
+
+ if (scene_data.fog_enabled) {
+ fog = fog_process(vertex);
+ }
+
+#ifndef LOW_END_MODE
+ if (scene_data.volumetric_fog_enabled) {
+ vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z);
+ if (scene_data.fog_enabled) {
+ //must use the full blending equation here to blend fogs
+ vec4 res;
+ float sa = 1.0 - volumetric_fog.a;
+ res.a = fog.a * sa + volumetric_fog.a;
+ if (res.a == 0.0) {
+ res.rgb = vec3(0.0);
+ } else {
+ res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a;
+ }
+ fog = res;
+ } else {
+ fog = volumetric_fog;
+ }
+ }
+#endif //!LOW_END_MODE
+#endif //!CUSTOM_FOG_USED
+
+ uint fog_rg = packHalf2x16(fog.rg);
+ uint fog_ba = packHalf2x16(fog.ba);
+
+#endif //!MODE_RENDER_DEPTH
+
/////////////////////// DECALS ////////////////////////////////
#ifndef MODE_RENDER_DEPTH
- uvec4 cluster_cell = texture(usampler3D(cluster_texture, material_samplers[SAMPLER_NEAREST_CLAMP]), vec3(screen_uv, (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)));
+ uvec2 cluster_pos = uvec2(gl_FragCoord.xy) >> scene_data.cluster_shift;
+ uint cluster_offset = (scene_data.cluster_width * cluster_pos.y + cluster_pos.x) * (scene_data.max_cluster_element_count_div_32 + 32);
+
+ uint cluster_z = uint(clamp((-vertex.z / scene_data.z_far) * 32.0, 0.0, 31.0));
+
//used for interpolating anything cluster related
vec3 vertex_ddx = dFdx(vertex);
vec3 vertex_ddy = dFdy(vertex);
{ // process decals
- uint decal_count = cluster_cell.w >> CLUSTER_COUNTER_SHIFT;
- uint decal_pointer = cluster_cell.w & CLUSTER_POINTER_MASK;
+ uint cluster_decal_offset = cluster_offset + scene_data.cluster_type_size * 2;
- //do outside for performance and avoiding arctifacts
+ uint item_min;
+ uint item_max;
+ uint item_from;
+ uint item_to;
- for (uint i = 0; i < decal_count; i++) {
- uint decal_index = cluster_data.indices[decal_pointer + i];
- if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
+ cluster_get_item_range(cluster_decal_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
- if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
- continue; //out of decal
- }
+#ifdef USE_SUBGROUPS
+ item_from = subgroupBroadcastFirst(subgroupMin(item_from));
+ item_to = subgroupBroadcastFirst(subgroupMax(item_to));
+#endif
- //we need ddx/ddy for mipmaps, so simulate them
- vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
- vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
+ for (uint i = item_from; i < item_to; i++) {
+ uint mask = cluster_buffer.data[cluster_decal_offset + i];
+ mask &= cluster_get_range_clip_mask(i, item_min, item_max);
+#ifdef USE_SUBGROUPS
+ uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
+#else
+ uint merged_mask = mask;
+#endif
- float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
+ while (merged_mask != 0) {
+ uint bit = findMSB(merged_mask);
+ merged_mask &= ~(1 << bit);
+#ifdef USE_SUBGROUPS
+ if (((1 << bit) & mask) == 0) { //do not process if not originally here
+ continue;
+ }
+#endif
+ uint decal_index = 32 * i + bit;
- if (decals.data[decal_index].normal_fade > 0.0) {
- fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
- }
+ if (!bool(decals.data[decal_index].mask & draw_call.layer_mask)) {
+ continue; //not masked
+ }
- if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
- //has albedo
- vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
- decal_albedo *= decals.data[decal_index].modulate;
- decal_albedo.a *= fade;
- albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
-
- if (decals.data[decal_index].normal_rect != vec4(0.0)) {
- vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
- decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
- decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
- //convert to view space, use xzy because y is up
- decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
-
- normal = normalize(mix(normal, decal_normal, decal_albedo.a));
+ vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
+ if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
+ continue; //out of decal
}
- if (decals.data[decal_index].orm_rect != vec4(0.0)) {
- vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
-#if defined(AO_USED)
- ao = mix(ao, decal_orm.r, decal_albedo.a);
-#endif
- roughness = mix(roughness, decal_orm.g, decal_albedo.a);
- metallic = mix(metallic, decal_orm.b, decal_albedo.a);
+ //we need ddx/ddy for mipmaps, so simulate them
+ vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
+ vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;
+
+ float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);
+
+ if (decals.data[decal_index].normal_fade > 0.0) {
+ fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
+ }
+
+ if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
+ //has albedo
+ vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
+ decal_albedo *= decals.data[decal_index].modulate;
+ decal_albedo.a *= fade;
+ albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);
+
+ if (decals.data[decal_index].normal_rect != vec4(0.0)) {
+ vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
+ decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
+ decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
+ //convert to view space, use xzy because y is up
+ decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;
+
+ normal = normalize(mix(normal, decal_normal, decal_albedo.a));
+ }
+
+ if (decals.data[decal_index].orm_rect != vec4(0.0)) {
+ vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
+ ao = mix(ao, decal_orm.r, decal_albedo.a);
+ roughness = mix(roughness, decal_orm.g, decal_albedo.a);
+ metallic = mix(metallic, decal_orm.b, decal_albedo.a);
+ }
}
- }
- if (decals.data[decal_index].emission_rect != vec4(0.0)) {
- //emission is additive, so its independent from albedo
- emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
+ if (decals.data[decal_index].emission_rect != vec4(0.0)) {
+ //emission is additive, so its independent from albedo
+ emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
+ }
}
}
}
+ //pack albedo until needed again, saves 2 VGPRs in the meantime
+
#endif //not render depth
/////////////////////// LIGHTING //////////////////////////////
@@ -2091,19 +2204,14 @@ FRAGMENT_SHADER_CODE
//radiance
- float specular_blob_intensity = 1.0;
-
-#if defined(SPECULAR_TOON)
- specular_blob_intensity *= specular * 2.0;
-#endif
-
+/// GI ///
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef USE_LIGHTMAP
//lightmap
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
- uint index = instances.data[instance_index].gi_offset;
+ if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
+ uint index = draw_call.gi_offset;
vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
const float c1 = 0.429043;
@@ -2122,12 +2230,12 @@ FRAGMENT_SHADER_CODE
2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);
- } else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
- bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
- uint ofs = instances.data[instance_index].gi_offset & 0xFFF;
+ } else if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
+ bool uses_sh = bool(draw_call.flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
+ uint ofs = draw_call.gi_offset & 0xFFFF;
vec3 uvw;
- uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
- uvw.z = float((instances.data[instance_index].gi_offset >> 12) & 0xFF);
+ uvw.xy = uv2 * draw_call.lightmap_uv_scale.zw + draw_call.lightmap_uv_scale.xy;
+ uvw.z = float((draw_call.gi_offset >> 16) & 0xFFFF);
if (uses_sh) {
uvw.z *= 4.0; //SH textures use 4 times more data
@@ -2136,7 +2244,7 @@ FRAGMENT_SHADER_CODE
vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;
- uint idx = instances.data[instance_index].gi_offset >> 20;
+ uint idx = draw_call.gi_offset >> 20;
vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);
ambient_light += lm_light_l0 * 0.282095f;
@@ -2156,7 +2264,7 @@ FRAGMENT_SHADER_CODE
}
#elif defined(USE_FORWARD_GI)
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
+ if (bool(draw_call.flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture
//make vertex orientation the world one, but still align to camera
vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
@@ -2228,9 +2336,9 @@ FRAGMENT_SHADER_CODE
}
}
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
+ if (bool(draw_call.flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
- uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
+ uint index1 = draw_call.gi_offset & 0xFFFF;
vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
//find arbitrary tangent and bitangent, then build a matrix
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
@@ -2242,7 +2350,7 @@ FRAGMENT_SHADER_CODE
vec4 spec_accum = vec4(0.0);
gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
- uint index2 = instances.data[instance_index].gi_offset >> 16;
+ uint index2 = draw_call.gi_offset >> 16;
if (index2 != 0xFFFF) {
gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
@@ -2261,7 +2369,7 @@ FRAGMENT_SHADER_CODE
}
#elif !defined(LOW_END_MODE)
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
+ if (bool(draw_call.flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers
ivec2 coord;
@@ -2294,17 +2402,58 @@ FRAGMENT_SHADER_CODE
}
#endif
+#ifndef LOW_END_MODE
+ if (scene_data.ssao_enabled) {
+ float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
+ ao = min(ao, ssao);
+ ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
+ }
+#endif //LOW_END_MODE
+
{ // process reflections
vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
- uint reflection_probe_count = cluster_cell.z >> CLUSTER_COUNTER_SHIFT;
- uint reflection_probe_pointer = cluster_cell.z & CLUSTER_POINTER_MASK;
+ uint cluster_reflection_offset = cluster_offset + scene_data.cluster_type_size * 3;
+
+ uint item_min;
+ uint item_max;
+ uint item_from;
+ uint item_to;
+
+ cluster_get_item_range(cluster_reflection_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- for (uint i = 0; i < reflection_probe_count; i++) {
- uint ref_index = cluster_data.indices[reflection_probe_pointer + i];
- reflection_process(ref_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
+#ifdef USE_SUBGROUPS
+ item_from = subgroupBroadcastFirst(subgroupMin(item_from));
+ item_to = subgroupBroadcastFirst(subgroupMax(item_to));
+#endif
+
+ for (uint i = item_from; i < item_to; i++) {
+ uint mask = cluster_buffer.data[cluster_reflection_offset + i];
+ mask &= cluster_get_range_clip_mask(i, item_min, item_max);
+#ifdef USE_SUBGROUPS
+ uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
+#else
+ uint merged_mask = mask;
+#endif
+
+ while (merged_mask != 0) {
+ uint bit = findMSB(merged_mask);
+ merged_mask &= ~(1 << bit);
+#ifdef USE_SUBGROUPS
+ if (((1 << bit) & mask) == 0) { //do not process if not originally here
+ continue;
+ }
+#endif
+ uint reflection_index = 32 * i + bit;
+
+ if (!bool(reflections.data[reflection_index].mask & draw_call.layer_mask)) {
+ continue; //not masked
+ }
+
+ reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
+ }
}
if (reflection_accum.a > 0.0) {
@@ -2318,6 +2467,16 @@ FRAGMENT_SHADER_CODE
#endif
}
+ //finalize ambient light here
+ ambient_light *= albedo.rgb;
+ ambient_light *= ao;
+
+ // convert ao to direct light ao
+ ao = mix(1.0, ao, ao_light_affect);
+
+ //this saves some VGPRs
+ vec3 f0 = F0(metallic, specular, albedo);
+
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
@@ -2335,24 +2494,39 @@ FRAGMENT_SHADER_CODE
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
- vec3 f0 = F0(metallic, specular, albedo);
specular_light *= env.x * f0 + env.y;
#endif
}
+#endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
+
+#if !defined(MODE_RENDER_DEPTH)
+ //this saves some VGPRs
+ uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular));
+#endif
+
+// LIGHTING
+#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
+
{ //directional light
- for (uint i = 0; i < scene_data.directional_light_count; i++) {
- if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
+ // Do shadow and lighting in two passes to reduce register pressure
+ uint shadow0 = 0;
+ uint shadow1 = 0;
+
+ for (uint i = 0; i < 8; i++) {
+ if (i >= scene_data.directional_light_count) {
+ break;
}
- vec3 shadow_attenuation = vec3(1.0);
+ if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) {
+ continue; //not masked
+ }
-#ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth;
-#endif
+ float shadow = 1.0;
+#ifdef USE_SOFT_SHADOWS
+ //version with soft shadows, more expensive
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -vertex.z;
@@ -2366,8 +2540,6 @@ FRAGMENT_SHADER_CODE
normal_bias -= light_dir * dot(light_dir, normal_bias); \
m_var.xyz += normal_bias;
- float shadow = 0.0;
-
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
vec4 v = vec4(vertex, 1.0);
@@ -2388,19 +2560,6 @@ FRAGMENT_SHADER_CODE
shadow_color = directional_lights.data[i].shadow_color1.rgb;
-#ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
- trans_coord /= trans_coord.w;
-
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_z_range.x;
- float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x;
-
- transmittance_z = z - shadow_z;
- }
-#endif
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
@@ -2420,19 +2579,6 @@ FRAGMENT_SHADER_CODE
}
shadow_color = directional_lights.data[i].shadow_color2.rgb;
-#ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
- trans_coord /= trans_coord.w;
-
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_z_range.y;
- float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y;
-
- transmittance_z = z - shadow_z;
- }
-#endif
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
@@ -2452,19 +2598,6 @@ FRAGMENT_SHADER_CODE
}
shadow_color = directional_lights.data[i].shadow_color3.rgb;
-#ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
- trans_coord /= trans_coord.w;
-
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_z_range.z;
- float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z;
-
- transmittance_z = z - shadow_z;
- }
-#endif
} else {
vec4 v = vec4(vertex, 1.0);
@@ -2485,20 +2618,6 @@ FRAGMENT_SHADER_CODE
}
shadow_color = directional_lights.data[i].shadow_color4.rgb;
-
-#ifdef LIGHT_TRANSMITTANCE_USED
- {
- vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
- vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
- trans_coord /= trans_coord.w;
-
- float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
- shadow_z *= directional_lights.data[i].shadow_z_range.w;
- float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w;
-
- transmittance_z = z - shadow_z;
- }
-#endif
}
if (directional_lights.data[i].blend_splits) {
@@ -2572,130 +2691,407 @@ FRAGMENT_SHADER_CODE
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
- shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);
+#undef BIAS_FUNC
+ }
+#else
+ // Soft shadow disabled version
+
+ if (directional_lights.data[i].shadow_enabled) {
+ float depth_z = -vertex.z;
+
+ vec4 pssm_coord;
+ vec3 light_dir = directional_lights.data[i].direction;
+ vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp))));
+
+#define BIAS_FUNC(m_var, m_idx) \
+ m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \
+ vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \
+ normal_bias -= light_dir * dot(light_dir, normal_bias); \
+ m_var.xyz += normal_bias;
+
+ if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
+ vec4 v = vec4(vertex, 1.0);
+
+ BIAS_FUNC(v, 0)
+
+ pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
+#ifdef LIGHT_TRANSMITTANCE_USED
+ {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
+
+ transmittance_z = z - shadow_z;
+ }
+#endif
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
+ vec4 v = vec4(vertex, 1.0);
+
+ BIAS_FUNC(v, 1)
+
+ pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
+#ifdef LIGHT_TRANSMITTANCE_USED
+ {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
+
+ transmittance_z = z - shadow_z;
+ }
+#endif
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
+ vec4 v = vec4(vertex, 1.0);
+
+ BIAS_FUNC(v, 2)
+
+ pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
+#ifdef LIGHT_TRANSMITTANCE_USED
+ {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
+
+ transmittance_z = z - shadow_z;
+ }
+#endif
+
+ } else {
+ vec4 v = vec4(vertex, 1.0);
+
+ BIAS_FUNC(v, 3)
+
+ pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
+#ifdef LIGHT_TRANSMITTANCE_USED
+ {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
+
+ transmittance_z = z - shadow_z;
+ }
+#endif
+ }
+
+ pssm_coord /= pssm_coord.w;
+
+ shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
+
+ if (directional_lights.data[i].blend_splits) {
+ float pssm_blend;
+
+ if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
+ vec4 v = vec4(vertex, 1.0);
+ BIAS_FUNC(v, 1)
+ pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
+ pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
+ vec4 v = vec4(vertex, 1.0);
+ BIAS_FUNC(v, 2)
+ pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
+ pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
+ vec4 v = vec4(vertex, 1.0);
+ BIAS_FUNC(v, 3)
+ pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
+ pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
+ } else {
+ pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
+ }
+
+ pssm_coord /= pssm_coord.w;
+
+ float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
+ shadow = mix(shadow, shadow2, pssm_blend);
+ }
+
+ shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
#undef BIAS_FUNC
}
+#endif
+
+ if (i < 4) {
+ shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8);
+ } else {
+ shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8);
+ }
+ }
+
+ for (uint i = 0; i < 8; i++) {
+ if (i >= scene_data.directional_light_count) {
+ break;
+ }
+
+ if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) {
+ continue; //not masked
+ }
- light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].size, directional_lights.data[i].color * directional_lights.data[i].energy, 1.0, shadow_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity,
+#ifdef LIGHT_TRANSMITTANCE_USED
+ float transmittance_z = transmittance_depth;
+
+ if (directional_lights.data[i].shadow_enabled) {
+ float depth_z = -vertex.z;
+
+ if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
+
+ transmittance_z = z - shadow_z;
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
+
+ transmittance_z = z - shadow_z;
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
+
+ transmittance_z = z - shadow_z;
+
+ } else {
+ vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
+ vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
+ trans_coord /= trans_coord.w;
+
+ float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
+ shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
+ float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
+
+ transmittance_z = z - shadow_z;
+ }
+#endif
+
+ float shadow = 1.0;
+
+ if (i < 4) {
+ shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0;
+ } else {
+ shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0;
+ }
+
+ blur_shadow(shadow);
+
+ light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0,
#ifdef LIGHT_BACKLIGHT_USED
- backlight,
+ backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
- transmittance_z,
+ transmittance_color,
+ transmittance_depth,
+ transmittance_curve,
+ transmittance_boost,
+ transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
- rim, rim_tint,
+ rim, rim_tint, albedo,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
+ binormal, tangent, anisotropy,
+#endif
+#ifdef USE_SOFT_SHADOW
+ directional_lights.data[i].size,
#endif
#ifdef USE_SHADOW_TO_OPACITY
- alpha,
+ alpha,
#endif
- diffuse_light,
- specular_light);
+ diffuse_light,
+ specular_light);
+ }
}
- }
- { //omni lights
+ { //omni lights
- uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
- uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
+ uint cluster_omni_offset = cluster_offset;
- for (uint i = 0; i < omni_light_count; i++) {
- uint light_index = cluster_data.indices[omni_light_pointer + i];
+ uint item_min;
+ uint item_max;
+ uint item_from;
+ uint item_to;
- if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
+ cluster_get_item_range(cluster_omni_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
+#ifdef USE_SUBGROUPS
+ item_from = subgroupBroadcastFirst(subgroupMin(item_from));
+ item_to = subgroupBroadcastFirst(subgroupMax(item_to));
+#endif
+
+ for (uint i = item_from; i < item_to; i++) {
+ uint mask = cluster_buffer.data[cluster_omni_offset + i];
+ mask &= cluster_get_range_clip_mask(i, item_min, item_max);
+#ifdef USE_SUBGROUPS
+ uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
+#else
+ uint merged_mask = mask;
+#endif
+
+ while (merged_mask != 0) {
+ uint bit = findMSB(merged_mask);
+ merged_mask &= ~(1 << bit);
+#ifdef USE_SUBGROUPS
+ if (((1 << bit) & mask) == 0) { //do not process if not originally here
+ continue;
+ }
+#endif
+ uint light_index = 32 * i + bit;
+
+ if (!bool(omni_lights.data[light_index].mask & draw_call.layer_mask)) {
+ continue; //not masked
+ }
+
+ float shadow = light_process_omni_shadow(light_index, vertex, view);
+
+ shadow = blur_shadow(shadow);
+
+ light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
#ifdef LIGHT_BACKLIGHT_USED
- backlight,
+ backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
+ transmittance_color,
+ transmittance_depth,
+ transmittance_curve,
+ transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
- rim,
- rim_tint,
+ rim,
+ rim_tint,
+ albedo,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
+ tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
- alpha,
+ alpha,
#endif
- diffuse_light, specular_light);
+ diffuse_light, specular_light);
+ }
+ }
}
- }
- { //spot lights
- uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
- uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
+ { //spot lights
- for (uint i = 0; i < spot_light_count; i++) {
- uint light_index = cluster_data.indices[spot_light_pointer + i];
+ uint cluster_spot_offset = cluster_offset + scene_data.cluster_type_size;
- if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
- continue; //not masked
- }
+ uint item_min;
+ uint item_max;
+ uint item_from;
+ uint item_to;
+
+ cluster_get_item_range(cluster_spot_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
+#ifdef USE_SUBGROUPS
+ item_from = subgroupBroadcastFirst(subgroupMin(item_from));
+ item_to = subgroupBroadcastFirst(subgroupMax(item_to));
+#endif
+
+ for (uint i = item_from; i < item_to; i++) {
+ uint mask = cluster_buffer.data[cluster_spot_offset + i];
+ mask &= cluster_get_range_clip_mask(i, item_min, item_max);
+#ifdef USE_SUBGROUPS
+ uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
+#else
+ uint merged_mask = mask;
+#endif
+
+ while (merged_mask != 0) {
+ uint bit = findMSB(merged_mask);
+ merged_mask &= ~(1 << bit);
+#ifdef USE_SUBGROUPS
+ if (((1 << bit) & mask) == 0) { //do not process if not originally here
+ continue;
+ }
+#endif
+
+ uint light_index = 32 * i + bit;
+
+ if (!bool(spot_lights.data[light_index].mask & draw_call.layer_mask)) {
+ continue; //not masked
+ }
+
+ float shadow = light_process_spot_shadow(light_index, vertex, view);
+
+ shadow = blur_shadow(shadow);
+
+ light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow,
#ifdef LIGHT_BACKLIGHT_USED
- backlight,
+ backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_curve,
- transmittance_boost,
+ transmittance_color,
+ transmittance_depth,
+ transmittance_curve,
+ transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
- rim,
- rim_tint,
+ rim,
+ rim_tint,
+ albedo,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
+ tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
- alpha,
+ alpha,
#endif
- diffuse_light, specular_light);
+ diffuse_light, specular_light);
+ }
+ }
}
- }
#ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
+ alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
- if (alpha < alpha_scissor) {
- discard;
- }
+ if (alpha < alpha_scissor) {
+ discard;
+ }
#endif // ALPHA_SCISSOR_USED
#ifdef USE_OPAQUE_PREPASS
- if (alpha < opaque_prepass_threshold) {
- discard;
- }
+ if (alpha < opaque_prepass_threshold) {
+ discard;
+ }
#endif // USE_OPAQUE_PREPASS
@@ -2707,173 +3103,149 @@ FRAGMENT_SHADER_CODE
#ifdef MODE_RENDER_SDF
- {
- vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
- ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
-
- uint albedo16 = 0x1; //solid flag
- albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
- albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
- albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
-
- imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
-
- uint facing_bits = 0;
- const vec3 aniso_dir[6] = vec3[](
- vec3(1, 0, 0),
- vec3(0, 1, 0),
- vec3(0, 0, 1),
- vec3(-1, 0, 0),
- vec3(0, -1, 0),
- vec3(0, 0, -1));
-
- vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);
-
- float closest_dist = -1e20;
-
- for (uint i = 0; i < 6; i++) {
- float d = dot(cam_normal, aniso_dir[i]);
- if (d > closest_dist) {
- closest_dist = d;
- facing_bits = (1 << i);
+ {
+ vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
+ ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));
+
+ uint albedo16 = 0x1; //solid flag
+ albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
+ albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
+ albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;
+
+ imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));
+
+ uint facing_bits = 0;
+ const vec3 aniso_dir[6] = vec3[](
+ vec3(1, 0, 0),
+ vec3(0, 1, 0),
+ vec3(0, 0, 1),
+ vec3(-1, 0, 0),
+ vec3(0, -1, 0),
+ vec3(0, 0, -1));
+
+ vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);
+
+ float closest_dist = -1e20;
+
+ for (uint i = 0; i < 6; i++) {
+ float d = dot(cam_normal, aniso_dir[i]);
+ if (d > closest_dist) {
+ closest_dist = d;
+ facing_bits = (1 << i);
+ }
}
- }
- imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
+ imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits
- if (length(emission) > 0.001) {
- float lumas[6];
- vec3 light_total = vec3(0);
+ if (length(emission) > 0.001) {
+ float lumas[6];
+ vec3 light_total = vec3(0);
- for (int i = 0; i < 6; i++) {
- float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
- vec3 light = emission * strength;
- light_total += light;
- lumas[i] = max(light.r, max(light.g, light.b));
- }
+ for (int i = 0; i < 6; i++) {
+ float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
+ vec3 light = emission * strength;
+ light_total += light;
+ lumas[i] = max(light.r, max(light.g, light.b));
+ }
- float luma_total = max(light_total.r, max(light_total.g, light_total.b));
+ float luma_total = max(light_total.r, max(light_total.g, light_total.b));
- uint light_aniso = 0;
+ uint light_aniso = 0;
- for (int i = 0; i < 6; i++) {
- light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
- }
+ for (int i = 0; i < 6; i++) {
+ light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
+ }
- //compress to RGBE9995 to save space
+ //compress to RGBE9995 to save space
- const float pow2to9 = 512.0f;
- const float B = 15.0f;
- const float N = 9.0f;
- const float LN2 = 0.6931471805599453094172321215;
+ const float pow2to9 = 512.0f;
+ const float B = 15.0f;
+ const float N = 9.0f;
+ const float LN2 = 0.6931471805599453094172321215;
- float cRed = clamp(light_total.r, 0.0, 65408.0);
- float cGreen = clamp(light_total.g, 0.0, 65408.0);
- float cBlue = clamp(light_total.b, 0.0, 65408.0);
+ float cRed = clamp(light_total.r, 0.0, 65408.0);
+ float cGreen = clamp(light_total.g, 0.0, 65408.0);
+ float cBlue = clamp(light_total.b, 0.0, 65408.0);
- float cMax = max(cRed, max(cGreen, cBlue));
+ float cMax = max(cRed, max(cGreen, cBlue));
- float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
+ float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;
- float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
+ float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);
- float exps = expp + 1.0f;
+ float exps = expp + 1.0f;
- if (0.0 <= sMax && sMax < pow2to9) {
- exps = expp;
- }
+ if (0.0 <= sMax && sMax < pow2to9) {
+ exps = expp;
+ }
- float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
- float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
- float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
- //store as 8985 to have 2 extra neighbour bits
- uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
+ float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
+ float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
+ float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
+ //store as 8985 to have 2 extra neighbour bits
+ uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);
- imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
- imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
+ imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
+ imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
+ }
}
- }
#endif
#ifdef MODE_RENDER_MATERIAL
- albedo_output_buffer.rgb = albedo;
- albedo_output_buffer.a = alpha;
+ albedo_output_buffer.rgb = albedo;
+ albedo_output_buffer.a = alpha;
- normal_output_buffer.rgb = normal * 0.5 + 0.5;
- normal_output_buffer.a = 0.0;
- depth_output_buffer.r = -vertex.z;
+ normal_output_buffer.rgb = normal * 0.5 + 0.5;
+ normal_output_buffer.a = 0.0;
+ depth_output_buffer.r = -vertex.z;
-#if defined(AO_USED)
- orm_output_buffer.r = ao;
-#else
- orm_output_buffer.r = 0.0;
-#endif
- orm_output_buffer.g = roughness;
- orm_output_buffer.b = metallic;
- orm_output_buffer.a = sss_strength;
+ orm_output_buffer.r = ao;
+ orm_output_buffer.g = roughness;
+ orm_output_buffer.b = metallic;
+ orm_output_buffer.a = sss_strength;
- emission_output_buffer.rgb = emission;
- emission_output_buffer.a = 0.0;
+ emission_output_buffer.rgb = emission;
+ emission_output_buffer.a = 0.0;
#endif
#ifdef MODE_RENDER_NORMAL_ROUGHNESS
- normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
+ normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);
#ifdef MODE_RENDER_GIPROBE
- if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
- uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
- uint index2 = instances.data[instance_index].gi_offset >> 16;
- giprobe_buffer.x = index1 & 0xFF;
- giprobe_buffer.y = index2 & 0xFF;
- } else {
- giprobe_buffer.x = 0xFF;
- giprobe_buffer.y = 0xFF;
- }
+ if (bool(draw_call.flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
+ uint index1 = draw_call.gi_offset & 0xFFFF;
+ uint index2 = draw_call.gi_offset >> 16;
+ giprobe_buffer.x = index1 & 0xFF;
+ giprobe_buffer.y = index2 & 0xFF;
+ } else {
+ giprobe_buffer.x = 0xFF;
+ giprobe_buffer.y = 0xFF;
+ }
#endif
-#endif //MODE_RENDER_NORMAL
+#endif //MODE_RENDER_NORMAL_ROUGHNESS
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
- specular_light *= scene_data.reflection_multiplier;
- ambient_light *= albedo; //ambient must be multiplied by albedo at the end
-
-//ambient occlusion
-#if defined(AO_USED)
-
-#ifndef LOW_END_MODE
- if (scene_data.ssao_enabled && scene_data.ssao_ao_affect > 0.0) {
- float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
- ao = mix(ao, min(ao, ssao), scene_data.ssao_ao_affect);
- ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
- }
-#endif //LOW_END_MODE
-
- ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
- ao_light_affect = mix(1.0, ao, ao_light_affect);
- specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
- diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
-#else
-
-#ifndef LOW_END_MODE
- if (scene_data.ssao_enabled) {
- float ao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
- ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
- float ao_light_affect = mix(1.0, ao, scene_data.ssao_light_affect);
- specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
- diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
- }
-#endif //LOW_END_MODE
+ // multiply by albedo
+ diffuse_light *= albedo; // ambient must be multiplied by albedo at the end
-#endif // AO_USED
+ // apply direct light AO
+ ao = unpackUnorm4x8(orms).x;
+ specular_light *= ao;
+ diffuse_light *= ao;
- // base color remapping
- diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
+ // apply metallic
+ metallic = unpackUnorm4x8(orms).z;
+ diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
+ //restore fog
+ fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));
+
#ifdef MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
@@ -2889,25 +3261,8 @@ FRAGMENT_SHADER_CODE
specular_buffer = vec4(specular_light, metallic);
#endif
- // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
- if (scene_data.fog_enabled) {
- vec4 fog = fog_process(vertex);
- diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
- specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
- }
-
-#ifndef LOW_END_MODE
- if (scene_data.volumetric_fog_enabled) {
- vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
- diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
- specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
- }
-#endif // LOW_END_MODE
-
-#if defined(CUSTOM_FOG_USED)
- diffuse_buffer.rgb = mix(diffuse_buffer.rgb, custom_fog.rgb, custom_fog.a);
- specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), custom_fog.a);
-#endif //CUSTOM_FOG_USED
+ diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
+ specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
#else //MODE_MULTIPLE_RENDER_TARGETS
@@ -2919,22 +3274,9 @@ FRAGMENT_SHADER_CODE
#endif //USE_NO_SHADING
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
- if (scene_data.fog_enabled) {
- vec4 fog = fog_process(vertex);
- frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
- }
-#ifndef LOW_END_MODE
- if (scene_data.volumetric_fog_enabled) {
- vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
- frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
- }
-#endif
-
-#if defined(CUSTOM_FOG_USED)
- frag_color.rgb = mix(frag_color.rgb, custom_fog.rgb, custom_fog.a);
-#endif //CUSTOM_FOG_USED
+ frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
#endif //MODE_MULTIPLE_RENDER_TARGETS
#endif //MODE_RENDER_DEPTH
-}
+ }
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_inc.glsl
index fdc9941bba..a37e32e1fc 100644
--- a/servers/rendering/renderer_rd/shaders/scene_forward_inc.glsl
+++ b/servers/rendering/renderer_rd/shaders/scene_forward_inc.glsl
@@ -3,18 +3,30 @@
#define MAX_GI_PROBES 8
+#if defined(GL_KHR_shader_subgroup_ballot) && defined(GL_KHR_shader_subgroup_arithmetic)
+
+#extension GL_KHR_shader_subgroup_ballot : enable
+#extension GL_KHR_shader_subgroup_arithmetic : enable
+
+#define USE_SUBGROUPS
+
+#endif
+
#include "cluster_data_inc.glsl"
-#if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(MODE_RENDER_SDF) || defined(MODE_RENDER_NORMAL_ROUGHNESS) || defined(MODE_RENDER_GIPROBE) || defined(TANGENT_USED) || defined(NORMALMAP_USED)
+#if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(MODE_RENDER_SDF) || defined(MODE_RENDER_NORMAL_ROUGHNESS) || defined(MODE_RENDER_GIPROBE) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED)
#ifndef NORMAL_USED
#define NORMAL_USED
#endif
#endif
layout(push_constant, binding = 0, std430) uniform DrawCall {
- uint instance_index;
- uint pad; //16 bits minimum size
- vec2 bake_uv2_offset; //used for bake to uv2, ignored otherwise
+ mat4 transform;
+ uint flags;
+ uint instance_uniforms_ofs; //base offset in global buffer for instance variables
+ uint gi_offset; //GI information when using lightmapping (VCT or lightmap index)
+ uint layer_mask;
+ vec4 lightmap_uv_scale;
}
draw_call;
@@ -49,6 +61,11 @@ layout(set = 0, binding = 3, std140) uniform SceneData {
vec2 viewport_size;
vec2 screen_pixel_size;
+ uint cluster_shift;
+ uint cluster_width;
+ uint cluster_type_size;
+ uint max_cluster_element_count_div_32;
+
//use vec4s because std140 doesnt play nice with vec2s, z and w are wasted
vec4 directional_penumbra_shadow_kernel[32];
vec4 directional_soft_shadow_kernel[32];
@@ -134,33 +151,24 @@ scene_data;
#define INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK 0x7
#define INSTANCE_FLAGS_SKELETON (1 << 19)
+#define INSTANCE_FLAGS_NON_UNIFORM_SCALE (1 << 20)
-struct InstanceData {
- mat4 transform;
- mat4 normal_transform;
- uint flags;
- uint instance_uniforms_ofs; //base offset in global buffer for instance variables
- uint gi_offset; //GI information when using lightmapping (VCT or lightmap index)
- uint layer_mask;
- vec4 lightmap_uv_scale;
-};
-
-layout(set = 0, binding = 4, std430) restrict readonly buffer Instances {
- InstanceData data[];
+layout(set = 0, binding = 5, std430) restrict readonly buffer OmniLights {
+ LightData data[];
}
-instances;
+omni_lights;
-layout(set = 0, binding = 5, std430) restrict readonly buffer Lights {
+layout(set = 0, binding = 6, std430) restrict readonly buffer SpotLights {
LightData data[];
}
-lights;
+spot_lights;
-layout(set = 0, binding = 6) buffer restrict readonly ReflectionProbeData {
+layout(set = 0, binding = 7) buffer restrict readonly ReflectionProbeData {
ReflectionData data[];
}
reflections;
-layout(set = 0, binding = 7, std140) uniform DirectionalLights {
+layout(set = 0, binding = 8, std140) uniform DirectionalLights {
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
@@ -177,35 +185,26 @@ layout(set = 0, binding = 10, std140) restrict readonly buffer Lightmaps {
}
lightmaps;
-layout(set = 0, binding = 11) uniform texture2DArray lightmap_textures[MAX_LIGHTMAP_TEXTURES];
-
struct LightmapCapture {
vec4 sh[9];
};
-layout(set = 0, binding = 12, std140) restrict readonly buffer LightmapCaptures {
+layout(set = 0, binding = 11, std140) restrict readonly buffer LightmapCaptures {
LightmapCapture data[];
}
lightmap_captures;
-layout(set = 0, binding = 13) uniform texture2D decal_atlas;
-layout(set = 0, binding = 14) uniform texture2D decal_atlas_srgb;
+layout(set = 0, binding = 12) uniform texture2D decal_atlas;
+layout(set = 0, binding = 13) uniform texture2D decal_atlas_srgb;
-layout(set = 0, binding = 15, std430) restrict readonly buffer Decals {
+layout(set = 0, binding = 14, std430) restrict readonly buffer Decals {
DecalData data[];
}
decals;
-layout(set = 0, binding = 16) uniform utexture3D cluster_texture;
-
-layout(set = 0, binding = 17, std430) restrict readonly buffer ClusterData {
- uint indices[];
-}
-cluster_data;
-
-layout(set = 0, binding = 18) uniform texture2D directional_shadow_atlas;
+layout(set = 0, binding = 15) uniform texture2D directional_shadow_atlas;
-layout(set = 0, binding = 19, std430) restrict readonly buffer GlobalVariableData {
+layout(set = 0, binding = 16, std430) restrict readonly buffer GlobalVariableData {
vec4 data[];
}
global_variables;
@@ -219,7 +218,7 @@ struct SDFGIProbeCascadeData {
float to_cell; // 1/bounds * grid_size
};
-layout(set = 0, binding = 20, std140) uniform SDFGI {
+layout(set = 0, binding = 17, std140) uniform SDFGI {
vec3 grid_size;
uint max_cascades;
@@ -269,18 +268,25 @@ layout(set = 1, binding = 1) uniform textureCubeArray reflection_atlas;
layout(set = 1, binding = 2) uniform texture2D shadow_atlas;
+layout(set = 1, binding = 3) uniform texture2DArray lightmap_textures[MAX_LIGHTMAP_TEXTURES];
+
#ifndef LOW_END_MODE
-layout(set = 1, binding = 3) uniform texture3D gi_probe_textures[MAX_GI_PROBES];
+layout(set = 1, binding = 4) uniform texture3D gi_probe_textures[MAX_GI_PROBES];
#endif
+layout(set = 1, binding = 5, std430) buffer restrict readonly ClusterBuffer {
+ uint data[];
+}
+cluster_buffer;
+
/* Set 3, Render Buffers */
#ifdef MODE_RENDER_SDF
-layout(r16ui, set = 1, binding = 4) uniform restrict writeonly uimage3D albedo_volume_grid;
-layout(r32ui, set = 1, binding = 5) uniform restrict writeonly uimage3D emission_grid;
-layout(r32ui, set = 1, binding = 6) uniform restrict writeonly uimage3D emission_aniso_grid;
-layout(r32ui, set = 1, binding = 7) uniform restrict uimage3D geom_facing_grid;
+layout(r16ui, set = 1, binding = 6) uniform restrict writeonly uimage3D albedo_volume_grid;
+layout(r32ui, set = 1, binding = 7) uniform restrict writeonly uimage3D emission_grid;
+layout(r32ui, set = 1, binding = 8) uniform restrict writeonly uimage3D emission_aniso_grid;
+layout(r32ui, set = 1, binding = 9) uniform restrict uimage3D geom_facing_grid;
//still need to be present for shaders that use it, so remap them to something
#define depth_buffer shadow_atlas
@@ -289,17 +295,17 @@ layout(r32ui, set = 1, binding = 7) uniform restrict uimage3D geom_facing_grid;
#else
-layout(set = 1, binding = 4) uniform texture2D depth_buffer;
-layout(set = 1, binding = 5) uniform texture2D color_buffer;
+layout(set = 1, binding = 6) uniform texture2D depth_buffer;
+layout(set = 1, binding = 7) uniform texture2D color_buffer;
#ifndef LOW_END_MODE
-layout(set = 1, binding = 6) uniform texture2D normal_roughness_buffer;
-layout(set = 1, binding = 7) uniform texture2D ao_buffer;
-layout(set = 1, binding = 8) uniform texture2D ambient_buffer;
-layout(set = 1, binding = 9) uniform texture2D reflection_buffer;
-layout(set = 1, binding = 10) uniform texture2DArray sdfgi_lightprobe_texture;
-layout(set = 1, binding = 11) uniform texture3D sdfgi_occlusion_cascades;
+layout(set = 1, binding = 8) uniform texture2D normal_roughness_buffer;
+layout(set = 1, binding = 9) uniform texture2D ao_buffer;
+layout(set = 1, binding = 10) uniform texture2D ambient_buffer;
+layout(set = 1, binding = 11) uniform texture2D reflection_buffer;
+layout(set = 1, binding = 12) uniform texture2DArray sdfgi_lightprobe_texture;
+layout(set = 1, binding = 13) uniform texture3D sdfgi_occlusion_cascades;
struct GIProbeData {
mat4 xform;
@@ -317,12 +323,12 @@ struct GIProbeData {
uint mipmaps;
};
-layout(set = 1, binding = 12, std140) uniform GIProbes {
+layout(set = 1, binding = 14, std140) uniform GIProbes {
GIProbeData data[MAX_GI_PROBES];
}
gi_probes;
-layout(set = 1, binding = 13) uniform texture3D volumetric_fog_texture;
+layout(set = 1, binding = 15) uniform texture3D volumetric_fog_texture;
#endif // LOW_END_MODE
diff --git a/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl b/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl
index 61e4bf5e18..ed0a8a4b86 100644
--- a/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl
+++ b/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl
@@ -112,6 +112,15 @@ vec2 octahedron_encode(vec3 n) {
return n.xy;
}
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+
void main() {
uint voxel_index = uint(gl_GlobalInvocationID.x);
@@ -134,10 +143,78 @@ void main() {
uint voxel_albedo = process_voxels.data[voxel_index].albedo;
vec3 albedo = vec3(uvec3(voxel_albedo >> 10, voxel_albedo >> 5, voxel_albedo) & uvec3(0x1F)) / float(0x1F);
- vec3 light_accum[6];
-
+ vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
uint valid_aniso = (voxel_albedo >> 15) & 0x3F;
+ const vec3 aniso_dir[6] = vec3[](
+ vec3(1, 0, 0),
+ vec3(0, 1, 0),
+ vec3(0, 0, 1),
+ vec3(-1, 0, 0),
+ vec3(0, -1, 0),
+ vec3(0, 0, -1));
+
+ // Add indirect light first, in order to save computation resources
+#ifdef MODE_PROCESS_DYNAMIC
+ if (params.multibounce) {
+ vec3 pos = (vec3(positioni) + vec3(0.5)) * float(params.probe_axis_size - 1) / params.grid_size;
+ ivec3 probe_base_pos = ivec3(pos);
+
+ float weight_accum[6] = float[](0, 0, 0, 0, 0, 0);
+
+ ivec3 tex_pos = ivec3(probe_base_pos.xy, int(params.cascade));
+ tex_pos.x += probe_base_pos.z * int(params.probe_axis_size);
+
+ tex_pos.xy = tex_pos.xy * (OCT_SIZE + 2) + ivec2(1);
+
+ vec3 base_tex_posf = vec3(tex_pos);
+ vec2 tex_pixel_size = 1.0 / vec2(ivec2((OCT_SIZE + 2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE + 2) * params.probe_axis_size));
+ vec3 probe_uv_offset = (ivec3(OCT_SIZE + 2, OCT_SIZE + 2, (OCT_SIZE + 2) * params.probe_axis_size)) * tex_pixel_size.xyx;
+
+ for (uint j = 0; j < 8; j++) {
+ ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
+ ivec3 probe_posi = probe_base_pos;
+ probe_posi += offset;
+
+ // Compute weight
+
+ vec3 probe_pos = vec3(probe_posi);
+ vec3 probe_to_pos = pos - probe_pos;
+ vec3 probe_dir = normalize(-probe_to_pos);
+
+ // Compute lightprobe texture position
+
+ vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
+
+ for (uint k = 0; k < 6; k++) {
+ if (bool(valid_aniso & (1 << k))) {
+ vec3 n = aniso_dir[k];
+ float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(n, probe_dir));
+
+ vec3 tex_posf = base_tex_posf + vec3(octahedron_encode(n) * float(OCT_SIZE), 0.0);
+ tex_posf.xy *= tex_pixel_size;
+
+ vec3 pos_uvw = tex_posf;
+ pos_uvw.xy += vec2(offset.xy) * probe_uv_offset.xy;
+ pos_uvw.x += float(offset.z) * probe_uv_offset.z;
+ vec3 indirect_light = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0).rgb;
+
+ light_accum[k] += indirect_light * weight;
+ weight_accum[k] += weight;
+ }
+ }
+ }
+
+ for (uint k = 0; k < 6; k++) {
+ if (weight_accum[k] > 0.0) {
+ light_accum[k] /= weight_accum[k];
+ light_accum[k] *= albedo;
+ }
+ }
+ }
+
+#endif
+
{
uint rgbe = process_voxels.data[voxel_index].light;
@@ -153,18 +230,10 @@ void main() {
uint aniso = process_voxels.data[voxel_index].light_aniso;
for (uint i = 0; i < 6; i++) {
float strength = ((aniso >> (i * 5)) & 0x1F) / float(0x1F);
- light_accum[i] = l * strength;
+ light_accum[i] += l * strength;
}
}
- const vec3 aniso_dir[6] = vec3[](
- vec3(1, 0, 0),
- vec3(0, 1, 0),
- vec3(0, 0, 1),
- vec3(-1, 0, 0),
- vec3(0, -1, 0),
- vec3(0, 0, -1));
-
// Raytrace light
vec3 pos_to_uvw = 1.0 / params.grid_size;
@@ -184,14 +253,15 @@ void main() {
direction = normalize(rel_vec);
light_distance = length(rel_vec);
rel_vec.y /= params.y_mult;
- attenuation = pow(clamp(1.0 - length(rel_vec) / lights.data[i].radius, 0.0, 1.0), lights.data[i].attenuation);
+ attenuation = get_omni_attenuation(light_distance, 1.0 / lights.data[i].radius, lights.data[i].attenuation);
+
} break;
case LIGHT_TYPE_SPOT: {
vec3 rel_vec = lights.data[i].position - position;
direction = normalize(rel_vec);
light_distance = length(rel_vec);
rel_vec.y /= params.y_mult;
- attenuation = pow(clamp(1.0 - length(rel_vec) / lights.data[i].radius, 0.0, 1.0), lights.data[i].attenuation);
+ attenuation = get_omni_attenuation(light_distance, 1.0 / lights.data[i].radius, lights.data[i].attenuation);
float angle = acos(dot(normalize(rel_vec), -lights.data[i].direction));
if (angle > lights.data[i].spot_angle) {
@@ -282,65 +352,6 @@ void main() {
}
}
- // Add indirect light
-
- if (params.multibounce) {
- vec3 pos = (vec3(positioni) + vec3(0.5)) * float(params.probe_axis_size - 1) / params.grid_size;
- ivec3 probe_base_pos = ivec3(pos);
-
- vec4 probe_accum[6] = vec4[](vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0));
- float weight_accum[6] = float[](0, 0, 0, 0, 0, 0);
-
- ivec3 tex_pos = ivec3(probe_base_pos.xy, int(params.cascade));
- tex_pos.x += probe_base_pos.z * int(params.probe_axis_size);
-
- tex_pos.xy = tex_pos.xy * (OCT_SIZE + 2) + ivec2(1);
-
- vec3 base_tex_posf = vec3(tex_pos);
- vec2 tex_pixel_size = 1.0 / vec2(ivec2((OCT_SIZE + 2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE + 2) * params.probe_axis_size));
- vec3 probe_uv_offset = (ivec3(OCT_SIZE + 2, OCT_SIZE + 2, (OCT_SIZE + 2) * params.probe_axis_size)) * tex_pixel_size.xyx;
-
- for (uint j = 0; j < 8; j++) {
- ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
- ivec3 probe_posi = probe_base_pos;
- probe_posi += offset;
-
- // Compute weight
-
- vec3 probe_pos = vec3(probe_posi);
- vec3 probe_to_pos = pos - probe_pos;
- vec3 probe_dir = normalize(-probe_to_pos);
-
- // Compute lightprobe texture position
-
- vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
-
- for (uint k = 0; k < 6; k++) {
- if (bool(valid_aniso & (1 << k))) {
- vec3 n = aniso_dir[k];
- float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(n, probe_dir));
-
- vec3 tex_posf = base_tex_posf + vec3(octahedron_encode(n) * float(OCT_SIZE), 0.0);
- tex_posf.xy *= tex_pixel_size;
-
- vec3 pos_uvw = tex_posf;
- pos_uvw.xy += vec2(offset.xy) * probe_uv_offset.xy;
- pos_uvw.x += float(offset.z) * probe_uv_offset.z;
- vec4 indirect_light = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0);
-
- probe_accum[k] += indirect_light * weight;
- weight_accum[k] += weight;
- }
- }
- }
-
- for (uint k = 0; k < 6; k++) {
- if (weight_accum[k] > 0.0) {
- light_accum[k] += probe_accum[k].rgb * albedo / weight_accum[k];
- }
- }
- }
-
// Store the light in the light texture
float lumas[6];
diff --git a/servers/rendering/renderer_rd/shaders/sdfgi_integrate.glsl b/servers/rendering/renderer_rd/shaders/sdfgi_integrate.glsl
index d516ab22c3..67630a3aa1 100644
--- a/servers/rendering/renderer_rd/shaders/sdfgi_integrate.glsl
+++ b/servers/rendering/renderer_rd/shaders/sdfgi_integrate.glsl
@@ -136,12 +136,24 @@ uint rgbe_encode(vec3 color) {
return (uint(sRed) & 0x1FF) | ((uint(sGreen) & 0x1FF) << 9) | ((uint(sBlue) & 0x1FF) << 18) | ((uint(exps) & 0x1F) << 27);
}
+struct SH {
+#if (SH_SIZE == 16)
+ float c[48];
+#else
+ float c[28];
+#endif
+};
+
+shared SH sh_accum[64]; //8x8
+
void main() {
ivec2 pos = ivec2(gl_GlobalInvocationID.xy);
if (any(greaterThanEqual(pos, params.image_size))) { //too large, do nothing
return;
}
+ uint probe_index = gl_LocalInvocationID.x + gl_LocalInvocationID.y * 8;
+
#ifdef MODE_PROCESS
float probe_cell_size = float(params.grid_size.x / float(params.probe_axis_size - 1)) / cascades.data[params.cascade].to_cell;
@@ -154,27 +166,9 @@ void main() {
vec3 probe_pos = cascades.data[params.cascade].offset + vec3(probe_cell) * probe_cell_size;
vec3 pos_to_uvw = 1.0 / params.grid_size;
- vec4 probe_sh_accum[SH_SIZE] = vec4[](
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0)
-#if (SH_SIZE == 16)
- ,
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0)
-#endif
- );
+ for (uint i = 0; i < SH_SIZE * 3; i++) {
+ sh_accum[probe_index].c[i] = 0.0;
+ }
// quickly ensure each probe has a different "offset" for the vogel function, based on integer world position
uvec3 h3 = hash3(uvec3(params.world_offset + probe_cell));
@@ -278,33 +272,33 @@ void main() {
}
vec3 ray_dir2 = ray_dir * ray_dir;
- float c[SH_SIZE] = float[](
-
- 0.282095, //l0
- 0.488603 * ray_dir.y, //l1n1
- 0.488603 * ray_dir.z, //l1n0
- 0.488603 * ray_dir.x, //l1p1
- 1.092548 * ray_dir.x * ray_dir.y, //l2n2
- 1.092548 * ray_dir.y * ray_dir.z, //l2n1
- 0.315392 * (3.0 * ray_dir2.z - 1.0), //l20
- 1.092548 * ray_dir.x * ray_dir.z, //l2p1
- 0.546274 * (ray_dir2.x - ray_dir2.y) //l2p2
+
+#define SH_ACCUM(m_idx, m_value) \
+ { \
+ vec3 l = light.rgb * (m_value); \
+ sh_accum[probe_index].c[m_idx * 3 + 0] += l.r; \
+ sh_accum[probe_index].c[m_idx * 3 + 1] += l.g; \
+ sh_accum[probe_index].c[m_idx * 3 + 2] += l.b; \
+ }
+ SH_ACCUM(0, 0.282095); //l0
+ SH_ACCUM(1, 0.488603 * ray_dir.y); //l1n1
+ SH_ACCUM(2, 0.488603 * ray_dir.z); //l1n0
+ SH_ACCUM(3, 0.488603 * ray_dir.x); //l1p1
+ SH_ACCUM(4, 1.092548 * ray_dir.x * ray_dir.y); //l2n2
+ SH_ACCUM(5, 1.092548 * ray_dir.y * ray_dir.z); //l2n1
+ SH_ACCUM(6, 0.315392 * (3.0 * ray_dir2.z - 1.0)); //l20
+ SH_ACCUM(7, 1.092548 * ray_dir.x * ray_dir.z); //l2p1
+ SH_ACCUM(8, 0.546274 * (ray_dir2.x - ray_dir2.y)); //l2p2
#if (SH_SIZE == 16)
- ,
- 0.590043 * ray_dir.y * (3.0f * ray_dir2.x - ray_dir2.y),
- 2.890611 * ray_dir.y * ray_dir.x * ray_dir.z,
- 0.646360 * ray_dir.y * (-1.0f + 5.0f * ray_dir2.z),
- 0.373176 * (5.0f * ray_dir2.z * ray_dir.z - 3.0f * ray_dir.z),
- 0.457045 * ray_dir.x * (-1.0f + 5.0f * ray_dir2.z),
- 1.445305 * (ray_dir2.x - ray_dir2.y) * ray_dir.z,
- 0.590043 * ray_dir.x * (ray_dir2.x - 3.0f * ray_dir2.y)
+ SH_ACCUM(9, 0.590043 * ray_dir.y * (3.0f * ray_dir2.x - ray_dir2.y));
+ SH_ACCUM(10, 2.890611 * ray_dir.y * ray_dir.x * ray_dir.z);
+ SH_ACCUM(11, 0.646360 * ray_dir.y * (-1.0f + 5.0f * ray_dir2.z));
+ SH_ACCUM(12, 0.373176 * (5.0f * ray_dir2.z * ray_dir.z - 3.0f * ray_dir.z));
+ SH_ACCUM(13, 0.457045 * ray_dir.x * (-1.0f + 5.0f * ray_dir2.z));
+ SH_ACCUM(14, 1.445305 * (ray_dir2.x - ray_dir2.y) * ray_dir.z);
+ SH_ACCUM(15, 0.590043 * ray_dir.x * (ray_dir2.x - 3.0f * ray_dir2.y));
#endif
- );
-
- for (uint j = 0; j < SH_SIZE; j++) {
- probe_sh_accum[j] += light * c[j];
- }
}
for (uint i = 0; i < SH_SIZE; i++) {
@@ -312,7 +306,7 @@ void main() {
ivec3 prev_pos = ivec3(pos.x, pos.y * SH_SIZE + i, int(params.history_index));
ivec2 average_pos = prev_pos.xy;
- vec4 value = probe_sh_accum[i] * 4.0 / float(params.ray_count);
+ vec4 value = vec4(sh_accum[probe_index].c[i * 3 + 0], sh_accum[probe_index].c[i * 3 + 1], sh_accum[probe_index].c[i * 3 + 2], 1.0) * 4.0 / float(params.ray_count);
ivec4 ivalue = clamp(ivec4(value * float(1 << HISTORY_BITS)), -32768, 32767); //clamp to 16 bits, so higher values don't break average
@@ -344,37 +338,11 @@ void main() {
ivec2 oct_pos = (pos / OCT_SIZE) * (OCT_SIZE + 2) + ivec2(1);
ivec2 local_pos = pos % OCT_SIZE;
- //fill the spherical harmonic
- vec4 sh[SH_SIZE];
-
- for (uint i = 0; i < SH_SIZE; i++) {
- // store in history texture
- ivec2 average_pos = sh_pos + ivec2(0, i);
- ivec4 average = imageLoad(lightprobe_average_texture, average_pos);
-
- sh[i] = (vec4(average) / float(params.history_size)) / float(1 << HISTORY_BITS);
- }
-
//compute the octahedral normal for this texel
vec3 normal = octahedron_encode(vec2(local_pos) / float(OCT_SIZE));
- /*
+
// read the spherical harmonic
- const float c1 = 0.429043;
- const float c2 = 0.511664;
- const float c3 = 0.743125;
- const float c4 = 0.886227;
- const float c5 = 0.247708;
- vec4 light = (c1 * sh[8] * (normal.x * normal.x - normal.y * normal.y) +
- c3 * sh[6] * normal.z * normal.z +
- c4 * sh[0] -
- c5 * sh[6] +
- 2.0 * c1 * sh[4] * normal.x * normal.y +
- 2.0 * c1 * sh[7] * normal.x * normal.z +
- 2.0 * c1 * sh[5] * normal.y * normal.z +
- 2.0 * c2 * sh[3] * normal.x +
- 2.0 * c2 * sh[1] * normal.y +
- 2.0 * c2 * sh[2] * normal.z);
-*/
+
vec3 normal2 = normal * normal;
float c[SH_SIZE] = float[](
@@ -426,7 +394,14 @@ void main() {
vec3 radiance = vec3(0.0);
for (uint i = 0; i < SH_SIZE; i++) {
- vec3 m = sh[i].rgb * c[i] * 4.0;
+ // store in history texture
+ ivec2 average_pos = sh_pos + ivec2(0, i);
+ ivec4 average = imageLoad(lightprobe_average_texture, average_pos);
+
+ vec4 sh = (vec4(average) / float(params.history_size)) / float(1 << HISTORY_BITS);
+
+ vec3 m = sh.rgb * c[i] * 4.0;
+
irradiance += m * l_mult[i];
radiance += m;
}
diff --git a/servers/rendering/renderer_rd/shaders/ssao.glsl b/servers/rendering/renderer_rd/shaders/ssao.glsl
index f67965ab49..231f8f91ec 100644
--- a/servers/rendering/renderer_rd/shaders/ssao.glsl
+++ b/servers/rendering/renderer_rd/shaders/ssao.glsl
@@ -88,7 +88,7 @@ counter;
layout(rg8, set = 2, binding = 0) uniform restrict writeonly image2D dest_image;
// This push_constant is full - 128 bytes - if you need to add more data, consider adding to the uniform buffer instead
-layout(push_constant, binding = 1, std430) uniform Params {
+layout(push_constant, binding = 3, std430) uniform Params {
ivec2 screen_size;
int pass;
int quality;
@@ -249,7 +249,6 @@ void SSAOTap(const int p_quality_level, inout float r_obscurance_sum, inout floa
SSAO_tap_inner(p_quality_level, r_obscurance_sum, r_weight_sum, sampling_mirrored_uv, mip_level, p_pix_center_pos, p_pixel_normal, p_fallof_sq, p_weight_mod);
}
-// this function is designed to only work with half/half depth at the moment - there's a couple of hardcoded paths that expect pixel/texel size, so it will not work for full res
void generate_SSAO_shadows_internal(out float r_shadow_term, out vec4 r_edges, out float r_weight, const vec2 p_pos, int p_quality_level, bool p_adaptive_base) {
vec2 pos_rounded = trunc(p_pos);
uvec2 upos = uvec2(pos_rounded);
@@ -257,8 +256,8 @@ void generate_SSAO_shadows_internal(out float r_shadow_term, out vec4 r_edges, o
const int number_of_taps = (p_adaptive_base) ? (SSAO_ADAPTIVE_TAP_BASE_COUNT) : (num_taps[p_quality_level]);
float pix_z, pix_left_z, pix_top_z, pix_right_z, pix_bottom_z;
- vec4 valuesUL = textureGather(source_depth_mipmaps, vec3(pos_rounded * params.half_screen_pixel_size, params.pass)); // g_ViewspaceDepthSource.GatherRed(g_PointMirrorSampler, pos_rounded * params.half_screen_pixel_size);
- vec4 valuesBR = textureGather(source_depth_mipmaps, vec3((pos_rounded + vec2(1.0)) * params.half_screen_pixel_size, params.pass)); // g_ViewspaceDepthSource.GatherRed(g_PointMirrorSampler, pos_rounded * params.half_screen_pixel_size, ivec2(1, 1));
+ vec4 valuesUL = textureGather(source_depth_mipmaps, vec3(pos_rounded * params.half_screen_pixel_size, params.pass));
+ vec4 valuesBR = textureGather(source_depth_mipmaps, vec3((pos_rounded + vec2(1.0)) * params.half_screen_pixel_size, params.pass));
// get this pixel's viewspace depth
pix_z = valuesUL.y;
@@ -276,8 +275,7 @@ void generate_SSAO_shadows_internal(out float r_shadow_term, out vec4 r_edges, o
uvec2 full_res_coord = upos * 2 * params.size_multiplier + params.pass_coord_offset.xy;
vec3 pixel_normal = load_normal(ivec2(full_res_coord));
- //const vec2 pixel_size_at_center = pix_center_pos.z * params.NDC_to_view_mul * params.half_screen_pixel_size; // optimized approximation of:
- vec2 pixel_size_at_center = NDC_to_view_space(normalized_screen_pos.xy + params.half_screen_pixel_size * 0.5, pix_center_pos.z).xy - pix_center_pos.xy;
+ const vec2 pixel_size_at_center = NDC_to_view_space(normalized_screen_pos.xy + params.half_screen_pixel_size, pix_center_pos.z).xy - pix_center_pos.xy;
float pixel_lookup_radius;
float fallof_sq;
@@ -440,9 +438,6 @@ void generate_SSAO_shadows_internal(out float r_shadow_term, out vec4 r_edges, o
fade_out *= clamp(1.0 - edge_fadeout_factor, 0.0, 1.0);
}
- // same as a bove, but a lot more conservative version
- // fade_out *= clamp( dot( edgesLRTB, vec4( 0.9, 0.9, 0.9, 0.9 ) ) - 2.6 , 0.0, 1.0);
-
// strength
obscurance = params.intensity * obscurance;
diff --git a/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl b/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl
index 13b162f0c9..aa32809a06 100644
--- a/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl
+++ b/servers/rendering/renderer_rd/shaders/volumetric_fog.glsl
@@ -4,6 +4,15 @@
VERSION_DEFINES
+/* Do not use subgroups here, seems there is not much advantage and causes glitches
+#extension GL_KHR_shader_subgroup_ballot: enable
+#extension GL_KHR_shader_subgroup_arithmetic: enable
+
+#if defined(GL_KHR_shader_subgroup_ballot) && defined(GL_KHR_shader_subgroup_arithmetic)
+#define USE_SUBGROUPS
+#endif
+*/
+
#if defined(MODE_FOG) || defined(MODE_FILTER)
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
@@ -23,22 +32,25 @@ layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
layout(set = 0, binding = 1) uniform texture2D shadow_atlas;
layout(set = 0, binding = 2) uniform texture2D directional_shadow_atlas;
-layout(set = 0, binding = 3, std430) restrict readonly buffer Lights {
+layout(set = 0, binding = 3, std430) restrict readonly buffer OmniLights {
LightData data[];
}
-lights;
+omni_lights;
-layout(set = 0, binding = 4, std140) uniform DirectionalLights {
+layout(set = 0, binding = 4, std430) restrict readonly buffer SpotLights {
+ LightData data[];
+}
+spot_lights;
+
+layout(set = 0, binding = 5, std140) uniform DirectionalLights {
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
-layout(set = 0, binding = 5) uniform utexture3D cluster_texture;
-
-layout(set = 0, binding = 6, std430) restrict readonly buffer ClusterData {
- uint indices[];
+layout(set = 0, binding = 6, std430) buffer restrict readonly ClusterBuffer {
+ uint data[];
}
-cluster_data;
+cluster_buffer;
layout(set = 0, binding = 7) uniform sampler linear_sampler;
@@ -132,7 +144,7 @@ layout(set = 1, binding = 2) uniform texture3D sdfgi_occlusion_texture;
#endif //SDFGI
-layout(push_constant, binding = 0, std430) uniform Params {
+layout(set = 0, binding = 14, std140) uniform Params {
vec2 fog_frustum_size_begin;
vec2 fog_frustum_size_end;
@@ -150,7 +162,14 @@ layout(push_constant, binding = 0, std430) uniform Params {
float detail_spread;
float gi_inject;
uint max_gi_probes;
- uint pad;
+ uint cluster_type_size;
+
+ vec2 screen_size;
+ uint cluster_shift;
+ uint cluster_width;
+
+ uvec3 cluster_pad;
+ uint max_cluster_element_count_div_32;
mat3x4 cam_rotation;
}
@@ -169,6 +188,31 @@ vec3 hash3f(uvec3 x) {
return vec3(x & 0xFFFFF) / vec3(float(0xFFFFF));
}
+float get_omni_attenuation(float distance, float inv_range, float decay) {
+ float nd = distance * inv_range;
+ nd *= nd;
+ nd *= nd; // nd^4
+ nd = max(1.0 - nd, 0.0);
+ nd *= nd; // nd^2
+ return nd * pow(max(distance, 0.0001), -decay);
+}
+
+void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
+ uint item_min_max = cluster_buffer.data[p_offset];
+ item_min = item_min_max & 0xFFFF;
+ item_max = item_min_max >> 16;
+ ;
+
+ item_from = item_min >> 5;
+ item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
+}
+
+uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
+ int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
+ int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
+ return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
+}
+
void main() {
vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size);
@@ -184,6 +228,12 @@ void main() {
//posf += mix(vec3(0.0),vec3(1.0),0.3) * hash3f(uvec3(pos)) * 2.0 - 1.0;
vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
+
+ uvec2 screen_pos = uvec2(fog_unit_pos.xy * params.screen_size);
+ uvec2 cluster_pos = screen_pos >> params.cluster_shift;
+ uint cluster_offset = (params.cluster_width * cluster_pos.y + cluster_pos.x) * (params.max_cluster_element_count_div_32 + 32);
+ //positions in screen are too spread apart, no hopes for optimizing with subgroups
+
fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);
vec3 view_pos;
@@ -191,6 +241,8 @@ void main() {
view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
view_pos.y = -view_pos.y;
+ uint cluster_z = uint(clamp((abs(view_pos.z) / params.z_far) * 32.0, 0.0, 31.0));
+
vec3 total_light = params.light_color;
float total_density = params.base_density;
@@ -257,108 +309,160 @@ void main() {
//compute lights from cluster
- vec3 cluster_pos;
- cluster_pos.xy = fog_unit_pos.xy;
- cluster_pos.z = clamp((abs(view_pos.z) - params.z_near) / (params.z_far - params.z_near), 0.0, 1.0);
+ { //omni lights
- uvec4 cluster_cell = texture(usampler3D(cluster_texture, linear_sampler), cluster_pos);
+ uint cluster_omni_offset = cluster_offset;
- uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
- uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
+ uint item_min;
+ uint item_max;
+ uint item_from;
+ uint item_to;
- for (uint i = 0; i < omni_light_count; i++) {
- uint light_index = cluster_data.indices[omni_light_pointer + i];
+ cluster_get_item_range(cluster_omni_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- vec3 light_pos = lights.data[i].position;
- float d = distance(lights.data[i].position, view_pos) * lights.data[i].inv_radius;
- vec3 shadow_attenuation = vec3(1.0);
+#ifdef USE_SUBGROUPS
+ item_from = subgroupBroadcastFirst(subgroupMin(item_from));
+ item_to = subgroupBroadcastFirst(subgroupMax(item_to));
+#endif
- if (d < 1.0) {
- vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
- vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
+ for (uint i = item_from; i < item_to; i++) {
+ uint mask = cluster_buffer.data[cluster_omni_offset + i];
+ mask &= cluster_get_range_clip_mask(i, item_min, item_max);
+#ifdef USE_SUBGROUPS
+ uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
+#else
+ uint merged_mask = mask;
+#endif
+
+ while (merged_mask != 0) {
+ uint bit = findMSB(merged_mask);
+ merged_mask &= ~(1 << bit);
+#ifdef USE_SUBGROUPS
+ if (((1 << bit) & mask) == 0) { //do not process if not originally here
+ continue;
+ }
+#endif
+ uint light_index = 32 * i + bit;
- float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
+ //if (!bool(omni_omni_lights.data[light_index].mask & draw_call.layer_mask)) {
+ // continue; //not masked
+ //}
- vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
+ vec3 light_pos = omni_lights.data[light_index].position;
+ float d = distance(omni_lights.data[light_index].position, view_pos);
+ float shadow_attenuation = 1.0;
- vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
+ if (d * omni_lights.data[light_index].inv_radius < 1.0) {
+ float attenuation = get_omni_attenuation(d, omni_lights.data[light_index].inv_radius, omni_lights.data[light_index].attenuation);
- if (shadow_color_enabled.a > 0.5) {
- //has shadow
- vec4 v = vec4(view_pos, 1.0);
+ vec3 light = omni_lights.data[light_index].color / M_PI;
- vec4 splane = (lights.data[i].shadow_matrix * v);
- float shadow_len = length(splane.xyz); //need to remember shadow len from here
+ if (omni_lights.data[light_index].shadow_enabled) {
+ //has shadow
+ vec4 v = vec4(view_pos, 1.0);
- splane.xyz = normalize(splane.xyz);
- vec4 clamp_rect = lights.data[i].atlas_rect;
+ vec4 splane = (omni_lights.data[light_index].shadow_matrix * v);
+ float shadow_len = length(splane.xyz); //need to remember shadow len from here
- if (splane.z >= 0.0) {
- splane.z += 1.0;
+ splane.xyz = normalize(splane.xyz);
+ vec4 clamp_rect = omni_lights.data[light_index].atlas_rect;
- clamp_rect.y += clamp_rect.w;
+ if (splane.z >= 0.0) {
+ splane.z += 1.0;
- } else {
- splane.z = 1.0 - splane.z;
- }
+ clamp_rect.y += clamp_rect.w;
+
+ } else {
+ splane.z = 1.0 - splane.z;
+ }
- splane.xy /= splane.z;
+ splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * lights.data[i].inv_radius;
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- splane.w = 1.0; //needed? i think it should be 1 already
+ splane.xy = splane.xy * 0.5 + 0.5;
+ splane.z = shadow_len * omni_lights.data[light_index].inv_radius;
+ splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
+ splane.w = 1.0; //needed? i think it should be 1 already
- float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
- float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
+ float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
- shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
+ shadow_attenuation = exp(min(0.0, (depth - splane.z)) / omni_lights.data[light_index].inv_radius * omni_lights.data[light_index].shadow_volumetric_fog_fade);
+ }
+ total_light += light * attenuation * shadow_attenuation;
+ }
}
- total_light += light * attenuation * shadow_attenuation;
}
}
- uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
- uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
+ { //spot lights
- for (uint i = 0; i < spot_light_count; i++) {
- uint light_index = cluster_data.indices[spot_light_pointer + i];
+ uint cluster_spot_offset = cluster_offset + params.cluster_type_size;
- vec3 light_pos = lights.data[i].position;
- vec3 light_rel_vec = lights.data[i].position - view_pos;
- float d = length(light_rel_vec) * lights.data[i].inv_radius;
- vec3 shadow_attenuation = vec3(1.0);
+ uint item_min;
+ uint item_max;
+ uint item_from;
+ uint item_to;
+
+ cluster_get_item_range(cluster_spot_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
+
+#ifdef USE_SUBGROUPS
+ item_from = subgroupBroadcastFirst(subgroupMin(item_from));
+ item_to = subgroupBroadcastFirst(subgroupMax(item_to));
+#endif
+
+ for (uint i = item_from; i < item_to; i++) {
+ uint mask = cluster_buffer.data[cluster_spot_offset + i];
+ mask &= cluster_get_range_clip_mask(i, item_min, item_max);
+#ifdef USE_SUBGROUPS
+ uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
+#else
+ uint merged_mask = mask;
+#endif
- if (d < 1.0) {
- vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
- vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
+ while (merged_mask != 0) {
+ uint bit = findMSB(merged_mask);
+ merged_mask &= ~(1 << bit);
+#ifdef USE_SUBGROUPS
+ if (((1 << bit) & mask) == 0) { //do not process if not originally here
+ continue;
+ }
+#endif
- float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
+ //if (!bool(omni_lights.data[light_index].mask & draw_call.layer_mask)) {
+ // continue; //not masked
+ //}
- vec3 spot_dir = lights.data[i].direction;
- vec2 spot_att_angle = unpackHalf2x16(lights.data[i].cone_attenuation_angle);
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
- attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
+ uint light_index = 32 * i + bit;
- vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
+ vec3 light_pos = omni_lights.data[light_index].position;
+ vec3 light_rel_vec = omni_lights.data[light_index].position - view_pos;
+ float d = length(light_rel_vec);
+ float shadow_attenuation = 1.0;
- vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
+ if (d * omni_lights.data[light_index].inv_radius < 1.0) {
+ float attenuation = get_omni_attenuation(d, omni_lights.data[light_index].inv_radius, omni_lights.data[light_index].attenuation);
- if (shadow_color_enabled.a > 0.5) {
- //has shadow
- vec4 v = vec4(view_pos, 1.0);
+ vec3 spot_dir = omni_lights.data[light_index].direction;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir), omni_lights.data[light_index].cone_angle);
+ float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - omni_lights.data[light_index].cone_angle));
+ attenuation *= 1.0 - pow(spot_rim, omni_lights.data[light_index].cone_attenuation);
- vec4 splane = (lights.data[i].shadow_matrix * v);
- splane /= splane.w;
+ vec3 light = omni_lights.data[light_index].color / M_PI;
- float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
- float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
+ if (omni_lights.data[light_index].shadow_enabled) {
+ //has shadow
+ vec4 v = vec4(view_pos, 1.0);
- shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
- }
+ vec4 splane = (omni_lights.data[light_index].shadow_matrix * v);
+ splane /= splane.w;
- total_light += light * attenuation * shadow_attenuation;
+ float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
+
+ shadow_attenuation = exp(min(0.0, (depth - splane.z)) / omni_lights.data[light_index].inv_radius * omni_lights.data[light_index].shadow_volumetric_fog_fade);
+ }
+
+ total_light += light * attenuation * shadow_attenuation;
+ }
+ }
}
}