summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders
diff options
context:
space:
mode:
Diffstat (limited to 'servers/rendering/renderer_rd/shaders')
-rw-r--r--servers/rendering/renderer_rd/shaders/copy_to_fb.glsl62
-rw-r--r--servers/rendering/renderer_rd/shaders/light_data_inc.glsl4
-rw-r--r--servers/rendering/renderer_rd/shaders/particles_copy.glsl8
-rw-r--r--servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl106
-rw-r--r--servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl12
-rw-r--r--servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl137
-rw-r--r--servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl90
-rw-r--r--servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl2
-rw-r--r--servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl2
-rw-r--r--servers/rendering/renderer_rd/shaders/sky.glsl9
-rw-r--r--servers/rendering/renderer_rd/shaders/volumetric_fog_process.glsl3
11 files changed, 281 insertions, 154 deletions
diff --git a/servers/rendering/renderer_rd/shaders/copy_to_fb.glsl b/servers/rendering/renderer_rd/shaders/copy_to_fb.glsl
index 2f1f9c4765..9787c9879d 100644
--- a/servers/rendering/renderer_rd/shaders/copy_to_fb.glsl
+++ b/servers/rendering/renderer_rd/shaders/copy_to_fb.glsl
@@ -4,7 +4,20 @@
#VERSION_DEFINES
+#ifdef MULTIVIEW
+#ifdef has_VK_KHR_multiview
+#extension GL_EXT_multiview : enable
+#define ViewIndex gl_ViewIndex
+#else // has_VK_KHR_multiview
+#define ViewIndex 0
+#endif // has_VK_KHR_multiview
+#endif //MULTIVIEW
+
+#ifdef MULTIVIEW
+layout(location = 0) out vec3 uv_interp;
+#else
layout(location = 0) out vec2 uv_interp;
+#endif
layout(push_constant, std430) uniform Params {
vec4 section;
@@ -19,9 +32,11 @@ params;
void main() {
vec2 base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
- uv_interp = base_arr[gl_VertexIndex];
-
- vec2 vpos = uv_interp;
+ uv_interp.xy = base_arr[gl_VertexIndex];
+#ifdef MULTIVIEW
+ uv_interp.z = ViewIndex;
+#endif
+ vec2 vpos = uv_interp.xy;
if (params.use_section) {
vpos = params.section.xy + vpos * params.section.zw;
}
@@ -39,6 +54,15 @@ void main() {
#VERSION_DEFINES
+#ifdef MULTIVIEW
+#ifdef has_VK_KHR_multiview
+#extension GL_EXT_multiview : enable
+#define ViewIndex gl_ViewIndex
+#else // has_VK_KHR_multiview
+#define ViewIndex 0
+#endif // has_VK_KHR_multiview
+#endif //MULTIVIEW
+
layout(push_constant, std430) uniform Params {
vec4 section;
vec2 pixel_size;
@@ -52,12 +76,25 @@ layout(push_constant, std430) uniform Params {
}
params;
+#ifdef MULTIVIEW
+layout(location = 0) in vec3 uv_interp;
+#else
layout(location = 0) in vec2 uv_interp;
+#endif
+#ifdef MULTIVIEW
+layout(set = 0, binding = 0) uniform sampler2DArray source_color;
+#ifdef MODE_TWO_SOURCES
+layout(set = 1, binding = 0) uniform sampler2DArray source_depth;
+layout(location = 1) out float depth;
+#endif /* MODE_TWO_SOURCES */
+#else
layout(set = 0, binding = 0) uniform sampler2D source_color;
#ifdef MODE_TWO_SOURCES
layout(set = 1, binding = 0) uniform sampler2D source_color2;
-#endif
+#endif /* MODE_TWO_SOURCES */
+#endif /* MULTIVIEW */
+
layout(location = 0) out vec4 frag_color;
vec3 linear_to_srgb(vec3 color) {
@@ -68,9 +105,14 @@ vec3 linear_to_srgb(vec3 color) {
}
void main() {
+#ifdef MULTIVIEW
+ vec3 uv = uv_interp;
+#else
vec2 uv = uv_interp;
+#endif
#ifdef MODE_PANORAMA_TO_DP
+ // Note, multiview and panorama should not be mixed at this time
//obtain normal from dual paraboloid uv
#define M_PI 3.14159265359
@@ -98,10 +140,20 @@ void main() {
uv = 1.0 - uv;
}
#endif
+
+#ifdef MULTIVIEW
+ vec4 color = textureLod(source_color, uv, 0.0);
+#ifdef MODE_TWO_SOURCES
+ // In multiview our 2nd input will be our depth map
+ depth = textureLod(source_depth, uv, 0.0).r;
+#endif /* MODE_TWO_SOURCES */
+
+#else
vec4 color = textureLod(source_color, uv, 0.0);
#ifdef MODE_TWO_SOURCES
color += textureLod(source_color2, uv, 0.0);
-#endif
+#endif /* MODE_TWO_SOURCES */
+#endif /* MULTIVIEW */
if (params.force_luminance) {
color.rgb = vec3(max(max(color.r, color.g), color.b));
}
diff --git a/servers/rendering/renderer_rd/shaders/light_data_inc.glsl b/servers/rendering/renderer_rd/shaders/light_data_inc.glsl
index 52787bb204..61c8488a05 100644
--- a/servers/rendering/renderer_rd/shaders/light_data_inc.glsl
+++ b/servers/rendering/renderer_rd/shaders/light_data_inc.glsl
@@ -76,10 +76,6 @@ struct DirectionalLightData {
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
- mediump vec4 shadow_color1;
- mediump vec4 shadow_color2;
- mediump vec4 shadow_color3;
- mediump vec4 shadow_color4;
highp vec2 uv_scale1;
highp vec2 uv_scale2;
highp vec2 uv_scale3;
diff --git a/servers/rendering/renderer_rd/shaders/particles_copy.glsl b/servers/rendering/renderer_rd/shaders/particles_copy.glsl
index b991880cd9..afbd5a9caa 100644
--- a/servers/rendering/renderer_rd/shaders/particles_copy.glsl
+++ b/servers/rendering/renderer_rd/shaders/particles_copy.glsl
@@ -61,6 +61,8 @@ layout(push_constant, std430) uniform Params {
uint lifetime_split;
bool lifetime_reverse;
bool copy_mode_2d;
+
+ mat4 inv_emission_transform;
}
params;
@@ -199,6 +201,12 @@ void main() {
txform = txform * trail_bind_poses.data[part_ofs];
}
+ if (params.copy_mode_2d) {
+ // In global mode, bring 2D particles to local coordinates
+ // as they will be drawn with the node position as origin.
+ txform = params.inv_emission_transform * txform;
+ }
+
txform = transpose(txform);
} else {
txform = mat4(vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0)); //zero scale, becomes invisible
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl
index 5d65b00bee..f9cee011d2 100644
--- a/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl
+++ b/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl
@@ -99,6 +99,18 @@ layout(location = 8) out float dp_clip;
layout(location = 9) out flat uint instance_index_interp;
+#ifdef USE_MULTIVIEW
+#ifdef has_VK_KHR_multiview
+#define ViewIndex gl_ViewIndex
+#else // has_VK_KHR_multiview
+// !BAS! This needs to become an input once we implement our fallback!
+#define ViewIndex 0
+#endif // has_VK_KHR_multiview
+#else // USE_MULTIVIEW
+// Set to zero, not supported in non stereo
+#define ViewIndex 0
+#endif //USE_MULTIVIEW
+
invariant gl_Position;
#GLOBALS
@@ -244,7 +256,13 @@ void main() {
vec4 position;
#endif
+#ifdef USE_MULTIVIEW
+ mat4 projection_matrix = scene_data.projection_matrix_view[ViewIndex];
+ mat4 inv_projection_matrix = scene_data.inv_projection_matrix_view[ViewIndex];
+#else
mat4 projection_matrix = scene_data.projection_matrix;
+ mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
+#endif //USE_MULTIVIEW
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
@@ -421,10 +439,26 @@ layout(location = 8) in float dp_clip;
layout(location = 9) in flat uint instance_index_interp;
+#ifdef USE_MULTIVIEW
+#ifdef has_VK_KHR_multiview
+#define ViewIndex gl_ViewIndex
+#else // has_VK_KHR_multiview
+// !BAS! This needs to become an input once we implement our fallback!
+#define ViewIndex 0
+#endif // has_VK_KHR_multiview
+#else // USE_MULTIVIEW
+// Set to zero, not supported in non stereo
+#define ViewIndex 0
+#endif //USE_MULTIVIEW
+
//defines to keep compatibility with vertex
#define world_matrix instances.data[instance_index].transform
+#ifdef USE_MULTIVIEW
+#define projection_matrix scene_data.projection_matrix_view[ViewIndex]
+#else
#define projection_matrix scene_data.projection_matrix
+#endif
#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
//both required for transmittance to be enabled
@@ -478,8 +512,8 @@ layout(location = 0) out vec4 frag_color;
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
-/* Make a default specular mode SPECULAR_SCHLICK_GGX. */
-#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) && !defined(SPECULAR_PHONG) && !defined(SPECULAR_TOON)
+// Default to SPECULAR_SCHLICK_GGX.
+#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif
@@ -589,7 +623,7 @@ void main() {
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
- float clearcoat_gloss = 0.0;
+ float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
vec4 fog = vec4(0.0);
@@ -912,7 +946,17 @@ void main() {
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (scene_data.use_reflection_cubemap) {
+#ifdef LIGHT_ANISOTROPY_USED
+ // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
+ vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
+ vec3 anisotropic_tangent = cross(anisotropic_direction, view);
+ vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
+ vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
+ vec3 ref_vec = reflect(-view, bent_normal);
+#else
vec3 ref_vec = reflect(-view, normal);
+#endif
+
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
@@ -954,6 +998,36 @@ void main() {
#if defined(CUSTOM_IRRADIANCE_USED)
ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
#endif
+
+#ifdef LIGHT_CLEARCOAT_USED
+
+ if (scene_data.use_reflection_cubemap) {
+ vec3 n = normalize(normal_interp); // We want to use geometric normal, not normal_map
+ float NoV = max(dot(n, view), 0.0001);
+ vec3 ref_vec = reflect(-view, n);
+ // The clear coat layer assumes an IOR of 1.5 (4% reflectance)
+ float Fc = clearcoat * (0.04 + 0.96 * SchlickFresnel(NoV));
+ float attenuation = 1.0 - Fc;
+ ambient_light *= attenuation;
+ specular_light *= attenuation;
+
+ float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
+ ref_vec = scene_data.radiance_inverse_xform * ref_vec;
+ float roughness_lod = mix(0.001, 0.1, clearcoat_roughness) * MAX_ROUGHNESS_LOD;
+#ifdef USE_RADIANCE_CUBEMAP_ARRAY
+
+ float lod, blend;
+ blend = modf(roughness_lod, lod);
+ vec3 clearcoat_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
+ clearcoat_light = mix(clearcoat_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
+
+#else
+ vec3 clearcoat_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness_lod).rgb;
+
+#endif //USE_RADIANCE_CUBEMAP_ARRAY
+ specular_light += clearcoat_light * horizon * horizon * Fc * scene_data.ambient_light_color_energy.a;
+ }
+#endif
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
//radiance
@@ -1202,8 +1276,16 @@ void main() {
if (!bool(reflections.data[reflection_index].mask & instances.data[instance_index].layer_mask)) {
continue; //not masked
}
-
- reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
+#ifdef LIGHT_ANISOTROPY_USED
+ // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
+ vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
+ vec3 anisotropic_tangent = cross(anisotropic_direction, view);
+ vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
+ vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
+#else
+ vec3 bent_normal = normal;
+#endif
+ reflection_process(reflection_index, vertex, bent_normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
}
}
@@ -1555,10 +1637,11 @@ void main() {
rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
+ binormal,
+ tangent, anisotropy,
#endif
diffuse_light,
specular_light);
@@ -1626,7 +1709,7 @@ void main() {
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
tangent, binormal, anisotropy,
@@ -1698,10 +1781,11 @@ void main() {
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
+ tangent,
+ binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
@@ -1904,7 +1988,7 @@ void main() {
frag_color = vec4(albedo, alpha);
#else
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
- //frag_color = vec4(1.0);
+//frag_color = vec4(1.0);
#endif //USE_NO_SHADING
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl
index 084e2a0673..2e31503669 100644
--- a/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl
+++ b/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl
@@ -2,6 +2,7 @@
#define ROUGHNESS_MAX_LOD 5
#define MAX_VOXEL_GI_INSTANCES 8
+#define MAX_VIEWS 2
#if defined(has_GL_KHR_shader_subgroup_ballot) && defined(has_GL_KHR_shader_subgroup_arithmetic)
@@ -12,10 +13,14 @@
#endif
+#if defined(USE_MULTIVIEW) && defined(has_VK_KHR_multiview)
+#extension GL_EXT_multiview : enable
+#endif
+
#include "cluster_data_inc.glsl"
#include "decal_data_inc.glsl"
-#if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(MODE_RENDER_SDF) || defined(MODE_RENDER_NORMAL_ROUGHNESS) || defined(MODE_RENDER_VOXEL_GI) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED)
+#if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(MODE_RENDER_SDF) || defined(MODE_RENDER_NORMAL_ROUGHNESS) || defined(MODE_RENDER_VOXEL_GI) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
#ifndef NORMAL_USED
#define NORMAL_USED
#endif
@@ -169,10 +174,13 @@ sdfgi;
layout(set = 1, binding = 0, std140) uniform SceneData {
mat4 projection_matrix;
mat4 inv_projection_matrix;
-
mat4 camera_matrix;
mat4 inv_camera_matrix;
+ // only used for multiview
+ mat4 projection_matrix_view[MAX_VIEWS];
+ mat4 inv_projection_matrix_view[MAX_VIEWS];
+
vec2 viewport_size;
vec2 screen_pixel_size;
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl
index 16f77fb91a..bd1c2b5758 100644
--- a/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl
+++ b/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl
@@ -1,55 +1,29 @@
// Functions related to lighting
-// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
-// We're dividing this factor off because the overall term we'll end up looks like
-// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
-//
-// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
-//
-// We're basically regouping this as
-//
-// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
-//
-// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
-//
-// The contents of the D and G (G1) functions (GGX) are taken from
-// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
-// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
-
-float G_GGX_2cos(float cos_theta_m, float alpha) {
- // Schlick's approximation
- // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
- // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
- // It nevertheless approximates GGX well with k = alpha/2.
- float k = 0.5 * alpha;
- return 0.5 / (cos_theta_m * (1.0 - k) + k);
-
- // float cos2 = cos_theta_m * cos_theta_m;
- // float sin2 = (1.0 - cos2);
- // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
-}
-
float D_GGX(float cos_theta_m, float alpha) {
- float alpha2 = alpha * alpha;
- float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
- return alpha2 / (M_PI * d * d);
+ float a = cos_theta_m * alpha;
+ float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
+ return k * k * (1.0 / M_PI);
}
-float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float s_x = alpha_x * cos_phi;
- float s_y = alpha_y * sin_phi;
- return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
+// From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
+float V_GGX(float NdotL, float NdotV, float alpha) {
+ return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float cos2 = cos_theta_m * cos_theta_m;
- float sin2 = (1.0 - cos2);
- float r_x = cos_phi / alpha_x;
- float r_y = sin_phi / alpha_y;
- float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
- return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
+ float alpha2 = alpha_x * alpha_y;
+ highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
+ highp float v2 = dot(v, v);
+ float w2 = alpha2 / v2;
+ float D = alpha2 * w2 * w2 * (1.0 / M_PI);
+ return D;
+}
+
+float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
+ float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
+ float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
+ return 0.5 / (Lambda_V + Lambda_L);
}
float SchlickFresnel(float u) {
@@ -58,14 +32,6 @@ float SchlickFresnel(float u) {
return m2 * m2 * m; // pow(m,5)
}
-float GTR1(float NdotH, float a) {
- if (a >= 1.0)
- return 1.0 / M_PI;
- float a2 = a * a;
- float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
- return (a2 - 1.0) / (M_PI * log(a2) * t);
-}
-
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
@@ -87,7 +53,7 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 B, vec3 T, float anisotropy,
@@ -113,13 +79,13 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
float NdotL = min(A + dot(N, L), 1.0);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 0.0);
+ float cNdotV = max(NdotV, 1e-4);
-#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
+#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
vec3 H = normalize(V + L);
#endif
-#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
+#if defined(SPECULAR_SCHLICK_GGX)
float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif
@@ -203,26 +169,7 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
// D
-#if defined(SPECULAR_BLINN)
-
- //normalized blinn
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float blinn = pow(cNdotH, shininess);
- blinn *= (shininess + 2.0) * (1.0 / (8.0 * M_PI));
-
- specular_light += light_color * attenuation * specular_amount * blinn * f0 * orms_unpacked.w;
-
-#elif defined(SPECULAR_PHONG)
-
- vec3 R = normalize(-reflect(L, N));
- float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
- float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
- float phong = pow(cRdotV, shininess);
- phong *= (shininess + 1.0) * (1.0 / (8.0 * M_PI));
-
- specular_light += light_color * attenuation * specular_amount * phong * f0 * orms_unpacked.w;
-
-#elif defined(SPECULAR_TOON)
+#if defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
@@ -236,24 +183,21 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
-
+ float alpha_ggx = roughness * roughness;
#if defined(LIGHT_ANISOTROPY_USED)
- float alpha_ggx = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
- float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
-
-#else
- float alpha_ggx = roughness * roughness;
+ float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
+#else // LIGHT_ANISOTROPY_USED
float D = D_GGX(cNdotH, alpha_ggx);
- float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
-#endif
- // F
+ float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
+#endif // LIGHT_ANISOTROPY_USED
+ // F
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
@@ -263,18 +207,23 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float atte
#endif
#if defined(LIGHT_CLEARCOAT_USED)
+ // Clearcoat ignores normal_map, use vertex normal instead
+ float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
+ float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
+ float ccNdotV = max(dot(vertex_normal, V), 1e-4);
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
- float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
+ float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
+ float Gr = 0.25 / (cLdotH * cLdotH);
float Fr = mix(.04, 1.0, cLdotH5);
- float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
-
- float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
+ float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
-#endif
+ // TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
+ // but to do so we need to rearrange this entire function
+#endif // LIGHT_CLEARCOAT_USED
}
#ifdef USE_SHADOW_TO_OPACITY
@@ -587,7 +536,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
@@ -711,7 +660,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
rim * omni_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
@@ -827,7 +776,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_gloss,
+ float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
vec3 binormal, vec3 tangent, float anisotropy,
@@ -912,7 +861,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
rim * spot_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl
index 4d6a3b5864..0fcf449659 100644
--- a/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl
+++ b/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl
@@ -511,8 +511,8 @@ layout(location = 0) out mediump vec4 frag_color;
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
-/* Make a default specular mode SPECULAR_SCHLICK_GGX. */
-#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) && !defined(SPECULAR_PHONG) && !defined(SPECULAR_TOON)
+// Default to SPECULAR_SCHLICK_GGX.
+#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif
@@ -596,7 +596,7 @@ void main() {
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
- float clearcoat_gloss = 0.0;
+ float clearcoat_roughness = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
vec4 fog = vec4(0.0);
@@ -874,7 +874,16 @@ void main() {
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
if (scene_data.use_reflection_cubemap) {
+#ifdef LIGHT_ANISOTROPY_USED
+ // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
+ vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
+ vec3 anisotropic_tangent = cross(anisotropic_direction, view);
+ vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
+ vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
+ vec3 ref_vec = reflect(-view, bent_normal);
+#else
vec3 ref_vec = reflect(-view, normal);
+#endif
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
@@ -917,7 +926,35 @@ void main() {
#if defined(CUSTOM_IRRADIANCE_USED)
ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a);
#endif // CUSTOM_IRRADIANCE_USED
+#ifdef LIGHT_CLEARCOAT_USED
+
+ if (scene_data.use_reflection_cubemap) {
+ vec3 n = normalize(normal_interp); // We want to use geometric normal, not normal_map
+ float NoV = max(dot(n, view), 0.0001);
+ vec3 ref_vec = reflect(-view, n);
+ // The clear coat layer assumes an IOR of 1.5 (4% reflectance)
+ float Fc = clearcoat * (0.04 + 0.96 * SchlickFresnel(NoV));
+ float attenuation = 1.0 - Fc;
+ ambient_light *= attenuation;
+ specular_light *= attenuation;
+
+ float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
+ ref_vec = scene_data.radiance_inverse_xform * ref_vec;
+ float roughness_lod = mix(0.001, 0.1, clearcoat_roughness) * MAX_ROUGHNESS_LOD;
+#ifdef USE_RADIANCE_CUBEMAP_ARRAY
+
+ float lod, blend;
+ blend = modf(roughness_lod, lod);
+ vec3 clearcoat_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
+ clearcoat_light = mix(clearcoat_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);
+#else
+ vec3 clearcoat_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness_lod).rgb;
+
+#endif //USE_RADIANCE_CUBEMAP_ARRAY
+ specular_light += clearcoat_light * horizon * horizon * Fc * scene_data.ambient_light_color_energy.a;
+ }
+#endif
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
//radiance
@@ -1002,13 +1039,27 @@ void main() {
if (reflection_index == 0xFF) {
break;
}
-
- reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
+#ifdef LIGHT_ANISOTROPY_USED
+ // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
+ vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
+ vec3 anisotropic_tangent = cross(anisotropic_direction, view);
+ vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
+ vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
+#else
+ vec3 bent_normal = normal;
+#endif
+ reflection_process(reflection_index, vertex, bent_normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
}
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
+
+#if !defined(USE_LIGHTMAP)
+ if (ambient_accum.a > 0.0) {
+ ambient_light = ambient_accum.rgb / ambient_accum.a;
+ }
+#endif
} //Reflection probes
// finalize ambient light here
@@ -1079,7 +1130,6 @@ void main() {
float depth_z = -vertex.z;
vec4 pssm_coord;
- vec3 shadow_color = vec3(0.0);
vec3 light_dir = directional_lights.data[i].direction;
#define BIAS_FUNC(m_var, m_idx) \
@@ -1105,9 +1155,6 @@ void main() {
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
-
- shadow_color = directional_lights.data[i].shadow_color1.rgb;
-
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
@@ -1125,8 +1172,6 @@ void main() {
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
-
- shadow_color = directional_lights.data[i].shadow_color2.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
@@ -1144,9 +1189,6 @@ void main() {
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
-
- shadow_color = directional_lights.data[i].shadow_color3.rgb;
-
} else {
vec4 v = vec4(vertex, 1.0);
@@ -1164,12 +1206,9 @@ void main() {
} else {
shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
}
-
- shadow_color = directional_lights.data[i].shadow_color4.rgb;
}
if (directional_lights.data[i].blend_splits) {
- vec3 shadow_color_blend = vec3(0.0);
float pssm_blend;
float shadow2;
@@ -1190,7 +1229,6 @@ void main() {
}
pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 2)
@@ -1208,8 +1246,6 @@ void main() {
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);
-
- shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
vec4 v = vec4(vertex, 1.0);
BIAS_FUNC(v, 3)
@@ -1226,7 +1262,6 @@ void main() {
}
pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
- shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
} else {
pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
}
@@ -1234,7 +1269,6 @@ void main() {
pssm_blend = sqrt(pssm_blend);
shadow = mix(shadow, shadow2, pssm_blend);
- shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
}
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance
@@ -1368,7 +1402,7 @@ void main() {
rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
binormal, tangent, anisotropy,
@@ -1415,10 +1449,11 @@ void main() {
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
+ tangent,
+ binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
@@ -1459,10 +1494,11 @@ void main() {
rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_gloss,
+ clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
- tangent, binormal, anisotropy,
+ tangent,
+ binormal, anisotropy,
#endif
diffuse_light, specular_light);
}
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl
index 541c0b0603..7a624c3b95 100644
--- a/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl
+++ b/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl
@@ -7,7 +7,7 @@
#include "decal_data_inc.glsl"
-#if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED)
+#if !defined(MODE_RENDER_DEPTH) || defined(MODE_RENDER_MATERIAL) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
#ifndef NORMAL_USED
#define NORMAL_USED
#endif
diff --git a/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl b/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl
index 5bda15236c..b95fad650e 100644
--- a/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl
+++ b/servers/rendering/renderer_rd/shaders/sdfgi_direct_light.glsl
@@ -70,8 +70,6 @@ struct Light {
float cos_spot_angle;
float inv_spot_attenuation;
float radius;
-
- vec4 shadow_color;
};
layout(set = 0, binding = 9, std140) buffer restrict readonly Lights {
diff --git a/servers/rendering/renderer_rd/shaders/sky.glsl b/servers/rendering/renderer_rd/shaders/sky.glsl
index b258e89c66..5b4594da99 100644
--- a/servers/rendering/renderer_rd/shaders/sky.glsl
+++ b/servers/rendering/renderer_rd/shaders/sky.glsl
@@ -180,12 +180,11 @@ void main() {
cube_normal.x = (cube_normal.z * (-uv_interp.x - params.projections[ViewIndex].x)) / params.projections[ViewIndex].y;
cube_normal.y = -(cube_normal.z * (-uv_interp.y - params.projections[ViewIndex].z)) / params.projections[ViewIndex].w;
cube_normal = mat3(params.orientation) * cube_normal;
- cube_normal.z = -cube_normal.z;
cube_normal = normalize(cube_normal);
vec2 uv = uv_interp * 0.5 + 0.5;
- vec2 panorama_coords = vec2(atan(cube_normal.x, cube_normal.z), acos(cube_normal.y));
+ vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;
@@ -200,13 +199,11 @@ void main() {
vec4 custom_fog = vec4(0.0);
#ifdef USE_CUBEMAP_PASS
- vec3 inverted_cube_normal = cube_normal;
- inverted_cube_normal.z *= -1.0;
#ifdef USES_HALF_RES_COLOR
- half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal) * params.luminance_multiplier;
+ half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal) * params.luminance_multiplier;
#endif
#ifdef USES_QUARTER_RES_COLOR
- quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), inverted_cube_normal) * params.luminance_multiplier;
+ quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal) * params.luminance_multiplier;
#endif
#else
#ifdef USES_HALF_RES_COLOR
diff --git a/servers/rendering/renderer_rd/shaders/volumetric_fog_process.glsl b/servers/rendering/renderer_rd/shaders/volumetric_fog_process.glsl
index 7a0cea421e..347fd13b28 100644
--- a/servers/rendering/renderer_rd/shaders/volumetric_fog_process.glsl
+++ b/servers/rendering/renderer_rd/shaders/volumetric_fog_process.glsl
@@ -382,7 +382,6 @@ void main() {
float depth_z = -view_pos.z;
vec4 pssm_coord;
- vec3 shadow_color = directional_lights.data[i].shadow_color1.rgb;
vec3 light_dir = directional_lights.data[i].direction;
vec4 v = vec4(view_pos, 1.0);
float z_range;
@@ -413,7 +412,7 @@ void main() {
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance
- shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);
+ shadow_attenuation = mix(vec3(0.0), vec3(1.0), shadow);
}
total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy * henyey_greenstein(dot(normalize(view_pos), normalize(directional_lights.data[i].direction)), params.phase_g);